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Embryo selection at the
cleavage stage using Raman
spectroscopy of day 3 culture
medium and machine learning:
a preliminary study
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Beijing, China, “Shanghai D-Band Medical Technology Co., Ltd, Shanghai, China

Background: Blastocyst transfer has been associated with shorter leukocyte
telomere length in ART-conceived children, suggesting that extended embryo
culture may accelerate aging in offspring. Selecting Day 3 embryos with high
developmental potential for transfer could address this issue. The aim of this
study is to investigate whether machine learning combined with Raman
spectroscopy of spent Day 3 culture medium can serve as a potential method
for predicting extended embryo culture outcomes, thereby enabling embryo
selection at the cleavage stage.

Methods: This prospective study analyzed 172 Day 3 culture medium samples
with known extended culture outcomes from 78 couples collected between
February 2020 and February 2021. Samples were categorized into three groups
based on extended culture outcomes: morphologically good blastocysts (group
A), morphologically non-good blastocysts (group B), and clinically non-useful
embryos (group C). For each sample, 30-40 Raman spectra were acquired.
Machine learning analyses (both unsupervised and supervised) were performed
for data visualization and clustering. Eighty percent of the samples from each
group were used as training data, while the remaining 20% served as the test set.
Twelve machine learning models, including both deep learning and traditional
approaches, were independently trained and evaluated. Accuracy, sensitivity, and
specificity were calculated for each model. Finally, the best four top-performing
models were further combined using a stacking strategy for final prediction.
Results: The study included good-prognosis females (average age: 29.55 + 2.94
years) with an adequate number of Day 3 embryos (median: 9 [7, 11]). Supervised
machine learning of labeled Raman spectra revealed distinct clusters for each
group. The best-performing models were multilayer perceptron, artificial neural
network, gated recurrent unit, and linear discriminant analysis. Using the stacking
strategy, two samples were misclassified, and 33 were correctly predicted.
Sensitivity for A, B, and C predictions was 0.92, 1.00, and 0.94, respectively.
Specificity for A, B, and C predictions was 1.00, 0.93, and 1.00, respectively. The
overall accuracy, sensitivity, and specificity were 0.94, 0.93, and 0.97, respectively.
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Conclusion: Our preliminary study suggests that machine learning combined
with Raman spectra of spent Day 3 culture medium represents a promising non-
invasive approach for embryo selection at the cleavage stage.

embryo selection, extended culture outcomes, spent day 3 culture medium, Raman
spectroscopy, machine learning

1 Introduction

Assisted reproductive technology (ART) is the most effective
treatment for infertility. In ART, Day 3 embryos (cleavage stage) or
Day 5-6 embryos (blastocyst stage) are most commonly used for
transfer in reproductive centers worldwide. Due to the fact that many
Day 3 embryos cannot progress to the blastocyst stage, blastocysts
generally have better developmental potential than Day 3 embryos, as
indicated by higher implantation and live birth rates (1, 2).
Additionally, single blastocyst transfer effectively reduces the risk of
multiple pregnancies (3-5). As a result, extended culture of embryos
to the blastocyst stage is increasingly prevalent.

However, with the rise in blastocyst transfer cycles, concerns
regarding potential drawbacks of blastocyst transfer have emerged.
Blastocyst transfers have been linked to a higher risk of preterm
delivery, large-for-gestational-age infants, monozygotic twins, and
altered sex ratios compared to Day 3 embryo transfers (6). A recent
study suggested that blastocyst transfer, not Day 3 embryo transfer,
may be associated with shorter leukocyte telomere length in ART-
conceived children, suggesting that blastocyst transfer could
potentially accelerate aging in offspring (7). It is proposed that
extended culture could introduce epigenetic changes that affect
offspring health (7, 8). Since the first blastocyst transfer birth is only
33 years old, long-term safety concerns remain. This has led
researchers to question, “Should we be promoting blastocyst-stage
embryo transfer?” (6). Since extended culture is an effective form of
natural selection, identifying high-potential Day 3 embryos capable
of developing into good quality blastocysts without extended
culture may help address this issue.

