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Background: Blastocyst transfer has been associated with shorter leukocyte

telomere length in ART-conceived children, suggesting that extended embryo

culture may accelerate aging in offspring. Selecting Day 3 embryos with high

developmental potential for transfer could address this issue. The aim of this

study is to investigate whether machine learning combined with Raman

spectroscopy of spent Day 3 culture medium can serve as a potential method

for predicting extended embryo culture outcomes, thereby enabling embryo

selection at the cleavage stage.

Methods: This prospective study analyzed 172 Day 3 culture medium samples

with known extended culture outcomes from 78 couples collected between

February 2020 and February 2021. Samples were categorized into three groups

based on extended culture outcomes: morphologically good blastocysts (group

A), morphologically non-good blastocysts (group B), and clinically non-useful

embryos (group C). For each sample, 30–40 Raman spectra were acquired.

Machine learning analyses (both unsupervised and supervised) were performed

for data visualization and clustering. Eighty percent of the samples from each

group were used as training data, while the remaining 20% served as the test set.

Twelve machine learning models, including both deep learning and traditional

approaches, were independently trained and evaluated. Accuracy, sensitivity, and

specificity were calculated for each model. Finally, the best four top-performing

models were further combined using a stacking strategy for final prediction.

Results: The study included good-prognosis females (average age: 29.55 ± 2.94

years) with an adequate number of Day 3 embryos (median: 9 [7, 11]). Supervised

machine learning of labeled Raman spectra revealed distinct clusters for each

group. The best-performing models were multilayer perceptron, artificial neural

network, gated recurrent unit, and linear discriminant analysis. Using the stacking

strategy, two samples were misclassified, and 33 were correctly predicted.

Sensitivity for A, B, and C predictions was 0.92, 1.00, and 0.94, respectively.

Specificity for A, B, and C predictions was 1.00, 0.93, and 1.00, respectively. The

overall accuracy, sensitivity, and specificity were 0.94, 0.93, and 0.97, respectively.
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Conclusion: Our preliminary study suggests that machine learning combined

with Raman spectra of spent Day 3 culture medium represents a promising non-

invasive approach for embryo selection at the cleavage stage.
KEYWORDS

embryo selection, extended culture outcomes, spent day 3 culture medium, Raman
spectroscopy, machine learning
1 Introduction

Assisted reproductive technology (ART) is the most effective

treatment for infertility. In ART, Day 3 embryos (cleavage stage) or

Day 5–6 embryos (blastocyst stage) are most commonly used for

transfer in reproductive centers worldwide. Due to the fact that many

Day 3 embryos cannot progress to the blastocyst stage, blastocysts

generally have better developmental potential than Day 3 embryos, as

indicated by higher implantation and live birth rates (1, 2).

Additionally, single blastocyst transfer effectively reduces the risk of

multiple pregnancies (3–5). As a result, extended culture of embryos

to the blastocyst stage is increasingly prevalent.

However, with the rise in blastocyst transfer cycles, concerns

regarding potential drawbacks of blastocyst transfer have emerged.

Blastocyst transfers have been linked to a higher risk of preterm

delivery, large-for-gestational-age infants, monozygotic twins, and

altered sex ratios compared to Day 3 embryo transfers (6). A recent

study suggested that blastocyst transfer, not Day 3 embryo transfer,

may be associated with shorter leukocyte telomere length in ART-

conceived children, suggesting that blastocyst transfer could

potentially accelerate aging in offspring (7). It is proposed that

extended culture could introduce epigenetic changes that affect

offspring health (7, 8). Since the first blastocyst transfer birth is only

33 years old, long-term safety concerns remain. This has led

researchers to question, “Should we be promoting blastocyst-stage

embryo transfer?” (6). Since extended culture is an effective form of

natural selection, identifying high-potential Day 3 embryos capable

of developing into good quality blastocysts without extended

culture may help address this issue.

