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Objective: Anemarrhenae Rhizoma (AR) is a traditional Chinese medicine widely
used for the treatment of type 2 diabetes mellitus (T2DM). However, the specific
bioactive constituents responsible for its in vivo effects and their underlying
mechanisms of action remain unclear. We hypothesise that serum-absorbed and
metabolised AR components modulate key metabolic and inflammatory
pathways in T2DM. To test this hypothesis, this study employs an integrated
strategy combining metabolomics with serum-urine pharmacochemistry and
network pharmacology to systematically identify AR’s active constituents and
elucidate their multi-target mechanisms in T2DM management.

Methods: UHPLC-Q-TOF-MS coupled with multivariate statistical analysis was
employed to identify the AR-derived constituents in serum and urine of T2DM
rats. Network pharmacology was utilised to predict the targets of the AR’s active
components, while biochemical assays, liver histopathology, and metabolomics
were performed to evaluate its therapeutic effects. Molecular docking and
molecular dynamics (MD) simulations were conducted to assess the binding
affinities between key components and their targets.

Results: 77 AR components were identified, among which 47 prototypes and 11
metabolites were detected in serum and urine. The key bioactive constituents
included sarsasapogenin, markogenin/neogitogenin, digitogenin, norathyriol,
and mangiferin. AR treatment significantly reduced blood glucose and lipid
levels, ameliorated insulin resistance, attenuated inflammation, and modulated
the PPAR and NF-«B signalling pathways. Serum metabolomics analysis revealed
35 differential metabolites, with linoleic acid metabolism and PPAR signalling
identified as the predominant metabolic pathways. Molecular docking and MD
simulations demonstrated strong binding affinity between core components and
key targets (PPARA, NFKB1, IL6, AKT1, IL1B). Pharmacological validation
confirmed AR's therapeutic efficacy in T2DM through regulation of these
core targets.
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Conclusion: AR ameliorates T2DM by suppressing NF-kB signalling and
activating PPAR pathways, thereby improving metabolic dysregulation.

Anemarrhenae Rhizoma, metabolomics, network pharmacology, pharmacochemistry,
antidiabetic mechanism

1 Introduction

Type 2 diabetes mellitus (T2DM) is a prevalent chronic
metabolic disorder associated with an increased risks of
cardiovascular and renal complications. Current pharmacological
treatments — such as biguanides, sulfonylureas, and GLP-1 receptor
agonists - are effective but may pose adverse effects, including
hypoglycaemia, bladder cancer, and pancreatitis (1). In contrast,
traditional Chinese medicine (TCM) offers a promising alternative
for T2DM managements due to its multi-target mechanisms and
favourable safety profile, particularly in improving insulin
sensitivity and mitigating disease-related complications (2).

Anemarrhenae Rhizoma (AR), derived from the dried rhizome
of Anemarrhena asphodeloides Bunge (Liliaceae family), is a widely
used TCM with a long-standing history of hypoglycaemic
applications. Its use in diabetes management was first
documented in Shennong’s Herbal Classic. Modern
pharmacological studies demonstrate that AR possesses multiple
therapeutic effects, including anti-inflammatory, antioxidant,
hypoglycaemic, lipid-lowering, anti-aging, and neuroprotective
properties (3). Mangiferin, timosaponin AIII, timosaponin BII,
and timosaponin BIII represent the most extensively studied AR
components. Our previous research identified that mangiferin, an
active component of AR, ameliorates insulin resistance (IR) and
hyperglycaemia in T2DM rats by modulating glycerophospholipids
(GP), sphingolipids, and arachidonic acid (AA) metabolism in
erythrocyte membranes (4). Timosaponins AIII, BII, and BIII
exert multi-target anti-diabetic and anti-inflammatory activities in
preclinical models via distinct molecular mechanisms. Owing to
their inherent physicochemical properties—high molecular weight
and limited membrane permeability—these compounds display low
oral bioavailability. Consequently, their in vivo pharmacological
effects are predominantly mediated by metabolites rather than by
the parent molecules. Despite AR’s therapeutic potential, its
bioactive constituents in vivo and their mechanisms of action
remain incompletely characterised. It is well established that only
blood-absorbed components are likely to form the substantive basis
for TCM’s therapeutic effects (5). Notably, metabolites detectable in
urine may also represent critical components to TCM’s
pharmacological activity. Serum-urine pharmacochemistry, an
integrative approach for identifying both blood-absorbed
components and their metabolites, is therefore essential for
elucidating TCM efficacy. However, AR’s specific bioactive
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constituents in circulation, their metabolic fate, and their
mechanistic roles in T2DM pathophysiology remain insufficiently
investigated. Building upon AR’s established effects on metabolic
regulation and our preliminary findings regarding mangiferin’s
modulation of lipid metabolism, we hypothesise that specific
serum-absorbed AR components and their metabolites regulate
key metabolic pathways (particularly lipid metabolism) and
inflammatory signalling (notably the NF-kB/PPAR axis) in T2DM.

Ultra-high performance liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-
MS) is a leading analytical technique in TCM component analysis
and metabolomics, owing to its high sensitivity, resolution, and
mass accuracy (6). Metabolomics facilitates the qualitative and
quantitative analysis of small-molecule metabolites within
biological systems, mapping endogenous compound responses to
internal and external environmental stimuli. This approach helps
elucidate pathological metabolic and signalling pathways, which are
critical for disease mechanisms and drug actions. Network
pharmacology employs computational data mining to model
multi-layered interactions among TCM bioactive components,
therapeutic targets, biological pathways, and diseases. This
systems-level perspective reveals synergistic multi-component,
multi-target mechanisms, supporting the discovery of efficient,
low-toxicity multi-target drugs and mechanistic clarification (7).
Complementary techniques, such as molecular docking and
molecular dynamics (MD) simulations, predict binding
conformations and validate component-target interactions. The
selection of optimal binding modes, based on binding energy
calculations, further confirms strong affinity interactions.

This study employs a multi-faceted strategy integrating serum-
urine pharmacochemistry, network pharmacology, metabolomics,
and pharmacological experiments to characterise AR’s in vivo active
components and elucidate its anti-T2DM mechanisms.

2 Materials and methods
2.1 Material and reagents

The reference standards of neomangiferin, timosaponin BII,
timosaponin D, anemarrhenasaponin I, timosaponin AIV, and

timosaponin AIIl were obtained from the National Institute for
the Control of Pharmaceutical and Biological Products (Beijing,
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China). Rosiglitazone was procured from Taiji Group Chongging
Peiling Pharmaceutical Co., Ltd. (Chongging, China). Assay kits for
total cholesterol (TC), triacylglycerols (TG), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), insulin (INS) ELISA, and Haematoxylin-
Eosin (HE) staining (batch no. Al11-1-1, A110-1-1, A112-1-1,
A113-1-1, H203-1-2, and 20160126, respectively) were purchased
from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
ELISA kits for tumour necrosis factor-oo (TNF-o) (batch no.
0180R1), interleukin-6 (IL-6) (batch no. 0163M1), and
interleukin-1f (IL-1B) (batch no. 0047R1) were acquired from
Jiangsu Meimian Industrial Co., Ltd. (Jiangsu, China). HRP-
conjugated goat anti-rabbit IgG (batch no. SV0002), the
diaminobenzidine (DAB) chromogenic kit (batch no. AR1002),
and rabbit anti-PPARY antibody (batch no. 191262) were supplied
by Boster Biological Technology, Co., Ltd. (Wuhan, China).
Acetonitrile (UHPLC grade) was obtained from Merck (Shanghai,
China), while acetic acid and ammonium acetate were sourced from
DIMA (Richmond Hill, USA), Leucine-enkephalin, methanol, and
streptozotocin (STZ) were purchased from Sigma-Aldrich
(Steinheim, Germany). Double-distilled water was procured from
Watson’s Food & Beverage (Guangzhou, China). Anemarrhena
Rhizoma samples were provided by Zisun Pharmaceutical Co.,
Ltd. (Guangdong, China) (batch no. 130501). The crude drug was
authenticated by Professor Jizhu Liu (Guangdong
Pharmaceutical University).

2.2 Preparation of AR extract sample

The AR extract was prepared as follows: the dried herb (whole
plant or rhizome of Anemarrhena asphodeloides Bge) was cut into
small pieces and extracted twice (1h per extraction) with 80% ethanol
using reflux extraction. The resulting solution was filtered through
gauze, and the filtrates were combined and evaporated under reduced
pressure to yield an ethanol (EtOH) extract. For further processing,
2.00 g of the AR extract was dispersed in 50 mL of methanol and
sonicated for 1 h to ensure complete dissolution. A 1 mL aliquot of
this solution was centrifuged at 15,000 rpm at 4 °C for 5 min, and the
supernatant was collected for subsequent analysis.

