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Generative artificial intelligence (GenAI) is transforming public health and

medicine as well, in the form of disease surveillance, resource allocation and

clinical decision making. Interventions to improve efficiency — multimodal

predictive algorithms, federated learning platforms — reveal the internal

contradictions of the system between algorithmic efficiency and fairness:

speed of technical innovation and regulatory deficit, data flows without

borders vs. ethical values of places. We present a three-dimensional

governance structure for the topic covering the technical, institutional and

ethical domains. From a technology point of view, explainability solutions and

culturally-aware design align transparency with cultural sensibility. From an

institution point of view, privacy-protecting data platforms and risk-based

regulation align innovation with accountability. From an ethical point of view,

incorporating local values and disbursing AI dividends sustain equitable health

outcomes. There are still challenges that demand the utmost priority, including

the algorithmic prejudice, the data imperialism and the opacity in medical AI

decision making. Future priorities include the development of broader

measurement tools that integrate clinical impact, equity, and societal impact;

the development of transnational governance institutions to mitigate concerns

relating to data sovereignty; and the development of forms of participatory

design between designers, practitioners, and populations. A balance between

technical creativity, visionary policy-making, and caring leadership to advocate

for human-centered healthcare will provide us with trusted AI ecosystems.

Technical excellence alone cannot guarantee success unless fairness and

accessibility, social responsiveness, and justice for future global health

is guaranteed.
KEYWORDS

generative artificial intelligence, public health informatics, medical AI governance,
algorithmic fairness, explainable AI, data colonialism, health equity, ethical
machine learning
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1 Introduction

The global diabetes epidemic has reached substantial

proportions, with an estimated 537 million adults currently

affected, a number projected to rise significantly within the next

decade (1). This trend is mirrored in China, where national surveys

indicate a dramatic increase in prevalence from over 1% in 1980 to

over 10% in 2017, with current data suggesting approximately 13%

of the adult population lives with diabetes (2). The associated

morbidity, mortality, and economic burden are profound; in

2019, diabetes-related causes accounted for 0.82 million deaths

among Chinese adults and represented a leading source of

healthcare expenditure (2). Coupled with the disability resulting

from its complications, diabetes stands as one of the most critical

public health challenges of the 21st century (3, 4). Traditional

diabetes management faces several challenges, including under-

diagnosis, suboptimal treatment, and the resource-intensive nature

of aggressive care, which requires coordinated efforts from

endocrinologists, nutritionists, nephrologists, ophthalmologists,

and other specialists—resources often scarce or unevenly

distributed (2). Furthermore, achieving optimal glycemic control

remains difficult as it heavily depends on patient behaviors such as

dietary intake, physical activity, and glucose monitoring (5).

Digital health technologies, especially Artificial Intelligence(AI),

hold immense potential to address these gaps (6). While numerous

reviews have cataloged AI applications in diabetes care, they often

remain siloed within technical domains (e.g., prediction, diagnosis)

(Table 1). This review advances the discourse by introducing a

patient-centric “IPAES” framework (Identification, Prediction,

Assistance, Education, and Support) that maps AI technologies to

the complete patient journey, while critically examining the real-

world implementation barriers—algorithmic fairness, clinician

trust, regulatory hurdles—that determine ultimate translational

success (1, 4). We pay particular attention to the emerging role of

generative AI, which moves beyond traditional discriminative

models to create novel content and solutions, and we explore its

potential to revolutionize areas like personalized patient education

and synthetic data generation (3, 7).

AI can parse vast amounts of multimodal health data—including

electronic health records, genomics, medical images, and data from

wearables—to assist both clinicians and patients (2, 6). Recent reviews

highlight AI applications across the entire spectrum of diabetes care,

from enhanced screening and diagnosis to treatment management

and complication prediction (3, 4). In risk prediction, for instance,

algorithms using clinical and biological features can accurately

identify individuals at high risk for type 2 diabetes (4). Multimodal

models integrating genomic, metabolomic, and clinical data have

demonstrated exceptional performance, with one study reporting an

area under the receiver operating characteristic curve (AUC) of

approximately 0.96 (6). Deep learning models applied to

ophthalmic imaging have also shown remarkable accuracy;

convolutional neural networks interpreting retinal fundus

photographs and clinical metadata have achieved AUROCs

between 0.85 and 0.93 for detecting prevalent type 2 diabetes (6).
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AI has also significantly advanced diabetes classification and

treatment personalization. While diabetes has traditionally been

categorized primarily into type 1 and type 2 (with additional

categories such as gestational diabetes), data-driven clustering

analyses suggest a more nuanced subtyping (8, 9). Ahlqvist et al.’s

groundbreaking study, using six clinical variables, identified five

reproducible clusters of adult-onset diabetes with distinct

phenotypes and complication risks (8). These subgroups have

been replicated across diverse populations (9), suggesting

improved phenotyping that could enable precision management.