Currently, morphological scoring remains the most widely used

method for assessing embryo quality, owing to its non-invasive,
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convenient, and relatively reliable properties. However,

morphological scoring is less objective (9). Although Day 3

embryos with good morphology are more likely to form blastocysts

compared to those with poor morphology, morphological scoring

cannot reliably distinguish embryos that will develop into blastocysts

from those that will not (10). Thus, new methods for assessing

embryo quality are urgently needed.

Metabolic differences (uptake and secretion) between high-and

low-quality embryos have been demonstrated, and researchers have

worked to reveal these differences in spent culture media to predict

developmental potential through metabolomic profiling (11, 12).

Raman spectroscopy, a type of scattering spectroscopy, can detect

extensive molecular information, including in liquids, with only a

small sample volume (10 µL). This method is simple, non-invasive,

and fast, making it well-suited for metabolomic profiling of spent

human embryo culture media (13). Several studies have shown

promising results in using Raman spectroscopy of spent culture

media to identify high-quality embryos (14–17). Liang et al.

reported that Raman spectroscopy could distinguish aneuploid

from euploid embryos (18). A recent study showed that combining

Raman spectroscopy of Day 3 high-quality embryo spent culture

medium with deep learning can identify embryos with blastocyst

development potential with an accuracy of 73.5% (19). However, in

our IVF lab, the blastocyst formation rate from good-quality Day 3

embryos is already 70-73% (20), so this level of accuracy has

limited clinical significance. Additionally, the developmental

potential of clinically useful blastocysts varies significantly, with

morphologically good blastocysts having substantially higher

developmental potential than poor-quality ones (21). Thus, using

Raman spectroscopy of Day 3 culturemedia to select morphologically

good blastocysts is of greater importance.

In this study, we collected 172 spent culture media samples

from Day 3 embryos including good and poor morphological score

embryos, with known extended culture outcomes. Metabolic

profiling of the culture media was measured by using Raman

spectroscopy. Extended culture outcomes were categorized into

three groups: morphologically good blastocysts (group A),

morphologically non-good blastocysts (group B), and clinically

non-useful embryos (group C), including those that failed to

develop into or became unusable blastocysts. Machine learning

was applied to correlate extended culture outcomes with Raman

spectral features of the Day 3 media. Of the samples, 137 were used
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as a training dataset, and 35 as a prediction dataset. Predicted

outcomes were then compared to actual extended culture results.
2 Materials and methods

2.1 Study design

Infertile couples who sought IVF-ET assistance for pregnancy at

our reproductive center between February 2020 and February 2021

were included in this study. We selected a total of 172 culture

medium samples from day 3 embryos that underwent extended
Frontiers in Endocrinology 03
culture. Based on the extended culture outcomes, all the samples

were categorized into three groups: group A (n=58), group B

(n=25), and group C (n=89). For each group, 80% of the samples

were used as the training dataset, while the remaining samples were

used as the prediction dataset. Details of the study design are

presented in Figure 1.
2.2 Embryo culture and embryo score

After oocyte retrieval, oocytes were fertilized either by

conventional in vitro fertilization or ICSI in IVF medium. The
FIGURE 1

Flowchart of the Study. Step 1: Based on extended culture outcomes, spent Day 3 culture medium samples were categorized into three groups: A,
B, and C. Raman spectra were collected and pro-processed. Step 2: Machine learning was applied to correlate Raman spectra from a randomly
selected 80% of samples in each group with the known extended culture outcomes for clustering and data training. Step 3: Raman spectra from the
remaining samples were used to make predictions. Step 4: Predicted result was compared with actual outcome. A: Morphologically good blastocyst;
B: Morphologically non-good blastocyst; C: Clinically non-useful embryos.
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day of insemination was designated as day 0. Approximately 18

hours later, the zygotes were observed under a light microscope.

