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and serum-urine
pharmacochemistry unveils
the antidiabetic mechanism
of Anemarrhenae Rhizoma
Xunlong Zhong1†, Huaidong Peng1†, Chang Xiao1,
Chunhua Xiao1, Xinyu Zhu2, Haixuan Liang1, Ruolun Wang1,
Yanmei Zhong2* and Jingwen Feng3*

1Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University,
Guangzhou, China, 2Centre for Drug Research and Development, Guangdong Pharmaceutical
University, Guangzhou, China, 3Department of Pharmacy, Panyu Hospital of Traditional Chinese
Medicine, Guangzhou, China
Objective: Anemarrhenae Rhizoma (AR) is a traditional Chinese medicine widely

used for the treatment of type 2 diabetes mellitus (T2DM). However, the specific

bioactive constituents responsible for its in vivo effects and their underlying

mechanisms of action remain unclear. We hypothesise that serum-absorbed and

metabolised AR components modulate key metabolic and inflammatory

pathways in T2DM. To test this hypothesis, this study employs an integrated

strategy combining metabolomics with serum-urine pharmacochemistry and

network pharmacology to systematically identify AR’s active constituents and

elucidate their multi-target mechanisms in T2DM management.

Methods: UHPLC-Q-TOF-MS coupled with multivariate statistical analysis was

employed to identify the AR-derived constituents in serum and urine of T2DM

rats. Network pharmacology was utilised to predict the targets of the AR’s active

components, while biochemical assays, liver histopathology, and metabolomics

were performed to evaluate its therapeutic effects. Molecular docking and

molecular dynamics (MD) simulations were conducted to assess the binding

affinities between key components and their targets.

Results: 77 AR components were identified, among which 47 prototypes and 11

metabolites were detected in serum and urine. The key bioactive constituents

included sarsasapogenin, markogenin/neogitogenin, digitogenin, norathyriol,

and mangiferin. AR treatment significantly reduced blood glucose and lipid

levels, ameliorated insulin resistance, attenuated inflammation, and modulated

the PPAR and NF-kB signalling pathways. Serum metabolomics analysis revealed

35 differential metabolites, with linoleic acid metabolism and PPAR signalling

identified as the predominant metabolic pathways. Molecular docking and MD

simulations demonstrated strong binding affinity between core components and

key targets (PPARA, NFKB1, IL6, AKT1, IL1B). Pharmacological validation

confirmed AR’s therapeutic efficacy in T2DM through regulation of these

core targets.
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Conclusion: AR ameliorates T2DM by suppressing NF-kB signalling and

activating PPAR pathways, thereby improving metabolic dysregulation.
KEYWORDS

Anemarrhenae Rhizoma, metabolomics, network pharmacology, pharmacochemistry,
antidiabetic mechanism
1 Introduction

Type 2 diabetes mellitus (T2DM) is a prevalent chronic

metabolic disorder associated with an increased risks of

cardiovascular and renal complications. Current pharmacological

treatments – such as biguanides, sulfonylureas, and GLP-1 receptor

agonists - are effective but may pose adverse effects, including

hypoglycaemia, bladder cancer, and pancreatitis (1). In contrast,

traditional Chinese medicine (TCM) offers a promising alternative

for T2DM managements due to its multi-target mechanisms and

favourable safety profile, particularly in improving insulin

sensitivity and mitigating disease-related complications (2).

Anemarrhenae Rhizoma (AR), derived from the dried rhizome

of Anemarrhena asphodeloides Bunge (Liliaceae family), is a widely

used TCM with a long-standing history of hypoglycaemic

applications. Its use in diabetes management was first

documented in Shennong ’ s Herba l Clas s ic . Modern

pharmacological studies demonstrate that AR possesses multiple

therapeutic effects, including anti-inflammatory, antioxidant,

hypoglycaemic, lipid-lowering, anti-aging, and neuroprotective

properties (3). Mangiferin, timosaponin AIII, timosaponin BII,

and timosaponin BIII represent the most extensively studied AR

components. Our previous research identified that mangiferin, an

active component of AR, ameliorates insulin resistance (IR) and

hyperglycaemia in T2DM rats by modulating glycerophospholipids

(GP), sphingolipids, and arachidonic acid (AA) metabolism in

erythrocyte membranes (4). Timosaponins AIII, BII, and BIII

exert multi-target anti-diabetic and anti-inflammatory activities in

preclinical models via distinct molecular mechanisms. Owing to

their inherent physicochemical properties—high molecular weight

and limited membrane permeability—these compounds display low

oral bioavailability. Consequently, their in vivo pharmacological

effects are predominantly mediated by metabolites rather than by

the parent molecules. Despite AR’s therapeutic potential, its

bioactive constituents in vivo and their mechanisms of action

remain incompletely characterised. It is well established that only

blood-absorbed components are likely to form the substantive basis

for TCM’s therapeutic effects (5). Notably, metabolites detectable in

urine may also represent critical components to TCM’s

pharmacological activity. Serum-urine pharmacochemistry, an

integrative approach for identifying both blood-absorbed

components and their metabolites, is therefore essential for

elucidating TCM efficacy. However, AR’s specific bioactive
02
constituents in circulation, their metabolic fate, and their

mechanistic roles in T2DM pathophysiology remain insufficiently

investigated. Building upon AR’s established effects on metabolic

regulation and our preliminary findings regarding mangiferin’s

modulation of lipid metabolism, we hypothesise that specific

serum-absorbed AR components and their metabolites regulate

key metabolic pathways (particularly lipid metabolism) and

inflammatory signalling (notably the NF-kB/PPAR axis) in T2DM.

Ultra-high performance liquid chromatography coupled with

quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-

MS) is a leading analytical technique in TCM component analysis

and metabolomics, owing to its high sensitivity, resolution, and

mass accuracy (6). Metabolomics facilitates the qualitative and

quantitative analysis of small-molecule metabolites within

biological systems, mapping endogenous compound responses to

internal and external environmental stimuli. This approach helps

elucidate pathological metabolic and signalling pathways, which are

critical for disease mechanisms and drug actions. Network

pharmacology employs computational data mining to model

multi-layered interactions among TCM bioactive components,

therapeutic targets, biological pathways, and diseases. This

systems-level perspective reveals synergistic multi-component,

multi-target mechanisms, supporting the discovery of efficient,

low-toxicity multi-target drugs and mechanistic clarification (7).

Complementary techniques, such as molecular docking and

molecular dynamics (MD) simulations, predict binding

conformations and validate component-target interactions. The

selection of optimal binding modes, based on binding energy

calculations, further confirms strong affinity interactions.

This study employs a multi-faceted strategy integrating serum-

urine pharmacochemistry, network pharmacology, metabolomics,

and pharmacological experiments to characterise AR’s in vivo active

components and elucidate its anti-T2DM mechanisms.
2 Materials and methods

2.1 Material and reagents

The reference standards of neomangiferin, timosaponin BII,

timosaponin D, anemarrhenasaponin I, timosaponin AIV, and

timosaponin AIII were obtained from the National Institute for

the Control of Pharmaceutical and Biological Products (Beijing,
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China). Rosiglitazone was procured from Taiji Group Chongqing

Peiling Pharmaceutical Co., Ltd. (Chongqing, China). Assay kits for

total cholesterol (TC), triacylglycerols (TG), high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), insulin (INS) ELISA, and Haematoxylin-

Eosin (HE) staining (batch no. A111-1-1, A110-1-1, A112-1-1,

A113-1-1, H203-1-2, and 20160126, respectively) were purchased

from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

ELISA kits for tumour necrosis factor-a (TNF-a) (batch no.

0180R1), interleukin-6 (IL-6) (batch no. 0163M1), and

interleukin-1b (IL-1b) (batch no. 0047R1) were acquired from

Jiangsu Meimian Industrial Co., Ltd. (Jiangsu, China). HRP-

conjugated goat anti-rabbit IgG (batch no. SV0002), the

diaminobenzidine (DAB) chromogenic kit (batch no. AR1002),

and rabbit anti-PPARg antibody (batch no. 191262) were supplied

by Boster Biological Technology, Co., Ltd. (Wuhan, China).

Acetonitrile (UHPLC grade) was obtained from Merck (Shanghai,

China), while acetic acid and ammonium acetate were sourced from

DIMA (Richmond Hill, USA), Leucine-enkephalin, methanol, and

streptozotocin (STZ) were purchased from Sigma-Aldrich

(Steinheim, Germany). Double-distilled water was procured from

Watson’s Food & Beverage (Guangzhou, China). Anemarrhena

Rhizoma samples were provided by Zisun Pharmaceutical Co.,

Ltd. (Guangdong, China) (batch no. 130501). The crude drug was

au then t i c a t ed by Pro f e s so r J i zhu L iu (Guangdong

Pharmaceutical University).
2.2 Preparation of AR extract sample

The AR extract was prepared as follows: the dried herb (whole

plant or rhizome of Anemarrhena asphodeloides Bge) was cut into

small pieces and extracted twice (1h per extraction) with 80% ethanol

using reflux extraction. The resulting solution was filtered through

gauze, and the filtrates were combined and evaporated under reduced

pressure to yield an ethanol (EtOH) extract. For further processing,

2.00 g of the AR extract was dispersed in 50 mL of methanol and

sonicated for 1 h to ensure complete dissolution. A 1 mL aliquot of

this solution was centrifuged at 15,000 rpm at 4 °C for 5 min, and the

supernatant was collected for subsequent analysis.
2.3 Animals and treatments

Fourty-two male Sprague-Dawley rats (mean body weight: 180

± 20 g) were obtained from the Medical Experimental Animal

Center of Guangdong Province (Foshan, China, No. SCXK 2013-

0002). The animals were housed under controlled environmental

conditions (temperature: 22 ± 2°C; relative humidity: 55 ± 5%; 12 h

light/dark cycle) with ad libitum access to standard laboratory diet

and water. Following a minimum 1-week acclimatisation period, we

stratified the rats by body weight and randomly assigned them to

either: normal control (NC, n=7) or diabetic model (DM, n=35).

