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Pituitary neuroendocrine tumors (PitNETs) pose diagnostic and therapeutic

challenges due to their heterogeneity and complex endocrine-metabolic

interactions. Artificial intelligence (AI) enhances PitNET management through

improved classification, outcome prediction, and personalized treatment.

However, current AI models face limitations, including small, single-center

datasets and insufficient integration of multi-omics or autoimmune-associated

biomarkers. Future advancements require multicenter standardized databases,

explainable AI frameworks, and multimodal data fusion. By decoding endocrine-

metabolic dysregulation and its link to tumor behavior, AI-driven precision

medicine can optimize PitNET care. This review highlights AI’s potential in

PitNETs while addressing key challenges and future directions for

clinical translation.
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1 Introduction

Pituitary neuroendocrine tumors (PitNETs) are the second most common intracranial

tumors, comprising approximately 15% of all intracranial neoplasms and representing the

most prevalent neuroendocrine tumors in adults, with an estimated annual incidence of 3.9

per 100,000 individuals (1). These tumors exhibit diverse biological behaviors, including

variable growth patterns and invasive potential. Clinically, PitNETs may present with mass

effects—such as headaches and visual field deficits—or with hormone hypersecretion,

leading to conditions such as acromegaly, amenorrhea, and galactorrhea (2). While most
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PitNETs are benign adenomas treatable with surgical resection,

medical therapy, or radiotherapy, a subset exhibits therapeutic

resistance, recurrent growth, or, in rare instances, metastatic

potential (3).

Advancements in artificial intelligence (AI) have significantly

reshaped the diagnostic and therapeutic landscape of PitNETs,

par t i cu l a r l y in the area s o f rad iomics , pa thomics ,

pharmacotherapy, and surgical interventions. AI, often considered

the driving force behind modern medical innovation, has enabled

the integration of machine learning algorithms, deep learning

models, and neural networks into clinical workflows, thereby

transforming conventional diagnostic and treatment paradigms

(4). Currently, AI applications in PitNETs primarily focus on

medical image analysis and clinical decision support, utilizing

machine learning (including neural networks and deep learning)

as well as rule-based expert systems. AI-driven methodologies offer

notable advantages, such as enhanced measurement precision,

superior detail detection, reduced interobserver variability, and

improved predictive modeling for disease progression and

therapeutic response (5).

Recent technological advancements have been extensively

applied in oncological research, enhancing the accuracy of

pathological diagnoses, prognosis predictions, and biomarker

discoveries in malignancies such as breast, bladder, gastric, and

lung cancers (6–9). In particular, AI has been increasingly

integrated into the comprehensive management of PitNETs,

especially in the optimization of surgical strategies. This review

systematically examines AI applications in the diagnosis,
Frontiers in Endocrinology 02
therapeutic decision-making, and prognostic evaluation of

PitNETs, while highlighting current progress and future

directions in the field (Figure 1).
2 AI in PitNETs

Effective management of PitNETs requires timely diagnosis,

precise classification and grading, personalized therapeutic strategies,

optimized surgical planning, and long-term post-treatment

surveillance to improve clinical outcomes. However, the

heterogeneity in the biological behavior of PitNET subtypes poses

significant challenges across the diagnostic and therapeutic continuum.

In recent years, AI has become a transformative tool in the

diagnosis, treatment, and prognostic evaluation of PitNETs. AI-

driven methodologies improve diagnostic accuracy and therapeutic

precision, reduce healthcare costs, and facilitate seamless

integration of information within clinical workflows. This chapter

provides a comprehensive overview of the current applications and

challenges of AI in the diagnosis, treatment, and prognosis of

PitNETs, highlighting its potential to optimize patient

management and support clinical decision-making.
2.1 Diagnosis and differential diagnosis

Accurate diagnosis of PitNETs requires a multidisciplinary

approach involving pathology, endocrinology, neurosurgery,
FIGURE 1

AI in the diagnosis, classification, therapy and complication of PitNETs.
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radiology, and oncology. However, the heterogeneous clinical

presentations, radiological features, and histopathological

characteristics of PitNETs present significant diagnostic

challenges, often leading to inconsistencies across specialties. The

integration of AI-assisted diagnostic tools has the potential to

reduce cognitive biases and improve diagnostic precision.