Fertilization was assessed by the presence of pronuclei in the

zygotes. Normal fertilization was identified by the presence of two

pronuclei (one from the father and one from the mother), and

zygotes were then cultured in G1 medium (Vitrolife, Sweden). On

day 3, embryos were graded based on our previous methodology

(10). According to blastomere count and size, fragmentation

percentage, and other criteria, Day 3 embryos were classified into

four groups (Grade I, II, III, and IV) in ascending order of

developmental potential. Grade IV embryos were discarded due

to a lack of further developmental potential. Day 3 embryos with

developmental potential were transferred to G2 medium (Vitrolife,

Sweden) for extended culture. On day 5 or day 6, embryos that

reached the blastocyst stage were evaluated using a morphological

scoring system based on blastocyst expansion, as well as the scores

of the inner cell mass (ICM) and trophectoderm (TE), as previously

described (10). Blastocyst with an expansion grade of 3 or higher

and an ICM and TE score of either A or B were considered

morphologically good embryos (group A). Blastocyst with an

expansion grade of 3 or higher, a C score in either ICM or TE,

and a corresponding A or B score in the other component (ICM or

TE) were considered morphologically non-good embryos (group

B). Both morphologically good and non-good blastocysts were

clinically useful. Embryo that either failed to reach the blastocyst

stage or had a C score in both ICM and TE were considered

as clinically non-useful embryos (group C). The detailed

morphological appearance of blastocyst belongs to group A, B

and C was listed in Supplementary Figure 1.
2.3 Sample collection and treatment

A 25 µL drop of spent culture medium from Day 3 embryos was

immediately collected when the embryo was transferred to G2-plus

medium for extended culture. The medium was centrifuged at

1438 g for 10 minutes to separate the culture medium from the

paraffin oil, which is commonly used to cover the culture drops in

the IVF lab. The culture medium was then collected and stored at

-80°C for later use.
2.4 Raman spectroscope detection and
analysis

Ten microliters of collected medium was placed onto a tray and

air-dried. Several sites on the air-dried medium were selected to

acquire Raman spectra, with five spectra collected per site. A total of

30 to 40 Raman spectra for each sample was acquired for analysis.

Raman spectroscopy detection and analysis were performed as

previously described (22). A WITec alpha300 Raman microscope

(WITec GmbH, Germany) equipped with a 532 nm laser was used

in this study. A 100x objective (Epiplan-Neofluar, NA = 0.9, Zeiss)

was used to focus the excitation light. The laser power was
Frontiers in Endocrinology 04
approximately 15 mW, and a grating with 600 g/mm was

employed to disperse the Raman emission for wavelength

recording. The acquisition time was set to 3–5 seconds, and the

Raman spectral shift ranged from 300 cm-1 to 3400 cm-1.
2.5 Raw Raman spectra preprocessing

Raman spectral preprocessing was performed through a

standardized multi-step pipeline to enhance data quality and

comparability by using Labspec 6 (HORIBA, Japan). First, abnormal

spectra exhibiting excessive noise or baseline distortion were excluded

based on signal-to-noise ratio and spectral profile inspection. To

eliminate sharp intensity spikes caused by cosmic rays, a dynamic

filtering algorithm was applied with a filter size of 4 and a dynamic

factor of 6. The spectra were then truncated to the wavenumber range

of 300 to 3400 cm-1, and resampled at 1 cm-1 intervals to ensure

uniform spectral resolution and alignment across all samples. Baseline

correction was conducted using the Asymmetric Least Squares (AsLS)

algorithm, which effectively removed broad background variations

while preserving true Raman features. Subsequently, a Savitzky–

Golay filter was employed (window length = 10, polynomial order =

3) to reduce high-frequency noise and smooth the spectral curves

without distorting peak shapes. Finally, area normalization was applied

by scaling the total intensity of each spectrum to a fixed value of 100,

allowing for consistent comparison across different samples regardless

of absolute signal strength. This preprocessing strategy ensured robust

and reliable input for downstream statistical and machine

learning analyses.
2.6 Classification of core peak intensity
patterns among groups

The mean intensities of core peaks were compared across

groups. Classifications were based on the value of mean

intensities and the presence of statistically significant differences:
1. If the mean intensities follow the order A > B > C, A < B <

C, B < A < C, or A < C < B, with statistically differences

between each pair of groups, they are classified respectively

as: A > B > C, A < B < C, B < A < C, or A < C < B.

