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Pituitary neuroendocrine tumors (PitNETs) pose diagnostic and therapeutic
challenges due to their heterogeneity and complex endocrine-metabolic
interactions. Artificial intelligence (Al) enhances PitNET management through
improved classification, outcome prediction, and personalized treatment.
However, current Al models face limitations, including small, single-center
datasets and insufficient integration of multi-omics or autoimmune-associated
biomarkers. Future advancements require multicenter standardized databases,
explainable Al frameworks, and multimodal data fusion. By decoding endocrine-
metabolic dysregulation and its link to tumor behavior, Al-driven precision
medicine can optimize PitNET care. This review highlights Al's potential in
PitNETs while addressing key challenges and future directions for
clinical translation.

artificial intelligence, deep learning, pituitary neuroendocrine tumors, diagnostics,
therapeutics

1 Introduction

Pituitary neuroendocrine tumors (PitNETs) are the second most common intracranial
tumors, comprising approximately 15% of all intracranial neoplasms and representing the
most prevalent neuroendocrine tumors in adults, with an estimated annual incidence of 3.9
per 100,000 individuals (1). These tumors exhibit diverse biological behaviors, including
variable growth patterns and invasive potential. Clinically, PitNETs may present with mass
effects—such as headaches and visual field deficits—or with hormone hypersecretion,
leading to conditions such as acromegaly, amenorrhea, and galactorrhea (2). While most
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PitNETs are benign adenomas treatable with surgical resection,
medical therapy, or radiotherapy, a subset exhibits therapeutic
resistance, recurrent growth, or, in rare instances, metastatic
potential (3).

Advancements in artificial intelligence (AI) have significantly
reshaped the diagnostic and therapeutic landscape of PitNETs,
particularly in the areas of radiomics, pathomics,
pharmacotherapy, and surgical interventions. Al often considered
the driving force behind modern medical innovation, has enabled
the integration of machine learning algorithms, deep learning
models, and neural networks into clinical workflows, thereby
transforming conventional diagnostic and treatment paradigms
(4). Currently, AI applications in PitNETs primarily focus on
medical image analysis and clinical decision support, utilizing
machine learning (including neural networks and deep learning)
as well as rule-based expert systems. Al-driven methodologies offer
notable advantages, such as enhanced measurement precision,
superior detail detection, reduced interobserver variability, and
improved predictive modeling for disease progression and
therapeutic response (5).

Recent technological advancements have been extensively
applied in oncological research, enhancing the accuracy of
pathological diagnoses, prognosis predictions, and biomarker
discoveries in malignancies such as breast, bladder, gastric, and
lung cancers (6-9). In particular, Al has been increasingly
integrated into the comprehensive management of PitNETs,
especially in the optimization of surgical strategies. This review
systematically examines AI applications in the diagnosis,
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Al in the diagnosis, classification, therapy and complication of PitNETs.
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therapeutic decision-making, and prognostic evaluation of
PitNETs, while highlighting current progress and future
directions in the field (Figure 1).

2 Al in PitNETs

Effective management of PitNETSs requires timely diagnosis,
precise classification and grading, personalized therapeutic strategies,
optimized surgical planning, and long-term post-treatment
surveillance to improve clinical outcomes. However, the
heterogeneity in the biological behavior of PitNET subtypes poses
significant challenges across the diagnostic and therapeutic continuum.

In recent years, Al has become a transformative tool in the
diagnosis, treatment, and prognostic evaluation of PitNETs. Al-
driven methodologies improve diagnostic accuracy and therapeutic
precision, reduce healthcare costs, and facilitate seamless
integration of information within clinical workflows. This chapter
provides a comprehensive overview of the current applications and
challenges of Al in the diagnosis, treatment, and prognosis of
PitNETs, highlighting its potential to optimize patient
management and support clinical decision-making.

2.1 Diagnosis and differential diagnosis

Accurate diagnosis of PitNETs requires a multidisciplinary
approach involving pathology, endocrinology, neurosurgery,
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radiology, and oncology. However, the heterogeneous clinical
presentations, radiological features, and histopathological
characteristics of PitNETs present significant diagnostic
challenges, often leading to inconsistencies across specialties. The
integration of Al-assisted diagnostic tools has the potential to
reduce cognitive biases and improve diagnostic precision.