2.3 Animals and treatments

Fourty-two male Sprague-Dawley rats (mean body weight: 180
+ 20 g) were obtained from the Medical Experimental Animal
Center of Guangdong Province (Foshan, China, No. SCXK 2013-
0002). The animals were housed under controlled environmental
conditions (temperature: 22 + 2°C; relative humidity: 55 + 5%; 12 h
light/dark cycle) with ad libitum access to standard laboratory diet
and water. Following a minimum 1-week acclimatisation period, we
stratified the rats by body weight and randomly assigned them to
either: normal control (NC, n=7) or diabetic model (DM, n=35).
We induced diabetes in the DM group by administering a high-fat
diet (composed of 65% basal rat chow, 10% lard, 20% sucrose, 2.5%
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cholesterol, 1% mineral mixture, 1% sodium cholate, and 0.5%
cellulose mixture) for 6 weeks, followed by a single intraperitoneal
injection of 2% streptozotocin (STZ) solution at a dose of 35 mg/kg.
Seven days post-injection, we measured fasting blood glucose (FBG)
from tail vein blood samples. Rats exhibiting persistent
hyperglycaemia (FBG > 11.1 mmol/L) were deemed to have
successful diabetes induction (Supplementary Figure S1).

The DM model rats were randomly divided into five groups: the
DM model group (DM, n=7), AR extract high-, medium- and low-
dose groups (ARH, ARM, ARL, n=7 per group), and the
rosiglitazone positive control group (ROG, n=7). The DM group
and NC group received 0.8 mL/100g body weight of distilled water
by oral gavage daily. The ROG group was administered 5 mg/kg
body weight of rosiglitazone suspension daily, while the ARH,
ARM, and ARL groups received 400, 200, and 100 mg/kg body
weight of AR extract, respectively, once daily for four weeks. All
experimental procedures were conducted in strict accordance with
the Guidelines for the Care and Use of Laboratory Animals and
were approved by the Institutional Animal Care and Use
Committee of Guangdong Pharmaceutical University
(Guangzhou, China; Approval no. gdpulacspf2018132).

2.4 Biochemical analysis

Following the final administration, FBG, FINS, insulin resistance
index (HOMA-IR), insulin sensitivity index (ISI), and lipid levels
were measured in each experimental group. Serum concentrations of
TNF-q, IL-6, and IL-1PB were determined using ELISA.

2.5 Pathological changes of liver tissues

Following collection, rat liver tissues were immediately fixed in
10% neutral buffered formalin at a 10:1 (fixative:tissue) volume
ratio. Selected tissues samples were then paraffin-embedded and
sectioned at 5 um thickness. Tissue sections were stained with
haematoxylin and eosin (H&E), examined by light microscope, and
imaged at 400x magnification (40x objective with 10x eyepiece)
for analysis.

2.6 Rt-gPCR analysis of NF-xB p65 and
TGF-B1 mRNA expression in liver tissue

Total mRNA was extracted from liver tissue using TRIzol
reagent (Promega). For each sample, 1 pg of total RNA was
reverse-transcribed into complementary DNA using a reverse
transcription system. RT-qPCR was subsequently performed
using the SYBR Green qPCR SuperMix (Invitrogen). The qPCR
primer sequences were synthesised by Sangon Biotech (Shanghai)
Co., Ltd. and are listed in Supplementary Table SI. Following 40
cycles, the relative gene expression levels of nuclear factor-kB (NEF-
kB) p65 and transforming growth factor-B1 (TGF-P1) were

quantified using the 27" method.
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2.7 Immunohistochemical analysis of
PPARY expression in perirenal adipose
tissue

Prepare paraffin sections from perirenal adipose tissue. Dewax
the sections with xylene and rehydrate them through a graded
ethanol series. Perform antigen retrieval before incubating the
sections in 0.3% H,0O, solution for 10 minutes to block
endogenous peroxidase activity. Wash the sections with distilled
water, then block them with 5% BSA solution for 10 minutes.
Incubate the sections with primary antibody PPARY (diluted 1,200)
at 37 °C in a humidified chamber for 2 hours. Afterwards, incubate
them with HRP-conjugated goat anti-rabbit IgG secondary
antibody at 37 °C for 30 minutes. Develop the staining using
diaminobenzidine (DAB), counterstain with haematoxylin, then
dehydrate, clear, and mount the sections with neutral resin.
Examine and photograph the stained sections under an optical
microscope using a 10x eyepiece and 40x objective. Analyse the
integrated optical density (IOD) using Image-Pro Plus 6.0 software.

2.8 Preparation of rat serum and urine
sample

On day 7 post-administration, blood samples were collected
from the ARH groups via the ophthalmic vein at 30, 60, and 120
minutes after dosing for in vivo chemical analysis. Serum was
obtained by centrifugation (4000 rpm, 4 °C for 10 minutes), with
samples from each time point being pooled and stored at -80°C
prior to analysis. Following drug administration, rats were housed
in metabolic cages to enable 24-hour urine collection into bottles
containing NaN3 (0.05% wt/vol). Urine samples were centrifuged
(4000 rpm, 10 minutes, 4°C), and the supernatants were stored at
-80°C until UHPLC-MS analysis. After four weeks of AR extract
administering, serum samples from each group were collected for
metabolomics analysis.

Following thawing, both serum and urine samples were vortex-
mixing for 2 minutes and centrifuged (4000 rpm, 10 minutes, 4°C).
For serum processing, 1 mL of supernatant was mixed with 3 mL
acetonitrile, vortex-mixed, and centrifuged (12,000 rpm, 10
minutes, 4 °C). The resulting supernatant was dried under
nitrogen gas, and the residue was redissolved in 200 uL of 50%
methanol for analysis. For urine processing, 100 UL of supernatant
was mixed with 300 pUL of acetonitrile, vortex-mixed, and
centrifuged (10,000 rpm, 15 minutes, 4 °C), with 200 uL of the
final supernatant collected for analysis.

2.9 Instrumentation and conditions

The Waters AcquityTM Ultra Performance LC system (Waters
Corporation, Milford, USA) was equipped with a quaternary pump,
vacuum degasser, cooled autosampler, and diode-array detector.
Chromatographic separation was performed using an Acquity BEH
C18 column (50 mmx2.1 mm, 1.7 pm) maintained at 30 °C. The
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gradient elution programs for AR constituent identification in vivo
and metabolomics analysis are detailed in Supplementary Tables S2,
S3, respectively. The flow rate was set to 0.40 ml/min, and the
autosampler temperature was maintained at 4 °C. A Waters
Micromass Q-TOF Micro
UK), fitted with a LockSpray and ESI interface, was operated in

mass spectrometer (Waters Co.,

both positive and negative ion modes. The system was controlled
using Masslynx data analysis software. The capillary voltage and
cone voltage were set to 3000 V and 30 V, respectively, in both
ionisation modes. The ion source temperature and desolvation
temperature were maintained at 120 °C and 350 °C. Nitrogen (60
L/h) served as the cone gas, while argon (600 L/h) was used as the
collision gas. Mass spectrometric data were acquired over a range of
100~1500 Da in both ionisation modes. To ensure mass accuracy
and reproducibility, Leucine-enkephalin (Sigma, batch no. L9133-
50MG, 600 ng/mL) was used as the lock mass via the LockSpray
interface, generating reference ions at m/z 556.2771 [M+H]"
(positive mode) and m/z 554.2615 [M-H] (negative mode). The
LockSpray frequency was set to 10 s. For MS/MS experiments, a
variable collision energy (20-50 eV) was applied and optimised for
each constituent. An Acquity UHPLC-Q-TOF Micro'™ system
(Waters Co., USA) coupled with MassLynx 4.1 software was used
to obtain accurate mass measurements and compositional data for
precursor and fragment ions.