AI-driven models have been widely applied to distinguish

pituitary tumors from other intracranial neoplasms, such as

meningiomas and gliomas, using deep learning algorithms trained

on MRI datasets. Advanced classification models, including

DenseNet, PDSCNN-RRELM, SIBOW-SVM, and MobileNetV2,

have demonstrated high accuracy in brain tumor classification,

thereby enhancing clinical decision-making, improving diagnostic

precision, and optimizing patient outcomes (10–14).

Beyond tumor differentiation, AI has also been utilized to

distinguish non-neoplastic pituitary lesions, such as pituitary

inflammation, from non-functional PitNETs, thereby reducing

the risk of unnecessary surgical interventions (15). Moreover,

differentiating cystic PitNETs from Rathke cleft cysts remains a

diagnostic challenge due to overlapping imaging features. A

composite model combining MRI-based artificial neural networks

(ANNs) with semantic analysis has demonstrated superior

diagnostic performance, achieving an area under the curve (AUC)

of 0.848 (16). Further advancements in AI-driven imaging analysis

include the development of neural networks and deep learning

algorithms for precise segmentation of both normal pituitary

structures and tumor regions, thereby assisting clinicians in

making more informed diagnostic decisions (17).

AI has been increasingly utilized for the early detection of

acromegaly by integrating three-dimensional (3D) imaging and

machine learning techniques to analyze facial morphology.

Acromegaly is characterized by distinct craniofacial alterations,

such as mandibular prognathism, jaw elongation, malocclusion,

increased mandibular angle, nasal widening, and lip thickening or

eversion. AI-based models facilitate the automated tracking of these

facial changes, enabling earlier diagnosis and timely intervention,

which can prevent irreversible complications associated with excess

growth hormone secretion (18).
2.2 Tumor classification and grading

The current World Health Organization (WHO) classification

of PitNETs is primarily based on the immunohistochemical

expression of specific transcription factors—T-box pituitary

transcription factor (Tpit), pituitary transcription factor 1 (Pit-1),

steroidogenic factor 1 (SF-1), GATA binding protein 3 (GATA3),

and es trogen receptor a lpha (ERa )— in addi t ion to

adenohypophyseal hormones such as adrenocorticotropic

hormone (ACTH), growth hormone (GH), prolactin (PRL), b-
thyroid-stimulating hormone (b-TSH), b-follicle-stimulating

hormone (b-FSH), b-luteinizing hormone (b-LH), and the

glycoprotein hormone a-subunit (19).
Recent studies have employed machine learning (ML)

techniques to improve the preoperative classification of PitNETs
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by analyzing radiomic features extracted from MRI scans. Various

ML models, including support vector machines (SVM), k-nearest

neighbors (KNN), and naïve Bayes (NB), have been developed to

predict immunohistochemical subtypes. Among these models, SVM

demonstrated superior performance, achieving an AUC of 0.9549 in

distinguishing the Tpit, Pit-1, and SF-1 subtypes (20). Additionally,

AI models have been utilized to predict hormone secretion profiles,

categorizing PitNETs into non-functional adenomas, GH-secreting

adenomas, prolactinomas, ACTH-secreting adenomas,

plurihormonal adenomas, FSH/LH-secreting adenomas, and

TSH-secreting adenomas. However, the Gaussian process (GP)

model showed limited accuracy (AUC = 0.711), likely due to

imbalanced sample distribution (21). Similarly, ANNs displayed

suboptimal performance in distinguishing prolactinomas from

other adenoma subtypes (AUC = 0.74) (22).

Most AI research has concentrated on binary classification tasks

to enhance diagnostic workflows. Notable applications include

SVM-based identification of non-functional PitNETs (23),

Pyradiomics-assisted detection of silent corticotroph adenomas

(24), and multi-sequence logistic regression (LR) models for

distinguishing somatotroph from gonadotroph PitNETs (25).

Beyond classification, PitNET grading utilizes the Trouillas

system, which integrates gross invasion and proliferative markers

(mitotic count and Ki-67 labeling index) to categorize tumors into

five prognostic grades (26). Assessment of gross invasion relies on

advanced neuroimaging and neuroradiological expertise, with AI-

driven models showing potential to enhance diagnostic accuracy

and reduce observer bias. Several studies have applied convolutional

neural networks (CNNs) and SVMs to evaluate cavernous sinus

invasion using preoperative MRI, achieving AUC values of 0.98 and

0.871, respectively (27–31). Additionally, a deep learning model

trained on high-resolution MRI images (1 mm slice thickness)

demonstrated strong performance in preoperatively predicting

cavernous sinus infiltration (AUC = 0.89), providing improved

assessment of tumor depth and carotid artery involvement (32).