Currently, morphological scoring remains the most widely used
method for assessing embryo quality, owing to its non-invasive,

Abbreviations: ART, Assisted reproductive technology; IVFE, In vitro fertilization;
ICSI, Intracytoplasmic sperm injection; ICM, Inner cell mass; TE,
Trophectoderm;t-SNE, t-distributed stochastic neighbor embedding; LaDA,
Latent Dirichlet Allocation; OPLS-DA, Orthogonal Partial Least Squares
Discriminant Analysis; MLP, Multilayer perceptron; ANN, Artificial neural
network; GRU, Gated recurrent unit;GB, Gradient boosting; KNN, K-nearest
neighbors; RF, Random forest; LSVM, Linear support vector machine; LDA,
Linear discriminant analysis; LR, Logistic regression;QDA, Quadratic
discriminant analysis; RSVM, Reduced support vector machines; NB, Naive

Bayes; ROC, Receiver Operating Characteristic; AUC, Area Under Curve.
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convenient, and relatively reliable properties. However,
morphological scoring is less objective (9). Although Day 3
embryos with good morphology are more likely to form blastocysts
compared to those with poor morphology, morphological scoring
cannot reliably distinguish embryos that will develop into blastocysts
from those that will not (10). Thus, new methods for assessing
embryo quality are urgently needed.

Metabolic differences (uptake and secretion) between high-and
low-quality embryos have been demonstrated, and researchers have
worked to reveal these differences in spent culture media to predict
developmental potential through metabolomic profiling (11, 12).
Raman spectroscopy, a type of scattering spectroscopy, can detect
extensive molecular information, including in liquids, with only a
small sample volume (10 pL). This method is simple, non-invasive,
and fast, making it well-suited for metabolomic profiling of spent
human embryo culture media (13). Several studies have shown
promising results in using Raman spectroscopy of spent culture
media to identify high-quality embryos (14-17). Liang et al.
reported that Raman spectroscopy could distinguish aneuploid
from euploid embryos (18). A recent study showed that combining
Raman spectroscopy of Day 3 high-quality embryo spent culture
medium with deep learning can identify embryos with blastocyst
development potential with an accuracy of 73.5% (19). However, in
our IVF lab, the blastocyst formation rate from good-quality Day 3
embryos is already 70-73% (20), so this level of accuracy has
limited clinical significance. Additionally, the developmental
potential of clinically useful blastocysts varies significantly, with
morphologically good blastocysts having substantially higher
developmental potential than poor-quality ones (21). Thus, using
Raman spectroscopy of Day 3 culture media to select morphologically
good blastocysts is of greater importance.

In this study, we collected 172 spent culture media samples
from Day 3 embryos including good and poor morphological score
embryos, with known extended culture outcomes. Metabolic
profiling of the culture media was measured by using Raman
spectroscopy. Extended culture outcomes were categorized into
three groups: morphologically good blastocysts (group A),
morphologically non-good blastocysts (group B), and clinically
non-useful embryos (group C), including those that failed to
develop into or became unusable blastocysts. Machine learning
was applied to correlate extended culture outcomes with Raman
spectral features of the Day 3 media. Of the samples, 137 were used
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as a training dataset, and 35 as a prediction dataset. Predicted
outcomes were then compared to actual extended culture results.

2 Materials and methods

2.1 Study design

Infertile couples who sought IVF-ET assistance for pregnancy at
our reproductive center between February 2020 and February 2021
were included in this study. We selected a total of 172 culture
medium samples from day 3 embryos that underwent extended

10.3389/fendo.2025.1608318

culture. Based on the extended culture outcomes, all the samples
were categorized into three groups: group A (n=58), group B
(n=25), and group C (n=89). For each group, 80% of the samples
were used as the training dataset, while the remaining samples were
used as the prediction dataset. Details of the study design are
presented in Figure 1.

