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Generative artificial intelligence (GenAl) is transforming public health and
medicine as well, in the form of disease surveillance, resource allocation and
clinical decision making. Interventions to improve efficiency — multimodal
predictive algorithms, federated learning platforms — reveal the internal
contradictions of the system between algorithmic efficiency and fairness:
speed of technical innovation and reqgulatory deficit, data flows without
borders vs. ethical values of places. We present a three-dimensional
governance structure for the topic covering the technical, institutional and
ethical domains. From a technology point of view, explainability solutions and
culturally-aware design align transparency with cultural sensibility. From an
institution point of view, privacy-protecting data platforms and risk-based
regulation align innovation with accountability. From an ethical point of view,
incorporating local values and disbursing Al dividends sustain equitable health
outcomes. There are still challenges that demand the utmost priority, including
the algorithmic prejudice, the data imperialism and the opacity in medical Al
decision making. Future priorities include the development of broader
measurement tools that integrate clinical impact, equity, and societal impact;
the development of transnational governance institutions to mitigate concerns
relating to data sovereignty; and the development of forms of participatory
design between designers, practitioners, and populations. A balance between
technical creativity, visionary policy-making, and caring leadership to advocate
for human-centered healthcare will provide us with trusted Al ecosystems.
Technical excellence alone cannot guarantee success unless fairness and
accessibility, social responsiveness, and justice for future global health
is guaranteed.

KEYWORDS

generative artificial intelligence, public health informatics, medical Al governance,
algorithmic fairness, explainable Al, data colonialism, health equity, ethical
machine learning

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1620132/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1620132/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1620132/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1620132/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1620132&domain=pdf&date_stamp=2025-11-19
mailto:jiangjunyi@ncpsb.org.cn
https://doi.org/10.3389/fendo.2025.1620132
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1620132
https://www.frontiersin.org/journals/endocrinology

Deng et al.

1 Introduction

The global diabetes epidemic has reached substantial
proportions, with an estimated 537 million adults currently
affected, a number projected to rise significantly within the next
decade (1). This trend is mirrored in China, where national surveys
indicate a dramatic increase in prevalence from over 1% in 1980 to
over 10% in 2017, with current data suggesting approximately 13%
of the adult population lives with diabetes (2). The associated
morbidity, mortality, and economic burden are profound; in
2019, diabetes-related causes accounted for 0.82 million deaths
among Chinese adults and represented a leading source of
healthcare expenditure (2). Coupled with the disability resulting
from its complications, diabetes stands as one of the most critical
public health challenges of the 21st century (3, 4). Traditional
diabetes management faces several challenges, including under-
diagnosis, suboptimal treatment, and the resource-intensive nature
of aggressive care, which requires coordinated efforts from
endocrinologists, nutritionists, nephrologists, ophthalmologists,
and other specialists—resources often scarce or unevenly
distributed (2). Furthermore, achieving optimal glycemic control
remains difficult as it heavily depends on patient behaviors such as
dietary intake, physical activity, and glucose monitoring (5).

Digital health technologies, especially Artificial Intelligence(AI),
hold immense potential to address these gaps (6). While numerous
reviews have cataloged Al applications in diabetes care, they often
remain siloed within technical domains (e.g., prediction, diagnosis)
(Table 1). This review advances the discourse by introducing a
patient-centric “IPAES” framework (Identification, Prediction,
Assistance, Education, and Support) that maps AI technologies to
the complete patient journey, while critically examining the real-
world implementation barriers—algorithmic fairness, clinician
trust, regulatory hurdles—that determine ultimate translational
success (1, 4). We pay particular attention to the emerging role of
generative AI, which moves beyond traditional discriminative
models to create novel content and solutions, and we explore its
potential to revolutionize areas like personalized patient education
and synthetic data generation (3, 7).