AI-based models have also been employed to assess tumor

invasiveness from various anatomical perspectives. For instance,

Feng et al. assembled 1,413 coronal/sagittal MRI scans from 695

pituitary adenoma (PA) patients, stratified into invasive (n=530)

and non-invasive groups (n=883) based on surgical findings of

sellar floor invasion A 100-image external test set was randomly

selected, with the remaining 1,313 split 4:1 into training/validation

sets. CNNs have been trained to detect PitNET infiltration of the

sellar floor with high diagnostic accuracy (AUC = 0.98) (31). These

advancements not only enable objective evaluation of the Trouillas

score but also inform surgical decision-making, optimize follow-up

strategies, and enhance long-term management by facilitating more

personalized and cost-effective patient care.

PitNETs exhibiting a mitotic count exceeding 2 per 10 high-

power fields (HPF) and a Ki-67 labeling index (LI) greater than 3%

are indicative of more aggressive clinical behavior (26). However,

the manual evaluation of these parameters by pathologists is

inherently subjective and susceptible to interobserver variability.

AI-assisted quantification offers a standardized and objective

alternative, reducing assessment bias and enhancing diagnostic
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consistency. Recent studies have investigated MRI-based predictive

models for estimating the Ki-67 LI in preoperative PitNETs.

Lorenzo et al. analyzed a total of 89 patients who underwent an

endoscopic endonasal procedure for PA removal with available ki-

67 labeling index were included. From T2-weighted MR images,

1128 quantitative imaging features were extracted. Shu et al. collect

MRI data from 234 of these PA patients to develop ML models to

predict Ki67LI status, and ML models were tested on 27 PA patients

in the clinical setting. ML algorithms trained on texture features

derived from T2-weighted MRI demonstrated superior

performance. KNN models achieved an optimal operating

characteristic receiver operating curve (OC-ROC) of 0.87. CNNs

also yielded promising results (33, 34). This allows clinicians to

assist in determining the Ki-67 status through non-invasive tests.

These AI-driven methods enable more accurate preoperative tumor

classification, facilitate personalized surgical planning, and support

the development of cost-effective, risk-adaptive follow-up and long-

term management strategies.
2.3 Therapy and prognosis

2.3.1 Surgical decision-making
According to the Endocrine Society Clinical Practice Guideline,

transsphenoidal surgery (TSS) remains the first-line treatment for

most PitNETs requiring intervention, except for prolactinomas,

which are primarily managed pharmacologically (35). The

endoscopic transsphenoidal approach demands considerable

technical expertise, driving the development of AI-assisted

surgical guidance systems to optimize intraoperative performance.

These AI-enhanced protocols have shown promising results in

improving surgical precision and efficiency, with preliminary

evidence suggesting potential benefits for patient outcomes (36, 37).

Precise intraoperative differentiation between tumor and non-

neoplastic tissue is critical for maximizing resection extent while

minimizing recurrence risk. A recent study developed a deep

learning model based on a Wide-ResNet architecture, trained on

4K ultra-high-definition intraoperative TSS images. Among the 605

static images and the cropped 117223 patches included in the

training set, 58088 were labeled as tumors, while the remaining

59135 were labeled as non-tumorous tissues. The classifier achieved

an accuracy of 76.8% in distinguishing PitNETs from adjacent

structures. This advancement enhances surgical precision,

particularly for less experienced neurosurgeons (38). Additionally,

avoiding injury to critical structures—such as the internal carotid

arteries and optic nerves—is paramount during TSS, as inadvertent

damage may result in vision loss or life-threatening hemorrhage

(39). However, due to their posterior positioning relative to the

sphenoid bone, localization often relies on subtle osseous landmarks

(40). To address this challenge, PitSurgRT, a multitask neural

network, was trained on 635 frames obtained from 64 endoscopic

pituitary surgery videos to provide real-time anatomical

segmentation and surgical landmark detection. In clinical

validation involving 15 neurosurgeons, the system demonstrated

an intraoperative accuracy of 88.67% (41).
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The efficacy of TSS is strongly influenced by tumor consistency.