Al-driven models have been widely applied to distinguish
pituitary tumors from other intracranial neoplasms, such as
meningiomas and gliomas, using deep learning algorithms trained
on MRI datasets. Advanced classification models, including
DenseNet, PDSCNN-RRELM, SIBOW-SVM, and MobileNetV2,
have demonstrated high accuracy in brain tumor classification,
thereby enhancing clinical decision-making, improving diagnostic
precision, and optimizing patient outcomes (10-14).

Beyond tumor differentiation, AI has also been utilized to
distinguish non-neoplastic pituitary lesions, such as pituitary
inflammation, from non-functional PitNETSs, thereby reducing
the risk of unnecessary surgical interventions (15). Moreover,
differentiating cystic PitNETs from Rathke cleft cysts remains a
diagnostic challenge due to overlapping imaging features. A
composite model combining MRI-based artificial neural networks
(ANNs) with semantic analysis has demonstrated superior
diagnostic performance, achieving an area under the curve (AUC)
of 0.848 (16). Further advancements in Al-driven imaging analysis
include the development of neural networks and deep learning
algorithms for precise segmentation of both normal pituitary
structures and tumor regions, thereby assisting clinicians in
making more informed diagnostic decisions (17).

Al has been increasingly utilized for the early detection of
acromegaly by integrating three-dimensional (3D) imaging and
machine learning techniques to analyze facial morphology.
Acromegaly is characterized by distinct craniofacial alterations,
such as mandibular prognathism, jaw elongation, malocclusion,
increased mandibular angle, nasal widening, and lip thickening or
eversion. Al-based models facilitate the automated tracking of these
facial changes, enabling earlier diagnosis and timely intervention,
which can prevent irreversible complications associated with excess
growth hormone secretion (18).

2.2 Tumor classification and grading

The current World Health Organization (WHO) classification
of PitNETs is primarily based on the immunohistochemical
expression of specific transcription factors—T-box pituitary
transcription factor (Tpit), pituitary transcription factor 1 (Pit-1),
steroidogenic factor 1 (SF-1), GATA binding protein 3 (GATA3),
and estrogen receptor alpha (ERo)—in addition to
adenohypophyseal hormones such as adrenocorticotropic
hormone (ACTH), growth hormone (GH), prolactin (PRL), -
thyroid-stimulating hormone (B-TSH), B-follicle-stimulating
hormone (B-FSH), B-luteinizing hormone (B-LH), and the
glycoprotein hormone o-subunit (19).

Recent studies have employed machine learning (ML)
techniques to improve the preoperative classification of PitNETSs
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by analyzing radiomic features extracted from MRI scans. Various
ML models, including support vector machines (SVM), k-nearest
neighbors (KNN), and naive Bayes (NB), have been developed to
predict immunohistochemical subtypes. Among these models, SVM
demonstrated superior performance, achieving an AUC of 0.9549 in
distinguishing the Tpit, Pit-1, and SE-1 subtypes (20). Additionally,
AT models have been utilized to predict hormone secretion profiles,
categorizing PitNETSs into non-functional adenomas, GH-secreting
adenomas, prolactinomas, ACTH-secreting adenomas,
plurihormonal adenomas, FSH/LH-secreting adenomas, and
TSH-secreting adenomas. However, the Gaussian process (GP)
model showed limited accuracy (AUC = 0.711), likely due to
imbalanced sample distribution (21). Similarly, ANNs displayed
suboptimal performance in distinguishing prolactinomas from
other adenoma subtypes (AUC = 0.74) (22).

Most Al research has concentrated on binary classification tasks
to enhance diagnostic workflows. Notable applications include
SVM-based identification of non-functional PitNETs (23),
Pyradiomics-assisted detection of silent corticotroph adenomas
(24), and multi-sequence logistic regression (LR) models for
distinguishing somatotroph from gonadotroph PitNETs (25).