2.2 Embryo culture and embryo score

After oocyte retrieval, oocytes were fertilized either by
conventional in vitro fertilization or ICSI in IVF medium. The

Day 3 culture medium

\4
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Step 1 A group B group C group
(n=58) (n=25) (n=89)
L )
Y
Raman spectrum acquisition and pre-processing
T(n=46) ltn=20) [ (=71
Step 2 | Raman spectrum | | Raman spectrum | | Raman spectrum |

\

J

Y

Clustering and data training

Step 3

Raman spectrum of
predicting samples
(n=35)

A

Outcome predicting

Step 4

FIGURE 1

Compared with actual outcome

Flowchart of the Study. Step 1: Based on extended culture outcomes, spent Day 3 culture medium samples were categorized into three groups: A,
B, and C. Raman spectra were collected and pro-processed. Step 2: Machine learning was applied to correlate Raman spectra from a randomly
selected 80% of samples in each group with the known extended culture outcomes for clustering and data training. Step 3: Raman spectra from the
remaining samples were used to make predictions. Step 4: Predicted result was compared with actual outcome. A: Morphologically good blastocyst;

B: Morphologically non-good blastocyst; C: Clinically non-useful embryos.
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day of insemination was designated as day 0. Approximately 18
hours later, the zygotes were observed under a light microscope.
Fertilization was assessed by the presence of pronuclei in the
zygotes. Normal fertilization was identified by the presence of two
pronuclei (one from the father and one from the mother), and
zygotes were then cultured in G1 medium (Vitrolife, Sweden). On
day 3, embryos were graded based on our previous methodology
(10). According to blastomere count and size, fragmentation
percentage, and other criteria, Day 3 embryos were classified into
four groups (Grade I, II, III, and IV) in ascending order of
developmental potential. Grade IV embryos were discarded due
to a lack of further developmental potential. Day 3 embryos with
developmental potential were transferred to G2 medium (Vitrolife,
Sweden) for extended culture. On day 5 or day 6, embryos that
reached the blastocyst stage were evaluated using a morphological
scoring system based on blastocyst expansion, as well as the scores
of the inner cell mass (ICM) and trophectoderm (TE), as previously
described (10). Blastocyst with an expansion grade of 3 or higher
and an ICM and TE score of either A or B were considered
morphologically good embryos (group A). Blastocyst with an
expansion grade of 3 or higher, a C score in either ICM or TE,
and a corresponding A or B score in the other component (ICM or
TE) were considered morphologically non-good embryos (group
B). Both morphologically good and non-good blastocysts were
clinically useful. Embryo that either failed to reach the blastocyst
stage or had a C score in both ICM and TE were considered
as clinically non-useful embryos (group C). The detailed
morphological appearance of blastocyst belongs to group A, B
and C was listed in Supplementary Figure 1.

2.3 Sample collection and treatment

A 25 pL drop of spent culture medium from Day 3 embryos was
immediately collected when the embryo was transferred to G2-plus
medium for extended culture. The medium was centrifuged at
1438 g for 10 minutes to separate the culture medium from the
paraffin oil, which is commonly used to cover the culture drops in
the IVF lab. The culture medium was then collected and stored at
-80°C for later use.

2.4 Raman spectroscope detection and
analysis

Ten microliters of collected medium was placed onto a tray and
air-dried. Several sites on the air-dried medium were selected to
acquire Raman spectra, with five spectra collected per site. A total of
30 to 40 Raman spectra for each sample was acquired for analysis.
Raman spectroscopy detection and analysis were performed as
previously described (22). A WITec alpha300 Raman microscope
(WITec GmbH, Germany) equipped with a 532 nm laser was used
in this study. A 100x objective (Epiplan-Neofluar, NA = 0.9, Zeiss)
was used to focus the excitation light. The laser power was
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approximately 15 mW, and a grating with 600 g/mm was
employed to disperse the Raman emission for wavelength
recording. The acquisition time was set to 3-5 seconds, and the
Raman spectral shift ranged from 300 cm™ to 3400 cm™.