Al can parse vast amounts of multimodal health data—including
electronic health records, genomics, medical images, and data from
wearables—to assist both clinicians and patients (2, 6). Recent reviews
highlight AT applications across the entire spectrum of diabetes care,
from enhanced screening and diagnosis to treatment management
and complication prediction (3, 4). In risk prediction, for instance,
algorithms using clinical and biological features can accurately
identify individuals at high risk for type 2 diabetes (4). Multimodal
models integrating genomic, metabolomic, and clinical data have
demonstrated exceptional performance, with one study reporting an
area under the receiver operating characteristic curve (AUC) of
approximately 0.96 (6). Deep learning models applied to
ophthalmic imaging have also shown remarkable accuracy;
convolutional neural networks interpreting retinal fundus
photographs and clinical metadata have achieved AUROCs
between 0.85 and 0.93 for detecting prevalent type 2 diabetes (6).
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AT has also significantly advanced diabetes classification and
treatment personalization. While diabetes has traditionally been
categorized primarily into type 1 and type 2 (with additional
categories such as gestational diabetes), data-driven clustering
analyses suggest a more nuanced subtyping (8, 9). Ahlqvist et al.’s
groundbreaking study, using six clinical variables, identified five
reproducible clusters of adult-onset diabetes with distinct
phenotypes and complication risks (8). These subgroups have
been replicated across diverse populations (9), suggesting
improved phenotyping that could enable precision management.
Moving beyond subclassification, AI is now directly informing
therapeutic choices. A landmark study by Dennis et al. (2025)
developed and validated a predictive model using routinely
available clinical features to compare the efficacy of five major
drug classes for type 2 diabetes, providing a data-driven tool to
optimize individual patient prescribing at diagnosis (10).

Furthermore, Al is transforming patient self-management and
education. Mobile health (mHealth) interventions integrating Al-
powered virtual health assistants can improve medication
adherence and glycemic outcomes (9, 11). For example, a pilot
study demonstrated that an intelligent mobile self-management
system for type 2 diabetes effectively reduced HbAlc (11). A
separate 12-week trial showed that an Al-guided smartphone
educational program led to significantly better glycemic control
compared to standard care (12). Natural language processing (NLP)
has been utilized to analyze patient forum discussions and generate
customized educational content (13). AI also contributes to
nutrition management; image-based systems can estimate dietary
intake from meal photos, mitigating the inherent biases of self-
reported food diaries (5, 14). Additionally, advanced AI-driven
insulin dosing algorithms can help clinicians evaluate continuous
glucose sensor data and recommend adjustments to basal insulin
regimens, thereby improving glucose levels (4). However, the
adoption of these recommendations hinges on effective clinician-
AT collaboration; providers must be equipped to interpret the
algorithm’s rationale and reconcile it with their clinical judgment
and patient preferences (15, 16).

Generative Al, particularly large language models (LLMs),
represents a paradigm shift beyond traditional predictive analytics
(3, 7). These models can parse and generate human-like text,
potentially integrating patient information, medical literature, and
behavioral feedback to create highly personalized educational
content, simulate patient interactions for clinician training, and
even generate synthetic datasets to augment limited real-world data
while preserving privacy (3). The promise of highly customized care
persists, even amid challenges related to algorithmic bias, data
privacy, and clinical validation (1, 4).

This review provides an overview of recent advances through
the IPAES lens, focusing on Al-driven predictive modeling,
screening, classification, and therapy optimization to evaluate its
current status in diabetes management. It explores how these tools
may make diabetes care more precise, pervasive, predictive, and
personalized. While discussing AI’s potential to improve outcomes,
we also address the critical challenges of data quality, algorithm
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design, fairness, and clinical adoption that must be overcome for its
full realization (1, 4).

2 Digital and telemedicine-enabled
care, augmented by Al

Digital health tools, including internet-based platforms,
mobile applications, wearables, and telemedicine, are becoming
integral to modern diabetes management (1, 17) (Figure 1).
Telemedicine allows clinicians to remotely provide dietary and
chronic disease management, overcoming geographical and
resource barriers (17, 18). Al is a key enabler within these
digital tools, powering the analytics and personalization that
make them effective (2, 4).

Recent trials have shown that home-based telemedicine programs
integrating exercise training and personalized nutritional counseling
can lead to modest but significant improvements in glycemic control
for individuals with type 2 diabetes and coronary heart disease (18). A
large-scale pragmatic trial in Brazil demonstrated that diabetes-related
teleconsultations were non-inferior to face-to-face consultations in
reducing HbAlc (17), validating the transformative potential of
telemedicine. Mobile and web-based tools further extend tele-enabled
care by automating diet and nutrition monitoring. Al-powered
applications like GoCARB and Snap-n-Eat use image analysis to
estimate carbohydrate and calorie content of meals with accuracy
comparable to dietitians, thereby avoiding the well-documented
problems of self-reported food intake (5, 14). A critical question for
real-world implementation is whether diverse patient populations will
trust and adhere to Al-generated dietary advice, which may not always
align with cultural preferences or socio-economic constraints,
highlighting the need for culturally adaptive algorithms and shared
decision-making (19, 20).