2. If the mean intensity follows A ≈ B < C, with statistically

significant differences between both A vs. C and B vs. C, but

not between A and B, it is classified as: A ≈ B < C.

3. If the mean intensity follows A > B ≈ C, with significant

differences between A vs. B and A vs. C, but not between B

and C, the classification is: A > B ≈ C.

4. If the mean intensity follows A ≈ C > B, with significant

differences between A vs. B and C vs. B, but not between A

and C, it is classified as: A ≈ C > B.

5. If only one pair of groups shows a statistically significant

difference in mean intensity, such as B > A or C > B, it is

classified accordingly as: B > A or C > B.
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Fron
6. If no statistically significant differences in mean intensity

are observed among any of the groups, the classification is:

A ≈ B ≈ C.
2.7 Visualization of Raman spectra data

Over 1,000 intensity values across positions ranging from 300

cm-1 to 3400 cm-1 were extracted from each individual spectrum,

generating high-dimensional data. Machine learning algorithms

can manage this vast amount of information by applying

dimensionality reduction for visualization (23). In this study, both

unsupervised and supervised algorithms were utilized. For the

unsupervised approach, the t-distributed stochastic neighbor

embedding (t-SNE) method, a nonlinear dimensionality reduction

algorithm, was used due to its effectiveness in dimensionality

reduction and clustering (24). For supervised analysis, Latent

Dirichlet Allocation (LaDA) and Orthogonal Partial Least Squares

Discriminant Analysis (OPLS-DA) were employed. LaDA and

OPLS-DA are powerful dimensionality reduction tools,

particularly useful in supervised learning contexts (25, 26). LDA

identifies topic distributions that optimize prediction of the target

variable, while OPLS-DA isolates components that maximize

variance between classes, filtering out variance unrelated to

class separation.
2.8 Algorithm models for data training and
prediction

Eighty percent of samples from each group were randomly

selected as the training dataset, and the remaining samples were

designated as the prediction dataset. To enhance model training

efficiency, the synthetic minority oversampling technique was

applied to the training dataset (27). Raman spectra labeled with

known extended culture outcomes were used for training, while

unlabeled spectra were predicted using 12 algorithmic models,

including multilayer perceptron (MLP) (28), artificial neural

network (ANN) (29), gated recurrent unit (GRU) (30), gradient

boosting (GB) (31), K-nearest neighbors (KNN) (32), random

forest (RF) (33), linear support vector machine (LSVM) (34),

linear discriminant analysis (LDA) (35), logistic regression (LR)

(36), and quadratic discriminant analysis (QDA) (37), reduced

support vector machines (RSVM) (38), and naïve Bayes (NB)

(39). Among these, MLP, ANN, and GRU belong to deep

learning models, while the others are traditional machine learning

models. For traditional machine learning models, 5-fold cross-

validation (k=5) was applied to optimize hyperparameters and

evaluate model performance. Accuracy, sensitivity, and specificity

were calculated for each model. The training and validation

accuracy and loss, prediction results for spectra and samples, and

ROC curves for predicting A, B, and C were presented for the best-

performing model. Next, model stacking was applied to improve

predictive performance. Model stacking is an ensemble technique
tiers in Endocrinology 05
that combines multiple models to increase accuracy, reduce over-