2.5 Raw Raman spectra preprocessing

Raman spectral preprocessing was performed through a
standardized multi-step pipeline to enhance data quality and
comparability by using Labspec 6 (HORIBA, Japan). First, abnormal
spectra exhibiting excessive noise or baseline distortion were excluded
based on signal-to-noise ratio and spectral profile inspection. To
eliminate sharp intensity spikes caused by cosmic rays, a dynamic
filtering algorithm was applied with a filter size of 4 and a dynamic
factor of 6. The spectra were then truncated to the wavenumber range
of 300 to 3400 cm™, and resampled at 1 cm™ intervals to ensure
uniform spectral resolution and alignment across all samples. Baseline
correction was conducted using the Asymmetric Least Squares (AsLS)
algorithm, which effectively removed broad background variations
while preserving true Raman features. Subsequently, a Savitzky-
Golay filter was employed (window length = 10, polynomial order =
3) to reduce high-frequency noise and smooth the spectral curves
without distorting peak shapes. Finally, area normalization was applied
by scaling the total intensity of each spectrum to a fixed value of 100,
allowing for consistent comparison across different samples regardless
of absolute signal strength. This preprocessing strategy ensured robust
and reliable input for downstream statistical and machine
learning analyses.

2.6 Classification of core peak intensity
patterns among groups

The mean intensities of core peaks were compared across
groups. Classifications were based on the value of mean
intensities and the presence of statistically significant differences:

1. If the mean intensities follow the order A >B > C, A< B <
C,B < A <C,or A< C < B, with statistically differences
between each pair of groups, they are classified respectively
assA>B>C A<B<(CB<A<CorA<C<B.

2. If the mean intensity follows A = B < C, with statistically
significant differences between both A vs. C and B vs. C, but
not between A and B, it is classified as: A = B < C.

3. If the mean intensity follows A > B = C, with significant
differences between A vs. B and A vs. C, but not between B
and C, the classification is: A > B = C.

4. If the mean intensity follows A = C > B, with significant
differences between A vs. B and C vs. B, but not between A
and C, it is classified as: A = C > B.

5. If only one pair of groups shows a statistically significant
difference in mean intensity, such as B > A or C > B, it is
classified accordingly as: B > A or C > B.
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6. If no statistically significant differences in mean intensity
are observed among any of the groups, the classification is:
A=B=C.

2.7 Visualization of Raman spectra data

Over 1,000 intensity values across positions ranging from 300
cm’! to 3400 cm™! were extracted from each individual spectrum,
generating high-dimensional data. Machine learning algorithms
can manage this vast amount of information by applying
dimensionality reduction for visualization (23). In this study, both
unsupervised and supervised algorithms were utilized. For the
unsupervised approach, the t-distributed stochastic neighbor
embedding (t-SNE) method, a nonlinear dimensionality reduction
algorithm, was used due to its effectiveness in dimensionality
reduction and clustering (24). For supervised analysis, Latent
Dirichlet Allocation (LaDA) and Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA) were employed. LaDA and
OPLS-DA are powerful dimensionality reduction tools,
particularly useful in supervised learning contexts (25, 26). LDA
identifies topic distributions that optimize prediction of the target
variable, while OPLS-DA isolates components that maximize
variance between classes, filtering out variance unrelated to
class separation.

2.8 Algorithm models for data training and
prediction

Eighty percent of samples from each group were randomly
selected as the training dataset, and the remaining samples were
designated as the prediction dataset. To enhance model training
efficiency, the synthetic minority oversampling technique was
applied to the training dataset (27). Raman spectra labeled with
known extended culture outcomes were used for training, while
unlabeled spectra were predicted using 12 algorithmic models,
including multilayer perceptron (MLP) (28), artificial neural
network (ANN) (29), gated recurrent unit (GRU) (30), gradient
boosting (GB) (31), K-nearest neighbors (KNN) (32), random
forest (RF) (33), linear support vector machine (LSVM) (34),
linear discriminant analysis (LDA) (35), logistic regression (LR)
(36), and quadratic discriminant analysis (QDA) (37), reduced
support vector machines (RSVM) (38), and naive Bayes (NB)
(39). Among these, MLP, ANN, and GRU belong to deep
learning models, while the others are traditional machine learning
models. For traditional machine learning models, 5-fold cross-
validation (k=5) was applied to optimize hyperparameters and
evaluate model performance. Accuracy, sensitivity, and specificity
were calculated for each model. The training and validation
accuracy and loss, prediction results for spectra and samples, and
ROC curves for predicting A, B, and C were presented for the best-
performing model. Next, model stacking was applied to improve
predictive performance. Model stacking is an ensemble technique
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that combines multiple models to increase accuracy, reduce over-
fitting, and utilize diverse models (40). In stacking, different models
are trained independently on the same dataset, and their predictions
are used as inputs to a “meta-model” or “stacked model,” which
learns to make a final prediction by leveraging the strengths of each
model (41). The four best-performing models in this study were
selected for stacking. Finally, predictions from multiple Raman
spectra within a single sample were aggregated using a mode-based
mechanism to make the final decision.