While soft PitNETs are generally amenable to complete resection,

firmer tumors present greater technical challenges, frequently

requiring adjunctive interventions such as extended surgical

approaches or adjuvant radiotherapy (42). To address this

variability, multiple deep learning models have been developed

for preoperative tumor consistency prediction, including: 1)

artificial neural networks (AUC = 0.710); 2) Extra Trees classifiers

(AUC = 0.99); 3) Convolutional recurrent neural networks models

(CRNNs, accuracy = 91.78%); 4) RF/SVM ensemble models (AUC

= 0.90) (43–46). These predictive tools enable neurosurgeons to

optimize surgical planning, thereby minimizing residual tumor

burden and reducing postoperative complications.

2.3.2 Gross-total resection
GTR represents a key surgical goal in TSS, with its feasibility

dependent on several critical factors including cavernous sinus

invasion, dural infiltration, tumor volume and consistency,

growth pattern, and proximity to vital neurovascular structures.

The Knosp classification system remains the clinical standard for

evaluating tumor invasiveness and guiding surgical strategy (47).

However, this system demonstrates limited sensitivity and

specificity for microadenomas graded Knosp 1–3 (48). Recent

advances in artificial intelligence have shown that deep neural

networks significantly outperform conventional assessment

methods in predicting GTR likelihood, achieving superior

discriminative performance (AUC = 0.96) compared to both the

Knosp system (AUC = 0.87) and logistic regression models (AUC =

0.86) (49). These results highlight the transformative potential of

AI-based predictive models in optimizing preoperative planning

and improving surgical outcomes.

2.3.3 Postoperative remission
Deep learning models incorporating radiomic features show

promising potential to assist neurosurgeons in preoperative

treatment response prediction and personalized treatment

planning for PitNETs (50). Recent studies have developed

machine learning models to predict various remission outcomes

in Cushing’s disease, including: 1) Early postoperative remission

(SVM, AUC = 0.681; stacking model, AUC = 0.743); 2) Delayed

remission (adaptive boosting [AdaBoost], AUC = 0.762); 3) Long-

term cure (gradient boosting machine [GBM], AUC = 0.719)

(51–53).

These results emphasize the prognostic value of several

preoperative variables in predicting postoperative remission

outcomes, including: (1) patient age, (2) presence of cavernous

sinus invasion, (3) baseline ACTH levels, (4) tumor size and

morpho logy , and (5 ) immunoh i s tochemica l ACTH

staining characteristics.

Machine learning approaches have similarly been applied to

predict surgical outcomes in acromegaly, demonstrating robust

performance in forecasting both early remission (XGBoost, SHAP

= 0.728; GBDT, AUC = 0.818) and delayed remission (XGBoost,

AUC = 0.835; SHAP = 0.879) (54–56). Predictive modeling

identified three key determinants of early remission: (1)
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preoperative GH levels, (2) patient age, and (3) tumor size. For

long-term outcomes, the principal predictive factors were

somatostatin receptor ligand (SRL) resistance status and

preoperative tumor dimensions.

Deep learning approaches have also demonstrated utility in

postoperative endocrine function assessment, enabling tailored

follow-up protocols for patients with PitNETs. A recent

comparative study evaluated six machine learning algorithms

against conventional logistic regression for predicting hormonal

outcomes in non-functioning pituitary macroadenomas. The

AdaBoost model exhibited the strongest performance, with AUC

values of 0.82 (postoperative hormonal decline), 0.74 (new-onset

hormone deficiency), and 0.85 (hormone recovery) (57). Further

advancing this field, an ensemble model integrating multiple

predictive features—including (1) preoperative treatment history,

(2) MRI characteristics (tumor volume, Knosp grade, and

invasiveness), and (3) serum GH and insulin-like growth factor-1

(IGF-1) levels—achieved superior predictive accuracy for endocrine

remission in acromegaly (AUC = 0.803) (58).