We induced diabetes in the DM group by administering a high-fat

diet (composed of 65% basal rat chow, 10% lard, 20% sucrose, 2.5%
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cholesterol, 1% mineral mixture, 1% sodium cholate, and 0.5%

cellulose mixture) for 6 weeks, followed by a single intraperitoneal

injection of 2% streptozotocin (STZ) solution at a dose of 35 mg/kg.

Seven days post-injection, we measured fasting blood glucose (FBG)

from tail vein blood samples. Rats exhibiting persistent

hyperglycaemia (FBG > 11.1 mmol/L) were deemed to have

successful diabetes induction (Supplementary Figure S1).

The DMmodel rats were randomly divided into five groups: the

DM model group (DM, n=7), AR extract high-, medium- and low-

dose groups (ARH, ARM, ARL, n=7 per group), and the

rosiglitazone positive control group (ROG, n=7). The DM group

and NC group received 0.8 mL/100g body weight of distilled water

by oral gavage daily. The ROG group was administered 5 mg/kg

body weight of rosiglitazone suspension daily, while the ARH,

ARM, and ARL groups received 400, 200, and 100 mg/kg body

weight of AR extract, respectively, once daily for four weeks. All

experimental procedures were conducted in strict accordance with

the Guidelines for the Care and Use of Laboratory Animals and

were approved by the Institutional Animal Care and Use

Committee of Guangdong Pharmaceutical Universi ty

(Guangzhou, China; Approval no. gdpulacspf2018132).
2.4 Biochemical analysis

Following the final administration, FBG, FINS, insulin resistance

index (HOMA-IR), insulin sensitivity index (ISI), and lipid levels

were measured in each experimental group. Serum concentrations of

TNF-a, IL-6, and IL-1b were determined using ELISA.
2.5 Pathological changes of liver tissues

Following collection, rat liver tissues were immediately fixed in

10% neutral buffered formalin at a 10:1 (fixative:tissue) volume

ratio. Selected tissues samples were then paraffin-embedded and

sectioned at 5 mm thickness. Tissue sections were stained with

haematoxylin and eosin (H&E), examined by light microscope, and

imaged at 400× magnification (40× objective with 10× eyepiece)

for analysis.
2.6 Rt-qPCR analysis of NF-kB p65 and
TGF-b1 mRNA expression in liver tissue

Total mRNA was extracted from liver tissue using TRIzol

reagent (Promega). For each sample, 1 mg of total RNA was

reverse-transcribed into complementary DNA using a reverse

transcription system. RT-qPCR was subsequently performed

using the SYBR Green qPCR SuperMix (Invitrogen). The qPCR

primer sequences were synthesised by Sangon Biotech (Shanghai)

Co., Ltd. and are listed in Supplementary Table S1. Following 40

cycles, the relative gene expression levels of nuclear factor-kB (NF-

kB) p65 and transforming growth factor-b1 (TGF-b1) were

quantified using the 2-DDCt method.
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2.7 Immunohistochemical analysis of
PPARg expression in perirenal adipose
tissue

Prepare paraffin sections from perirenal adipose tissue. Dewax

the sections with xylene and rehydrate them through a graded

ethanol series. Perform antigen retrieval before incubating the

sections in 0.3% H2O2 solution for 10 minutes to block

endogenous peroxidase activity. Wash the sections with distilled

water, then block them with 5% BSA solution for 10 minutes.

Incubate the sections with primary antibody PPARg (diluted 1,200)

at 37 °C in a humidified chamber for 2 hours. Afterwards, incubate

them with HRP-conjugated goat anti-rabbit IgG secondary

antibody at 37 °C for 30 minutes. Develop the staining using

diaminobenzidine (DAB), counterstain with haematoxylin, then

dehydrate, clear, and mount the sections with neutral resin.

Examine and photograph the stained sections under an optical

microscope using a 10× eyepiece and 40× objective. Analyse the

integrated optical density (IOD) using Image-Pro Plus 6.0 software.
2.8 Preparation of rat serum and urine
sample

On day 7 post-administration, blood samples were collected

from the ARH groups via the ophthalmic vein at 30, 60, and 120

minutes after dosing for in vivo chemical analysis. Serum was

obtained by centrifugation (4000 rpm, 4 °C for 10 minutes), with

samples from each time point being pooled and stored at -80°C

prior to analysis. Following drug administration, rats were housed

in metabolic cages to enable 24-hour urine collection into bottles

containing NaN3 (0.05% wt/vol). Urine samples were centrifuged

(4000 rpm, 10 minutes, 4°C), and the supernatants were stored at

-80°C until UHPLC-MS analysis. After four weeks of AR extract

administering, serum samples from each group were collected for

metabolomics analysis.

Following thawing, both serum and urine samples were vortex-

mixing for 2 minutes and centrifuged (4000 rpm, 10 minutes, 4°C).

For serum processing, 1 mL of supernatant was mixed with 3 mL

acetonitrile, vortex-mixed, and centrifuged (12,000 rpm, 10

minutes, 4 °C). The resulting supernatant was dried under

nitrogen gas, and the residue was redissolved in 200 mL of 50%

methanol for analysis. For urine processing, 100 mL of supernatant

was mixed with 300 mL of acetonitrile, vortex-mixed, and

centrifuged (10,000 rpm, 15 minutes, 4 °C), with 200 mL of the

final supernatant collected for analysis.
2.9 Instrumentation and conditions

The Waters Acquity™ Ultra Performance LC system (Waters

Corporation, Milford, USA) was equipped with a quaternary pump,

vacuum degasser, cooled autosampler, and diode-array detector.

Chromatographic separation was performed using an Acquity BEH

C18 column (50 mm×2.1 mm, 1.7 µm) maintained at 30 °C. The
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gradient elution programs for AR constituent identification in vivo

and metabolomics analysis are detailed in Supplementary Tables S2,

S3, respectively. The flow rate was set to 0.40 ml/min, and the

autosampler temperature was maintained at 4 °C. A Waters

Micromass Q-TOF Micro™ mass spectrometer (Waters Co.,

UK), fitted with a LockSpray and ESI interface, was operated in

both positive and negative ion modes. The system was controlled

using Masslynx data analysis software. The capillary voltage and

cone voltage were set to 3000 V and 30 V, respectively, in both

ionisation modes. The ion source temperature and desolvation

temperature were maintained at 120 °C and 350 °C. Nitrogen (60

L/h) served as the cone gas, while argon (600 L/h) was used as the

collision gas. Mass spectrometric data were acquired over a range of

100~1500 Da in both ionisation modes. To ensure mass accuracy

and reproducibility, Leucine-enkephalin (Sigma, batch no. L9133-

50MG, 600 ng/mL) was used as the lock mass via the LockSpray

interface, generating reference ions at m/z 556.2771 [M+H]+

(positive mode) and m/z 554.2615 [M-H]- (negative mode). The

LockSpray frequency was set to 10 s. For MS/MS experiments, a

variable collision energy (20-50 eV) was applied and optimised for

each constituent. An Acquity UHPLC-Q-TOF Micro™ system

(Waters Co., USA) coupled with MassLynx 4.1 software was used

to obtain accurate mass measurements and compositional data for

precursor and fragment ions.
2.10 Metabolomics analysis

We normalised the sum of the data matrices and imported them

into SIMCA-P 14.1 software for pattern recognition analyses,

including principal component analysis (PCA) and orthogonal

partial least squares-discriminant analysis (OPLS-DA). Using

variable importance in projection (VIP) values > 1, we filtered

differential variables. We then performed volcano plot analysis,

selecting variables with a fold change (FC) > 1.2 or < 0.8 and a

Student’s t-test p-value < 0.05. We considered variables meeting all

criteria (VIP > 1, FC > 1.2 or < 0.8, and p-value < 0.05) as potential

biomarkers. We identified the structures of these potential

biomarkers using MS and MS/MS mass spectrometry data, cross-

referencing HMDB (http://www.hmdb.ca/), LipidMaps (http://

www.lipidmaps.org/), and METLIN databases. Finally, we

imported the confirmed biomarkers into MetaboAnalyst 6.0 to

generate heatmaps, perform pathway and Pearson correlation

analyses, and conduct joint pathway analysis.
2.11 Network pharmacology analysis

2.11.1 Prediction of AR active constituents targets
and collection of T2DM-related therapeutic
targets

The structural formulas and Canonical SMILES of the identified

components were obtained using ChemDraw software and online

databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/)

and ChemSpider (http://www.chemspider.com/). Potential targets
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associated with the identified constituents were retrieved through

global prediction using databases and online servers, including

SwissTargetPrediton (http://www.swisstargetprediction.ch/),

STITCH (Version 5.0, http://stitch.embl.de/), CTD (http://

ctdbase.org/), ETCM (http://www.tcmip.cn/ETCM/index.php/

Home/Index/) , BATMAN-TCM (Vers ion 2 .0 , ht tp : / /

bionet.ncpsb.org/batman-tcm), SEA (http://sea.bkslab.org/), and

TargetNet (http://targetnet.scbdd.com/). Only evidence-based

targets were included (8). Targets linked to T2DM were sourced

from multiple databases, including OMIM (https://omim.org/),

GeneCards (https://www.genecards.org/), TTD (http://

db.idrblab.net/ttd/), and DisGeNET (http://www.disgenet.org/),

using the keywords “Type 2 diabetes metillus” or “Non-Insulin-

Dependent diabetes metillus”. Duplicates were removed to compile

the final set of potential therapeutic targets for T2DM.

2.11.2 PPI network and enrichment analysis
Both the targets of AR constituents and T2DM-related targets

were imported into the UniProt protein database to standardise

their official gene symbols. The protein-protein interaction (PPI)

network for the common targets between AR’s bioactive

constituents and T2DM-related targets was constructed using

STRING 12.0 (https://version-12.string-db.org/). The study

species was set to Homo sapiens, and the minimum interaction

threshold was defined as a confidence score > 0.9 (“highest

confidence”). The PPI hub network was generated based on node

degree values, which were calculated using the cytoHubba plugin in

Cytoscape 3.7.2 software.