2.9 Software

All model analyses were conducted using Python 3.9. The
libraries employed included, but were not limited to, SciPy for
statistical analysis, scikit-learn for machine learning models,
TensorFlow and PyTorch for deep learning models, and
Matplotlib and Seaborn for data visualization.

3 Results

3.1 Patient characteristics and details of
embryo culture

A total of 172 samples of spent Day 3 culture medium were
collected from 78 couples undergoing IVF treatment (Table 1). The
mean age of the women was 29.55 + 2.94 years (Table 1). The
primary infertility rate was 57.7%, and 85.9% of the women
underwent an ovulation induction protocol with an agonist
(Table 1). The median number of oocytes retrieved was 11.5
[IQR: 9.75, 15] (Table 1). Conventional in vitro fertilization was
used in 87.2% of cases, and the median number of available Day 3
embryos was 9 [IQR: 7, 11] (Table 1). A total of 82 culture medium
samples from Grade I and Grade II embryos were collected; of these,
38 embryos were in group A, 2 embryos in group B, and 42 embryos
in group C (Table 1). Additionally, 90 culture medium samples

TABLE 1 Patient characteristics and details of embryo culture.

n 78

Age 29.55 +2.94
Primary infertility (%) 45 (57.7)
Ovulation induction protocols (%)

Agonist 67(85.9)

Antagonist 9 (11.5)

Mild stimulation 2 (2.6)
Occytes retrieved 11.5 [9.75, 15]
IVF cycles (%) 68 (87.2)
Available day 3 embryos 9(7,11]

(Continued)
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TABLE 1 Continued

n 78
Grad I+Il embryos (82)

A 38
B 2
C 42
Grad Ill embryos (90)

A 20
B 23
C 47

Data expressed as mean + SD or count (percentage) or medium [15% percentile,75% percentile].
IVE: In vitro fertilization; A: morphologically good blastocyst; B: morphologically non-good
blastocyst; C: clinically non-useful embryos.

from Grade III embryos were collected, of which 20 were in group
A, 23 embryos in group B, and 47 embryos in group C (Table 1).

3.2 Raman finger print and patterns of core
peak intensity among groups

Each Raman spectrum in each group included 18 core peak

positions: 506, 620, 642, 662, 750, 850, 938, 1000, 1030, 1120, 1202,
1332, 1446, 1605, 1654, 2874, and 2926 cm’’ (Figure 2).

A

o
i

o
=

506
#
FEO o e
850
898
938

1000
1030
1120
1202
1332

o
=

Intensity(a.u.)

o
N

N

|/
-/
-

A

L
NN

0.0

10.3389/fendo.2025.1608318

The statistical analysis of intensity of core peaks at different
positions among three groups were shown in Figures 3A-R.
Combining with the value of mean peak intensity and statistical
significance, we summarized a total of ten patterns of peak intensity
among groups, including A > B > C (Figures 3A, B), A<B < C
(Figure 3C), B < A < C (Figures 3D, E), A <C < B (Figure 3F), A= B
< C (Figures 3G-J), A > B=C (Figures 3K-M), A = C > B
(Figure 3N), B > A (Figure 30), C > B (Figure 3P) and A = B =
C (Figures 3Q,R). These results revealed distinct, complicated and
subtle spectral differences among groups, and indicated that
relaying on peak core intensity difference is not likely to
effectively distinguish different outcomes.