fitting, and utilize diverse models (40). In stacking, different models

are trained independently on the same dataset, and their predictions

are used as inputs to a “meta-model” or “stacked model,” which

learns to make a final prediction by leveraging the strengths of each

model (41). The four best-performing models in this study were

selected for stacking. Finally, predictions from multiple Raman

spectra within a single sample were aggregated using a mode-based

mechanism to make the final decision.
2.9 Software

All model analyses were conducted using Python 3.9. The

libraries employed included, but were not limited to, SciPy for

statistical analysis, scikit-learn for machine learning models,

TensorFlow and PyTorch for deep learning models, and

Matplotlib and Seaborn for data visualization.
3 Results

3.1 Patient characteristics and details of
embryo culture

A total of 172 samples of spent Day 3 culture medium were

collected from 78 couples undergoing IVF treatment (Table 1). The

mean age of the women was 29.55 ± 2.94 years (Table 1). The

primary infertility rate was 57.7%, and 85.9% of the women

underwent an ovulation induction protocol with an agonist

(Table 1). The median number of oocytes retrieved was 11.5

[IQR: 9.75, 15] (Table 1). Conventional in vitro fertilization was

used in 87.2% of cases, and the median number of available Day 3

embryos was 9 [IQR: 7, 11] (Table 1). A total of 82 culture medium

samples from Grade I and Grade II embryos were collected; of these,

38 embryos were in group A, 2 embryos in group B, and 42 embryos

in group C (Table 1). Additionally, 90 culture medium samples
TABLE 1 Patient characteristics and details of embryo culture.

n 78

Age 29.55 ± 2.94

Primary infertility (%) 45 (57.7)

Ovulation induction protocols (%)

Agonist 67(85.9)

Antagonist 9 (11.5)

Mild stimulation 2 (2.6)

Occytes retrieved 11.5 [9.75, 15]

IVF cycles (%) 68 (87.2)

Available day 3 embryos 9 [7, 11]

(Continued)
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from Grade III embryos were collected, of which 20 were in group

A, 23 embryos in group B, and 47 embryos in group C (Table 1).
3.2 Raman finger print and patterns of core
peak intensity among groups

Each Raman spectrum in each group included 18 core peak

positions: 506, 620, 642, 662, 750, 850, 938, 1000, 1030, 1120, 1202,

1332, 1446, 1605, 1654, 2874, and 2926 cm-1 (Figure 2).
Frontiers in Endocrinology 06
The statistical analysis of intensity of core peaks at different

positions among three groups were shown in Figures 3A–R.

Combining with the value of mean peak intensity and statistical

significance, we summarized a total of ten patterns of peak intensity

among groups, including A > B > C (Figures 3A, B), A < B < C

(Figure 3C), B < A < C (Figures 3D, E), A <C < B (Figure 3F), A ≈ B

< C (Figures 3G–J), A > B≈C (Figures 3K–M), A ≈ C > B

(Figure 3N), B > A (Figure 3O), C > B (Figure 3P) and A ≈ B ≈

C (Figures 3Q,R). These results revealed distinct, complicated and

subtle spectral differences among groups, and indicated that

relaying on peak core intensity difference is not likely to

effectively distinguish different outcomes.
3.3 Group-specific clustering of Raman
spectra

Dimensionality reduction by unsupervised algorithms, t-SNE,

revealed rough three clusters according to the groups (Figure 4A).

However, many spectra from the A and B groups were intermixed

with those from the C group (Figure 4A). We then applied two

supervised algorithms for visualization: LaDA and OPLS-DA,

which take into account both spectral features and sample labels.

Compared to the t-SNE distribution, LaDA and OPLS-DA

produced a more distinct clustering of spectra by group with less

overlap (Figures 4B, C). These findings revealed group-specific

differences in the Raman spectra of the culture medium.
TABLE 1 Continued

n 78

Grad I+II embryos (82)

A 38

B 2

C 42

Grad III embryos (90)

A 20

B 23

C 47
Data expressed as mean ± SD or count (percentage) or medium [15% percentile,75% percentile].
IVF: In vitro fertilization; A: morphologically good blastocyst; B: morphologically non-good
blastocyst; C: clinically non-useful embryos.
FIGURE 2