Beyond classification, PitNET grading utilizes the Trouillas
system, which integrates gross invasion and proliferative markers
(mitotic count and Ki-67 labeling index) to categorize tumors into
five prognostic grades (26). Assessment of gross invasion relies on
advanced neuroimaging and neuroradiological expertise, with AI-
driven models showing potential to enhance diagnostic accuracy
and reduce observer bias. Several studies have applied convolutional
neural networks (CNNs) and SVMs to evaluate cavernous sinus
invasion using preoperative MRI, achieving AUC values of 0.98 and
0.871, respectively (27-31). Additionally, a deep learning model
trained on high-resolution MRI images (1 mm slice thickness)
demonstrated strong performance in preoperatively predicting
cavernous sinus infiltration (AUC = 0.89), providing improved
assessment of tumor depth and carotid artery involvement (32).

Al-based models have also been employed to assess tumor
invasiveness from various anatomical perspectives. For instance,
Feng et al. assembled 1,413 coronal/sagittal MRI scans from 695
pituitary adenoma (PA) patients, stratified into invasive (n=530)
and non-invasive groups (n=883) based on surgical findings of
sellar floor invasion A 100-image external test set was randomly
selected, with the remaining 1,313 split 4:1 into training/validation
sets. CNNs have been trained to detect PitNET infiltration of the
sellar floor with high diagnostic accuracy (AUC = 0.98) (31). These
advancements not only enable objective evaluation of the Trouillas
score but also inform surgical decision-making, optimize follow-up
strategies, and enhance long-term management by facilitating more
personalized and cost-effective patient care.

PitNETs exhibiting a mitotic count exceeding 2 per 10 high-
power fields (HPF) and a Ki-67 labeling index (LI) greater than 3%
are indicative of more aggressive clinical behavior (26). However,
the manual evaluation of these parameters by pathologists is
inherently subjective and susceptible to interobserver variability.
Al-assisted quantification offers a standardized and objective
alternative, reducing assessment bias and enhancing diagnostic
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consistency. Recent studies have investigated MRI-based predictive
models for estimating the Ki-67 LI in preoperative PitNETs.
Lorenzo et al. analyzed a total of 89 patients who underwent an
endoscopic endonasal procedure for PA removal with available ki-
67 labeling index were included. From T2-weighted MR images,
1128 quantitative imaging features were extracted. Shu et al. collect
MRI data from 234 of these PA patients to develop ML models to
predict Ki67LI status, and ML models were tested on 27 PA patients
in the clinical setting. ML algorithms trained on texture features
derived from T2-weighted MRI demonstrated superior
performance. KNN models achieved an optimal operating
characteristic receiver operating curve (OC-ROC) of 0.87. CNNs
also yielded promising results (33, 34). This allows clinicians to
assist in determining the Ki-67 status through non-invasive tests.
These Al-driven methods enable more accurate preoperative tumor
classification, facilitate personalized surgical planning, and support
the development of cost-effective, risk-adaptive follow-up and long-
term management strategies.

2.3 Therapy and prognosis

2.3.1 Surgical decision-making

According to the Endocrine Society Clinical Practice Guideline,
transsphenoidal surgery (TSS) remains the first-line treatment for
most PitNETs requiring intervention, except for prolactinomas,
which are primarily managed pharmacologically (35). The
endoscopic transsphenoidal approach demands considerable
technical expertise, driving the development of Al-assisted
surgical guidance systems to optimize intraoperative performance.
These Al-enhanced protocols have shown promising results in
improving surgical precision and efficiency, with preliminary
evidence suggesting potential benefits for patient outcomes (36, 37).

Precise intraoperative differentiation between tumor and non-
neoplastic tissue is critical for maximizing resection extent while
minimizing recurrence risk. A recent study developed a deep
learning model based on a Wide-ResNet architecture, trained on
4K ultra-high-definition intraoperative TSS images. Among the 605
static images and the cropped 117223 patches included in the
training set, 58088 were labeled as tumors, while the remaining
59135 were labeled as non-tumorous tissues. The classifier achieved
an accuracy of 76.8% in distinguishing PitNETs from adjacent
structures. This advancement enhances surgical precision,
particularly for less experienced neurosurgeons (38). Additionally,
avoiding injury to critical structures—such as the internal carotid
arteries and optic nerves—is paramount during TSS, as inadvertent
damage may result in vision loss or life-threatening hemorrhage
(39). However, due to their posterior positioning relative to the
sphenoid bone, localization often relies on subtle osseous landmarks
(40). To address this challenge, PitSurgRT, a multitask neural
network, was trained on 635 frames obtained from 64 endoscopic
pituitary surgery videos to provide real-time anatomical
segmentation and surgical landmark detection. In clinical
validation involving 15 neurosurgeons, the system demonstrated
an intraoperative accuracy of 88.67% (41).
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The efficacy of TSS is strongly influenced by tumor consistency.
While soft PitNETs are generally amenable to complete resection,
firmer tumors present greater technical challenges, frequently
requiring adjunctive interventions such as extended surgical
approaches or adjuvant radiotherapy (42). To address this
variability, multiple deep learning models have been developed
for preoperative tumor consistency prediction, including: 1)
artificial neural networks (AUC = 0.710); 2) Extra Trees classifiers
(AUC = 0.99); 3) Convolutional recurrent neural networks models
(CRNNS, accuracy = 91.78%); 4) RF/SVM ensemble models (AUC
= 0.90) (43-46). These predictive tools enable neurosurgeons to
optimize surgical planning, thereby minimizing residual tumor