3.3 Group-specific clustering of Raman
spectra

Dimensionality reduction by unsupervised algorithms, t-SNE,
revealed rough three clusters according to the groups (Figure 4A).
However, many spectra from the A and B groups were intermixed
with those from the C group (Figure 4A). We then applied two
supervised algorithms for visualization: LaDA and OPLS-DA,
which take into account both spectral features and sample labels.
Compared to the t-SNE distribution, LaDA and OPLS-DA
produced a more distinct clustering of spectra by group with less
overlap (Figures 4B, C). These findings revealed group-specific
differences in the Raman spectra of the culture medium.

C

1446
T —
1654

500 1000

FIGURE 2

1500
Wavenumber/cm™1!

3000

Raman spectra among groups. Overview of core peaks in Raman spectra from Day 3 spent culture medium for A, B, and C groups. A:
Morphologically good blastocyst; B: Morphologically non-good blastocyst; C: Clinically non-useful embryos.
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FIGURE 3

Core peak intensity patterns in Raman spectra among groups. The core peak intensity at various positions showed distinct intensity patterns across
groups. At 750 cm™ (A) and 938 cm™ (B) showed: A > B > C. At 1202 cm™* (C) showed: A < B < C. At 620 cm™ (D) and 850 cm™ (E) showed: B <A <
C. At 2926 cm™ (F) showed A < C< B. At 642 cm™ (G), 662 cm™ (H), 1000 cm™ (1), and 1030 cm™ (J) showed:A = B < (C) At 898 cm™ (K), 1332 cm™*
(L), and 1446 cm™(M) showed: A > B = C. At 1605 cm™ (N) showed A ~ C > B. At 506 cm™ (O) showed: B > A. At 2874 cm™ (P) showed C > B. At
1120 cm ™ (Q) and 1654 cm™X(R): A = B = C. *p < 0.05; **p < 0.01; ***p < 0.001. ns: no significant difference. A: Morphologically good blastocyst; B:

Morphologically non-good blastocyst; C: Clinically non-useful embryos.

3.4 MLP model had the best ability for
predicting

A total of 12 models were used for training and predicting. The
accuracy, sensitivity, and specificity for each model were presented
in Table 2. Among these, the MLP model had the best predictive
performance (Table 2). Training and validation accuracy, as well as
training and validation loss, reflect the model’s performance on the
training and validation datasets (42). Our results showed that the
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MLP model performed well in both the training and prediction
datasets (Figure 5A). The prediction results for Raman spectra
in the test dataset using the MLP model were shown in Figure 5B.
The sensitivity for predicting A was 0.79, for predicting B was 0.82,
and for predicting C was 0.87, while the specificity for predicting
A was 0.93, for predicting B was 0.92, and for predicting C was
0.89. The ROC curve for predicting A, B, and C was shown in
Figure 4C. The AUC for A was 0.91, and for B and C, it was
0.95 (Figure 5C).
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Group-specific clustering of Raman spectra. Dimensionality reduction techniques applied to Raman spectra for visualization among groups: (A) t-
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t-SNE, t-Distributed Stochastic Neighbor Embedding; LaDA, Latent Dirichlet Allocation; OPLS-DA, Orthogonal Partial Least Squares Discriminant

Analysis.

3.5 The stacking strategy accurately
predicted the outcomes of extended
embryo culture

To further improve prediction efficiency, the best four models
(MLP, ANN, GRU, and LDAB) were stacked. The prediction results
are presented in Figure 6A. The sensitivity for predicting A was
0.92, for predicting B was 1.0, and for predicting C was 0.94, while
the specificity for predicting A was 1.0, for predicting B was 0.93,
and for predicting C was 1.0. The overall accuracy was 0.94, the
overall sensitivity was 0.93, and the overall specificity was 0.97.
Additionally, over 91% of the samples had an accuracy rate of
Raman spectra exceeding 50% (Figure 6B). For example, if each

TABLE 2 The predicting efficiency of different models.