2.10 Metabolomics analysis

We normalised the sum of the data matrices and imported them
into SIMCA-P 14.1 software for pattern recognition analyses,
including principal component analysis (PCA) and orthogonal
partial least squares-discriminant analysis (OPLS-DA). Using
variable importance in projection (VIP) values > 1, we filtered
differential variables. We then performed volcano plot analysis,
selecting variables with a fold change (FC) > 1.2 or < 0.8 and a
Student’s t-test p-value < 0.05. We considered variables meeting all
criteria (VIP > 1, FC > 1.2 or < 0.8, and p-value < 0.05) as potential
biomarkers. We identified the structures of these potential
biomarkers using MS and MS/MS mass spectrometry data, cross-
referencing HMDB (http://www.hmdb.ca/), LipidMaps (http://
www.lipidmaps.org/), and METLIN databases. Finally, we
imported the confirmed biomarkers into MetaboAnalyst 6.0 to
generate heatmaps, perform pathway and Pearson correlation
analyses, and conduct joint pathway analysis.

2.11 Network pharmacology analysis

2.11.1 Prediction of AR active constituents targets
and collection of T2DM-related therapeutic
targets

The structural formulas and Canonical SMILES of the identified
components were obtained using ChemDraw software and online
databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/)
and ChemSpider (http://www.chemspider.com/). Potential targets
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associated with the identified constituents were retrieved through
global prediction using databases and online servers, including
SwissTargetPrediton (http://www.swisstargetprediction.ch/),
STITCH (Version 5.0, http://stitch.embl.de/), CTD (http://
ctdbase.org/), ETCM (http://www.tcmip.cn/ETCM/index.php/
Home/Index/), BATMAN-TCM (Version 2.0, http://
bionet.ncpsb.org/batman-tcm), SEA (http://sea.bkslab.org/), and
TargetNet (http://targetnet.scbdd.com/). Only evidence-based
targets were included (8). Targets linked to T2DM were sourced
from multiple databases, including OMIM (https://omim.org/),
GeneCards (https://www.genecards.org/), TTD (http://
db.idrblab.net/ttd/), and DisGeNET (http://www.disgenet.org/),
using the keywords “Type 2 diabetes metillus” or “Non-Insulin-
Dependent diabetes metillus”. Duplicates were removed to compile
the final set of potential therapeutic targets for T2DM.

2.11.2 PPl network and enrichment analysis

Both the targets of AR constituents and T2DM-related targets
were imported into the UniProt protein database to standardise
their official gene symbols. The protein-protein interaction (PPI)
network for the common targets between AR’s bioactive
constituents and T2DM-related targets was constructed using
STRING 12.0 (https://version-12.string-db.org/). The study
species was set to Homo sapiens, and the minimum interaction
threshold was defined as a confidence score > 0.9 (“highest
confidence”). The PPI hub network was generated based on node
degree values, which were calculated using the cytoHubba plugin in
Cytoscape 3.7.2 software.

Gene ontology (GO) enrichment analysis and KEGG pathway
enrichment analysis were performed using DAVID database
(https://david.ncifcrf.gov/home.jsp) to elucidate the biological
functions of the intersecting targets. GO biological processes and
KEGG pathways with a P-value < 0.01 were identified and
subsequently analysed using the bioinformatics cloud platform
(http://www.bioinformatics.com.cn/) for visualisation. T2DM-
related pathways were further extracted based on their association
with the bioactive constituents of AR and their corresponding
effective targets. A “components-targets-pathways” network was
constructed using Cytoscape 3.7.2. The degree value and
betweenness centrality parameters were applied to evaluate the
significance of each node within the network.

2.12 Integrated analysis of metabolomics
and network pharmacology

Differential metabolic biomarkers were imported into the
MetaboAnalyst 6.0 database and the Metscape plugin (Cytoscape
3.7.2) to identify metabolically related targets. Venn diagrams were
used to identify common targets between the potential targets from
network pharmacology and those associated with metabolism. The
metabolic biomarkers and common targets were further analysed in
MetaboAnalyst 6.0 for joint pathway analysis. Subsequently, the
metabolic biomarkers and key-associated metabolic pathways were
integrated to construct a “metabolites-key targets-pathways”
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network. This network was developed to elucidate the
mechanistic role of AR in the treatment of T2DM.

2.13 Molecular docking

To further assess whether AR bioactive constituents and
T2DM-related targets exhibit strong binding activity, we
performed molecular docking using AutoDock 4.2.6. We screened
the top target proteins based on the contribution degree values of
the nodes in the “metabolites-key targets-pathways” network. We
obtained the target protein files in PDB format from the RCSB PDB
database (http://wwwl.rcsb.org/) and pre-processed the original
protein structures using PyMOL. For the AR bioactive
components, we either retrieved their 3D structures from the
PubChem database or drew them using Chemoffice 19.0, then
converted them to PDB format and minimised their energy with
Chem3D 19.0. We evaluated the binding affinity between AR
bioactive components and T2DM-related target proteins based on
binding energy. According to existing literature, a binding energy <
-4.25 kcal/mol suggests good ligand-receptor, and the while a value
< -7.0 kcal/mol indicates strong binding activity (9, 10).

2.14 Molecular dynamics simulations

GROMACS 2022 was employed to run 100 ns molecular
dynamics (MD) simulations of complexes between AR bioactive
constituents and representative core targets, assessing their binding
stability and dynamic behavior. The protein parameters were
derived from the CHARMM36 force field, while we generated the
ligand topology using the GAFF2 force field. We applied periodic
boundary conditions and solvated the protein-ligand complex in a
cubic box with TIP3P water molecules, maintaining a 1.2 nm
periodic boundary. For electrostatic interactions, we used the
Particle Mesh Ewald (PME) method and the Verlet algorithm.
The system was equilibrated in two phases (100 ps each, 0.1 ps
coupling constant): NVT (isothermal-isochoric) and NPT
(isothermal-isobaric) ensembles. We calculated both van der
Waals and Coulomb interactions using a 1.0 nm cutoff. Finally,
we ran the production MD simulation using GROMACS 2022
under constant conditions (310 K, 1 bar) for 100 ns using
GROMACS 2022.

2.15 Statistical analysis

Data from each group were analyzed statistically using
GraphPad Prism 8.0 software. Measurement data are presented as
mean + standard deviation (SD), and comparisons among multiple
groups were performed using one-way analysis of variance
(ANOVA) followed by Tukey’s post-hoc test for pairwise
comparisons. A P-value of less than 0.05 was considered
statistically significant. To enhance the interpretability of results,
effect sizes (Cohen’s d) were calculated to quantify group
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TABLE 2 AR effects on serum inflammatory cytokines (TNF-o, IL-6, IL-1B) and hepatic NF-kB p65 and TGF-B1 mRNA expression in rats (Z + s, n=7 ).

Dose TNF-o (pg/mL) IL-6 (pg/mL) IL-1B (pg/mL)
Group G NF-kB mRNA ' TGF-B1 mRNA
g/kg Cohen'’s d/95%Cl Cohen’s d/95%Cl Cohen’s d/95%ClI
NC 0 73.15 + 17.75 21.98 + 10.33 12547 + 18.28 0.48 + 0.04 0.38 + 0.06
177.95 + 35.31%% 114.32 + 27.09%" 251.99 + 25.89% s "
DM 0 18.11 + 3.05 35.36 + 6.49
3.75[82.15, 127.46] 4.50[59.28, 125.39] 5.65[97.69, 155.34]
128.28 + 15.32%* 81.02 + 15.33* 145.06 + 28.15%*
ROG 5 2.32 + 0.31% 2.76 + 0.61*
1.83(23.46, 75.89] 1.51[39.98, 78.11] 3.95[72.13, 141.71]
116.26 + 41.01%* 73.19 + 16.04* 134.64 + 34.80%*
ARH 400 0.63 + 0.07* 0.53 + 0.05*
1.61(26.56, 96.82] 1.85[31.53, 70.89] 3.83[77.90, 156.80]
138.71 + 36.99* 37 + 16.44* 173.12 + 29.77%
ARM 200 3871 %3699 7937 % 16 3 977 1.53 + 0.31%* 3.81 + 0.86*
1.09(4.24, 74.25] 1.56(37.37, 77.42] 2.83[42.98, 114.75]
163.27 + 10.74 99 +25.84 219.40 + 23.47
ARL 100 63 9599 £258 940+23 1.98 + 0.62** 3.77 + 1.52%
0.56[-11.18, 40.55) 0.69[45.31, 102.72] 1.32[0.81, 64.38]

Data are expressed as mean + SD. Compared with the NC group, *P<0.01; Compared with the DM group, *P < 0.05, **P < 0.01.