burden and reducing postoperative complications.

2.3.2 Gross-total resection

GTR represents a key surgical goal in TSS, with its feasibility
dependent on several critical factors including cavernous sinus
invasion, dural infiltration, tumor volume and consistency,
growth pattern, and proximity to vital neurovascular structures.
The Knosp classification system remains the clinical standard for
evaluating tumor invasiveness and guiding surgical strategy (47).
However, this system demonstrates limited sensitivity and
specificity for microadenomas graded Knosp 1-3 (48). Recent
advances in artificial intelligence have shown that deep neural
networks significantly outperform conventional assessment
methods in predicting GTR likelihood, achieving superior
discriminative performance (AUC = 0.96) compared to both the
Knosp system (AUC = 0.87) and logistic regression models (AUC =
0.86) (49). These results highlight the transformative potential of
Al-based predictive models in optimizing preoperative planning
and improving surgical outcomes.

2.3.3 Postoperative remission

Deep learning models incorporating radiomic features show
promising potential to assist neurosurgeons in preoperative
treatment response prediction and personalized treatment
planning for PitNETs (50). Recent studies have developed
machine learning models to predict various remission outcomes
in Cushing’s disease, including: 1) Early postoperative remission
(SVM, AUC = 0.681; stacking model, AUC = 0.743); 2) Delayed
remission (adaptive boosting [AdaBoost], AUC = 0.762); 3) Long-
term cure (gradient boosting machine [GBM], AUC = 0.719)
(51-53).

These results emphasize the prognostic value of several
preoperative variables in predicting postoperative remission
outcomes, including: (1) patient age, (2) presence of cavernous
sinus invasion, (3) baseline ACTH levels, (4) tumor size and
morphology, and (5) immunohistochemical ACTH
staining characteristics.

Machine learning approaches have similarly been applied to
predict surgical outcomes in acromegaly, demonstrating robust
performance in forecasting both early remission (XGBoost, SHAP
= 0.728; GBDT, AUC = 0.818) and delayed remission (XGBoost,
AUC = 0.835; SHAP = 0.879) (54-56). Predictive modeling
identified three key determinants of early remission: (1)
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preoperative GH levels, (2) patient age, and (3) tumor size. For
long-term outcomes, the principal predictive factors were
somatostatin receptor ligand (SRL) resistance status and
preoperative tumor dimensions.

Deep learning approaches have also demonstrated utility in
postoperative endocrine function assessment, enabling tailored
follow-up protocols for patients with PitNETs. A recent
comparative study evaluated six machine learning algorithms
against conventional logistic regression for predicting hormonal
outcomes in non-functioning pituitary macroadenomas. The
AdaBoost model exhibited the strongest performance, with AUC
values of 0.82 (postoperative hormonal decline), 0.74 (new-onset
hormone deficiency), and 0.85 (hormone recovery) (57). Further
advancing this field, an ensemble model integrating multiple
predictive features—including (1) preoperative treatment history,
(2) MRI characteristics (tumor volume, Knosp grade, and
invasiveness), and (3) serum GH and insulin-like growth factor-1
(IGF-1) levels—achieved superior predictive accuracy for endocrine
remission in acromegaly (AUC = 0.803) (58).