Moving beyond subclassification, AI is now directly informing

therapeutic choices. A landmark study by Dennis et al. (2025)

developed and validated a predictive model using routinely

available clinical features to compare the efficacy of five major

drug classes for type 2 diabetes, providing a data-driven tool to

optimize individual patient prescribing at diagnosis (10).

Furthermore, AI is transforming patient self-management and

education. Mobile health (mHealth) interventions integrating AI-

powered virtual health assistants can improve medication

adherence and glycemic outcomes (9, 11). For example, a pilot

study demonstrated that an intelligent mobile self-management

system for type 2 diabetes effectively reduced HbA1c (11). A

separate 12-week trial showed that an AI-guided smartphone

educational program led to significantly better glycemic control

compared to standard care (12). Natural language processing (NLP)

has been utilized to analyze patient forum discussions and generate

customized educational content (13). AI also contributes to

nutrition management; image-based systems can estimate dietary

intake from meal photos, mitigating the inherent biases of self-

reported food diaries (5, 14). Additionally, advanced AI-driven

insulin dosing algorithms can help clinicians evaluate continuous

glucose sensor data and recommend adjustments to basal insulin

regimens, thereby improving glucose levels (4). However, the

adoption of these recommendations hinges on effective clinician-

AI collaboration; providers must be equipped to interpret the

algorithm’s rationale and reconcile it with their clinical judgment

and patient preferences (15, 16).

Generative AI, particularly large language models (LLMs),

represents a paradigm shift beyond traditional predictive analytics

(3, 7). These models can parse and generate human-like text,

potentially integrating patient information, medical literature, and

behavioral feedback to create highly personalized educational

content, simulate patient interactions for clinician training, and

even generate synthetic datasets to augment limited real-world data

while preserving privacy (3). The promise of highly customized care

persists, even amid challenges related to algorithmic bias, data

privacy, and clinical validation (1, 4).

This review provides an overview of recent advances through

the IPAES lens, focusing on AI-driven predictive modeling,

screening, classification, and therapy optimization to evaluate its

current status in diabetes management. It explores how these tools

may make diabetes care more precise, pervasive, predictive, and

personalized. While discussing AI’s potential to improve outcomes,

we also address the critical challenges of data quality, algorithm
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design, fairness, and clinical adoption that must be overcome for its

full realization (1, 4).
2 Digital and telemedicine-enabled
care, augmented by AI

Digital health tools, including internet-based platforms,

mobile applications, wearables, and telemedicine, are becoming

integral to modern diabetes management (1, 17) (Figure 1).

Telemedicine allows clinicians to remotely provide dietary and

chronic disease management, overcoming geographical and

resource barriers (17, 18). AI is a key enabler within these

digital tools, powering the analytics and personalization that

make them effective (2, 4).

Recent trials have shown that home-based telemedicine programs

integrating exercise training and personalized nutritional counseling

can lead to modest but significant improvements in glycemic control

for individuals with type 2 diabetes and coronary heart disease (18). A

large-scale pragmatic trial in Brazil demonstrated that diabetes-related

teleconsultations were non-inferior to face-to-face consultations in

reducing HbA1c (17), validating the transformative potential of

telemedicine. Mobile and web-based tools further extend tele-enabled

care by automating diet and nutrition monitoring. AI-powered

applications like GoCARB and Snap-n-Eat use image analysis to

estimate carbohydrate and calorie content of meals with accuracy

comparable to dietitians, thereby avoiding the well-documented

problems of self-reported food intake (5, 14). A critical question for

real-world implementation is whether diverse patient populations will

trust and adhere to AI-generated dietary advice, which may not always

align with cultural preferences or socio-economic constraints,

highlighting the need for culturally adaptive algorithms and shared

decision-making (19, 20).