NC, normal control group; DM, diabetes mellitus group; ROG, rosiglitazone group; ARH, high-dose AR group; ARM, medium-dose AR group; ARL, low-dose AR group; TNF-c, tumor necrosis
factor-o;; IL-6, interleukin 6; IL-1p, interleukin-1B; NF-kB, Nuclear factor-kappa B; TGF-B1, transforming growth factor-B1. Cohen’s d is a standardized effect size measuring the magnitude of
the mean difference between groups. According to Cohen’s standards, |d|> 0.8 indicates a large effect size. 95%CI, 95% confidence interval of mean difference (pg/mL).

along with a reduction in granular lesions. However, the ARL group
still displays substantia diffuse fat droplet formation.

The positive expression rate of PPARY protein in the adipose
tissue of the DM group was significantly lower than that of the NC
group (P<0.01) (Figure 1B). Immunohistochemical analysis of
perirenal adipose tissues revealed a marked increase in PPARYy
protein expression in the ROG and ARH group (P<0.05, P<0.01).
These findings suggest that AR ameliorates IR and enhances
adipose tissue insulin sensitivity by upregulating PPARY
expression in adipocytes.

3.2 Metabolomics analysis

The screening process identified 35 differential serum
metabolites in both positive and negative ion modes, including
eleven bile acids, fourteen lysophosphatidylcholines (LysoPCs),
nine fatty acids (FAs), and one cervonoyl ethanolamide (see
Table 3 for details). The methodological validation and
identification process of metabolomics are detailed in the
Supplementary Materials. Using the relative peak area of each
metabolite, we generated a heatmap to visualise level changes
across groups (Figures 2A-C). Compared to the NC group, the
DM group exhibited higher serum levels of bile acids, cervonoyl
ethanolamide, 13(S)-HPODE, and stearic acid but lower levels of
LysoPCs and oleic acid. Following AR and ROG treatment, serum
levels of bile acids, 13(S)-HPODE, and 12,13-DHOME decreased,
whereas LysoPCs and unsaturated fatty acids (UFAs) increased. We
further analysed the differential metabolites in MetaboAnalyst 6.0
for pathway enrichment. Three pathways showed significant
alterations (impact value > 0.01; Figures 2D-F): linoleic acid
metabolism, alpha-linolenic acid metabolism, and
glycerophospholipid metabolism.

We used Pearson correlation analysis to assess the potential
relationships between differential metabolites and biochemical
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indicators in the DM model group and the ARH group. As
illustrated in Figure 2G, bile acids, 13(S)-HPODE, and 12,13-
DHOME showed significant positive correlations with FBG,
FINS, HOMA-IR, TC, TG, LDL-C, TNF-0, IL-6, and IL-1f, but
significant negative correlations with HDL-C. Conversely, LysoPCs
and UFAs exhibited significant negative associations with FBG,
FINS, HOMA-IR, TC, TG, LDL-C, IL-6, and IL-1f, while
displaying significant positive correlations with HDL-C.

3.3 ldentification of serum and urine
constituents from AR in T2DM rats

We identified 77 constituents by comprehensively analysing their
retention behaviour, MS and MS/MS fragmentation patterns, and
comparing these with reference standards and published literature.
Among these, 47 prototypes were detected in AR extracts and 11
metabolites in rat serum and urine (Supplementary Tables S5, S6).
Details of the identification process for these constituents are
provided in the Supplementary Materials.

3.4 Network pharmacology

We identified 22 in vivo migrant compounds (excluding
structurally identical ones), consisting of 18 prototype
compounds and 4 metabolites (Supplementary Table S7), through
serum-urine pharmacochemical analysis. These compounds were
then analyzed using network pharmacology to investigate their
potential mechanisms of action. Our analysis predicted 528 unique
component targets after redundancy removal. From disease
databases, we identified 2645 T2DM-related targets (selected at
twice the median degree threshold). The intersection of these
datasets yielded 276 potential therapeutic targets for AR against
T2DM. The resulting PPI network contained 231 nodes and 1700
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FIGURE 1

AR exhibited therapeutic effects in STZ-induced T2DM rats. (A) Pathological changes of liver tissues (at 400x magnification). (B) Immunohistochemical
analysis of PPARy expression in perirenal adipose tissue. The positively stained cells exhibited a brown coloration. Positive expression regions of PPARy in
perirenal adipose tissues were measured by IOD value. Data are expressed as mean + SD (n = 7). Compared with the NC group, ##P<0.01; Compared
with the DM group, *P < 0.05, **P < 0.01. (a) NC group, (b) DM group, (c) ROG group, (d) ARH group, () ARM group, (f) ARL group. NC, normal control
group; DM, diabetes mellitus group; ROG, rosiglitazone group; ARH, high-dose AR group; ARM, medium-dose AR group; ARL, low-dose AR group.

interaction edges, with the top 150 targets shown in Figure 3A. In
this network, target centrality is visually represented by color
intensity, where redder hues indicate greater proximity to the
network core. The top 20 highest-degree targets in the PPI
network were: TP53, AKT1, STAT3, TNF, SRC, HSP90AA1, IL6,

Frontiers in Endocrinology

CTNNBI1, NFKBI1, ESR1, RELA, MAPK1, BCL2, HRAS, MAPK3,
IL1B, EGFR, PIK3CA, IFNG, and CASP3. (see Supplementary
Table S8 for their characteristic parameters).

To elucidate the mechanisms by which AR treats T2DM, we
performed GO functional analysis and KEGG pathway enrichment
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TABLE 3 The details of identified biomarkers of AR treatment of T2DM in both positive and negative ion modes.

Mass(m/z) Relative change
lon Error Molecular o
Identification HMDB ID DM ROG ARH
mode  ~,culated Measured (ppm) formula Vs. Vs. 7
NC DM DM
-Muricholic acid
1 7.27 M-HJ 407.2797 4072782 37 CasHuOs o-Muricholic acl HMDB0000506 1 1 1
(o-MCA)
2 7.95 M-HJ 407.2797 4072798 02 CosHuOs B-Muricholic acid HMDBO0000415 1 1 1
(B-MCA)
8.20 [M+H]" 407.2797 407.2789 -2.0 Oxocholic aci
3 CyyHigOs 3 Oxgco‘éj: acid HMDB0000502 1% 1 1
8.14 [M-HJ" 405.2641 405.2652 27 (3-0CA)
[M+NH,[* 424.3063 4243072 21
4 9.32 Ca4HagOs 7-Ketodeoxycholic acid (7-KDCA) |~ HMDB0000391 1 o I
[M-HJ" 405.2641 405.2647 15
9.53 [M4NH,[* 4263219 4263210 21 o
Cholic acid
5 CasHaOs © é;“‘ HMDB0000619 e = 1
9.54 [M-HJ" 407.2797 407.2792 12 (CA)
6 9.55 [M+H]* 373.2743 373.2754 2.9 Cy4H3603 Cervonoyl ethanolamide HMDB0013627 14 1* 1*
7 11.02 [M-HJ 391.2848 391.2845 038 Ca4HygO4 Ursodeoxycholic acid (UDCA) ~ HMDB0000946 1 = P
8 11.13 [M-HJ" 391.2848 391.2862 36 CasHygO4 Hyodeoxycholic acid (HDCA) ~ HMDB0000733 2 = P
12-Ketodeoxycholic acid (12-
9 11.51 [M+H]* 391.2848 391.2867 49 CaiHss04 eto e‘;(xly;cz)‘c acid ( HMDB0000328 1 1 1
10 12.47 [M-HJ" 391.2848 391.2840 20 Ca4HygO4 Chenodeoxycholic acid (CDCA)  HMDB0000518 1 1 P
11 12.63 [M+H]* 468.3090 468.3104 3.0 CayHygNO,P LysoPC(14:0/0:0) HMDB0010379 - > e
[M4NH,]* 410.3270 410.3260 24 Deosveholic acid
12 12.82 Ca4HyO4 XYD oy HMDB0000626 1 = P
[M-HJ" 391.2848 391.2830 46 (DCA)
[M+NH,|* 4083114 408.3102 29 ‘ o
7-Ketolithocholic acid
13 12.90 CysHis04 ¢ 071 K"LCCZ 1cad HMDB0000467 1% 1 1
[M-HJ" 389.2692 389.2711 49 (7-KLCA)
14 12.98 [M+HT* 542.3247 542.3267 37 CasHysNO,P LysoPC(20:5/0:0) HMDB0010397 - por 1
15 13.25 [M+H]* 494.3247 494.3259 24 Co4HysNO,P LysoPC(16:1/0:0) HMDB0010383 - > -
16 13.77 [M-HJ" 311.2222 311.2221 03 CysH,O4 13(S)-HPODE HMDB0003871 2 = P
[M+H]* 520.3403 520.3389 27
17 13.92 M Cr6HsoNO,P LysoPC(18:2/0:0) HMDB0010386 1% 1 [
564.3301 564.3305 0.7
+HCOOJ
(Continued)
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TABLE 3 Continued