Visual impairment from chiasmatic compression represents a
frequent complication of PitNETSs, where surgical decompression
remains the primary treatment modality. Postoperative visual
recovery, however, demonstrates considerable interpatient
variability, with key prognostic factors including: (1) patient age,
(2) tumor dimensions, (3) symptom duration, (4) baseline visual
function, and (5) retinal nerve fiber layer thickness (59, 60). Recent
advances in predictive modeling have employed machine learning
approaches to forecast visual outcomes. One study extracted
radiomic features from preoperative optic chiasm MRI scans,
comparing three algorithms for visual field recovery prediction.
The SVM model achieved superior performance (AUC = 0.824)
(61). A subsequent investigation developed seven distinct classifiers
incorporating multimodal clinical and ophthalmologic parameters,
with the integrated model demonstrating exceptional predictive
capability (AUC = 0.911). SHAP analysis revealed three dominant
predictors: (1) preoperative visual field integrity, (2) ganglion cell
complex thickness, and (3) maximal tumor diameter (62).

2.3.4 Recurrence

Despite optimal surgical management, PitNETs demonstrate a
10-20% recurrence rate, with several well-established risk factors:
(1) aggressive histopathological subtypes, (2) persistent
postoperative tumor remnants, (3) cavernous sinus invasion, and
(4) extrasellar extension (63). Contemporary research has sought to
improve recurrence risk prediction by incorporating these clinical
parameters with advanced machine learning algorithms.

Initial investigations into recurrence prediction employed deep
learning approaches analyzing radiomic features to forecast
postoperative progression in non-functioning pituitary
macroadenomas (NFPAs), demonstrating model performance
with AUC values ranging from 0.78 to 0.96. Notably, the
maximum intensity projection (MIP)-based model achieved
exceptional predictive accuracy (AUC = 0.962) (64, 65).
Subsequent research focused on Cushing’s disease recurrence
prediction through comprehensive analysis of clinical datasets.
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Seven machine learning algorithms were evaluated using 17
clinically relevant variables, with the RF classifier demonstrating
optimal performance (AUC = 0.781). Feature importance analysis
revealed three predominant predictors: (1) patient age, (2) early
postoperative serum cortisol levels, and (3) postoperative ACTH
concentrations (66).

To enhance predictive performance, researchers developed a
hybrid CNN-MLP architecture that synergistically combines
clinical parameters with radiomic features. This multimodal
approach achieved superior discrimination (AUC = 0.85),
significantly outperforming unimodal models relying exclusively
on clinical data (AUC = 0.73) or MRI-derived features (AUC =
0.83) (67). The relationship between tumor recurrence and
histopathological characteristics has prompted development of
more sophisticated predictive frameworks. A recent advancement
incorporates both clinicopathological markers and radiomic
signatures, enabling robust 5-year recurrence risk stratification for
pituitary macroadenomas (AUC = 0.783). This integrated model
demonstrates the value of combining histological classification with
advanced imaging analytics for improved prognostication (68).

2.3.5 Therapeutic response to medication

Prolactinomas represent the most common subtype of PitNETs,
for which dopamine agonists (DAs) - including cabergoline and
bromocriptine - constitute first-line therapy. In the majority of
cases, DA treatment achieves multiple therapeutic goals: (1) tumor
volume reduction, (2) PRL level normalization, (3) symptom
alleviation, and (4) gonadal function restoration (35). However,
10-30% of patients demonstrate DA resistance (69), necessitating
consideration of alternative interventions such as early surgical
decompression or stereotactic radiosurgery (70). This clinical
challenge underscores the importance of early identification of
DA non-responders to facilitate timely treatment modification
and improve clinical outcomes.

To address this clinical challenge, researchers developed a
radiomics-based predictive model that combines conventional
MRI features with machine learning algorithms. This approach
achieved robust performance (AUC = 0.81) in identifying DA-
resistant prolactinomas, enabling earlier therapeutic decision-
making (71). A subsequent study implemented an advanced
super-learner framework that integrated multiple deep learning
classifiers. This model employed both the AUC and Matthews
correlation coefficient (MCC) as complementary performance
metrics, demonstrating exceptional predictive capability (AUC =
0.98; MCC = 0.93) for assessing DA treatment dependence. Feature
importance analysis revealed temporal variations in predictive
factors: baseline serum PRL levels were most influential for early
treatment response, while 30-day post-treatment remission status
served as the strongest predictor of long-term DA dependence (72).