Rank Model Accuracy Sensitivity Specificity
1 MLP 0.84 0.83 0.92
2 GRU 0.81 0.76 0.89
3 ANN 0.81 0.76 0.9
4 LDA 0.78 0.75 0.88
5 QDA 0.77 0.72 0.86
6 GB 0.77 0.71 0.87
7 RF 0.77 0.7 0.86
8 NB 0.76 0.73 0.86
9 LR 0.76 0.69 0.85

10 LSVM 0.74 0.72 0.86
11 KNN 0.71 0.59 0.83
12 RSVM 0.53 035 0.68

The predicting efficiency for a total of 12 models from rank 1 to rank 12 with the data of
predicting accuracy, sensitivity and specificity. MLP, multilayer perceptron; ANN, artificial
neural network; GRU, gated recurrent unit; LDA, linear discriminant analysis; QDA,
quadratic discriminant analysis.GB, gradient boosting; RF, random forest; NB, naive Bayes;
LR, logistic regression; LSVM, linear support vector machine; KNN, K-nearest neighbors;
RSVM, Reduced support vector machines.
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sample had 20 individual spectra, more than 91% of the samples
have at least 10 spectra with correct prediction results.

4 Discussion

In the present study, machine learning was combined with
Raman spectra of spent Day 3 culture medium to predict extended
culture outcomes. Our preliminary results are promising, and
indicated that machine learning analysis of Raman spectra from
spent Day 3 culture medium can accurately predict the extended
culture outcomes with high accuracy, sensitivity, and specificity.
This study may provide a non-invasive, rapid, and effective tool for
selecting good potential cleavage-stage embryos for transfer,
potentially reducing the blastocyst transfer cycles.

The patients included in this study were couples with a good
prognosis and a certain number of available Day 3 embryos. For
these couples, selecting the best Day 3 embryos for transfer is
particularly important and necessary. Therefore, the inclusion of
these couples was appropriate for this study. Studies using Raman
spectra of spent culture medium to predict embryo developmental
potential have been reported since 2007 (14). Several studies
classified spent culture medium into two groups: clinical
pregnancy and non-pregnancy (14, 17, 43). This classification
assumes that embryos leading to clinical pregnancies have good
developmental potential. Although this concept is logical, it has
inherent flaws. Both embryo and non-embryo factors contribute to
female infertility, meaning that an embryo failing to implant does
not necessarily indicate poor quality (44, 45). This grouping
approach can introduce unwanted bias into the analysis. In the
present study, we used extended culture outcomes for grouping, as
they are relatively objective. This grouping ensures more consistent
data within each group, which may contribute to the strong
predictive ability shown in this study.

A previous study used machine learning in combination with
Raman spectra of spent Day 3 culture medium to predict extended
culture outcomes (19). The design of that study is similar to the
present one. However, there are several major differences between
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MLP model had the best predicting ability. (A) Validation accuracy and loss during data training using the MLP. (B) Comparison of actual and
predicted extended culture outcomes of Raman spectra using the MLP model. (C) AUC curves for predicted extended culture outcomes of A, B, and
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perceptron model.

A
a 11
3p- 0

=
c- 0
A

B
Predicted

Frequency

125

25

00

Distribution of Correct Label Percentage by ID

[]

1 l I | ] I ]
4 05 08 07 08 09

0.3 0. . . .
Correct Label Percentage by ID

1.0

FIGURE 6

The stacking strategy accurately predicted the outcomes of extended embryo culture. (A) Comparison of actual and predicted extended culture
outcomes for each sample using a model stacking strategy. (B) Distribution of samples showing the percentage of correctly predicted Raman
spectra out of all Raman spectra for each sample. A: Morphologically good blastocyst; B: Morphologically non-good blastocyst; C: Clinically non-

useful embryos.