Gene ontology (GO) enrichment analysis and KEGG pathway

enrichment analysis were performed using DAVID database

(https://david.ncifcrf.gov/home.jsp) to elucidate the biological

functions of the intersecting targets. GO biological processes and

KEGG pathways with a P-value < 0.01 were identified and

subsequently analysed using the bioinformatics cloud platform

(http://www.bioinformatics.com.cn/) for visualisation. T2DM-

related pathways were further extracted based on their association

with the bioactive constituents of AR and their corresponding

effective targets. A “components-targets-pathways” network was

constructed using Cytoscape 3.7.2. The degree value and

betweenness centrality parameters were applied to evaluate the

significance of each node within the network.
2.12 Integrated analysis of metabolomics
and network pharmacology

Differential metabolic biomarkers were imported into the

MetaboAnalyst 6.0 database and the Metscape plugin (Cytoscape

3.7.2) to identify metabolically related targets. Venn diagrams were

used to identify common targets between the potential targets from

network pharmacology and those associated with metabolism. The

metabolic biomarkers and common targets were further analysed in

MetaboAnalyst 6.0 for joint pathway analysis. Subsequently, the

metabolic biomarkers and key-associated metabolic pathways were

integrated to construct a “metabolites-key targets-pathways”
Frontiers in Endocrinology 05
network. This network was developed to elucidate the

mechanistic role of AR in the treatment of T2DM.
2.13 Molecular docking

To further assess whether AR bioactive constituents and

T2DM-related targets exhibit strong binding activity, we

performed molecular docking using AutoDock 4.2.6. We screened

the top target proteins based on the contribution degree values of

the nodes in the “metabolites-key targets-pathways” network. We

obtained the target protein files in PDB format from the RCSB PDB

database (http://www1.rcsb.org/) and pre-processed the original

protein structures using PyMOL. For the AR bioactive

components, we either retrieved their 3D structures from the

PubChem database or drew them using Chemoffice 19.0, then

converted them to PDB format and minimised their energy with

Chem3D 19.0. We evaluated the binding affinity between AR

bioactive components and T2DM-related target proteins based on

binding energy. According to existing literature, a binding energy <

-4.25 kcal/mol suggests good ligand-receptor, and the while a value

< -7.0 kcal/mol indicates strong binding activity (9, 10).
2.14 Molecular dynamics simulations

GROMACS 2022 was employed to run 100 ns molecular

dynamics (MD) simulations of complexes between AR bioactive

constituents and representative core targets, assessing their binding

stability and dynamic behavior. The protein parameters were

derived from the CHARMM36 force field, while we generated the

ligand topology using the GAFF2 force field. We applied periodic

boundary conditions and solvated the protein-ligand complex in a

cubic box with TIP3P water molecules, maintaining a 1.2 nm

periodic boundary. For electrostatic interactions, we used the

Particle Mesh Ewald (PME) method and the Verlet algorithm.

The system was equilibrated in two phases (100 ps each, 0.1 ps

coupling constant): NVT (isothermal-isochoric) and NPT

(isothermal-isobaric) ensembles. We calculated both van der

Waals and Coulomb interactions using a 1.0 nm cutoff. Finally,

we ran the production MD simulation using GROMACS 2022

under constant conditions (310 K, 1 bar) for 100 ns using

GROMACS 2022.
2.15 Statistical analysis

Data from each group were analyzed statistically using

GraphPad Prism 8.0 software. Measurement data are presented as

mean ± standard deviation (SD), and comparisons among multiple

groups were performed using one-way analysis of variance

(ANOVA) followed by Tukey’s post-hoc test for pairwise

comparisons. A P-value of less than 0.05 was considered

statistically significant. To enhance the interpretability of results,

effect sizes (Cohen’s d) were calculated to quantify group
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differences, and 95% confidence intervals (CIs) for means were

reported together with point estimates. Power analysis was

performed using GPower 3.1.9.7 to determine the sample size

prior to the experiment. For a one-way ANOVA with an

expected medium effect size (f = 0.25), a = 0.05, and 80% power,

a minimum of 5 rats per group was required. The final sample size

(n = 7 per group) exceeded this estimate to account for potential

biological variability.
3 Results

3.1 AR treatment ameliorates STZ-induced
T2DM in rats

After 28 days of treatment, the blood glucose and lipid levels of

each experimental group are detailed in Table 1. Compared with the

NC group, the DM group exhibited significantly elevated PBG,

FINS, HOMA-IR, TC, TG, and LDL-C levels (P<0.01), indicating

severe IR in the DMmodel rats. This was accompanied by impaired

insulin utilisation, hyperinsulinaemia, and dyslipidaemia. FBG

levels were significantly reduced in the ARH, ARM, and ROG

groups compared with the DM group. Furthermore, FINS, HOMA-

IR, TC, TG, and LDL-C levels were significantly decreased in all AR

dosage groups and ROG group, while ISI and HDL-C levels were

markedly increased. These results indicated that AR significantly

improves IR and partially reverses lipid metabolic disorders in DM

model rats, thereby ameliorating diabetic lipotoxicity.

Table 2 reveals that the DM model group developed

significantly elevated serum inflammatory factor levels and

increased NF-kB and TGF-b1 expression, establishing a

pronounced inflammatory state in diabetic rats. Compared to the

DM group, the ARH, ARM and ROG groups exhibited significantly

reduced TNF-a, IL-6 and IL-1b levels. All AR dosage groups and

ROG group demonstrated substantially decreased hepatic NF-kB
and TGF-b1 mRNA expression, with the ARH group showing the

most marked reduction. These results confirm that AR inhibits the

NF-kB signalling pathway, suppresses inflammatory factor

generation, and ameliorate the inflammatory status in T2DM.

Post hoc comparisons of pharmacodynamic parameters among

experimental groups are shown in Supplementary Table S4.

Liver tissue pathological sections from rats in each group are

presented in Figure 1A. In the NC group, the liver tissue structure is

intact and clearly defined, with hepatic cords arranged radially

around the central vein. The liver sinusoids are distinct, hepatocytes

are uniform in size and well-organised, cell boundaries are sharp,

the cytoplasm exhibits even eosinophilic (red) staining, and nuclei

are centrally located without signs of inflammatory cell infiltration.

In the DM model group, granular lesions are visible within

hepatocytes, along with numerous round fat droplets of varying

sizes in the cytoplasm, accompanied by inflammatory cell

infiltration. Compared to the DM group, the ARH and ROG

groups show no significant inflammatory infiltration or granular

lesions, and diffuse microvesicular steatosis is absent. In the ARM

and ARL groups, mild inflammatory cell infiltration is observed,
T
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along with a reduction in granular lesions. However, the ARL group

still displays substantia diffuse fat droplet formation.

The positive expression rate of PPARg protein in the adipose

tissue of the DM group was significantly lower than that of the NC

group (P<0.01) (Figure 1B). Immunohistochemical analysis of

perirenal adipose tissues revealed a marked increase in PPARg
protein expression in the ROG and ARH group (P<0.05, P<0.01).

These findings suggest that AR ameliorates IR and enhances

adipose tissue insulin sensitivity by upregulating PPARg
expression in adipocytes.
3.2 Metabolomics analysis

The screening process identified 35 differential serum

metabolites in both positive and negative ion modes, including

eleven bile acids, fourteen lysophosphatidylcholines (LysoPCs),

nine fatty acids (FAs), and one cervonoyl ethanolamide (see

Table 3 for details). The methodological validation and

identification process of metabolomics are detailed in the

Supplementary Materials. Using the relative peak area of each

metabolite, we generated a heatmap to visualise level changes

across groups (Figures 2A–C). Compared to the NC group, the

DM group exhibited higher serum levels of bile acids, cervonoyl

ethanolamide, 13(S)-HPODE, and stearic acid but lower levels of

LysoPCs and oleic acid. Following AR and ROG treatment, serum

levels of bile acids, 13(S)-HPODE, and 12,13-DHOME decreased,

whereas LysoPCs and unsaturated fatty acids (UFAs) increased. We

further analysed the differential metabolites in MetaboAnalyst 6.0

for pathway enrichment. Three pathways showed significant

alterations (impact value > 0.01; Figures 2D–F): linoleic acid

me tabo l i sm , a lpha - l i no l en i c a c id me tabo l i sm , and

glycerophospholipid metabolism.

We used Pearson correlation analysis to assess the potential

relationships between differential metabolites and biochemical
Frontiers in Endocrinology 07
indicators in the DM model group and the ARH group. As

illustrated in Figure 2G, bile acids, 13(S)-HPODE, and 12,13-

DHOME showed significant positive correlations with FBG,

FINS, HOMA-IR, TC, TG, LDL-C, TNF-a, IL-6, and IL-1b, but
significant negative correlations with HDL-C. Conversely, LysoPCs

and UFAs exhibited significant negative associations with FBG,

FINS, HOMA-IR, TC, TG, LDL-C, IL-6, and IL-1b, while

displaying significant positive correlations with HDL-C.
3.3 Identification of serum and urine
constituents from AR in T2DM rats

We identified 77 constituents by comprehensively analysing their

retention behaviour, MS and MS/MS fragmentation patterns, and

comparing these with reference standards and published literature.

Among these, 47 prototypes were detected in AR extracts and 11

metabolites in rat serum and urine (Supplementary Tables S5, S6).

Details of the identification process for these constituents are

provided in the Supplementary Materials.
3.4 Network pharmacology

We identified 22 in vivo migrant compounds (excluding

structurally identical ones), consisting of 18 prototype

compounds and 4 metabolites (Supplementary Table S7), through

serum-urine pharmacochemical analysis. These compounds were

then analyzed using network pharmacology to investigate their

potential mechanisms of action. Our analysis predicted 528 unique

component targets after redundancy removal. From disease

databases, we identified 2645 T2DM-related targets (selected at

twice the median degree threshold). The intersection of these

datasets yielded 276 potential therapeutic targets for AR against

T2DM. The resulting PPI network contained 231 nodes and 1700
TABLE 2 AR effects on serum inflammatory cytokines (TNF-a, IL-6, IL-1b) and hepatic NF-kB p65 and TGF-b1 mRNA expression in rats (�x ± s, n=7 ).