Mass(m/z) Relative change
lon Error Molecular L
Identification HMDB ID DM ROG ARH
mode  cyiculated Measured (ppm) formula = o s
NC DM DM
[M+H]" 544.3403 544.3402 0.2
18 13.98 M CrsHsoNO,P LysoPC(20:4/0:0) HMDB0010395 s o 1%
588.3301 588.3300 0.2
+HCOO]
[M+H]" 496.3403 496.3405 0.4
19 14.27 M C,4H5,NO,P LysoPC(16:0/0:0) HMDB0010382 N 1% P
540.3301 540.3325 4.4
+HCOO]
20 14.34 [M+H]* 546.3560 546.3563 0.5 C,3H5,NO,P LysoPC(20:3/0:0) HMDB0010393 I 1** 1
21 14.41 [M+H]" 570.3560 570.3577 3.0 C50H5,NO,P LysoPC(22:5/0:0) HMDB0010402 ad 1** 1%
22 14.52 [M-H] 313.2379 313.2380 0.3 CysH340,4 12,13-DHOME HMDB0004705 - 1 IR
[M+H]* 522.3560 522.3544 3.1
23 15.15 M C,H5,NO,P LysoPC(18:1/0:0) HMDB0002815 - 1% I
34 34 -0.
+HCOO]" 566.3458 566.3453 0.9
M
24 1530 +Hé 00 568.3614 568.3601 23 C,sH5;,NO,P LysoPC(18:0/0:0) HMDB0010384 had - e
25 15.44 [M+H]" 5723716 5723717 0.2 C50H5;,NO,P LysoPC(22:4/0:0) HMDB0010401 1 10* -
M . . ##
26 15.57 +HCOO] 568.3614 568.3598 2.8 C,sH5,NO,P 2-Lysophosphatidylcholine HMDB0258493 1 - e
27 15.63 [M+H]" 508.3767 508.3753 2.8 C,sH5sNOGP LysoPC(P-18:0/0:0) HMDB0013122 s - 1%
28 15.68 [M+H]" 510.3560 510.3554 12 C,5H5,NO,P LysoPC(17:0/0:0) HMDB0012108 - - 1%
. a-Linolenic acid Y
29 16.41 [M-H] 277.2168 277.2159 32 C15H300, (ALA) HMDB0001388 1 1% 1%
R Linoleic acid 4
30 17.19 [M-H] 279.2324 279.2338 5.0 Ci5H3,0, (LA) HMDB0000673 ! - 1%
D taenoic acid (22n-3
31 17.46 [M-H] 329.2481 329.2466 -4.6 Cy,H340, ocosapen a(e;;j:)aa (22n-3) HMDB0006528 - - ™
32 17.83 [M-H] 331.2637 331.2639 0.6 CaoHi360, Adrenic acid (ADA) HMDB0002226 - 1 e
33 18.06 [M-H] 281.2481 281.2490 3.2 C15H340, Oleic acid (OA) HMDB0000207 Il 1% 1*
34 18.95 [M-H] 283.2637 283.2631 2.1 C15H360, Stearic acid (SA) HMDB0000827 1 - -
35 19.01 [M-H] 309.2794 309.2785 2.9 C,oH350, 11Z-Eicosenoic acid HMDB0002231 - - e

NC, normal control group; DM, diabetes mellitus group; ROG, rosiglitazone group; ARH, high-dose AR group; Compared with those in the control group, P <0.01, “P< 0.05; Compared with the DM model group, **P < 0.01, *P < 0.05. The relative levels of potential
biomarkers were denoted as up-regulated (1) or down-regulated (1).
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AR regulated the metabolic characteristics of serum in STZ-induced T2DM rats. (A—C) Heatmaps of differential metabolites in serum samples
between NC, DM, ROG, and ARH groups. (D—F) Main metabolic pathways of differential metabolites in serum samples among the groups. 1. Linoleic
acid metabolism, 2. alpha-Linolenic acid metabolism, 3. Glycerophospholipid metabolism. (G) Pearson correlation analysis of differential metabolites
and biochemical indicators between the DM and the ARH groups. *P<0.05, **P<0.01. NC, normal control group; DM, diabetes mellitus group; ROG,
rosiglitazone group; ARH, high-dose AR group; ARM, medium-dose AR group; ARL, low-dose AR group.

analysis. The results demonstrate that the AR’s bioactive
constituents are involved in 1,046 biological processes (BPs), 114
cellular components (CCs), and 203 molecular functions (MFs).
The top 20 GO items in each category (BP, CC, MF) are
summarised in Supplementary Figure S2.

From the 195 signalling pathways enriched in the KEGG
analysis, we identified the top 21 pathways most relevant to
T2DM (Figure 3B, Supplementary Table S9). These pathways
were ranked by their association with T2DM, with the most
significant including: AGE-RAGE signalling in diabetic
complications, lipid metabolism and atherosclerosis, TNF
signalling, PI3K-Akt signalling, prolactin signalling, Toll-like
receptor signalling, insulin resistance, FoxO signalling, IL-17
signalling, and Ras signalling. From these pathways, we
extracted 146 T2DM- associated target proteins, which were
then used to select corresponding potential bioactive
compounds for constructing the subsequent network
pharmacology framework.

We constructed a “components—targets—pathways” network
comprising 189 nodes (146 T2DM-related targets, 22 potential
components, and the top 21 T2DM-related pathways) and 1043

edges (Figure 3C). Using the “Network Analyzer” plugin in
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Cytoscape, we analyzed the network’s topological properties. In this
visualisation, nodes importance is indicated by: higher degree values,
greater betweenness centrality, larger areas size, and darker colours
intensity. The analysis revealed the top 5 candidate components with
the highest degree values: mangiferin (AR2; degree: 94; betweenness
centrality: 0.29042967), norathyriol (MA1; degree: 39; betweenness
centrality: 0.05882475), digitogenin (MAZ2; degree: 36; betweenness
centrality: 0.04215628), markogenin or neogitogenin (MA3; degree:
30; betweenness centrality: 0.02774043), and sarsasapogenin (MA4;
degree: 30; betweenness centrality: 0.03258071). These components
represent AR’s primary bioactive constituents for T2DM treatment.

3.5 Integrated analysis of metabolomics
and network pharmacology

To elucidate the molecular mechanisms of AR in treating
T2DM, we collected 489 metabolic targets. Using Venn diagrams,
we performed an intersection analysis between component-disease
targets and metabolic targets, identifying 52 common targets. We
then analysed these 52 targets further via PPI network analysis
(STRING 12.0). With the Cytoscape cytoHubba plugin, we selected
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FIGURE 3

Network pharmacology analysis of AR against T2DM. (A) The top 150 targets of the interactive PPl network of AR targets and T2DM targets.
Identification of 20 hub targets of AR in treating T2DM based on degree>20, BC>0.014, and CC>0.357. BC, betweenness centrality; CC, closeness
centrality. (B) The top 21 pathways of KEGG enrichment analysis of the targets of the bioactive components of AR. (C) “Components-targets-
pathways” network of AR in treatment of T2DM. The abbreviations of the corresponding components are listed in Supplementary Table S7.
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the top eight genes based on network centrality: IL6, ALB, PPARA,
PTGS2, IL1B, PPARG, AKT1, and NFKBI (Figure 4A).

Next, we performed an integrative pathway analysis using
MetaboAnalyst to combine the differential metabolites and
common targets. This revealed key signalling pathways involved
in AR’s therapeutic mechanisms, including linoleic acid
metabolism, the PPAR signalling pathway, the AGE-RAGE
signalling pathway in diabetic complications, insulin resistance,
non-alcoholic fatty liver disease (NAFLD), the TNF signalling
pathway, and the IL-17 signalling pathway (Figure 4B). Among
the 52 common targets, 27 showed strong associations with the top
seven T2DM-related pathways.