Frontiers in Endocrinology

09

frontiersin.org


https://doi.org/10.3389/fendo.2025.1608318
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Cao et al.

the two. First, in that study, the extended culture outcomes were
classified into two groups: useful blastocysts versus non-useful
embryos. It is known that morphologically good blastocysts have
much better developmental potential than morphologically non-
good blastocysts (46), even though both morphologically good and
non-good blastocysts are considered useful. In the present study, we
classified the extended culture outcomes into three groups:
morphologically good group, morphologically non-good group,
and clinically non-useful group. This classification allows us to
select the good-quality blastocyst from the useful blastocysts.
Second, unlike that study, which only included spent culture
medium from good-quality Day 3 embryos, the present study
included spent culture medium from both good (Grade I+II, 82
cases) and poor (Grade III, 90 cases) Day 3 embryos. This design
enhances the representativeness and robustness of the study.
Notably, grouping was based solely on extended culture
outcomes, without considering Day 3 embryo morphology. This
highlights that machine learning combined with Raman spectra of
spent Day 3 culture medium can independently predict extended
culture outcomes, serving as a morphology-independent evaluation
system. Finally, while the previous study reported a prediction
accuracy of ~73%, this is comparable to the actual blastocyst
formation rate (~70%) from good Day 3 embryos in our IVF
laboratory (20), limiting its clinical significance. In contrast, our
model demonstrates much higher predictive efficiency with
meaningful clinical applicability.

Previous studies have identified differences in one or more
substances in spent culture medium between embryos with good
and poor developmental potential (15, 47). It is known that
morphologically good, morphologically non-good, and clinically
non-useful embryos show progressively decreased potential.
However, only the intensity of core peaks in the Raman spectra at
750,938, and 1202 cm™" showed significant increases or decreases in
value from A to B and further to C. No similar trends were observed
at other peak positions. Due to the small differences and the varied
and complex pattern of intensity values among the groups, it is
impossible to make accurate predictions based on single or few
differences. Instead, integrating all features (not limited to peak
intensity values) is essential for effective prediction. Therefore,
machine learning is required to process such large and complex
data. In the present study, we found that deep learning models, such
as MLP, ANN, and GRU, performed exceptionally well in training
and prediction, demonstrating the advantages of deep learning in
handling such tasks (48). The effectiveness of algorithm stacking for
prediction has been demonstrated. In this study, the stacking
strategy achieved higher prediction accuracy than any single
algorithm. Thus, the stacking approach used in this study
enhances the accuracy of predictions.

The present study is clinically significant. Our findings may
offer an independent and non-invasive method for assessing day 3
embryo quality. Clearly, the current data indicate that machine
learning combined with Raman spectra of spent Day 3 culture
medium performs better in predicting embryo quality than
traditional morphological scoring. Most importantly, this method
allows for the selection of the good-quality embryos at the cleavage
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stage, potentially reducing the need for blastocyst transfer cycles.
For instance, Day 3 embryos predicted to form morphologically
good blastocysts based on the Raman spectra of the culture medium
could be prioritized for transfer. The remaining Day 3 embryos
predicted to form morphologically non-good or clinically non-
useful blastocysts could undergo further culture. Currently,
processing a batch of 20 samples, from collection to result release,
takes approximately 3.5 hours using a single Raman spectrometer.
Throughput can be further increased with multiple instruments.
Therefore, this technique holds potential for clinical translation.

There are several limitations in the present study. First, the
number of spent culture medium samples was limited. A larger
sample size will be collected and analyzed to improve the predicting
model in future studies. Second, it is unclear whether the training
and prediction models established in one IVF laboratory are
suitable for use in other IVF labs. This needs to be further
validated across multiple IVF centers. Third, the findings of this
study show promise for prediction, but a randomized clinical trial is
needed to assess whether the strategy of Raman spectra of spent Day
3 culture medium-guided embryo transfer improves clinical
outcomes compared to traditional morphological scoring. Finally,
embryo developmental speed (blastocysts form on day 5 or 6),
which has been linked to embryo developmental potential (49), was
not considered in the present study. This will be considered in the
future study.

5 Conclusion

In summary, the present study indicates that machine learning
combined with Raman spectroscopy of day 3 spent culture medium
holds the potential to predict extended embryo culture outcomes
with high accuracy, sensitivity, and specificity. This non-invasive
approach offers a promising strategy for embryo selection at the
cleavage stage, potentially enabling the benefits of extended culture
while mitigating the risks associated with blastocyst transfer.
However, larger datasets and further studies are needed to
validate the clinical feasibility and reliability of this method for
routine embryo selection.
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