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Multi-phases of islet beta-cell
function change in type 2
diabetes mellitus and
its influencing factors
Jin Cheng, Jun Li, Yaping Xin* and Dongming Zhang*

Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Zhengzhou
University, Zhengzhou, Henan, China
Aims: Based on cross-sectional and follow-up data, we aimed to explore the

continuous long-term pattern of beta-cell function change in type 2 diabetes

and to analyze the relevant influencing factors.

Materials and methods: Data from 2898 type 2 diabetic subjects were

retrospectively analyzed. Islet beta-cell function was evaluated by the

homeostasis model assessed index (HOMA-b). The pattern of association

between HOMA-b and disease duration coverup of 50 years were explored

using non-linear regression approaches. Findings were replicated in longitudinal

follow-up data from multi-centers. Influencing factors of both residual HOMA-b
level and HOMA-b decline rate were investigated.

Results: We identified a model including three clear phases of HOMA-b change:

an initial ascending phase over 4.2 years from diagnosis (3.34% change per year

[95%CI 0.04, 6.52]), followed by a phase of exponential fall up to 20.9 years from

diagnosis (-3.04% change per year [95%CI -3.78, -2.29]) and thereafter a low and

plateau phase (0.17% change per year [95% CI -0.72, 1.05]). Longitudinal follow-

up data verified this model. Higher BMI (OR = 1.103 [95%CI 1.047, 1.161]), UA (OR

= 1.003 [95%CI 1.001, 1.005]), metabolic Syndrome (OR = 1.526 [95%CI 1.021,

2.279]) and lower HbA1c (OR = 0.695 [95%CI 0.627, 0.771]) levels were

independently associated with higher residual HOMA-b level. Earlier diagnosis

(Coefficient=0.0009 [95%CI 0.0002, 0.0016]) was independently associated with

faster HOMA-b decline.

Conclusions: Beta-cell function change in the course of type 2 diabetes was

nonlinear with multi-phases. Targeting the factors that affect different phases

would contribute to the protection of the disease progression.
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1 Introduction

Type 2 diabetes mellitus is characterized by insulin resistance

and a progressive loss of islet beta-cell function (1). Although both

factors contributed to the pathogenesis, decreased beta-cell function

and beta-cell mass are the predominant factors of disease

progression, and are the typical hallmark of the overt-diabetes

(1). In fact, studies including the United Kingdom Prospective

Diabetes Study (UKPDS) (2) have revealed that despite its latent

nature, beta-cell function impairment was indeed an early event in

the course of the disease. As such, only 50% of beta-cell function

remained at diagnosis and continued declining at a rate of 5%

annually (2). Moreover, the impaired beta-cell function is closely

related to oral treatment failure, blood glucose fluctuation,

microvascular or macrovascular complication, and an increased

mortality (3–6). Therefore, protecting beta-cell function is an

essential goal in the prevention and treatment of type 2 diabetes (7).

A comprehensive understanding of the natural history of type 2

diabetes, especially the trajectory of beta-cell function change,

would provide a significant theoretical basis for preventing and

treating the disease. Some studies have explored this issue and

reported that rates of beta-cell decline varied (2, 8–11). However,

most of these studies focused on Western populations and were

virtually small-sample, short follow-up observations with highly

selected subjects. Furthermore, none of these studies revealed the

continuous long-term pattern of beta-cell function change. Besides,

the prevalence of type 2 diabetes in China has increased over 10-

fold in the past 40 years, which now has the largest type 2 diabetes

population in the world (12). Therefore, data from the Chinese type

2 diabetes populations would provide significant support.

To address these gaps, this study recruited 2898 Chinese type 2

diabetes patients and detected their beta-cell function change

trajectory over 50 years. The relevant influencing factors were

also analyzed. Thus, this study would help further clarify the

model of beta-cell function change, identifying optimal

intervention timing and targets.
2 Materials and methods

2.1 Subjects

2.1.1 Cross-sectional cohort
This study was conducted in accordance with the guidelines of

the Declaration of Helsinki (as revised in 2008). All patients

provided informed consent to participate in the study. The study

protocol was approved by the Research Ethics Committee of the

Second Affiliated Hospital of Zhengzhou University (No.

KY2024134). We retrospectively analyzed data from 6072 subjects

with diabetes who received treatment in the Department of

Endocrinology, Second Affiliated Hospital of Zhengzhou

University, from June 2018 to August 2024. Participants were

enrolled if they fulfilled the following criteria: (a) diabetes

diagnosed according to the 1999 World Health Organization

(WHO) criteria (13); (b) clinically classified as type 2 diabetes; (c)
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testing negative for diabetes-associated autoantibodies, namely

glutamic acid decarboxylase antibody (GADA), islet cell antibody

(ICA), and insulin autoantibody (IAA) (for patients with a history

of insulin use, IAA was not included in the analysis). Exclusion

criteria included: (a) classification as type 1 diabetes mellitus

[defined as an acute-onset, insulin-dependent disease at diagnosis

caused by beta-cell destruction, according to guidelines fromWHO

(13) and the American Diabetes Association (ADA) (14)],

gestational diabetes, or other special types of diabetes; (b)

pregnancy or lactation; (c) receipt of hormone therapy or

chemotherapy; (d) comorbidity with renal insufficiency [since

blood C-peptide levels in patients with renal function impairment

are artificially elevated (15)] or malignant disease. A total of 4995

patients met the above criteria. Subjects lacking measurements of

fasting C-peptide (FCP), fasting plasma glucose (FPG), disease

duration, or other relevant data were excluded. Finally, 2,898

subjects were included in the cross-sectional analysis (Figure 1).