We constructed a “metabolites-targets-pathways” network,
incorporating six key metabolites, 27 associated targets, and seven
metabolic signalling pathways (Figure 4C). By analysing the PPI
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network and conducting joint pathway analysis, we identified five
core targets—PPARA, NFKBI1, IL6, AKT1, and IL1B—along with
three key metabolites (linoleic acid, oleic acid, and a-linolenic acid)
as central network components. These results indicate that these
core targets and metabolites likely play pivotal roles in AR’s
therapeutic mechanism against T2DM.

3.6 Molecular docking

We performed molecular docking validation using
AutoDockTools-1.5.6 to assess interactions between AR’s top five
candidate components (one prototype and four metabolites) and
five key target proteins from the joint-analysis network. Most
component-target interactions showed binding energies below

Linoleic acid metabolism
(]

AGE-RAGE signaling pathway in diabetic complications

Insulin resistafce ® . .
TNF sighaling pathway PPAR signaling pathway
o . .Non—eﬂcoholic fatty liver disease
IL.-17 Elgnalmg pathway

Arachidonic acid metabolism
o

Drug metabolism - cytochrome P450

@ ()
Metal®dlism of )@nobiotics by cytochrome P450
Retinol metabolism

0.0 05 1.0 15 2.0
Pathway Impact
s
10AM!1
PPAR signaling
pathway NGB
3
C\.AZ

S d
complications y
@1 4 Ursodeo! olic acid N.g
0 13(S)HPODE PPARD
Non-al holic fatty LysoPC(18:1/0:0) [L-17 si};ngling
live r isease Phﬂlvl?y PIgNI
@ Lin cid SERPINE1
me m
N@s uce1
.@ ! CYP2C19

FIGURE 4
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Integrated analysis of metabolomics and network pharmacology. (A) The top eight targets identified in the interactive PPI network of metabolic
targets and component-disease intersection targets. (B) Joint pathway analysis of differential metabolites and shared metabolic targets between the
ARH and DM groups. (C) The integrative “metabolites-targets-pathways” network underlying the therapeutic effects of AR in treating T2DM.
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-5.0 kcal/mol, except for mangiferin with IL1B, IL6, and NFKBI,
and norathyriol with NFKB1, which exhibited slightly higher
energies (>-4.25 kcal/mol). Notably, mangiferin demonstrated
particularly strong binding affinities with AKT1 (-7.28 kcal/mol)
and PPARA (-6.07 kcal/mol). The steroidal saponin metabolites

10.3389/fendo.2025.1618584

3.7 Molecular dynamics simulations
analysis

Based on the molecular docking results, sarsasapogenin-AKT1
and digitogenin-PPARA complexes exhibited the highest binding

scores. To further assess the binding stability between
sarsasapogenin, digitogenin, and their respective target proteins
(AKT1 and PPARA), we analyzed key parameters including root
mean square deviation (RMSD), root mean square fluctuation
(RMSF), number of hydrogen bonds, radius of gyration (Rg), and
solvent-accessible surface area (SASA).

The RMSD serves as a reliable metric for assessing the
conformational stability of protein-ligand complexes and atomic
position deviations from their initial coordinates. Lower RMSD

displayed optimal binding with AKT1, PPARA, and NFKBI
through multiple interactions, including: conventional hydrogen
bonds, van der Waals forces, alkyl and pi-alkyl interactions, pi-
sigma interactions, carbon-hydrogen bonds. Figure 5 illustrates the
optimal binding modes and docking results. Key interactions
included: Sarsasapogenin forming two hydrogen bonds with the
NFKB1 (ARG57 and ARG59). Neogitogenin binding to AKT1
(ASN204) and NFKB1 (LYS206). Digitogenin interacting with
AKT1 (ASN204, SER205) and PPARA (ILE228).
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FIGURE 5
The optimum binding mode (2D and 3D conformation) of partial hub targets dock with potential bioactive components (The selected binding

energies < -7.8 kcal/mol). (A) digitogenin-PPARA (PDB ID 1K7L). (B) digitogenin-AKT1 (PDB ID 7NH5). (C) neogitogenin-NFKB1 (PDB ID 1SVC). (D)
neogitogenin-AKT1 (PDB ID 7NH5). (E) sarsasapogenin-NFKB1 (PDB ID 1SVC). (F) sarsasapogenin-AKT1 (PDB ID 7NH5). (G) Heat maps of molecular

docking results.
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values indicate greater conformational stability. Our simulations
demonstrated that the PPARA-digitogenin and AKTI1-
sarsasapogenin complexes reached equilibrium after 10 ns,
maintaining stable RMSD fluctuations of approximately 2.7 A
and 2.5 A, respectively (Figure 6A). These results confirm the
high stability of digitogenin and sarsasapogenin when bound to
their respective target proteins. Further analysis of the Rg and SASA
(Figures 6B, C), indicating no significant structural contraction or
expansion in either complex system during molecular dynamics.
Hydrogen bonds play a crucial role in ligand-protein binding.
Figure 6D displays the number of hydrogen bonds formed between
the small molecules and target proteins during the kinetic process. In
the PPARA-digitogenin complex system, the number of hydrogen
bonds fluctuated between 0 and 4, with one bond present in most
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cases. For the AKT1-sarsasapogenin system, the range was narrower
(0 to 2), but again, one bond typically formed. These results suggest
that the PPARA-digitogenin and AKT1I-sarsasapogenin systems
exhibit stable hydrogen-bonding interactions.

The RMSF reflects the flexibility of amino acid residues within a
protein. As shown in Figures 6E, F, the RMSF values for the PPARA-
digitogenin and AKT1-sarsasapogenin complexes remain relatively
low, predominantly below 3 A. These results indicate that the systems
exhibit reduced flexibility and enhanced structural stability.

In summary, the PPARA-digitogenin and AKTI-
sarsasapogenin complexes exhibit stable binding, supported by
favorable hydrogen-bonding interactions. MD simulation results
further validate the findings of the molecular docking. These
observations provide robust evidence that PPARA, AKT1, IL1B,
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The results of MD simulation of PPARA-digitogenin and AKT1-sarsasapogenin. (A) RMSD. (B) Rg. (C) SASA analysis. (D) H bond of PPARA-digitogenin

and AKT1-sarsasapogenin complex. (E, F) RMSF.
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IL6, and NFKBI are likely molecular targets of AR’s bioactive
constituents, which contribute to its therapeutic potential.
Notably, these targets associate with the PI3K-Akt, PPAR, and
NE-«B signalling pathways, clarifying AR’s therapeutic mechanisms
in T2DM treatment.

4 Discussion

In this study, we detected 47 prototype constituents and 11
metabolites of AR in blood and urine samples. Network
pharmacology analysis further identified mangiferin, norathyriol,
digitogenin, markogenin/neogitogenin, and sarsasapogenin as the
key bioactive components of AR for T2DM treatment. A PPI
network analysis uncovered 20 hub targets with high degree
centrality, including TP53, AKT1, STAT3, TNF, SRC,
HSP90AAL, IL6, CTNNBI, NFKBI1, ESR1, RELA, MAPK1, BCL2,
HRAS, MAPK3, IL1B, EGFR, PIK3CA, IFNG, and CASP3. These
targets are predominantly associated with lipid metabolism,
atherosclerosis, and diabetic complication pathways. Our findings
indicate that AR mediates its anti-T2DM effects through multi-
component regulation of critical metabolic and inflammatory
signalling hubs, with particular importance placed on the PI3K-
Akt and AGE-RAGE pathways as key therapeutic nodes.

AR-derived saponins demonstrate poor oral absorption and low
bioavailability, requiring metabolic conversion by intestinal
microbiota to produce pharmacologically active metabolites.
Following oral administration, Timosaponin AIIl and BII
undergo rapid microbial biotransformation into sarsasapogenin,
whose plasma concentration shows significant time-dependent
accumulation (11). Both in vitro and in vivo studies indicate that
sarsasapogenin exhibits superior anti-inflammatory activity
compared to its parent compounds (12). Yu et al. proved that
sarsasapogenin reduces high-fat diet-induced IR and adipose tissue
inflammation by inhibiting IKK/NF-kB and c-Jun N-terminal
kinase (JNK) pathways (13). As a key inflammatory mediator,
activated PPARY inhibits NF-xB transcriptional activity, which
suppresses pro-inflammatory cytokines release. Zhang et al.
reported that sarsasapogenin upregulated hippocampal PPARY, p-
GSK3B, and p-AKT levels in diabetic rats (14). Our results show
that AR increases PPARY protein expression in adipose tissue,
thereby improving IR.