Raman spectra among groups. Overview of core peaks in Raman spectra from Day 3 spent culture medium for A, B, and C groups. A:
Morphologically good blastocyst; B: Morphologically non-good blastocyst; C: Clinically non-useful embryos.
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3.4 MLP model had the best ability for
predicting

A total of 12 models were used for training and predicting. The

accuracy, sensitivity, and specificity for each model were presented

in Table 2. Among these, the MLP model had the best predictive

performance (Table 2). Training and validation accuracy, as well as

training and validation loss, reflect the model’s performance on the

training and validation datasets (42). Our results showed that the
Frontiers in Endocrinology 07
MLP model performed well in both the training and prediction

datasets (Figure 5A). The prediction results for Raman spectra

in the test dataset using the MLP model were shown in Figure 5B.

The sensitivity for predicting A was 0.79, for predicting B was 0.82,

and for predicting C was 0.87, while the specificity for predicting

A was 0.93, for predicting B was 0.92, and for predicting C was

0.89. The ROC curve for predicting A, B, and C was shown in

Figure 4C. The AUC for A was 0.91, and for B and C, it was

0.95 (Figure 5C).
FIGURE 3

Core peak intensity patterns in Raman spectra among groups. The core peak intensity at various positions showed distinct intensity patterns across
groups. At 750 cm-1 (A) and 938 cm-1 (B) showed: A > B > C. At 1202 cm-1 (C) showed: A < B < C. At 620 cm-1 (D) and 850 cm-1 (E) showed: B < A <
C. At 2926 cm-1 (F) showed A < C< B. At 642 cm-1 (G), 662 cm-1 (H), 1000 cm-1 (I), and 1030 cm-1 (J) showed:A ≈ B < (C) At 898 cm-1 (K), 1332 cm-1

(L), and 1446 cm-1(M) showed: A > B ≈ C. At 1605 cm-1 (N) showed A ≈ C > B. At 506 cm-1 (O) showed: B > A. At 2874 cm-1 (P) showed C > B. At
1120 cm-1 (Q) and 1654 cm-1(R): A ≈ B ≈ C. *p < 0.05; **p < 0.01; ***p < 0.001. ns: no significant difference. A: Morphologically good blastocyst; B:
Morphologically non-good blastocyst; C: Clinically non-useful embryos.
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3.5 The stacking strategy accurately
predicted the outcomes of extended
embryo culture

To further improve prediction efficiency, the best four models

(MLP, ANN, GRU, and LDAB) were stacked. The prediction results

are presented in Figure 6A. The sensitivity for predicting A was

0.92, for predicting B was 1.0, and for predicting C was 0.94, while

the specificity for predicting A was 1.0, for predicting B was 0.93,

and for predicting C was 1.0. The overall accuracy was 0.94, the

overall sensitivity was 0.93, and the overall specificity was 0.97.

Additionally, over 91% of the samples had an accuracy rate of

Raman spectra exceeding 50% (Figure 6B). For example, if each
Frontiers in Endocrinology 08
sample had 20 individual spectra, more than 91% of the samples

have at least 10 spectra with correct prediction results.
4 Discussion

In the present study, machine learning was combined with

Raman spectra of spent Day 3 culture medium to predict extended

culture outcomes. Our preliminary results are promising, and

indicated that machine learning analysis of Raman spectra from

spent Day 3 culture medium can accurately predict the extended

culture outcomes with high accuracy, sensitivity, and specificity.

This study may provide a non-invasive, rapid, and effective tool for

selecting good potential cleavage-stage embryos for transfer,

potentially reducing the blastocyst transfer cycles.