Group
Dose

(mg/kg)

TNF-a (pg/mL) IL-6 (pg/mL) IL-1b (pg/mL)
NF-kB mRNA TGF-b1 mRNA

Cohen’s d/95%CI Cohen’s d/95%CI Cohen’s d/95%CI

NC 0 73.15 ± 17.75 21.98 ± 10.33 125.47 ± 18.28 0.48 ± 0.04 0.38 ± 0.06

DM 0
177.95 ± 35.31##

3.75[82.15, 127.46]
114.32 ± 27.09##

4.50[59.28, 125.39]
251.99 ± 25.89##

5.65[97.69, 155.34]
18.11 ± 3.05## 35.36 ± 6.49##

ROG 5
128.28 ± 15.32**
1.83[23.46, 75.89]

81.02 ± 15.33*
1.51[39.98, 78.11]

145.06 ± 28.15**
3.95[72.13, 141.71]

2.32 ± 0.31** 2.76 ± 0.61**

ARH 400
116.26 ± 41.01**
1.61[26.56, 96.82]

73.19 ± 16.04*
1.85[31.53, 70.89]

134.64 ± 34.80**
3.83[77.90, 156.80]

0.63 ± 0.07** 0.53 ± 0.05**

ARM 200
138.71 ± 36.99*
1.09[4.24, 74.25]

79.37 ± 16.44*
1.56[37.37, 77.42]

173.12 ± 29.77**
2.83[42.98, 114.75]

1.53 ± 0.31** 3.81 ± 0.86**

ARL 100
163.27 ± 10.74

0.56[-11.18, 40.55]
95.99 ± 25.84

0.69[45.31, 102.72]
219.40 ± 23.47
1.32[0.81, 64.38]

1.98 ± 0.62** 3.77 ± 1.52**
Data are expressed as mean ± SD. Compared with the NC group, ##P<0.01; Compared with the DM group, *P < 0.05, **P < 0.01.
NC, normal control group; DM, diabetes mellitus group; ROG, rosiglitazone group; ARH, high-dose AR group; ARM, medium-dose AR group; ARL, low-dose AR group; TNF-a, tumor necrosis
factor-a; IL-6, interleukin 6; IL-1b, interleukin-1b; NF-kB, Nuclear factor-kappa B; TGF-b1, transforming growth factor-b1. Cohen’s d is a standardized effect size measuring the magnitude of
the mean difference between groups. According to Cohen’s standards, |d|≥ 0.8 indicates a large effect size. 95%CI, 95% confidence interval of mean difference (pg/mL).
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interaction edges, with the top 150 targets shown in Figure 3A. In

this network, target centrality is visually represented by color

intensity, where redder hues indicate greater proximity to the

network core. The top 20 highest-degree targets in the PPI

network were: TP53, AKT1, STAT3, TNF, SRC, HSP90AA1, IL6,
Frontiers in Endocrinology 08
CTNNB1, NFKB1, ESR1, RELA, MAPK1, BCL2, HRAS, MAPK3,

IL1B, EGFR, PIK3CA, IFNG, and CASP3. (see Supplementary

Table S8 for their characteristic parameters).

To elucidate the mechanisms by which AR treats T2DM, we

performed GO functional analysis and KEGG pathway enrichment
FIGURE 1

AR exhibited therapeutic effects in STZ-induced T2DM rats. (A) Pathological changes of liver tissues (at 400× magnification). (B) Immunohistochemical
analysis of PPARg expression in perirenal adipose tissue. The positively stained cells exhibited a brown coloration. Positive expression regions of PPARg in
perirenal adipose tissues were measured by IOD value. Data are expressed as mean ± SD (n = 7). Compared with the NC group, ##P<0.01; Compared
with the DM group, *P < 0.05, **P < 0.01. (a) NC group, (b) DM group, (c) ROG group, (d) ARH group, (e) ARM group, (f) ARL group. NC, normal control
group; DM, diabetes mellitus group; ROG, rosiglitazone group; ARH, high-dose AR group; ARM, medium-dose AR group; ARL, low-dose AR group.
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TABLE 3 The details of identified biomarkers of AR treatment of T2DM in both positive and negative ion modes.

Mass(m/z)

HMDB ID

Relative change

DM vs.
NC

ROG vs.
DM

ARH vs.
DM

HMDB0000506 ↑## ↓** ↓**

HMDB0000415 ↑## ↓** ↓**

HMDB0000502 ↑## ↓** ↓**

HMDB0000391 ↑## ↓** ↓**

HMDB0000619 ↑## ↓** ↓**

HMDB0013627 ↑## ↓* ↓*

HMDB0000946 ↑## ↓** ↓**

HMDB0000733 ↑## ↓** ↓**

HMDB0000328 ↑## ↓** ↓**

HMDB0000518 ↑## ↓** ↓**

HMDB0010379 – ↑* ↑*

HMDB0000626 ↑## ↓** ↓**

HMDB0000467 ↑## ↓** ↓**

HMDB0010397 – ↑** ↑*

HMDB0010383 – ↑* –

HMDB0003871 ↑## ↓** ↓**

HMDB0010386 ↓## ↑* ↑**
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tR/
min

Ion
mode

Error
(ppm)

Molecular
formula

Identification
Calculated Measured

1 7.27 [M-H]- 407.2797 407.2782 -3.7 C24H40O5
a-Muricholic acid

(a-MCA)

2 7.95 [M-H]- 407.2797 407.2798 0.2 C24H40O5
b-Muricholic acid

(b-MCA)

3
8.20 [M+H]+ 407.2797 407.2789 -2.0

C24H38O5
3-Oxocholic acid

(3-OCA)8.14 [M-H]- 405.2641 405.2652 2.7

4 9.32
[M+NH4]

+ 424.3063 424.3072 2.1
C24H38O5 7-Ketodeoxycholic acid (7-KDCA)

[M-H]- 405.2641 405.2647 1.5

5
9.53 [M+NH4]

+ 426.3219 426.3210 -2.1
C24H40O5

Cholic acid
(CA)9.54 [M-H]- 407.2797 407.2792 -1.2

6 9.55 [M+H]+ 373.2743 373.2754 2.9 C24H36O3 Cervonoyl ethanolamide

7 11.02 [M-H]- 391.2848 391.2845 -0.8 C24H40O4 Ursodeoxycholic acid (UDCA)

8 11.13 [M-H]- 391.2848 391.2862 3.6 C24H40O4 Hyodeoxycholic acid (HDCA)

9 11.51 [M+H]+ 391.2848 391.2867 4.9 C24H38O4
12-Ketodeoxycholic acid (12-

KDCA)

10 12.47 [M-H]- 391.2848 391.2840 -2.0 C24H40O4 Chenodeoxycholic acid (CDCA)

11 12.63 [M+H]+ 468.3090 468.3104 3.0 C22H46NO7P LysoPC(14:0/0:0)

12 12.82
[M+NH4]

+ 410.3270 410.3260 -2.4
C24H40O4

Deoxycholic acid
(DCA)[M-H]- 391.2848 391.2830 -4.6

13 12.90
[M+NH4]

+ 408.3114 408.3102 -2.9
C24H38O4

7-Ketolithocholic acid
(7-KLCA)[M-H]- 389.2692 389.2711 4.9

14 12.98 [M+H]+ 542.3247 542.3267 3.7 C28H48NO7P LysoPC(20:5/0:0)

15 13.25 [M+H]+ 494.3247 494.3259 2.4 C24H48NO7P LysoPC(16:1/0:0)

16 13.77 [M-H]- 311.2222 311.2221 -0.3 C18H32O4 13(S)-HPODE

17 13.92

[M+H]+ 520.3403 520.3389 -2.7

C26H50NO7P LysoPC(18:2/0:0)[M
+HCOO]-

564.3301 564.3305 0.7
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TABLE 3 Continued

Mass(m/z)

MDB ID

Relative change

DM vs.
NC

ROG vs.
DM

ARH vs.
DM

DB0010395 ↓## ↑** ↑*

DB0010382 ↓# ↑** ↑**

DB0010393 ↓# ↑** ↑*

DB0010402 ↓## ↑** ↑*

DB0004705 – ↓** ↓**

DB0002815 – ↑** ↑*

DB0010384 ↓## – ↑**

DB0010401 ↓# ↑** –

DB0258493 ↓## – ↑**

DB0013122 ↓## – ↑*

DB0012108 – – ↑*

DB0001388 ↓# ↑* ↑*

DB0000673 ↓# – ↑*

DB0006528 – – ↑*

DB0002226 – ↑* ↑**

DB0000207 ↓## ↑** ↑**

DB0000827 ↑# – –

DB0002231 – – ↑**

ith the DM model group, **P < 0.01, *P < 0.05. The relative levels of potential
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formula
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18 13.98