The impact of Al-enhanced, patient-tailored mHealth
interventions is significant. For instance, an intelligent mobile
diabetes education system led to reduced HbAlc and improved
patient knowledge (11, 12). Meta-analyses consistently report that
app-based interventions improve glycemic control; a recent review of
41 randomized controlled trials (RCTs) found that diabetes self-
management apps reduced HbAlc by approximately 0.5% compared
to routine care (21). Benefits extend beyond glucose metrics; a meta-
analysis of tele-nutrition trials in patients with cardiovascular disease
showed slight but significant reductions in systolic blood pressure and
LDL-cholesterol (22). Systematic reviews confirm that digital
interventions (including telemedicine, SMS, and web programs)
can reduce weight and improve glucose parameters in at-risk
populations (23).

Telemedicine is complemented by wearable sensors and remote
monitoring, which provide continuous data to healthcare providers
(24, 25). Al algorithms are central to interpreting this data stream,
enabling tight glucose control through remote coaching and
automated feedback (4, 26). Home-based studies of Al-driven,
automatically adjusted insulin-dosing algorithms and closed-loop
systems have demonstrated improved glycemic outcomes (21, 26).
When combined, these digital tools facilitate more individualized
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nutrition and chronic disease care. Telemedicine platforms provide
access to dietitians and self-management training, while AI
applications offer objective dietary assessment and automated
decision support (14, 21). This integrated digital nutrition care
has the potential to improve clinical outcomes. However, equitable
access remains crucial, as digital technologies could potentially
exacerbate health disparities if not implemented thoughtfully (19).

3 The generative Al revolution in
diabetes management

While discriminative AI models (e.g., for prediction and
classification) have been the focus of most prior reviews,
generative Al offers a suite of novel capabilities that promise to
reshape diabetes care (3, 7). Unlike discriminative models that
predict an output from an input, generative models create new data
—text, images, or even synthetic patient records—that resemble
real-world data (7). This capability unlocks unique applications.

3.1 Personalized patient education and
communication

Generative Al particularly large language models (LLMs), can
produce tailored educational materials, answer patient queries in
real-time, and simulate empathetic conversations (20, 27). In a
similar fashion, a generative AI assistant could explain complex
glycemic concepts in a culturally and linguistically appropriate
manner, adapting its explanations based on a patient’s literacy
level and personal context (7, 20). This moves far beyond static
app content or templated messages, enabling dynamic, interactive
patient support that can improve health literacy and engagement
(11, 20).

3.2 Synthetic data generation

A significant barrier to robust AI development in diabetes is the
scarcity of large, diverse, and well-annotated datasets, often due to
privacy concerns (6, 28). Generative Al can create high-fidelity,
synthetic patient data that mirrors the statistical properties of real
data without containing any identifiable personal information (7).
This synthetic data can be used to train more robust and
generalizable machine learning models for tasks like risk
prediction, to test clinical decision support systems, and to
augment datasets for rare diabetes subtypes, thereby mitigating
biases inherent in small, homogenous datasets (7, 28).

3.3 Clinical workflow augmentation
Generative models can assist clinicians by drafting clinical notes

from verbal patient encounters, generating summary reports from
complex patient data (e.g., from CGM, EHRs), and even suggesting
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FIGURE 1
Al algorithms in diabetes management.
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differential diagnoses or personalized care plan drafts (7). This can
reduce administrative burden, allowing clinicians to focus more on
direct patient care (29). The integration of image-based deep
learning with language models is a particularly powerful trend. Li
et al. (2024) demonstrated an integrated system for primary
diabetes care that combines the analysis of retinal fundus images
with clinical data processing via language models, showcasing a
multimodal AI approach that can support comprehensive patient
assessment and management planning at the primary care level (7).

The integration of generative Al into diabetes management is still
nascent, and challenges regarding factual accuracy (“hallucinations”),
safety, and ethical oversight are paramount (3, 7). However, its
potential to move beyond analysis to creation positions it as a
transformative tool for personalization and scalability in diabetes
education and support (7, 15).

4 Algorithmic fairness and health
equity in Al for diabetes

While “Algorithmic Fairness” and “Health Equity” are critical
keywords, they demand substantive discussion. The performance
and safety of AI models are not uniform across populations, and
without deliberate effort, these technologies can perpetuate or even
exacerbate existing health disparities (19, 28).