The impact of AI-enhanced, patient-tailored mHealth

interventions is significant. For instance, an intelligent mobile

diabetes education system led to reduced HbA1c and improved

patient knowledge (11, 12). Meta-analyses consistently report that

app-based interventions improve glycemic control; a recent review of

41 randomized controlled trials (RCTs) found that diabetes self-

management apps reduced HbA1c by approximately 0.5% compared

to routine care (21). Benefits extend beyond glucose metrics; a meta-

analysis of tele-nutrition trials in patients with cardiovascular disease

showed slight but significant reductions in systolic blood pressure and

LDL-cholesterol (22). Systematic reviews confirm that digital

interventions (including telemedicine, SMS, and web programs)

can reduce weight and improve glucose parameters in at-risk

populations (23).

Telemedicine is complemented by wearable sensors and remote

monitoring, which provide continuous data to healthcare providers

(24, 25). AI algorithms are central to interpreting this data stream,

enabling tight glucose control through remote coaching and

automated feedback (4, 26). Home-based studies of AI-driven,

automatically adjusted insulin-dosing algorithms and closed-loop

systems have demonstrated improved glycemic outcomes (21, 26).

When combined, these digital tools facilitate more individualized
Frontiers in Endocrinology 03
nutrition and chronic disease care. Telemedicine platforms provide

access to dietitians and self-management training, while AI

applications offer objective dietary assessment and automated

decision support (14, 21). This integrated digital nutrition care

has the potential to improve clinical outcomes. However, equitable

access remains crucial, as digital technologies could potentially

exacerbate health disparities if not implemented thoughtfully (19).
3 The generative AI revolution in
diabetes management

While discriminative AI models (e.g., for prediction and

classification) have been the focus of most prior reviews,

generative AI offers a suite of novel capabilities that promise to

reshape diabetes care (3, 7). Unlike discriminative models that

predict an output from an input, generative models create new data

—text, images, or even synthetic patient records—that resemble

real-world data (7). This capability unlocks unique applications.
3.1 Personalized patient education and
communication

Generative AI, particularly large language models (LLMs), can

produce tailored educational materials, answer patient queries in

real-time, and simulate empathetic conversations (20, 27). In a

similar fashion, a generative AI assistant could explain complex

glycemic concepts in a culturally and linguistically appropriate

manner, adapting its explanations based on a patient’s literacy

level and personal context (7, 20). This moves far beyond static

app content or templated messages, enabling dynamic, interactive

patient support that can improve health literacy and engagement

(11, 20).
3.2 Synthetic data generation

A significant barrier to robust AI development in diabetes is the

scarcity of large, diverse, and well-annotated datasets, often due to

privacy concerns (6, 28). Generative AI can create high-fidelity,

synthetic patient data that mirrors the statistical properties of real

data without containing any identifiable personal information (7).

This synthetic data can be used to train more robust and

generalizable machine learning models for tasks like risk

prediction, to test clinical decision support systems, and to

augment datasets for rare diabetes subtypes, thereby mitigating

biases inherent in small, homogenous datasets (7, 28).
3.3 Clinical workflow augmentation

Generative models can assist clinicians by drafting clinical notes

from verbal patient encounters, generating summary reports from

complex patient data (e.g., from CGM, EHRs), and even suggesting
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differential diagnoses or personalized care plan drafts (7). This can

reduce administrative burden, allowing clinicians to focus more on

direct patient care (29). The integration of image-based deep

learning with language models is a particularly powerful trend. Li

et al. (2024) demonstrated an integrated system for primary

diabetes care that combines the analysis of retinal fundus images

with clinical data processing via language models, showcasing a

multimodal AI approach that can support comprehensive patient

assessment and management planning at the primary care level (7).

The integration of generative AI into diabetes management is still

nascent, and challenges regarding factual accuracy (“hallucinations”),

safety, and ethical oversight are paramount (3, 7). However, its

potential to move beyond analysis to creation positions it as a

transformative tool for personalization and scalability in diabetes

education and support (7, 15).
4 Algorithmic fairness and health
equity in AI for diabetes

While “Algorithmic Fairness” and “Health Equity” are critical

keywords, they demand substantive discussion. The performance

and safety of AI models are not uniform across populations, and

without deliberate effort, these technologies can perpetuate or even

exacerbate existing health disparities (19, 28).
4.1 Performance disparities

AI models trained on datasets from high-income, Western

populations may perform poorly when deployed in other settings
Frontiers in Endocrinology 04
(28). For example, a retinopathy detection algorithm trained

primarily on retinal images from Caucasian populations may

have reduced sensitivity when applied to patients of different

ethnicities due to variations in fundus pigmentation (6, 28).