[M+H]+ 544.3403 544.3402 -0.2

C28H50NO7P LysoPC(20:4/0:0) HM[M
+HCOO]-

588.3301 588.3300 -0.2

19 14.27

[M+H]+ 496.3403 496.3405 0.4

C24H50NO7P LysoPC(16:0/0:0) HM[M
+HCOO]-

540.3301 540.3325 4.4

20 14.34 [M+H]+ 546.3560 546.3563 0.5 C28H52NO7P LysoPC(20:3/0:0) HM

21 14.41 [M+H]+ 570.3560 570.3577 3.0 C30H52NO7P LysoPC(22:5/0:0) HM

22 14.52 [M-H]- 313.2379 313.2380 0.3 C18H34O4 12,13-DHOME HM

23 15.15

[M+H]+ 522.3560 522.3544 -3.1

C26H52NO7P LysoPC(18:1/0:0) HM[M
+HCOO]-

566.3458 566.3453 -0.9

24 15.30
[M

+HCOO]-
568.3614 568.3601 -2.3 C26H54NO7P LysoPC(18:0/0:0) HM

25 15.44 [M+H]+ 572.3716 572.3717 0.2 C30H54NO7P LysoPC(22:4/0:0) HM

26 15.57
[M

+HCOO]-
568.3614 568.3598 -2.8 C26H54NO7P 2-Lysophosphatidylcholine HM

27 15.63 [M+H]+ 508.3767 508.3753 -2.8 C26H54NO6P LysoPC(P-18:0/0:0) HM

28 15.68 [M+H]+ 510.3560 510.3554 -1.2 C25H52NO7P LysoPC(17:0/0:0) HM

29 16.41 [M-H]- 277.2168 277.2159 -3.2 C18H30O2
a-Linolenic acid

(ALA)
HM

30 17.19 [M-H]- 279.2324 279.2338 5.0 C18H32O2
Linoleic acid

(LA)
HM

31 17.46 [M-H]- 329.2481 329.2466 -4.6 C22H34O2
Docosapentaenoic acid (22n-3)

(DPA)
HM

32 17.83 [M-H]- 331.2637 331.2639 0.6 C22H36O2 Adrenic acid (ADA) HM

33 18.06 [M-H]- 281.2481 281.2490 3.2 C18H34O2 Oleic acid (OA) HM

34 18.95 [M-H]- 283.2637 283.2631 -2.1 C18H36O2 Stearic acid (SA) HM

35 19.01 [M-H]- 309.2794 309.2785 -2.9 C20H38O2 11Z-Eicosenoic acid HM

NC, normal control group; DM, diabetes mellitus group; ROG, rosiglitazone group; ARH, high-dose AR group; Compared with those in the control group, ##P < 0.01, #P< 0.05; Compared w
biomarkers were denoted as up-regulated (↑) or down-regulated (↓).
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analysis. The results demonstrate that the AR’s bioactive

constituents are involved in 1,046 biological processes (BPs), 114

cellular components (CCs), and 203 molecular functions (MFs).

The top 20 GO items in each category (BP, CC, MF) are

summarised in Supplementary Figure S2.

From the 195 signalling pathways enriched in the KEGG

analysis, we identified the top 21 pathways most relevant to

T2DM (Figure 3B, Supplementary Table S9). These pathways

were ranked by their association with T2DM, with the most

significant including: AGE-RAGE signalling in diabetic

complications, lipid metabolism and atherosclerosis, TNF

signalling, PI3K-Akt signalling, prolactin signalling, Toll-like

receptor signalling, insulin resistance, FoxO signalling, IL-17

signalling, and Ras signalling. From these pathways, we

extracted 146 T2DM- associated target proteins, which were

then used to select corresponding potential bioactive

compounds for construct ing the subsequent network

pharmacology framework.

We constructed a “components–targets–pathways” network

comprising 189 nodes (146 T2DM-related targets, 22 potential

components, and the top 21 T2DM-related pathways) and 1043

edges (Figure 3C). Using the “Network Analyzer” plugin in
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Cytoscape, we analyzed the network’s topological properties. In this

visualisation, nodes importance is indicated by: higher degree values,

greater betweenness centrality, larger areas size, and darker colours

intensity. The analysis revealed the top 5 candidate components with

the highest degree values: mangiferin (AR2; degree: 94; betweenness

centrality: 0.29042967), norathyriol (MA1; degree: 39; betweenness

centrality: 0.05882475), digitogenin (MA2; degree: 36; betweenness

centrality: 0.04215628), markogenin or neogitogenin (MA3; degree:

30; betweenness centrality: 0.02774043), and sarsasapogenin (MA4;

degree: 30; betweenness centrality: 0.03258071). These components

represent AR’s primary bioactive constituents for T2DM treatment.
3.5 Integrated analysis of metabolomics
and network pharmacology

To elucidate the molecular mechanisms of AR in treating

T2DM, we collected 489 metabolic targets. Using Venn diagrams,

we performed an intersection analysis between component-disease

targets and metabolic targets, identifying 52 common targets. We

then analysed these 52 targets further via PPI network analysis

(STRING 12.0). With the Cytoscape cytoHubba plugin, we selected
FIGURE 2

AR regulated the metabolic characteristics of serum in STZ-induced T2DM rats. (A–C) Heatmaps of differential metabolites in serum samples
between NC, DM, ROG, and ARH groups. (D–F) Main metabolic pathways of differential metabolites in serum samples among the groups. 1. Linoleic
acid metabolism, 2. alpha-Linolenic acid metabolism, 3. Glycerophospholipid metabolism. (G) Pearson correlation analysis of differential metabolites
and biochemical indicators between the DM and the ARH groups. *P<0.05, **P<0.01. NC, normal control group; DM, diabetes mellitus group; ROG,
rosiglitazone group; ARH, high-dose AR group; ARM, medium-dose AR group; ARL, low-dose AR group.
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FIGURE 3

Network pharmacology analysis of AR against T2DM. (A) The top 150 targets of the interactive PPI network of AR targets and T2DM targets.
Identification of 20 hub targets of AR in treating T2DM based on degree≥20, BC>0.014, and CC>0.357. BC, betweenness centrality; CC, closeness
centrality. (B) The top 21 pathways of KEGG enrichment analysis of the targets of the bioactive components of AR. (C) “Components-targets-
pathways” network of AR in treatment of T2DM. The abbreviations of the corresponding components are listed in Supplementary Table S7.
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the top eight genes based on network centrality: IL6, ALB, PPARA,

PTGS2, IL1B, PPARG, AKT1, and NFKB1 (Figure 4A).

Next, we performed an integrative pathway analysis using

MetaboAnalyst to combine the differential metabolites and

common targets. This revealed key signalling pathways involved

in AR’s therapeutic mechanisms, including linoleic acid

metabolism, the PPAR signalling pathway, the AGE-RAGE

signalling pathway in diabetic complications, insulin resistance,

non-alcoholic fatty liver disease (NAFLD), the TNF signalling

pathway, and the IL-17 signalling pathway (Figure 4B). Among

the 52 common targets, 27 showed strong associations with the top

seven T2DM-related pathways.

We constructed a “metabolites-targets-pathways” network,

incorporating six key metabolites, 27 associated targets, and seven

metabolic signalling pathways (Figure 4C). By analysing the PPI
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network and conducting joint pathway analysis, we identified five

core targets—PPARA, NFKB1, IL6, AKT1, and IL1B—along with

three key metabolites (linoleic acid, oleic acid, and a-linolenic acid)
as central network components. These results indicate that these

core targets and metabolites likely play pivotal roles in AR’s

therapeutic mechanism against T2DM.
3.6 Molecular docking

We performed molecular docking validation using

AutoDockTools-1.5.6 to assess interactions between AR’s top five

candidate components (one prototype and four metabolites) and

five key target proteins from the joint-analysis network. Most

component-target interactions showed binding energies below
FIGURE 4

Integrated analysis of metabolomics and network pharmacology. (A) The top eight targets identified in the interactive PPI network of metabolic
targets and component-disease intersection targets. (B) Joint pathway analysis of differential metabolites and shared metabolic targets between the
ARH and DM groups. (C) The integrative “metabolites-targets-pathways” network underlying the therapeutic effects of AR in treating T2DM.
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-5.0 kcal/mol, except for mangiferin with IL1B, IL6, and NFKB1,

and norathyriol with NFKB1, which exhibited slightly higher

energies (>-4.25 kcal/mol). Notably, mangiferin demonstrated

particularly strong binding affinities with AKT1 (-7.28 kcal/mol)

and PPARA (-6.07 kcal/mol). The steroidal saponin metabolites

displayed optimal binding with AKT1, PPARA, and NFKB1

through multiple interactions, including: conventional hydrogen

bonds, van der Waals forces, alkyl and pi-alkyl interactions, pi-

sigma interactions, carbon-hydrogen bonds. Figure 5 illustrates the

optimal binding modes and docking results. Key interactions

included: Sarsasapogenin forming two hydrogen bonds with the

NFKB1 (ARG57 and ARG59). Neogitogenin binding to AKT1

(ASN204) and NFKB1 (LYS206). Digitogenin interacting with

AKT1 (ASN204, SER205) and PPARA (ILE228).
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3.7 Molecular dynamics simulations
analysis

Based on the molecular docking results, sarsasapogenin-AKT1

and digitogenin-PPARA complexes exhibited the highest binding

scores. To further assess the binding stability between

sarsasapogenin, digitogenin, and their respective target proteins

(AKT1 and PPARA), we analyzed key parameters including root

mean square deviation (RMSD), root mean square fluctuation

(RMSF), number of hydrogen bonds, radius of gyration (Rg), and

solvent-accessible surface area (SASA).

The RMSD serves as a reliable metric for assessing the

conformational stability of protein-ligand complexes and atomic

position deviations from their initial coordinates. Lower RMSD
FIGURE 5

The optimum binding mode (2D and 3D conformation) of partial hub targets dock with potential bioactive components (The selected binding
energies ≤ -7.8 kcal/mol). (A) digitogenin-PPARA (PDB ID 1K7L). (B) digitogenin-AKT1 (PDB ID 7NH5). (C) neogitogenin-NFKB1 (PDB ID 1SVC). (D)
neogitogenin-AKT1 (PDB ID 7NH5). (E) sarsasapogenin-NFKB1 (PDB ID 1SVC). (F) sarsasapogenin-AKT1 (PDB ID 7NH5). (G) Heat maps of molecular
docking results.
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values indicate greater conformational stability. Our simulations

demonstrated that the PPARA-digitogenin and AKT1-

sarsasapogenin complexes reached equilibrium after 10 ns,

maintaining stable RMSD fluctuations of approximately 2.7 Å

and 2.5 Å, respectively (Figure 6A). These results confirm the

high stability of digitogenin and sarsasapogenin when bound to

their respective target proteins. Further analysis of the Rg and SASA

(Figures 6B, C), indicating no significant structural contraction or

expansion in either complex system during molecular dynamics.