Visual impairment from chiasmatic compression represents a

frequent complication of PitNETs, where surgical decompression

remains the primary treatment modality. Postoperative visual

recovery, however, demonstrates considerable interpatient

variability, with key prognostic factors including: (1) patient age,

(2) tumor dimensions, (3) symptom duration, (4) baseline visual

function, and (5) retinal nerve fiber layer thickness (59, 60). Recent

advances in predictive modeling have employed machine learning

approaches to forecast visual outcomes. One study extracted

radiomic features from preoperative optic chiasm MRI scans,

comparing three algorithms for visual field recovery prediction.

The SVM model achieved superior performance (AUC = 0.824)

(61). A subsequent investigation developed seven distinct classifiers

incorporating multimodal clinical and ophthalmologic parameters,

with the integrated model demonstrating exceptional predictive

capability (AUC = 0.911). SHAP analysis revealed three dominant

predictors: (1) preoperative visual field integrity, (2) ganglion cell

complex thickness, and (3) maximal tumor diameter (62).

2.3.4 Recurrence
Despite optimal surgical management, PitNETs demonstrate a

10-20% recurrence rate, with several well-established risk factors:

(1) aggressive histopathological subtypes, (2) persistent

postoperative tumor remnants, (3) cavernous sinus invasion, and

(4) extrasellar extension (63). Contemporary research has sought to

improve recurrence risk prediction by incorporating these clinical

parameters with advanced machine learning algorithms.

Initial investigations into recurrence prediction employed deep

learning approaches analyzing radiomic features to forecast

postoperative progression in non-functioning pituitary

macroadenomas (NFPAs), demonstrating model performance

with AUC values ranging from 0.78 to 0.96. Notably, the

maximum intensity projection (MIP)-based model achieved

exceptional predictive accuracy (AUC = 0.962) (64, 65).

Subsequent research focused on Cushing’s disease recurrence

prediction through comprehensive analysis of clinical datasets.
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Seven machine learning algorithms were evaluated using 17

clinically relevant variables, with the RF classifier demonstrating

optimal performance (AUC = 0.781). Feature importance analysis

revealed three predominant predictors: (1) patient age, (2) early

postoperative serum cortisol levels, and (3) postoperative ACTH

concentrations (66).

To enhance predictive performance, researchers developed a

hybrid CNN-MLP architecture that synergistically combines

clinical parameters with radiomic features. This multimodal

approach achieved superior discrimination (AUC = 0.85),

significantly outperforming unimodal models relying exclusively

on clinical data (AUC = 0.73) or MRI-derived features (AUC =

0.83) (67). The relationship between tumor recurrence and

histopathological characteristics has prompted development of

more sophisticated predictive frameworks. A recent advancement

incorporates both clinicopathological markers and radiomic

signatures, enabling robust 5-year recurrence risk stratification for

pituitary macroadenomas (AUC = 0.783). This integrated model

demonstrates the value of combining histological classification with

advanced imaging analytics for improved prognostication (68).

2.3.5 Therapeutic response to medication
Prolactinomas represent the most common subtype of PitNETs,

for which dopamine agonists (DAs) - including cabergoline and

bromocriptine - constitute first-line therapy. In the majority of

cases, DA treatment achieves multiple therapeutic goals: (1) tumor

volume reduction, (2) PRL level normalization, (3) symptom

alleviation, and (4) gonadal function restoration (35). However,

10-30% of patients demonstrate DA resistance (69), necessitating

consideration of alternative interventions such as early surgical

decompression or stereotactic radiosurgery (70). This clinical

challenge underscores the importance of early identification of

DA non-responders to facilitate timely treatment modification

and improve clinical outcomes.

To address this clinical challenge, researchers developed a

radiomics-based predictive model that combines conventional

MRI features with machine learning algorithms. This approach

achieved robust performance (AUC = 0.81) in identifying DA-

resistant prolactinomas, enabling earlier therapeutic decision-

making (71). A subsequent study implemented an advanced

super-learner framework that integrated multiple deep learning

classifiers. This model employed both the AUC and Matthews

correlation coefficient (MCC) as complementary performance

metrics, demonstrating exceptional predictive capability (AUC =

0.98; MCC = 0.93) for assessing DA treatment dependence. Feature

importance analysis revealed temporal variations in predictive

factors: baseline serum PRL levels were most influential for early

treatment response, while 30-day post-treatment remission status

served as the strongest predictor of long-term DA dependence (72).

Acromegaly demonstrates similar treatment challenges, with

more than 95% of cases originating from GH-secreting PitNETs.