Acromegaly demonstrates similar treatment challenges, with
more than 95% of cases originating from GH-secreting PitNETs.
While TSS constitutes first-line therapy, patients with persistent
postoperative disease or those who are poor surgical candidates
require pharmacological intervention. Somatostatin analogs (SAs)
represent the cornerstone of medical management in these cases.
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The role of preoperative SA administration remains controversial.
Although some evidence suggests potential benefits for surgical
outcomes, SA resistance may lead to treatment delays and worse
clinical prognosis (71). This clinical dilemma underscores the
critical need for reliable biomarkers to predict SA responsiveness,
which would significantly enhance personalized
treatment strategies.

Recent advances in computational analysis have enabled more
precise prediction of treatment responses in acromegaly. A machine
learning framework incorporating quantitative texture analysis of
T2-weighted MRI demonstrated strong predictive performance for
SA therapy response in GH-secreting macroadenomas, achieving
85.1% classification accuracy with an AUC-ROC of 0.847 (73).
Further refining predictive capabilities, an Extreme Gradient
Boosting model was developed to anticipate SRL resistance. This
model attained an AUC of 0.753, with feature importance analysis
identifying three key predictive factors: (1) postoperative 3-month
IGF-1 levels, (2) 3-month GH levels, and (3) histological
classification as sparsely granulated somatotroph adenoma (55).

2.4 Complication

2.4.1 Cerebrospinal fluid leakage

Cerebrospinal fluid (CSF) leakage represents a frequent
complication following TSS, with an incidence of approximately
30% in patients with PitNETSs. This complication carries significant
clinical implications, potentially resulting in serious postoperative
sequelae including persistent headaches, meningitis, and surgical
site infections (74). The development of reliable preoperative
predictive models for CSF leakage risk is therefore essential for
optimizing surgical approach selection, enhancing perioperative
patient management, and reducing associated healthcare
expenditures.

Recent advances in machine learning have yielded several
predictive models for postoperative CSF leakage in PitNET
patients. Three distinct algorithmic approaches have
demonstrated particular efficacy: (1) RF classifiers (AUC = 0.84),
(2) Bayesian generalized linear models (GLMs) (AUC = 0.71), and
(3) TensorFlow-based neural networks (AUC = 0.84) (75-78).
These models consistently identified three key predictive
variables: Hardy classification grade, previous transsphenoidal
surgery, and patient age. A subsequent innovation employed
advanced neuroimaging analytics, developing a two-dimensional
convolutional neural network (2D-CNN) model based on extracted
MRI features. This approach achieved superior predictive
performance (AUC = 0.90), with class-activation mapping
analysis localizing the CSF flow pathway as the most anatomically
significant predictor of postoperative leakage risk (79).

2.4.2 Delayed hyponatremia

Delayed hyponatremia represents a common postoperative
complication following TSS, occurring in approximately 15% of
cases (80). The condition predominantly develops due to the
syndrome of inappropriate antidiuretic hormone secretion
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(STADH) caused by surgical manipulation of the posterior
pituitary gland. As one of the most frequent causes of unplanned
30-day readmissions, delayed hyponatremia substantially impacts
both patient morbidity and healthcare resource utilization. The
identification of robust predictive biomarkers is therefore essential
for improving postoperative surveillance protocols, reducing length
of hospitalization, and preventing potentially life-threatening
complications (81).

Emerging machine learning approaches have enabled accurate
prediction of delayed postoperative hyponatremia in patients
undergoing TSS for PitNETs. Comparative analyses of various
algorithms revealed that XGboost (AUC = 0.831) and RF (AUC =
0.798) models demonstrated optimal predictive performance (82,
83). Feature importance analysis identified four clinically significant
predictors: (1) degree of pituitary stalk deviation, (2) preoperative
measurable pituitary stalk length, (3) postoperative measurable
pituitary stalk length, and (4) the magnitude of serum sodium
concentration change between baseline and postoperative day 2.

2.4.3 Diabetes insipidus

TSS for PitNETSs carries a risk of posterior pituitary lobe injury,
which may precipitate diabetes insipidus (DI) through disruption of
arginine vasopressin (AVP) secretion. This complication manifests
as a spectrum of water homeostasis disturbances ranging from
transient polyuria to permanent dysregulation (84). The classic
clinical triad of DI includes polyuria (>3 L/day), polydipsia, and
hypernatremia. Without prompt intervention, these symptoms may
progress to severe dehydration, neurological manifestations
(lethargy, irritability), and significant deterioration in quality of life.