The patients included in this study were couples with a good

prognosis and a certain number of available Day 3 embryos. For

these couples, selecting the best Day 3 embryos for transfer is

particularly important and necessary. Therefore, the inclusion of

these couples was appropriate for this study. Studies using Raman

spectra of spent culture medium to predict embryo developmental

potential have been reported since 2007 (14). Several studies

classified spent culture medium into two groups: clinical

pregnancy and non-pregnancy (14, 17, 43). This classification

assumes that embryos leading to clinical pregnancies have good

developmental potential. Although this concept is logical, it has

inherent flaws. Both embryo and non-embryo factors contribute to

female infertility, meaning that an embryo failing to implant does

not necessarily indicate poor quality (44, 45). This grouping

approach can introduce unwanted bias into the analysis. In the

present study, we used extended culture outcomes for grouping, as

they are relatively objective. This grouping ensures more consistent

data within each group, which may contribute to the strong

predictive ability shown in this study.

A previous study used machine learning in combination with

Raman spectra of spent Day 3 culture medium to predict extended

culture outcomes (19). The design of that study is similar to the

present one. However, there are several major differences between
FIGURE 4

Group-specific clustering of Raman spectra. Dimensionality reduction techniques applied to Raman spectra for visualization among groups: (A) t-
SNE, (B) LaDA, and (C) OPLS-DA. A: Morphologically good blastocyst; B: Morphologically non-good blastocyst; C: Clinically non-useful embryos;
t-SNE, t-Distributed Stochastic Neighbor Embedding; LaDA, Latent Dirichlet Allocation; OPLS-DA, Orthogonal Partial Least Squares Discriminant
Analysis.
TABLE 2 The predicting efficiency of different models.

Rank Model Accuracy Sensitivity Specificity

1 MLP 0.84 0.83 0.92

2 GRU 0.81 0.76 0.89

3 ANN 0.81 0.76 0.9

4 LDA 0.78 0.75 0.88

5 QDA 0.77 0.72 0.86

6 GB 0.77 0.71 0.87

7 RF 0.77 0.7 0.86

8 NB 0.76 0.73 0.86

9 LR 0.76 0.69 0.85

10 LSVM 0.74 0.72 0.86

11 KNN 0.71 0.59 0.83

12 RSVM 0.53 0.35 0.68
The predicting efficiency for a total of 12 models from rank 1 to rank 12 with the data of
predicting accuracy, sensitivity and specificity. MLP, multilayer perceptron; ANN, artificial
neural network; GRU, gated recurrent unit; LDA, linear discriminant analysis; QDA,
quadratic discriminant analysis.GB, gradient boosting; RF, random forest; NB, naïve Bayes;
LR, logistic regression; LSVM, linear support vector machine; KNN, K-nearest neighbors;
RSVM, Reduced support vector machines.
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FIGURE 5

MLP model had the best predicting ability. (A) Validation accuracy and loss during data training using the MLP. (B) Comparison of actual and
predicted extended culture outcomes of Raman spectra using the MLP model. (C) AUC curves for predicted extended culture outcomes of A, B, and
C groups. A: Morphologically good blastocyst; B: Morphologically non-good blastocyst; C: Clinically non-useful embryos; MLP: multilayer
perceptron model.
FIGURE 6

The stacking strategy accurately predicted the outcomes of extended embryo culture. (A) Comparison of actual and predicted extended culture
outcomes for each sample using a model stacking strategy. (B) Distribution of samples showing the percentage of correctly predicted Raman
spectra out of all Raman spectra for each sample. A: Morphologically good blastocyst; B: Morphologically non-good blastocyst; C: Clinically non-
useful embryos.
Frontiers in Endocrinology frontiersin.org09

https://doi.org/10.3389/fendo.2025.1608318
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cao et al. 10.3389/fendo.2025.1608318
the two. First, in that study, the extended culture outcomes were

classified into two groups: useful blastocysts versus non-useful

embryos. It is known that morphologically good blastocysts have

much better developmental potential than morphologically non-

good blastocysts (46), even though both morphologically good and

non-good blastocysts are considered useful. In the present study, we

classified the extended culture outcomes into three groups:

morphologically good group, morphologically non-good group,

and clinically non-useful group. This classification allows us to

select the good-quality blastocyst from the useful blastocysts.