Hydrogen bonds play a crucial role in ligand-protein binding.

Figure 6D displays the number of hydrogen bonds formed between

the small molecules and target proteins during the kinetic process. In

the PPARA-digitogenin complex system, the number of hydrogen

bonds fluctuated between 0 and 4, with one bond present in most
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cases. For the AKT1-sarsasapogenin system, the range was narrower

(0 to 2), but again, one bond typically formed. These results suggest

that the PPARA-digitogenin and AKT1-sarsasapogenin systems

exhibit stable hydrogen-bonding interactions.

The RMSF reflects the flexibility of amino acid residues within a

protein. As shown in Figures 6E, F, the RMSF values for the PPARA-

digitogenin and AKT1-sarsasapogenin complexes remain relatively

low, predominantly below 3 Å. These results indicate that the systems

exhibit reduced flexibility and enhanced structural stability.

In summary , the PPARA-dig i togenin and AKT1-

sarsasapogenin complexes exhibit stable binding, supported by

favorable hydrogen-bonding interactions. MD simulation results

further validate the findings of the molecular docking. These

observations provide robust evidence that PPARA, AKT1, IL1B,
FIGURE 6

The results of MD simulation of PPARA-digitogenin and AKT1-sarsasapogenin. (A) RMSD. (B) Rg. (C) SASA analysis. (D) H bond of PPARA-digitogenin
and AKT1-sarsasapogenin complex. (E, F) RMSF.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1618584
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhong et al. 10.3389/fendo.2025.1618584
IL6, and NFKB1 are likely molecular targets of AR’s bioactive

constituents, which contribute to its therapeutic potential.

Notably, these targets associate with the PI3K-Akt, PPAR, and

NF-kB signalling pathways, clarifying AR’s therapeutic mechanisms

in T2DM treatment.
4 Discussion

In this study, we detected 47 prototype constituents and 11

metabolites of AR in blood and urine samples. Network

pharmacology analysis further identified mangiferin, norathyriol,

digitogenin, markogenin/neogitogenin, and sarsasapogenin as the

key bioactive components of AR for T2DM treatment. A PPI

network analysis uncovered 20 hub targets with high degree

centrality, including TP53, AKT1, STAT3, TNF, SRC,

HSP90AA1, IL6, CTNNB1, NFKB1, ESR1, RELA, MAPK1, BCL2,

HRAS, MAPK3, IL1B, EGFR, PIK3CA, IFNG, and CASP3. These

targets are predominantly associated with lipid metabolism,

atherosclerosis, and diabetic complication pathways. Our findings

indicate that AR mediates its anti-T2DM effects through multi-

component regulation of critical metabolic and inflammatory

signalling hubs, with particular importance placed on the PI3K-

Akt and AGE-RAGE pathways as key therapeutic nodes.

AR-derived saponins demonstrate poor oral absorption and low

bioavailability, requiring metabolic conversion by intestinal

microbiota to produce pharmacologically active metabolites.

Following oral administration, Timosaponin AIII and BII

undergo rapid microbial biotransformation into sarsasapogenin,

whose plasma concentration shows significant time-dependent

accumulation (11). Both in vitro and in vivo studies indicate that

sarsasapogenin exhibits superior anti-inflammatory activity

compared to its parent compounds (12). Yu et al. proved that

sarsasapogenin reduces high-fat diet-induced IR and adipose tissue

inflammation by inhibiting IKK/NF-kB and c-Jun N-terminal

kinase (JNK) pathways (13). As a key inflammatory mediator,

activated PPARg inhibits NF-kB transcriptional activity, which

suppresses pro-inflammatory cytokines release. Zhang et al.

reported that sarsasapogenin upregulated hippocampal PPARg, p-
GSK3b, and p-AKT levels in diabetic rats (14). Our results show

that AR increases PPARg protein expression in adipose tissue,

thereby improving IR.

Mangiferin presents a similar metabolic pattern, with its

deglycosylated metabolite norathyriol showing dramatically

improved bioavailability (30.4% vs mangiferin’s 1.2%) (15).

Mechanistic studies reveal that norathyriol demonstrates:

Enhanced a-glucosidase inhibitory activity relative to mangiferin

(16) , improved glucose homeostas is through AMPK

phosphorylation upregulation and increased insulin sensitivity via

PTP1B inhibition (17). Furthermore, norathyriol demonstrates

significantly greater efficacy than mangiferin in regulating lipid

metabolism (18). Importantly, spirostanol saponins and norathyriol

demonstrate superior drug-lead potential relative to their parent
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compounds, owing to their enhanced bioavailability and more

potent hypoglycaemic and lipid-lowering activities.

Metabolomics analysis identified 33 differential metabolites

associated with AR treatment in T2DM rats. Pathway enrichment

analysis (FDR < 0.05, impact > 0.1) demonstrated significant

modulation of linoleic acid metabolism, arachidonic acid

metabolism, cytochrome P450-dependent drug metabolism,

re t ino l metabo l i sm, and xenob io t i c metabo l i sm by

cytochrome P450.

In the analysis of differential metabolites, serum bile acid levels

were significantly elevated in T2DM model rats, consistent with

findings from multiple studies (19, 20). AR intervention markedly

reduced these levels. Research suggests that glucose and insulin

induce CYP7A1 gene expression, promoting bile acid synthesis and

increasing circulating bile acid concentrations (21). As key

signalling molecules in lipid and glucose metabolism, bile acids

influence T2DM progression through multiple mechanisms,

including the regulation of hepatic glycogen synthesis,

gluconeogenesis, peripheral insulin sensitivity, and inflammation.

Furthermore, bile acids modulate insulin secretion and intestinal

GLP-1 production via Farnesoid X receptor (FXR) and Takeda G

protein-coupled receptor 5 (TGR5) signalling pathways (22),

underscoring their critical role in maintaining glucose

homeostasis and adipocyte energy metabolism.

Under conditions of glucose and lipid metabolic dysregulation,

plasma levels of LysoPC are significantly reduced. LysoPC plays a

critical role in glucose-mediated insulin secretion and peripheral

tissue insulin sensitivity. In this study, 14 LysoPC species exhibited

significant decreased levels in the dysregulated state, which were

markedly restored by AR treatment. This finding consistent with

our prior research in diabetic human populations and animal

models (4, 23).

13(S)-HPODE and 12,13-DHOME are lipoxygenase-catalysed

peroxidation products of linoleic acid (LA). In T2DM model rats,

enhanced lipid peroxidation leads to significant elevations in

circulating 13(S)-HPODE and 12,13-DHOME levels (24). These

peroxides are closely associated with inflammation, as they activate

the NF-kB pathway and upregulate pro-inflammatory cytokines

(including NLRP3 inflammasome components, TNF-a, IL-6, IL-1b,
MCP-1) (25, 26). Metabolomic analyses demonstrated that AR and

ROG interventions significantly reduced levels of these LA-derived

peroxides. Consistent with pharmacological experimental data,

these findings indicate that AR alleviates T2DM-associated

inflammation and insulin resistance (IR) by inhibiting lipid

peroxidation and suppressing NF-kB-mediated pro-inflammatory

cytokine expression.

Research has demonstrated that serum free fatty acid (FFA)

levels are significantly elevated in T2DM patients compared to

healthy individuals. Elevated FFAs are strongly associated with

multiple metabolic disorders, including inflammation, obesity, IR,

atherosclerosis, and non-alcoholic fatty liver disease (NAFLD).

However, not all fatty acids (FAs) exhibit lipotoxic effects: while

saturated fatty acids (SFAs) such as stearic acid (SA) and palmitic
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acid (PA) promote IR and contribute to T2DM progression,

monounsaturated fatty acids demonstrate protective properties.

Plasma SFAs impair cellular homeostasis by disrupting

endoplasmic reticulum (ER) and mitochondrial function, thereby

inducing ER stress, generating reactive oxygen species (ROS), and

activating the TLR4 signalling pathway, which collectively

exacerbate inflammatory responses (27, 28). In contrast, OA—a

monounsaturated fatty acid (MUFA)—counteracts SFA-induced

inflammation by suppressing production of inflammatory factors

(29). Mechanistically, OA restores AMPK activity, ameliorating ER

and mitochondrial dysfunction while attenuating inflammatory

pathways (30). Furthermore, OA enhances insulin sensitivity

through modulation of the IRS1/PI3K signalling pathway (31).

A diet rich in w-3 polyunsaturated fatty acids (PUFAs) -

particularly a-linolenic acid (ALA), docosahexaenoic acid (DHA),

eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) - is

well-established for its protective effects against T2DM and

cardiovascular diseases (32, 33). Clinical evidence from a

randomised controlled trial in Asian populations confirms that w-
3 PUFA supplementation improves plasma TG levels in T2DM

patients (34). Studies indicated that with T2DM and advanced

glycation (HbA1c 9.1–15%), plasma levels of SFAs - particularly PA

and SA - are significantly elevated, with SA demonstrating a positive

correlation with HbA1c. In contrast, as glycation levels rise (HbA1c

6–15%), levels of MUFAs (e.g., OA) and PUFAs (e.g., LA, EPA)

decline markedly, with LA showing a negative correlation with

HbA1c (35). Mechanistically, w-3 PUFAs reduce obesity-associated
inflammation by suppressing the release of inflammatory factors

and ameliorating chronic inflammation-induced IR (36). Multiple

studies demonstrate their hypoglycaemic and lipid-lowering effects,

which arise through several pathways: upregulation GLP-1R

expression to stimulate insulin synthesis and secretion, enhancing

antioxidant defences (e.g., increased SOD activity), promoting

pancreatic b-cell proliferation, inhibiting of b-cell apoptosis, and
elevation adiponectin levels in T2DM patients (37, 38). Our results

indicate that AR ameliorates fatty acid metabolic disorders in

T2DM by normalising levels of multiple UFAs.