4.1 Performance disparities

Al models trained on datasets from high-income, Western
populations may perform poorly when deployed in other settings

Frontiers in Endocrinology

(28). For example, a retinopathy detection algorithm trained
primarily on retinal images from Caucasian populations may
have reduced sensitivity when applied to patients of different
ethnicities due to variations in fundus pigmentation (6, 28).
Similarly, risk prediction models using genetic data are often
biased if the training data lacks diversity, as genetic markers for
diabetes can vary across ancestries (30). This risk of “data
colonialism,” where models built on data from well-represented
groups are deployed without validation in under-represented
populations, is a major ethical concern (28). Performance gaps
have been observed along socioeconomic lines as well; models
relying on smartphone or wearable data may be inherently biased
against underserved populations who have lower access to these
technologies (19, 25).

4.2 Equitable implementation and non-
invasive diagnostics

Beyond algorithmic bias, equitable implementation is a key
challenge (19). Al-driven solutions, such as smartphone-based
retinopathy screening, hold particular promise for low-resource
settings (e.g., rural India) where specialist access is limited (6, 28).
These tools can decentralize screening and improve early detection
(6). Furthermore, Al is enabling novel, less invasive diagnostic
pathways for complications. A pioneering study by Meng et al.
(2025) demonstrated that a deep learning model applied to retinal
images could non-invasively biopsy and diagnose diabetic kidney
disease, offering a potentially more accessible and scalable screening
tool compared to repeated urine and blood tests, which is
particularly relevant for underserved areas (28). However, their
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TABLE 1 Key characteristics of Al applications in diabetes management.

Typical Al
technologies/
tools

Application
domain

Key features

Utilize multidimensional data
mining to identify high-risk
populations, enabling early

Prediction &
Prevention

Machine learning-based
risk prediction models
intervention

Non-invasive imaging Automated screening/

X classification (retinal diagnosis, non-invasive
Screening &

photo recognition), approach, high accuracy,

Diagnosis
8 Diagnostic assistance improved identification of
systems high-risk individuals
Intelligent health
5 . Personalized nutrition/
education systems, Diet- . i .
i exercise guidance, real-time
exercise L
Integrated . glucose monitoring & alerts,
recommendations, CGM s .
Management L . automatic insulin adjustment,
prediction algorithms, .
. enhanced patient self-
Insulin dosage
L management
optimization
Deep learning-based DR
P X & K Multimodal data analysis
L screening, CKD risk O
Complication . enables early complication
prediction, Wound/foot R R
Management detection and risk assessment,

recognition, Neuropathy L.
. prevents severe complications
screening

success depends on addressing contextual barriers: digital literacy,
language localization, connectivity issues, and integration into
often-fragmented public health systems (19). Ensuring that Al
tools are designed for and with low-resource settings, rather than
simply being deployed there, is crucial for achieving equity (19, 28).

Safeguarding algorithmic fairness requires the implementation of
a multi-faceted strategy (16, 28). A primary step involves the
conscious curation of development datasets that are truly
representative, encompassing the full spectrum of age, gender,
ethnicity, socioeconomic status, and geographic location (28).
Following this, rigorous robustness and fairness testing is
indispensable, which entails evaluating models for performance
disparities across demographic subgroups prior to deployment and
instituting continuous monitoring for performance drift in real-world
settings (16). Furthermore, the practice of independent algorithmic
auditing should be established to systematically assess models for
hidden biases (16). The adoption of technical approaches like
federated learning also presents a significant opportunity, as this
method enables model training across multiple institutions without
the need to share raw patient data, thereby facilitating learning from
diverse populations while simultaneously upholding privacy and
complying with data residency laws, which in turn helps mitigate
the risks of centralization bias (16, 28). Ultimately, it must be
emphasized that addressing fairness and equity is not a peripheral
consideration but a fundamental prerequisite for the responsible and
effective global deployment of Al in diabetes care (19, 28).
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5 Implementation challenges and
future directions

The translation of promising Al innovations into routine
clinical practice faces significant headwinds. A dedicated focus on
these implementation science barriers is critical for moving from
proof-of-concept to widespread impact (1, 4).

The widespread adoption of Al in diabetes care faces several
multifaceted barriers that extend beyond technical performance
(1, 4). A primary technical challenge lies in achieving seamless
interoperability with Electronic Health Records (EHRs), as the
integration of Al tools into existing clinical workflows requires
smooth data exchange and minimal disruption to established
practices; without this, even the most accurate algorithms will
experience low clinician adoption (31).