Second, unlike that study, which only included spent culture

medium from good-quality Day 3 embryos, the present study

included spent culture medium from both good (Grade I+II, 82

cases) and poor (Grade III, 90 cases) Day 3 embryos. This design

enhances the representativeness and robustness of the study.

Notably, grouping was based solely on extended culture

outcomes, without considering Day 3 embryo morphology. This

highlights that machine learning combined with Raman spectra of

spent Day 3 culture medium can independently predict extended

culture outcomes, serving as a morphology-independent evaluation

system. Finally, while the previous study reported a prediction

accuracy of ~73%, this is comparable to the actual blastocyst

formation rate (~70%) from good Day 3 embryos in our IVF

laboratory (20), limiting its clinical significance. In contrast, our

model demonstrates much higher predictive efficiency with

meaningful clinical applicability.

Previous studies have identified differences in one or more

substances in spent culture medium between embryos with good

and poor developmental potential (15, 47). It is known that

morphologically good, morphologically non-good, and clinically

non-useful embryos show progressively decreased potential.

However, only the intensity of core peaks in the Raman spectra at

750, 938, and 1202 cm-1 showed significant increases or decreases in

value from A to B and further to C. No similar trends were observed

at other peak positions. Due to the small differences and the varied

and complex pattern of intensity values among the groups, it is

impossible to make accurate predictions based on single or few

differences. Instead, integrating all features (not limited to peak

intensity values) is essential for effective prediction. Therefore,

machine learning is required to process such large and complex

data. In the present study, we found that deep learning models, such

as MLP, ANN, and GRU, performed exceptionally well in training

and prediction, demonstrating the advantages of deep learning in

handling such tasks (48). The effectiveness of algorithm stacking for

prediction has been demonstrated. In this study, the stacking

strategy achieved higher prediction accuracy than any single

algorithm. Thus, the stacking approach used in this study

enhances the accuracy of predictions.

The present study is clinically significant. Our findings may

offer an independent and non-invasive method for assessing day 3

embryo quality. Clearly, the current data indicate that machine

learning combined with Raman spectra of spent Day 3 culture

medium performs better in predicting embryo quality than

traditional morphological scoring. Most importantly, this method

allows for the selection of the good-quality embryos at the cleavage
Frontiers in Endocrinology 10
stage, potentially reducing the need for blastocyst transfer cycles.

For instance, Day 3 embryos predicted to form morphologically

good blastocysts based on the Raman spectra of the culture medium

could be prioritized for transfer. The remaining Day 3 embryos

predicted to form morphologically non-good or clinically non-

useful blastocysts could undergo further culture. Currently,

processing a batch of 20 samples, from collection to result release,

takes approximately 3.5 hours using a single Raman spectrometer.

Throughput can be further increased with multiple instruments.

Therefore, this technique holds potential for clinical translation.

There are several limitations in the present study. First, the

number of spent culture medium samples was limited. A larger

sample size will be collected and analyzed to improve the predicting

model in future studies. Second, it is unclear whether the training

and prediction models established in one IVF laboratory are

suitable for use in other IVF labs. This needs to be further

validated across multiple IVF centers. Third, the findings of this

study show promise for prediction, but a randomized clinical trial is

needed to assess whether the strategy of Raman spectra of spent Day

3 culture medium-guided embryo transfer improves clinical

outcomes compared to traditional morphological scoring. Finally,

embryo developmental speed (blastocysts form on day 5 or 6),

which has been linked to embryo developmental potential (49), was

not considered in the present study. This will be considered in the

future study.
5 Conclusion

In summary, the present study indicates that machine learning

combined with Raman spectroscopy of day 3 spent culture medium

holds the potential to predict extended embryo culture outcomes

with high accuracy, sensitivity, and specificity. This non-invasive

approach offers a promising strategy for embryo selection at the

cleavage stage, potentially enabling the benefits of extended culture

while mitigating the risks associated with blastocyst transfer.

However, larger datasets and further studies are needed to

validate the clinical feasibility and reliability of this method for

routine embryo selection.
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