Joint pathway analysis pinpointed five core targets: PPARA,

NFKB1, IL6, AKT1, and IL1B. The PPAR, PI3K-Akt, and NF-kB
signalling pathways - which directly interact with these key targets -

emerged as critical regulators of T2DM pathological progression.

Peroxisome proliferator-activated receptor alpha (PPARA)

serves as a master regulator of glucose and lipid metabolism,

coordinating energy homeostasis and inflammatory responses. It

achieves this by inhibiting glycolysis and lipid synthesis while

simultaneously enhancing glucose uptake, glycogen synthesis, and

fatty acid b-oxidation (39). Endogenous PPARA ligands - including

LA, OA, and ALA - activate the receptor to stimulate fatty acid b-
oxidation, accelerate lipid catabolism, reduce adipose accumulation,

and improve IR. Yang et al. reported that LA significantly increased

the mRNA translation level of PPARA in AML12 cells, a type of

hepatic parenchymal cells (40). PPARA activation also increases

HDL-C levels and upregulates lipoprotein lipase (LPL) expression,
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thereby promoting triglyceride (TG) hydrolysis (41). PPARA

activation potently inhibits NF-kB-mediated inflammation.

Notably, PPARA exerts potent anti-inflammatory effects through

NF-kB inhibition. The receptor directly interacts with the p65

subunit of NF-kB, blocking its nuclear translocation and

subsequent transcriptional activation of pro-inflammatory genes

(including IL-6, IL-1b, and TNF-a).
The PI3K-Akt signalling pathway acts as a central regulator in

diabetes, cardiovascular disease, obesity, and other metabolic

disorders, controlling glucose homeostasis and lipid metabolism.

Phosphatidylinositol 3-kinase (PI3K) catalyses the phosphorylation

of phosphatidylinositol (PI) to produce phosphatidylinositol 3,4,5-

trisphosphate (PIP3), which triggers AKT1 phosphorylation at

Thr308 and Ser473 (42). Activated AKT1 increases glucose

uptake in skeletal muscle and adipose tissues by upregulating

GLUT1/GLUT4 transporters through thioredoxin-interacting

protein (TXNIP) modulation (43). The pathway also plays a key

role in pancreatic b-cell proliferation and survival: Akt-mediated

phosphorylation of mTOR, GSK3b, and FoxO1 suppresses caspase-
9-dependent apoptosis, protecting b-cell mass (44).

At physiological concentrations, LA improves insulin sensitivity

through two key mechanisms: it promotes tyrosine phosphorylation

of the insulin receptor (INSR), activating PI3K-PIP3 signalling, and

recruits Akt1 to the plasma membrane for phosphorylation by

PDK1 and mTORC2 at Thr308/Ser473 (45, 46). This enhances

downstream glucose uptake via GLUT4 translocation in myocytes

and adipocytes. Simultaneously, LA inhibits pro-inflammatory NF-

kB pathways, reducing TNF-a-induced serine phosphorylation of

insulin receptor substrate 1 (IRS-1) and alleviating its inhibitory

crosstalk with insulin signalling. In endothelial and neuronal cells,

LA-driven Akt1 activation further promotes cell survival by

suppressing Bad-dependent apoptosis and boosting antioxidant

responses, highlighting its dual role in metabolic and

vascular protection.

T2DM is increasingly recognised as a chronic low-grade

inflammatory disease driven by cytokines. Pro-inflammatory

cytokines directly or indirectly impair pancreatic b-cell function
and induce apoptosis. Joint pathway analysis identified NFKB1, IL6,

and IL1B are key targets mediating the anti-inflammatory effects of

AR in T2DM. The NF-kB pathway plays a central role in

inflammation by promoting the release of pro-inflammatory

cytokines (TNF-a, IL-6, IL-1b) and upregulating iNOS and NO

upon activation (47). These mediators chemotactically recruit

monocytes/macrophages to pancreatic and renal tissues, where

TLR4-mediated amplification of NF-kB signalling cascades drives

further inflammatory factor release. This process promotes

pancreatic amyloid deposition, fibrosis, and glomerular

endothelial cell damage, exacerbating organ-specific inflammation

(48, 49). Under oxidative stress, accumulated inflammatory factors

activate IkB kinase (IKK), which induces serine phosphorylation of

INSR and IRS. This disrupts of PI3K/Akt signalling leads to IR (50).

Hyperglycemia further elevates TGF-b1 levels, and NF-kB
activation enhances its expression—a key mechanism driving
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hepatic and renal fibrosis in T2DM. In this study, AR treatment

significantly reduced serum levels of TNF-a, IL-1b, and IL-6 while

inhibiting hepatic NF-kB and TGF-b1 gene expression. These

effects collectively alleviated inflammation and tissue fibrosis in

T2DM rats.

Furthermore, joint pathway analysis further confirmed that the

AGE-RAGE signalling pathway, the TNF signalling pathway, and

the IL-17 signalling pathway are also key mechanisms mediating the

hypoglycaemic efficacy of AR in diabetes and its complications.

Advanced glycation end products (AGEs), toxic by-products of

glucose metabolism, are positively and significantly associated with

the risk of developing T2DM. For every 1-standard-deviation rise in

circulating AGEs, the incidence of T2DM increases by

approximately 52% (51). AGEs directly impair pancreatic b-cell
function and attenuate insulin secretion. Concurrently, they

enhance p38 MAPK phosphorylation in intestinal GLUTag cells,

activate the NF-kB pathway, and stimulate the release of pro-

inflammatory cytokines (TNF-a, IL-1, and IL-6), thereby

inducing cellular damage and apoptosis (52). Furthermore, the

AGE-RAGE axis disrupts insulin signalling in skeletal muscle and

endothelial cells, provoking inflammation, oxidative stress, and

apoptosis; these effects diminish tissue glucose uptake and

ultimately elevate blood glucose through exacerbated IR.

Interleukin-17 (IL-17), a pro-inflammatory cytokine produced

by Th17 cells, is central to immune regulation and inflammatory

responses. It shapes the inflammatory microenvironment of T2DM

and disrupts glucose homeostasis via MAPK cascades. Clinical

studies consistently report higher serum IL-17 levels in newly

diagnosed T2DM patients (53). Engagement of the IL-17 receptor

complex activates MAPK and NF-kB signalling, which rapidly

induces the release of pro-inflammatory mediators such as IL-6

and TNF-a. These cytokines sustain NF-kB activation, which in

turn transcriptionally up-regulates TNF-a and IL-6, thereby

establishing a self-amplifying inflammatory loop (54). This

chronic inflammatory state ultimately precipitates hyperglycaemia

and IR. Moreover, TNF-a directly impairs insulin sensitivity by

inhibiting PI3K activity and PPAR-g function, thus contributing to
T2DM pathogenesis.

These interconnected and synergistic mechanisms collectively

underscore the pivotal role of AR in modulating systemic glucose

homeostasis and the pathogenesis and progression of diabetes.

Consequently, AR may confer therapeutic benefits against

diabetes by attenuating inflammatory responses. Future studies

will experimentally elucidate the precise regulatory effects of AR

on the AGE-RAGE, TNF, and IL-17 signalling pathways in diabetes

and its complications, thereby deepening our understanding of its

efficacy and underlying mechanisms in T2DM.

We further conducted molecular docking and MD simulations

of the five core components against the five core targets. The results

from molecular docking revealed that sarsasapogenin, markogenin/

neogitogenin, and digitogenin exhibited strong binding affinity to

all five core targets, with sarsasapogenin showing the highest

binding efficacy. Norathyriol formed stable complexes with four

core targets (excluding NFKB1), whereas mangiferin displayed
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favourable binding energy with AKT1 and PPARA but weaker

interactions with the remaining three targets.

MD simulations confirmed that the PPARA-digitogenin and

AKT1-sarsasapogenin complexes form stable binding

conformations. Both complexes reach equilibrium quickly and

maintain stable fluctuations. Notably, the two complexes exhibit

distinct structural characteristics: the PPARA-digitogenin complex

adopts a relatively compact conformation, while the AKT1-

sarsasapogenin complex has a more expanded structure with a

larger SASA. This structural discrepancy may be due to variations in

the domain organization of the target proteins or differences in

steric compatibility at their respective ligand-binding interfaces.

Throughout the simulations, no significant structural changes were

observed, and hydrogen-bonding patterns remained consistent,

predominantly involving single bonds. Reduced residue flexibility

further indicated enhanced structural rigidity. Overall, these

findings validate the stable interactions between the ligands and

their targets, supporting their potential biological functionality.

In summary, we identified PPARA, NFKB1, IL6, AKT1, and

IL1B as potential therapeutic targets of AR, suggesting that their

associated signalling pathways (including PPAR, PI3K-Akt, NF-kB)
mediate AR’s anti-diabetic effects. The metabolites sarsasapogenin,

markogenin/neogitogenin, digitogenin and norathyriol emerged as

AR’s primary hypoglycaemic components. These findings reflect

the characteristic “multi-component, multi-target, multi-pathway”

therapeutic approach of TCM, demonstrating how AR coordinately

regulates T2DM by through integrated modulation of multiple

molecular targets and signalling networks (Figure 7).

This study has several limitations that warrant attention. First,

we conducted animal experiments in rats, and species-specific

differences in metabolic enzyme activity may limit the

extrapolation of these results to humans. Second, the

bioavailability of active compounds (e.g., spirostanol saponins) in

humans remains unclear, and further limitations include not only

potential species differences but also discrepancies between the

administration of AR in this study (ethanol extract via gavage)

and its clinical use (aqueous decoction)—factors such as extraction

solvent and route of administration may alter constituent

bioavailability. This highlights the need for pharmacodynamic

and pharmacokinet ic s tudies on monomers such as

sarsasapogenin to evaluate their actual therapeutic efficacy.

Furthermore, although we preliminarily validated core targets

identified via network pharmacology through molecular docking

and MD simulations, the protein expression of the five core targets

—except for NFKB1 mRNA expression in liver tissues—requires

further cellular-level verification to strengthen mechanistic insights.