Mangiferin presents a similar metabolic pattern, with its
deglycosylated metabolite norathyriol showing dramatically
improved bioavailability (30.4% vs mangiferin’s 1.2%) (15).
Mechanistic studies reveal that norathyriol demonstrates:
Enhanced o-glucosidase inhibitory activity relative to mangiferin
(16), improved glucose homeostasis through AMPK
phosphorylation upregulation and increased insulin sensitivity via
PTPIB inhibition (17). Furthermore, norathyriol demonstrates
significantly greater efficacy than mangiferin in regulating lipid
metabolism (18). Importantly, spirostanol saponins and norathyriol
demonstrate superior drug-lead potential relative to their parent
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compounds, owing to their enhanced bioavailability and more
potent hypoglycaemic and lipid-lowering activities.

Metabolomics analysis identified 33 differential metabolites
associated with AR treatment in T2DM rats. Pathway enrichment
analysis (FDR < 0.05, impact > 0.1) demonstrated significant
modulation of linoleic acid metabolism, arachidonic acid
metabolism, cytochrome P450-dependent drug metabolism,
retinol metabolism, and xenobiotic metabolism by
cytochrome P450.

In the analysis of differential metabolites, serum bile acid levels
were significantly elevated in T2DM model rats, consistent with
findings from multiple studies (19, 20). AR intervention markedly
reduced these levels. Research suggests that glucose and insulin
induce CYP7A1 gene expression, promoting bile acid synthesis and
increasing circulating bile acid concentrations (21). As key
signalling molecules in lipid and glucose metabolism, bile acids
influence T2DM progression through multiple mechanisms,
including the regulation of hepatic glycogen synthesis,
gluconeogenesis, peripheral insulin sensitivity, and inflammation.
Furthermore, bile acids modulate insulin secretion and intestinal
GLP-1 production via Farnesoid X receptor (FXR) and Takeda G
protein-coupled receptor 5 (TGR5) signalling pathways (22),
underscoring their critical role in maintaining glucose
homeostasis and adipocyte energy metabolism.

Under conditions of glucose and lipid metabolic dysregulation,
plasma levels of LysoPC are significantly reduced. LysoPC plays a
critical role in glucose-mediated insulin secretion and peripheral
tissue insulin sensitivity. In this study, 14 LysoPC species exhibited
significant decreased levels in the dysregulated state, which were
markedly restored by AR treatment. This finding consistent with
our prior research in diabetic human populations and animal
models (4, 23).

13(S)-HPODE and 12,13-DHOME are lipoxygenase-catalysed
peroxidation products of linoleic acid (LA). In T2DM model rats,
enhanced lipid peroxidation leads to significant elevations in
circulating 13(S)-HPODE and 12,13-DHOME levels (24). These
peroxides are closely associated with inflammation, as they activate
the NF-xB pathway and upregulate pro-inflammatory cytokines
(including NLRP3 inflammasome components, TNF-a, IL-6, IL-1,
MCP-1) (25, 26). Metabolomic analyses demonstrated that AR and
ROG interventions significantly reduced levels of these LA-derived
peroxides. Consistent with pharmacological experimental data,
these findings indicate that AR alleviates T2DM-associated
inflammation and insulin resistance (IR) by inhibiting lipid
peroxidation and suppressing NF-kB-mediated pro-inflammatory
cytokine expression.

Research has demonstrated that serum free fatty acid (FFA)
levels are significantly elevated in T2DM patients compared to
healthy individuals. Elevated FFAs are strongly associated with
multiple metabolic disorders, including inflammation, obesity, IR,
atherosclerosis, and non-alcoholic fatty liver disease (NAFLD).
However, not all fatty acids (FAs) exhibit lipotoxic effects: while
saturated fatty acids (SFAs) such as stearic acid (SA) and palmitic
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acid (PA) promote IR and contribute to T2DM progression,
monounsaturated fatty acids demonstrate protective properties.
Plasma SFAs impair cellular homeostasis by disrupting
endoplasmic reticulum (ER) and mitochondrial function, thereby
inducing ER stress, generating reactive oxygen species (ROS), and
activating the TLR4 signalling pathway, which collectively
exacerbate inflammatory responses (27, 28). In contrast, OA—a
monounsaturated fatty acid (MUFA)—counteracts SFA-induced
inflammation by suppressing production of inflammatory factors
(29). Mechanistically, OA restores AMPK activity, ameliorating ER
and mitochondrial dysfunction while attenuating inflammatory
pathways (30). Furthermore, OA enhances insulin sensitivity
through modulation of the IRS1/PI3K signalling pathway (31).

A diet rich in ®-3 polyunsaturated fatty acids (PUFAs) -
particularly o-linolenic acid (ALA), docosahexaenoic acid (DHA),
eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) - is
well-established for its protective effects against T2DM and
cardiovascular diseases (32, 33). Clinical evidence from a
randomised controlled trial in Asian populations confirms that ®-
3 PUFA supplementation improves plasma TG levels in T2DM
patients (34). Studies indicated that with T2DM and advanced
glycation (HbA1lc 9.1-15%), plasma levels of SFAs - particularly PA
and SA - are significantly elevated, with SA demonstrating a positive
correlation with HbAlc. In contrast, as glycation levels rise (HbAlc
6-15%), levels of MUFAs (e.g., OA) and PUFAs (e.g., LA, EPA)
decline markedly, with LA showing a negative correlation with
HbAlc (35). Mechanistically, ®-3 PUFAs reduce obesity-associated
inflammation by suppressing the release of inflammatory factors
and ameliorating chronic inflammation-induced IR (36). Multiple
studies demonstrate their hypoglycaemic and lipid-lowering effects,
which arise through several pathways: upregulation GLP-1R
expression to stimulate insulin synthesis and secretion, enhancing
antioxidant defences (e.g., increased SOD activity), promoting
pancreatic -cell proliferation, inhibiting of B-cell apoptosis, and
elevation adiponectin levels in T2DM patients (37, 38). Our results
indicate that AR ameliorates fatty acid metabolic disorders in
T2DM by normalising levels of multiple UFAs.

Joint pathway analysis pinpointed five core targets: PPARA,
NFKBI, IL6, AKT1, and IL1B. The PPAR, PI3K-Akt, and NF-xB
signalling pathways - which directly interact with these key targets -
emerged as critical regulators of T2DM pathological progression.

Peroxisome proliferator-activated receptor alpha (PPARA)
serves as a master regulator of glucose and lipid metabolism,
coordinating energy homeostasis and inflammatory responses. It
achieves this by inhibiting glycolysis and lipid synthesis while
simultaneously enhancing glucose uptake, glycogen synthesis, and
fatty acid B-oxidation (39). Endogenous PPARA ligands - including
LA, OA, and ALA - activate the receptor to stimulate fatty acid -
oxidation, accelerate lipid catabolism, reduce adipose accumulation,
and improve IR. Yang et al. reported that LA significantly increased
the mRNA translation level of PPARA in AMLI2 cells, a type of
hepatic parenchymal cells (40). PPARA activation also increases
HDL-C levels and upregulates lipoprotein lipase (LPL) expression,
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thereby promoting triglyceride (TG) hydrolysis (41). PPARA
activation potently inhibits NF-xB-mediated inflammation.
Notably, PPARA exerts potent anti-inflammatory effects through
NF-kB inhibition. The receptor directly interacts with the p65
subunit of NF-xB, blocking its nuclear translocation and
subsequent transcriptional activation of pro-inflammatory genes
(including IL-6, IL-1B, and TNF-ou).

The PI3K-Akt signalling pathway acts as a central regulator in
diabetes, cardiovascular disease, obesity, and other metabolic
disorders, controlling glucose homeostasis and lipid metabolism.
Phosphatidylinositol 3-kinase (PI3K) catalyses the phosphorylation
of phosphatidylinositol (PI) to produce phosphatidylinositol 3,4,5-
trisphosphate (PIP3), which triggers AKT1 phosphorylation at
Thr308 and Ser473 (42). Activated AKTI1 increases glucose
uptake in skeletal muscle and adipose tissues by upregulating
GLUT1/GLUT4 transporters through thioredoxin-interacting
protein (TXNIP) modulation (43). The pathway also plays a key
role in pancreatic B-cell proliferation and survival: Akt-mediated
phosphorylation of mTOR, GSK3[, and FoxO1 suppresses caspase-
9-dependent apoptosis, protecting B-cell mass (44).