While TSS constitutes first-line therapy, patients with persistent

postoperative disease or those who are poor surgical candidates

require pharmacological intervention. Somatostatin analogs (SAs)

represent the cornerstone of medical management in these cases.
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The role of preoperative SA administration remains controversial.

Although some evidence suggests potential benefits for surgical

outcomes, SA resistance may lead to treatment delays and worse

clinical prognosis (71). This clinical dilemma underscores the

critical need for reliable biomarkers to predict SA responsiveness,

w h i c h wou l d s i g n ifi c a n t l y e n h a n c e p e r s o n a l i z e d

treatment strategies.

Recent advances in computational analysis have enabled more

precise prediction of treatment responses in acromegaly. A machine

learning framework incorporating quantitative texture analysis of

T2-weighted MRI demonstrated strong predictive performance for

SA therapy response in GH-secreting macroadenomas, achieving

85.1% classification accuracy with an AUC-ROC of 0.847 (73).

Further refining predictive capabilities, an Extreme Gradient

Boosting model was developed to anticipate SRL resistance. This

model attained an AUC of 0.753, with feature importance analysis

identifying three key predictive factors: (1) postoperative 3-month

IGF-1 levels, (2) 3-month GH levels, and (3) histological

classification as sparsely granulated somatotroph adenoma (55).
2.4 Complication

2.4.1 Cerebrospinal fluid leakage
Cerebrospinal fluid (CSF) leakage represents a frequent

complication following TSS, with an incidence of approximately

30% in patients with PitNETs. This complication carries significant

clinical implications, potentially resulting in serious postoperative

sequelae including persistent headaches, meningitis, and surgical

site infections (74). The development of reliable preoperative

predictive models for CSF leakage risk is therefore essential for

optimizing surgical approach selection, enhancing perioperative

patient management, and reducing associated healthcare

expenditures.

Recent advances in machine learning have yielded several

predictive models for postoperative CSF leakage in PitNET

patients . Three distinct algorithmic approaches have

demonstrated particular efficacy: (1) RF classifiers (AUC = 0.84),

(2) Bayesian generalized linear models (GLMs) (AUC = 0.71), and

(3) TensorFlow-based neural networks (AUC = 0.84) (75–78).

These models consistently identified three key predictive

variables: Hardy classification grade, previous transsphenoidal

surgery, and patient age. A subsequent innovation employed

advanced neuroimaging analytics, developing a two-dimensional

convolutional neural network (2D-CNN) model based on extracted

MRI features. This approach achieved superior predictive

performance (AUC = 0.90), with class-activation mapping

analysis localizing the CSF flow pathway as the most anatomically

significant predictor of postoperative leakage risk (79).

2.4.2 Delayed hyponatremia
Delayed hyponatremia represents a common postoperative

complication following TSS, occurring in approximately 15% of

cases (80). The condition predominantly develops due to the

syndrome of inappropriate antidiuretic hormone secretion
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(SIADH) caused by surgical manipulation of the posterior

pituitary gland. As one of the most frequent causes of unplanned

30-day readmissions, delayed hyponatremia substantially impacts

both patient morbidity and healthcare resource utilization. The

identification of robust predictive biomarkers is therefore essential

for improving postoperative surveillance protocols, reducing length

of hospitalization, and preventing potentially life-threatening

complications (81).

Emerging machine learning approaches have enabled accurate

prediction of delayed postoperative hyponatremia in patients

undergoing TSS for PitNETs. Comparative analyses of various

algorithms revealed that XGboost (AUC = 0.831) and RF (AUC =

0.798) models demonstrated optimal predictive performance (82,

83). Feature importance analysis identified four clinically significant

predictors: (1) degree of pituitary stalk deviation, (2) preoperative

measurable pituitary stalk length, (3) postoperative measurable

pituitary stalk length, and (4) the magnitude of serum sodium

concentration change between baseline and postoperative day 2.

2.4.3 Diabetes insipidus
TSS for PitNETs carries a risk of posterior pituitary lobe injury,

which may precipitate diabetes insipidus (DI) through disruption of

arginine vasopressin (AVP) secretion. This complication manifests

as a spectrum of water homeostasis disturbances ranging from

transient polyuria to permanent dysregulation (84). The classic

clinical triad of DI includes polyuria (>3 L/day), polydipsia, and

hypernatremia. Without prompt intervention, these symptoms may

progress to severe dehydration, neurological manifestations

(lethargy, irritability), and significant deterioration in quality of life.