Similarly, risk prediction models using genetic data are often

biased if the training data lacks diversity, as genetic markers for

diabetes can vary across ancestries (30). This risk of “data

colonialism,” where models built on data from well-represented

groups are deployed without validation in under-represented

populations, is a major ethical concern (28). Performance gaps

have been observed along socioeconomic lines as well; models

relying on smartphone or wearable data may be inherently biased

against underserved populations who have lower access to these

technologies (19, 25).
4.2 Equitable implementation and non-
invasive diagnostics

Beyond algorithmic bias, equitable implementation is a key

challenge (19). AI-driven solutions, such as smartphone-based

retinopathy screening, hold particular promise for low-resource

settings (e.g., rural India) where specialist access is limited (6, 28).

These tools can decentralize screening and improve early detection

(6). Furthermore, AI is enabling novel, less invasive diagnostic

pathways for complications. A pioneering study by Meng et al.

(2025) demonstrated that a deep learning model applied to retinal

images could non-invasively biopsy and diagnose diabetic kidney

disease, offering a potentially more accessible and scalable screening

tool compared to repeated urine and blood tests, which is

particularly relevant for underserved areas (28). However, their
FIGURE 1

AI algorithms in diabetes management.
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success depends on addressing contextual barriers: digital literacy,

language localization, connectivity issues, and integration into

often-fragmented public health systems (19). Ensuring that AI

tools are designed for and with low-resource settings, rather than

simply being deployed there, is crucial for achieving equity (19, 28).

Safeguarding algorithmic fairness requires the implementation of

a multi-faceted strategy (16, 28). A primary step involves the

conscious curation of development datasets that are truly

representative, encompassing the full spectrum of age, gender,

ethnicity, socioeconomic status, and geographic location (28).

Following this, rigorous robustness and fairness testing is

indispensable, which entails evaluating models for performance

disparities across demographic subgroups prior to deployment and

instituting continuous monitoring for performance drift in real-world

settings (16). Furthermore, the practice of independent algorithmic

auditing should be established to systematically assess models for

hidden biases (16). The adoption of technical approaches like

federated learning also presents a significant opportunity, as this

method enables model training across multiple institutions without

the need to share raw patient data, thereby facilitating learning from

diverse populations while simultaneously upholding privacy and

complying with data residency laws, which in turn helps mitigate

the risks of centralization bias (16, 28). Ultimately, it must be

emphasized that addressing fairness and equity is not a peripheral

consideration but a fundamental prerequisite for the responsible and

effective global deployment of AI in diabetes care (19, 28).
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5 Implementation challenges and
future directions

The translation of promising AI innovations into routine

clinical practice faces significant headwinds. A dedicated focus on

these implementation science barriers is critical for moving from

proof-of-concept to widespread impact (1, 4).

The widespread adoption of AI in diabetes care faces several

multifaceted barriers that extend beyond technical performance

(1, 4). A primary technical challenge lies in achieving seamless

interoperability with Electronic Health Records (EHRs), as the

integration of AI tools into existing clinical workflows requires

smooth data exchange and minimal disruption to established

practices; without this, even the most accurate algorithms will

experience low clinician adoption (31).

Compounding these technical challenges are complex and

evolving regulatory hurdles for AI-based Software as a Medical

Device (SaMD) (4). Regulatory bodies are currently adapting to the

unique demands of governing both “locked” static algorithms and

“adaptive” continuously learning systems, which necessitate

frameworks for ongoing monitoring and validation throughout

their lifecycle (4, 15).

Underpinning all technical and regulatory considerations are the

critical human factors of clinician trust and patient acceptability (15).

The opaque “black box” nature of many complex models can

significantly erode clinician confidence, necessitating new

paradigms for effective collaboration where AI systems must

provide not only recommendations but also contextual, explainable

rationales and clear statements of their limitations (16). This enables

clinicians to apply their expertise in evaluating AI-driven suggestions,

such as insulin dosing recommendations (16, 26). Simultaneously,

building basic AI literacy among healthcare professionals is essential

for the critical evaluation and appropriate application of these tools

(15). Furthermore, the success of AI interventions is equally

dependent on patient trust and willingness to adopt AI-generated

advice, such as dietary plans (20). Fostering this trust demands

transparent communication about the role of AI in care,

demonstrable accuracy, and system designs that incorporate user-

centered feedback and cultural sensitivity, thereby engaging patients

as active participants in their own management (15, 20).