At physiological concentrations, LA improves insulin sensitivity
through two key mechanisms: it promotes tyrosine phosphorylation
of the insulin receptor (INSR), activating PI3K-PIP3 signalling, and
recruits Aktl to the plasma membrane for phosphorylation by
PDK1 and mTORC2 at Thr308/Ser473 (45, 46). This enhances
downstream glucose uptake via GLUT4 translocation in myocytes
and adipocytes. Simultaneously, LA inhibits pro-inflammatory NF-
kB pathways, reducing TNF-a-induced serine phosphorylation of
insulin receptor substrate 1 (IRS-1) and alleviating its inhibitory
crosstalk with insulin signalling. In endothelial and neuronal cells,
LA-driven Aktl activation further promotes cell survival by
suppressing Bad-dependent apoptosis and boosting antioxidant
responses, highlighting its dual role in metabolic and
vascular protection.

T2DM is increasingly recognised as a chronic low-grade
inflammatory disease driven by cytokines. Pro-inflammatory
cytokines directly or indirectly impair pancreatic B-cell function
and induce apoptosis. Joint pathway analysis identified NFKB1, IL6,
and IL1B are key targets mediating the anti-inflammatory effects of
AR in T2DM. The NF-kB pathway plays a central role in
inflammation by promoting the release of pro-inflammatory
cytokines (TNF-a, IL-6, IL-1B) and upregulating iNOS and NO
upon activation (47). These mediators chemotactically recruit
monocytes/macrophages to pancreatic and renal tissues, where
TLR4-mediated amplification of NF-xB signalling cascades drives
further inflammatory factor release. This process promotes
pancreatic amyloid deposition, fibrosis, and glomerular
endothelial cell damage, exacerbating organ-specific inflammation
(48, 49). Under oxidative stress, accumulated inflammatory factors
activate IxB kinase (IKK), which induces serine phosphorylation of
INSR and IRS. This disrupts of PI3K/Akt signalling leads to IR (50).
Hyperglycemia further elevates TGF-B1 levels, and NF-xB
activation enhances its expression—a key mechanism driving
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hepatic and renal fibrosis in T2DM. In this study, AR treatment
significantly reduced serum levels of TNF-q,, IL-1f3, and IL-6 while
inhibiting hepatic NF-kB and TGF-B1 gene expression. These
effects collectively alleviated inflammation and tissue fibrosis in
T2DM rats.

Furthermore, joint pathway analysis further confirmed that the
AGE-RAGE signalling pathway, the TNF signalling pathway, and
the IL-17 signalling pathway are also key mechanisms mediating the
hypoglycaemic efficacy of AR in diabetes and its complications.

Advanced glycation end products (AGEs), toxic by-products of
glucose metabolism, are positively and significantly associated with
the risk of developing T2DM. For every 1-standard-deviation rise in
circulating AGEs, the incidence of T2DM increases by
approximately 52% (51). AGEs directly impair pancreatic [3-cell
function and attenuate insulin secretion. Concurrently, they
enhance p38 MAPK phosphorylation in intestinal GLUTag cells,
activate the NF-xB pathway, and stimulate the release of pro-
inflammatory cytokines (TNF-o, IL-1, and IL-6), thereby
inducing cellular damage and apoptosis (52). Furthermore, the
AGE-RAGE axis disrupts insulin signalling in skeletal muscle and
endothelial cells, provoking inflammation, oxidative stress, and
apoptosis; these effects diminish tissue glucose uptake and
ultimately elevate blood glucose through exacerbated IR.

Interleukin-17 (IL-17), a pro-inflammatory cytokine produced
by Th17 cells, is central to immune regulation and inflammatory
responses. It shapes the inflammatory microenvironment of T2DM
and disrupts glucose homeostasis via MAPK cascades. Clinical
studies consistently report higher serum IL-17 levels in newly
diagnosed T2DM patients (53). Engagement of the IL-17 receptor
complex activates MAPK and NF-«B signalling, which rapidly
induces the release of pro-inflammatory mediators such as IL-6
and TNF-a. These cytokines sustain NF-kB activation, which in
turn transcriptionally up-regulates TNF-o. and IL-6, thereby
establishing a self-amplifying inflammatory loop (54). This
chronic inflammatory state ultimately precipitates hyperglycaemia
and IR. Moreover, TNF-o directly impairs insulin sensitivity by
inhibiting PI3K activity and PPAR-y function, thus contributing to
T2DM pathogenesis.

These interconnected and synergistic mechanisms collectively
underscore the pivotal role of AR in modulating systemic glucose
homeostasis and the pathogenesis and progression of diabetes.
Consequently, AR may confer therapeutic benefits against
diabetes by attenuating inflammatory responses. Future studies
will experimentally elucidate the precise regulatory effects of AR
on the AGE-RAGE, TNF, and IL-17 signalling pathways in diabetes
and its complications, thereby deepening our understanding of its
efficacy and underlying mechanisms in T2DM.

We further conducted molecular docking and MD simulations
of the five core components against the five core targets. The results
from molecular docking revealed that sarsasapogenin, markogenin/
neogitogenin, and digitogenin exhibited strong binding affinity to
all five core targets, with sarsasapogenin showing the highest
binding efficacy. Norathyriol formed stable complexes with four
core targets (excluding NFKBI1), whereas mangiferin displayed
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favourable binding energy with AKT1 and PPARA but weaker
interactions with the remaining three targets.

MD simulations confirmed that the PPARA-digitogenin and
AKTI1-sarsasapogenin complexes form stable binding
conformations. Both complexes reach equilibrium quickly and
maintain stable fluctuations. Notably, the two complexes exhibit
distinct structural characteristics: the PPARA-digitogenin complex
adopts a relatively compact conformation, while the AKTI-
sarsasapogenin complex has a more expanded structure with a
larger SASA. This structural discrepancy may be due to variations in
the domain organization of the target proteins or differences in
steric compatibility at their respective ligand-binding interfaces.
Throughout the simulations, no significant structural changes were
observed, and hydrogen-bonding patterns remained consistent,
predominantly involving single bonds. Reduced residue flexibility
further indicated enhanced structural rigidity. Overall, these
findings validate the stable interactions between the ligands and
their targets, supporting their potential biological functionality.

In summary, we identified PPARA, NFKBI, IL6, AKT1, and
IL1B as potential therapeutic targets of AR, suggesting that their
associated signalling pathways (including PPAR, PI3K-Akt, NF-«B)
mediate AR’s anti-diabetic effects. The metabolites sarsasapogenin,
markogenin/neogitogenin, digitogenin and norathyriol emerged as
AR’s primary hypoglycaemic components. These findings reflect
the characteristic “multi-component, multi-target, multi-pathway”
therapeutic approach of TCM, demonstrating how AR coordinately
regulates T2DM by through integrated modulation of multiple
molecular targets and signalling networks (Figure 7).

This study has several limitations that warrant attention. First,
we conducted animal experiments in rats, and species-specific
differences in metabolic enzyme activity may limit the
extrapolation of these results to humans. Second, the
bioavailability of active compounds (e.g., spirostanol saponins) in
humans remains unclear, and further limitations include not only
potential species differences but also discrepancies between the
administration of AR in this study (ethanol extract via gavage)
and its clinical use (aqueous decoction)—factors such as extraction
solvent and route of administration may alter constituent
bioavailability. This highlights the need for pharmacodynamic
and pharmacokinetic studies on monomers such as
sarsasapogenin to evaluate their actual therapeutic efficacy.
Furthermore, although we preliminarily validated core targets
identified via network pharmacology through molecular docking
and MD simulations, the protein expression of the five core targets
—except for NFKB1 mRNA expression in liver tissues—requires
further cellular-level verification to strengthen mechanistic insights.
Future experiments will address these limitations.

5 Conclusion

Using an integrative approach combining metabolomics, serum-
urine pharmacochemistry, network pharmacology, molecular
docking, MD simulations, and pharmacological experiments, this
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study identified spirostanol saponins and norathyriol as the primary
active components of AR responsible for its anti-T2DM effects. The
therapeutic action of AR arises from its regulation of five core targets
(PPARA, NFKBI, IL6, AKTI1, and IL1B) and six key signaling
pathways (PPAR, AGE-RAGE, IR, NAFLD, TNF, and IL-17
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signaling pathways), as well as its modulation of linoleic acid
metabolism. These findings provide a robust foundation for
understanding AR’s material basis and mechanisms of action in
T2DM treatment, supporting its clinical application and offering
insights for future T2DM drug development.
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