Recent advances in predictive analytics have enabled the

development of machine learning models capable of anticipating

postoperative DI in patients undergoing transsphenoidal surgery

for PitNETs. Comparative evaluation of various algorithms revealed

that RF models consistently demonstrate superior predictive

capabilities, with one study reporting an AUC of 0.815 and

identifying pituitary stalk invasion as the most significant

prognostic factor (85). A subsequent multicenter study developed

an integrated predictive framework incorporating both clinical and

radiological parameters. The RF algorithm again outperformed

other models, achieving exceptional accuracy (ACC = 0.882) and

discriminative ability (AUC = 0.96). Feature importance analysis

highlighted two key predictive clusters: morphometric changes in

pituitary stalk dimensions and dynamic variations in anterior

pituitary hormone profiles (86).

2.4.4 Olfactory dysfunction
Olfactory dysfunction represents a frequent postoperative

complication of TSS for PitNETs, with reported incidence rates

varying from 10.5% to 44% across clinical series (87). This

neurosensory impairment primarily stems from intraoperative

trauma to olfactory-related anatomical structures, including the

olfactory epithelium, nasal septal mucosa, and superior turbinates.

The resultant anosmia or hyposmia can significantly impact

patients’ quality of life, particularly affecting nutritional intake

and environmental safety awareness.
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A recent prospective cohort study developed and validated a

machine learning-based predictive model for postoperative

olfactory dysfunction following TSS. Among multiple algorithms

evaluated, the RF classifier demonstrated optimal discriminative

performance (AUC-ROC = 0.846, 95% CI: 0.812-0.879). This model

enables preoperative risk stratification, early identification of high-

risk patients, and implementation of targeted preventive strategies

during the perioperative period. The robust predictive accuracy and

clinical interpretability of this model support its potential

integration into standardized postoperative care pathways (88).
3 Conclusions

AI has emerged as a transformative technology in the

comprehensive management of PitNETs (Figure 1). It offers

significant strengths including enhanced efficiency in tumor

detection through deep learning-based imaging analysis,

improved subtype classification as well as invasiveness prediction

via multimodal data fusion (i.e., integrating radiomics with clinical

parameters), and personalized surgical planning through AI-driven

risk prediction models. These advancements hold promise for

optimizing treatment strategies, mitigating complications, and

refining prognostic assessment for PitNETs.

However, critical limitations and challenges must be explicitly

acknowledged. The variability in population characteristics across

different centers and the heterogeneity of imaging equipment (e.g.,

differences in MRI scanner manufacturers, protocols, and

resolutions) necessitate extensive data harmonization and often

significant model fine-tuning to ensure generalizability and

robustness. Deployment in clinical settings faces substantial

hurdles, including computational resource requirements,

integration with existing hospital workflows and electronic health

records (EHRs), regulatory approvals, and ensuring equitable model

accessibility. Furthermore, unmet needs persist in modeling

complex biological behaviors and specific clinical variables.

Current AI models often struggle to adequately capture and

predict aspects like subtle tumor invasion patterns not readily

apparent on standard imaging, rare subtypes with limited data,

nuanced hormonal dynamics, long-term treatment response

variations, and the intricate interplay of molecular markers with

imaging and clinical phenotypes (89, 90). Addressing these gaps is

crucial for comprehensive predictive modeling.

Future research should therefore prioritize several key

directions: (1) Developing more interpretable and robust

algorithms capable of handling small-sample learning and

inherent data variability; (2) Conducting large-scale, multi-center

collaborative research that integrate detailed clinical characteristics,

standardized imaging data, molecular profiles, intraoperative

assessment and postoperative follow-up information; (3)

Rigorously validating AI tools through prospective clinical trials

to establish their clinical reliability and efficacy within the

framework of evidence-based medicine; and (4) Actively

addressing the practical challenges of clinical integration and
Frontiers in Endocrinology 07
accessibility. Collectively, overcoming these limitations and

focusing on the unmet needs will be essential to expedite the

transition of PitNET diagnosis and treatment towards truly

precise, intelligent, and clinically impactful medicine.
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