The foundation of any effective AI system is high-quality data

and robust infrastructure, yet significant obstacles persist due to

issues like missing data, incorrect labels, and inconsistent data

collection practices across different healthcare institutions, all of

which can severely compromise model performance and

generalizability (2, 6). Finally, the long-term sustainability of AI-

augmented care is hampered by the current lack of clear

reimbursement models (1). For health systems to sustainably

invest in these technologies, it is imperative to demonstrate not

only clinical efficacy but also compelling cost-effectiveness and a
TABLE 1 Key characteristics of AI applications in diabetes management.

Application
domain

Typical AI
technologies/
tools

Key features

Prediction &
Prevention

Machine learning-based
risk prediction models

Utilize multidimensional data
mining to identify high-risk
populations, enabling early
intervention

Screening &
Diagnosis

Non-invasive imaging
classification (retinal
photo recognition),
Diagnostic assistance
systems

Automated screening/
diagnosis, non-invasive
approach, high accuracy,
improved identification of
high-risk individuals

Integrated
Management

Intelligent health
education systems, Diet-
exercise
recommendations, CGM
prediction algorithms,
Insulin dosage
optimization

Personalized nutrition/
exercise guidance, real-time
glucose monitoring & alerts,
automatic insulin adjustment,
enhanced patient self-
management

Complication
Management

Deep learning-based DR
screening, CKD risk
prediction, Wound/foot
recognition, Neuropathy
screening

Multimodal data analysis
enables early complication
detection and risk assessment,
prevents severe complications
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clear return on investment, proving the value of AI beyond mere

technical innovation (1, 21).

Navigating a successful path forward necessitates a concerted

and multi-faceted strategy that addresses the identified barriers

holistically (1, 4). A foundational step involves the concerted

development of common data standards and interoperability

frameworks, which are crucial for enabling seamless integration

of AI tools into diverse clinical ecosystems and ensuring that data

can flow securely and efficiently between systems (31).

Concurrently, there must be a dedicated focus on advancing the

field of Explainable AI (XAI), prioritizing the development and

validation of techniques that move beyond theoretical transparency

to provide clinicians with actionable, clinically meaningful insights

that they can trust and utilize in their decision-making processes

(16). The success of this technological advancement is inextricably

linked to profound stakeholder engagement; this requires actively

involving clinicians, patients, and healthcare administrators in the

co-design of AI tools from the very outset, ensuring that the

solutions developed are aligned with real-world workflows,

patient needs, and organizational capabilities (15).

Finally, a strategic shift towards implementation science research

is paramount, where scholarly inquiry expands beyond establishing

algorithmic efficacy in controlled settings to rigorously studying and

defining effective strategies for deploying, sustaining, and scaling

these technologies across the vast and varied landscape of clinical

practice (1). By proactively embracing this comprehensive approach,

the global diabetes community can systematically dismantle the

barriers to adoption and ensure that the tremendous potential of

AI translates into tangible, equitable, and scalable improvements in

patient care and outcomes (1, 4).
6 Conclusion

Advances in technology and therapeutics are reshaping diabetes

management. Digital health tools—increasingly powered by both

discriminative and generative AI—offer unprecedented opportunities

to personalize and optimize care (1–4). This review has framed these

advances through the IPAES framework, highlighting the journey from

Identification to Support, while critically examining the frontiers of

generative AI, algorithmic fairness, and implementation science (1, 4).

Recent evidence, including high-impact studies on treatment

optimization, non-invasive diagnostics, and integrated multimodal

models, demonstrates that these innovations can improve glycemic

control, patient satisfaction, and care efficiency (7, 10, 21, 28).

Concurrently, the enduring importance of lifestyle modification and

psychosocial support remains clear (32, 33). The future of diabetes care

lies in integrating these elements into coherent, patient-centered care

pathways, combining AI-enabled platforms with multidisciplinary

teams (34, 35). Success, however, hinges on overcoming the critical

barriers of interoperability, regulation, and—fundamentally—fostering

trust and enabling effective collaboration between clinicians, patients,
Frontiers in Endocrinology 06
and intelligent systems (1, 15). As the global diabetes community

moves forward, an emphasis on ethically deployed, holistic, and

implementable innovations will be paramount to ensuring that

technological advances translate into equitable, real-world health

benefits for all populations affected by diabetes (1, 19).
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