Future experiments will address these limitations.
5 Conclusion

Using an integrative approach combining metabolomics, serum-

urine pharmacochemistry, network pharmacology, molecular

docking, MD simulations, and pharmacological experiments, this
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study identified spirostanol saponins and norathyriol as the primary

active components of AR responsible for its anti-T2DM effects. The

therapeutic action of AR arises from its regulation of five core targets

(PPARA, NFKB1, IL6, AKT1, and IL1B) and six key signaling

pathways (PPAR, AGE-RAGE, IR, NAFLD, TNF, and IL-17
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signaling pathways), as well as its modulation of linoleic acid

metabolism. These findings provide a robust foundation for

understanding AR’s material basis and mechanisms of action in

T2DM treatment, supporting its clinical application and offering

insights for future T2DM drug development.
FIGURE 7

The proposed synergistic effect mechanisms of AR against T2DM. ↑: increase. ↓: decrease. Drawn by Figdraw. ALA, a-Linolenic acid; LA, Linoleic
acid; OA, oleic acid.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1618584
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhong et al. 10.3389/fendo.2025.1618584
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.

Ethics statement

The animal study was approved by the Institutional Animal

Ethics Committee of Guangdong Pharmaceutical University (No.

gdpulacspf2018132). The study was conducted in accordance with

the local legislation and institutional requirements.

Author contributions

XuZ: Investigation, Formal analysis, Writing – original draft,

Funding acquisition. HP: Investigation, Methodology, Writing –

original draft. ChaX: Data curation, Writing – original draft,

Visualization. ChuX: Validation, Software, Writing – original

draft. XiZ: Visualization, Software, Writing – original draft. HL:

Data curation, Visualization, Writing – original draft. RW:

Writing – review & editing, Supervision, Resources. YZ:

Conceptualization, Writing – review & editing, Investigation,

Resources. JF: Funding acquisition, Conceptualization, Project

administration, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the Special Fund for Hospital Pharmaceutical Research of

Guangdong Province Hospital Association (grant number

YXKY202201), the Medical Scientific Research Foundation of

Guangdong Province (grant number A2023420), the Tertiary

Education Scientific research project of Guangzhou Municipal

Education Bureau (grant number 2024312065), and the Project of

Traditional Chinese Medicine and Pharmacology of Guangzhou

Municipal Health Commission (grant number 20222A011017 and

20252A010037). Grassroots Science Popularization Program of

Guangdong Association for Science and Technology (grant

number GDKP2025-2-094).
Frontiers in Endocrinology 20
Acknowledgments

The authors would like to acknowledge the New Drug Research

and Development Center of Guangdong Pharmaceutical University

for technical and scientific support.
Conflict of interest

The authors declare that the research was conducted in

theabsence of any commercial or financial relationships that

could beconstrued as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2025.

1618584/full#supplementary-material
References
1. Brietzke SA. Oral antihyperglycemic treatment options for type 2 diabetes
mellitus. Med Clin North Am. (2015) 99:87–106. doi: 10.1016/j.mcna.2014.08.012

2. Ni Y, Wu X, Yao W, Zhang Y, Chen J, Ding X. Evidence of traditional Chinese
medicine for treating type 2 diabetes mellitus: from molecular mechanisms to clinical
efficacy. Pharm Biol. (2024) 62:592–606. doi: 10.1080/13880209.2024.2374794

3. Wang Y, Dan Y, Yang D, Hu Y, Zhang L, Zhang C, et al. The genus Anemarrhena
Bunge: A Review on ethnopharmacology, phytochemistry and pharmacology. J
Ethnopharmacol. (2014) 153:42–60. doi: 10.1016/j.jep.2014.02.013

4. Zhong Y, Xu Y, Tan Y, Zhang X, Wang R, Chen D, et al. Lipidomics of the
erythrocyte membrane and network pharmacology to explore the mechanism of
mangiferin from Anemarrhenae Rhizoma in treating type 2 diabetes mellitus rats. J
Pharm BioMed Anal. (2023) 230:115386. doi: 10.1016/j.jpba.2023.115386

5. Zhao X, Su H, Chen H, Tang X, Li W, Huang A, et al. Integrated serum
pharmacochemistry and network pharmacology to explore the mechanism of Yi-
Shan-Hong formula in alleviating chronic liver injury. Phytomedicine. (2024)
128:155439. doi: 10.1016/j.phymed.2024.155439

6. Zhang B, Gao D, Xu G, Zhu W, Liu J, Sun R, et al. Integrated multicomponent
analysis based on UHPLC-Q-Exactive Orbitrap-MS and network pharmacology to
elucidate the potential mechanism of Baoyuan decoction against idiopathic pulmonary
fibrosis. Phytochem Anal. (2022) 33:678–95. doi: 10.1002/pca.3120
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1618584/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1618584/full#supplementary-material
https://doi.org/10.1016/j.mcna.2014.08.012
https://doi.org/10.1080/13880209.2024.2374794
https://doi.org/10.1016/j.jep.2014.02.013
https://doi.org/10.1016/j.jpba.2023.115386
https://doi.org/10.1016/j.phymed.2024.155439
https://doi.org/10.1002/pca.3120
https://doi.org/10.3389/fendo.2025.1618584
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhong et al. 10.3389/fendo.2025.1618584
7. Zhu H, Wu Z, Yu Y, Chang K, Zhao C, Huang Z, et al. Integrated non-targeted
metabolomics and network pharmacology to reveal the mechanisms of berberine in the
long-term treatment of PTZ-induced epilepsy. Life Sci. (2024) 336:122347.
doi: 10.1016/j.lfs.2023.122347

8. Du D, Qin C, Sun M, Lv F, Li W, Liu S. The potential mechanism of eriodictyol in
treating Alzheimer’s Disease: a Study on computer-assisted investigational strategies.
Curr Pharm Des. (2024) 30:2086–107. doi: 10.2174/0113816128304628240526071425

9. Zeng M, Qin X, Yi T, Liu Z, Li C, Tan S, et al. Integration of pharmacodynamics,
metabolomics and network pharmacology to elucidate the effect of Prunella vulgaris
seed oil in the treatment of hyperlipidemia. Arab J Chem. (2024) 17:105486.
doi: 10.1016/j.arabjc.2023.105486

10. Wang X, Chang L, Chen L, He Y, He T, Wang R, et al. Integrated network
pharmacology and metabolomics to investigate the effects and possible mechanisms of
dehydroevodiamine against ethanol-induced gastric ulcers. J Ethnopharmacol. (2024)
319:117340. doi: 10.1016/j.jep.2023.117340

11. Sun Y, Liu L, Peng Y, Liu B, Lin D, Li L, et al. Metabolites characterization of
timosaponin AIII in vivo and in vitro by using liquid chromatography-mass
spectrometry. J Chromatogr B. (2015) 997:236–43. doi: 10.1016/j.jchromb.2015.06.015

12. Lim SM, Jeong JJ, Kang GD, Kim KA, Choi HS, Kim DH. Timosaponin AIII and
its metabolite sarsasapogenin ameliorate colitis in mice by inhibiting NF-kB and
MAPK activation and restoring Th17/Treg cell balance. Int Immunopharmacol. (2015)
25:493–503. doi: 10.1016/j.intimp.2015.02.016

13. Yu YY, Cui SC, Zheng TN, Ma HJ, Xie ZF, Jiang HW, et al. Sarsasapogenin
improves adipose tissue inflammation and ameliorates insulin resistance in high-fat
diet-fed C57bl/6j mice. Acta Pharmacol Sin. (2021) 42:272–81. doi: 10.1038/s41401-
020-0427-1

14. Zhang YM, Zheng T, Huang TT, Gu PP, Gou LS, Ma TF, et al. Sarsasapogenin
attenuates Alzheimer-like encephalopathy in diabetes. Phytomedicine. (2021)
91:153686. doi: 10.1016/j.phymed.2021.153686

15. Guo X, Cheng M, Hu P, Shi Z, Chen S, Liu H, et al. Absorption, metabolism, and
pharmacokinetics profiles of norathyriol, an aglycone of mangiferin, in rats by HPLC-
MS/MS. J Agric Food Chem. (2018) 66:12227–35. doi: 10.1021/acs.jafc.8b03763

16. Wang F, Yan J, Niu Y, Li Y, Lin H, Liu X, et al. Mangiferin and its aglycone,
norathyriol, improve glucose metabolism by activation of AMP-activated protein
kinase. Pharm Biol. (2014) 52:68–73. doi: 10.3109/13880209.2013.814691

17. Ding H, Zhang Y, Xu C, Hou D, Li J, Zhang Y, et al. Norathyriol reverses obesity-
and high-fat-diet-induced insulin resistance in mice through inhibition of PTP1B.
Diabetologia. (2014) 57:2145–54. doi: 10.1007/s00125-014-3315-8

18. Li J, Liu M, Yu H, Wang W, Han L, Chen Q, et al. Mangiferin improves hepatic
lipid metabolism mainly through its metabolite-norathyriol by modulating Sirt-1/
Ampk/Srebp-1c signaling. Front Pharmacol . (2018) 9:201. doi: 10.3389/
fphar.2018.00201

19. Tawulie D, Jin L, Shang X, Li Y, Sun L, Xie H, et al. Jiang-Tang-San-Huang pill
alleviates type 2 diabetes mellitus through modulating the gut microbiota and bile acids
metabolism. Phytomedicine. (2023) 113:154733. doi: 10.1016/j.phymed.2023.154733

20. Wang W, Shi Z, Zhang R, Yu J, Wang C, Hou J, et al. Liver proteomics analysis
reveals abnormal metabolism of bile acid and arachidonic acid in Chinese hamsters
with type 2 diabetes mellitus. J Proteomics. (2021) 239:104186. doi: 10.1016/
j.jprot.2021.104186

21. Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, et al. Glucose and
insulin induction of bile acid synthesis: mechanisms and implication in diabetes and
obesity. J Biol Chem. (2012) 287:1861–73. doi: 10.1074/jbc.M111.305789
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