Recent advances in predictive analytics have enabled the
development of machine learning models capable of anticipating
postoperative DI in patients undergoing transsphenoidal surgery
for PitNETs. Comparative evaluation of various algorithms revealed
that RF models consistently demonstrate superior predictive
capabilities, with one study reporting an AUC of 0.815 and
identifying pituitary stalk invasion as the most significant
prognostic factor (85). A subsequent multicenter study developed
an integrated predictive framework incorporating both clinical and
radiological parameters. The RF algorithm again outperformed
other models, achieving exceptional accuracy (ACC = 0.882) and
discriminative ability (AUC = 0.96). Feature importance analysis
highlighted two key predictive clusters: morphometric changes in
pituitary stalk dimensions and dynamic variations in anterior
pituitary hormone profiles (86).

2.4.4 Olfactory dysfunction

Olfactory dysfunction represents a frequent postoperative
complication of TSS for PitNETSs, with reported incidence rates
varying from 10.5% to 44% across clinical series (87). This
neurosensory impairment primarily stems from intraoperative
trauma to olfactory-related anatomical structures, including the
olfactory epithelium, nasal septal mucosa, and superior turbinates.
The resultant anosmia or hyposmia can significantly impact
patients’ quality of life, particularly affecting nutritional intake
and environmental safety awareness.
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A recent prospective cohort study developed and validated a
machine learning-based predictive model for postoperative
olfactory dysfunction following TSS. Among multiple algorithms
evaluated, the RF classifier demonstrated optimal discriminative
performance (AUC-ROC = 0.846, 95% CI: 0.812-0.879). This model
enables preoperative risk stratification, early identification of high-
risk patients, and implementation of targeted preventive strategies
during the perioperative period. The robust predictive accuracy and
clinical interpretability of this model support its potential
integration into standardized postoperative care pathways (88).

3 Conclusions

AT has emerged as a transformative technology in the
comprehensive management of PitNETs (Figure 1). It offers
significant strengths including enhanced efficiency in tumor
detection through deep learning-based imaging analysis,
improved subtype classification as well as invasiveness prediction
via multimodal data fusion (i.e., integrating radiomics with clinical
parameters), and personalized surgical planning through AI-driven
risk prediction models. These advancements hold promise for
optimizing treatment strategies, mitigating complications, and
refining prognostic assessment for PitNETs.

However, critical limitations and challenges must be explicitly
acknowledged. The variability in population characteristics across
different centers and the heterogeneity of imaging equipment (e.g.,
differences in MRI scanner manufacturers, protocols, and
resolutions) necessitate extensive data harmonization and often
significant model fine-tuning to ensure generalizability and
robustness. Deployment in clinical settings faces substantial
hurdles, including computational resource requirements,
integration with existing hospital workflows and electronic health
records (EHRs), regulatory approvals, and ensuring equitable model
accessibility. Furthermore, unmet needs persist in modeling
complex biological behaviors and specific clinical variables.
Current AI models often struggle to adequately capture and
predict aspects like subtle tumor invasion patterns not readily
apparent on standard imaging, rare subtypes with limited data,
nuanced hormonal dynamics, long-term treatment response
variations, and the intricate interplay of molecular markers with
imaging and clinical phenotypes (89, 90). Addressing these gaps is
crucial for comprehensive predictive modeling.

Future research should therefore prioritize several key
directions: (1) Developing more interpretable and robust
algorithms capable of handling small-sample learning and
inherent data variability; (2) Conducting large-scale, multi-center
collaborative research that integrate detailed clinical characteristics,
standardized imaging data, molecular profiles, intraoperative
assessment and postoperative follow-up information; (3)
Rigorously validating AI tools through prospective clinical trials
to establish their clinical reliability and efficacy within the
framework of evidence-based medicine; and (4) Actively
addressing the practical challenges of clinical integration and
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accessibility. Collectively, overcoming these limitations and
focusing on the unmet needs will be essential to expedite the
transition of PitNET diagnosis and treatment towards truly
precise, intelligent, and clinically impactful medicine.
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