Compounding these technical challenges are complex and
evolving regulatory hurdles for Al-based Software as a Medical
Device (SaMD) (4). Regulatory bodies are currently adapting to the
unique demands of governing both “locked” static algorithms and
“adaptive” continuously learning systems, which necessitate
frameworks for ongoing monitoring and validation throughout
their lifecycle (4, 15).

Underpinning all technical and regulatory considerations are the
critical human factors of clinician trust and patient acceptability (15).
The opaque “black box” nature of many complex models can
significantly erode clinician confidence, necessitating new
paradigms for effective collaboration where AI systems must
provide not only recommendations but also contextual, explainable
rationales and clear statements of their limitations (16). This enables
clinicians to apply their expertise in evaluating AI-driven suggestions,
such as insulin dosing recommendations (16, 26). Simultaneously,
building basic Al literacy among healthcare professionals is essential
for the critical evaluation and appropriate application of these tools
(15). Furthermore, the success of Al interventions is equally
dependent on patient trust and willingness to adopt Al-generated
advice, such as dietary plans (20). Fostering this trust demands
transparent communication about the role of AI in care,
demonstrable accuracy, and system designs that incorporate user-
centered feedback and cultural sensitivity, thereby engaging patients
as active participants in their own management (15, 20).

The foundation of any effective AI system is high-quality data
and robust infrastructure, yet significant obstacles persist due to
issues like missing data, incorrect labels, and inconsistent data
collection practices across different healthcare institutions, all of
which can severely compromise model performance and
generalizability (2, 6). Finally, the long-term sustainability of AI-
augmented care is hampered by the current lack of clear
reimbursement models (1). For health systems to sustainably
invest in these technologies, it is imperative to demonstrate not
only clinical efficacy but also compelling cost-effectiveness and a

frontiersin.org


https://doi.org/10.3389/fendo.2025.1620132
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Deng et al.

clear return on investment, proving the value of Al beyond mere
technical innovation (1, 21).

Navigating a successful path forward necessitates a concerted
and multi-faceted strategy that addresses the identified barriers
holistically (1, 4). A foundational step involves the concerted
development of common data standards and interoperability
frameworks, which are crucial for enabling seamless integration
of Al tools into diverse clinical ecosystems and ensuring that data
can flow securely and efficiently between systems (31).

Concurrently, there must be a dedicated focus on advancing the
field of Explainable AI (XAI), prioritizing the development and
validation of techniques that move beyond theoretical transparency
to provide clinicians with actionable, clinically meaningful insights
that they can trust and utilize in their decision-making processes
(16). The success of this technological advancement is inextricably
linked to profound stakeholder engagement; this requires actively
involving clinicians, patients, and healthcare administrators in the
co-design of Al tools from the very outset, ensuring that the
solutions developed are aligned with real-world workflows,
patient needs, and organizational capabilities (15).

Finally, a strategic shift towards implementation science research
is paramount, where scholarly inquiry expands beyond establishing
algorithmic efficacy in controlled settings to rigorously studying and
defining effective strategies for deploying, sustaining, and scaling
these technologies across the vast and varied landscape of clinical
practice (1). By proactively embracing this comprehensive approach,
the global diabetes community can systematically dismantle the
barriers to adoption and ensure that the tremendous potential of
Al translates into tangible, equitable, and scalable improvements in
patient care and outcomes (1, 4).

6 Conclusion

Advances in technology and therapeutics are reshaping diabetes
management. Digital health tools—increasingly powered by both
discriminative and generative Al—offer unprecedented opportunities
to personalize and optimize care (1-4). This review has framed these
advances through the IPAES framework, highlighting the journey from
Identification to Support, while critically examining the frontiers of
generative Al algorithmic fairness, and implementation science (1, 4).
Recent evidence, including high-impact studies on treatment
optimization, non-invasive diagnostics, and integrated multimodal
models, demonstrates that these innovations can improve glycemic
control, patient satisfaction, and care efficiency (7, 10, 21, 28).
Concurrently, the enduring importance of lifestyle modification and
psychosocial support remains clear (32, 33). The future of diabetes care
lies in integrating these elements into coherent, patient-centered care
pathways, combining Al-enabled platforms with multidisciplinary
teams (34, 35). Success, however, hinges on overcoming the critical
barriers of interoperability, regulation, and—fundamentally—fostering
trust and enabling effective collaboration between clinicians, patients,
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and intelligent systems (1, 15). As the global diabetes community
moves forward, an emphasis on ethically deployed, holistic, and
implementable innovations will be paramount to ensuring that
technological advances translate into equitable, real-world health
benefits for all populations affected by diabetes (1, 19).
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