2.1.2 Longitudinal cohort
We tested the findings in the cross-sectional cohort by

analyzing changes over time in HOMA-b using repeat samples

from individuals. The repeated samples were recruited from our

own cohort and an external cohort from the same geographic region

(Zhengzhou City, China). Both cohorts used the same inclusion and

exclusion criteria for T2DM.

In our own cohort, repeat HOMA-b measurements were

available for 1213 subjects from the 2898 individuals in the cross-

sectional cohort. After excluding subjects whose HOMA-b
measurement time points fell into different stage intervals

(referring to the three stages described in the ‘Results’ section), a

total of 3316 HOMA-b values from 1137 patients were included in

the final analysis. A median (IQR) of 2 (2, 3) results were available

per subject, over a median (IQR) of 3.5 (1.8, 5.9) years of follow-up.

The external data come from a prospective cohort based at the

National Metabolic Management Center (MMC) (16) sub-center

established by the Fifth Affiliated Hospital of Zhengzhou University.

This study was approved by the Ethics Committee of the Fifth

Affiliated Hospital of Zhengzhou University (No. KY20211019),

and all patients signed the informed consent form for enrollment. A

total of 705 HOMA-b measurements from 237 patients were

included in the analysis. A median (IQR) of 2 (2, 3) results were

available per patient, over a median (IQR) of 9.2 (3.3, 25.2) months

of follow-up.

The following information was collected at each visit: disease

duration, BMI, systolic blood pressure (SBP), and diastolic blood

pressure (DBP). Moreover, serum was collected for measurements

of plasma glucose, HbA1c, C-peptide, triglycerides (TG), low-

density lipoprotein cholesterol (LDL-C), uric acid (UA), and

diabetes-associated autoantibodies.
2.2 Laboratory analysis

Height, weight, and blood pressure were measured with a

standardized procedure, and BMI was calculated. Levels of FPG,
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TG, LDL-C, and UA were determined using the automatic

chemistry system at the core laboratory of the Second Affiliated

Hospital of Zhengzhou University. HbA1c was measured using

high-performance automated liquid chromatography (HLC-723G8,

Tosoh, Japan). GADA and ICA were qualitatively detected using a

standard immunoblot kit (BLOT, Shenzhen, China). Plasma C-

peptide was tested using the electrochemical luminescence method

(cobas-E411, Basel, Switzerland). Furthermore, the inter-assay and

intra-assay variation coefficients were 3.7–4.1% and 1.0–3.3%,

respectively. The lower detection limit of the assay was 16.7

pmol/L.

Fasting plasma glucose (FPG) and fasting C-peptide (FCP) were

tested in patients fasting for at least 8 hours. HOMA-b was

calculated using the following formula: HOMA-b (%) =0.27×FCP

(pmol/L)/[FPG (mmol/L)-3.5] (17).

Metabolic Syndrome (MetS) was defined using the 2017

Chinese Diabetes Society’s (CDS) criteria (18) and was diagnosed

when three or more of the following criteria were met: (a)

abdominal obesity: waist circumference ≥90 cm in men and ≥85

cm in women; (b) hyperglycemia: FBS ≥6.1 mmol/L or 2-hour PBS

≥7.8 mmol/L or previously diagnosed diabetes with treatment; (c)

hypertension: blood pressure ≥130/85 mmHg or currently under

antihypertension therapy; (d) fasting TG ≥1.70 mmol/L; (e) fasting

HDL-C<1.04 mmol/L.
2.3 Statistical analysis

HOMA-b results were natural log transformed for analysis as

the distribution of its values was heavily skewed. Initial analysis of

cross-sectional data used non-linear regression modeling to

examine the association between duration and HOMA-b.
Generalized additive models (GAM) were used to explore the

initial shape of the associations. Notably, this revealed a pattern
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consistent with three phases that could be modeled with three lines

of best fit. Segmented regression was then used to determine the

optimal breakpoints where the lines of best fit would meet and to

enable calculation of the intercept and slopes of different phases,

thereby modeling the starting point and rate of HOMA-b decline.

The intercepts were back-transformed (using the exponential) to

estimate HOMA-b levels at diagnosis from the models. As slopes

were on a log scale, they were interpreted as percentage change per

year (calculated from the exponential of the b coefficient minus 1).

For the longitudinal analysis, data were split into three groups

for the three phases: before and after the optimal breakpoints

identified from cross-sectional analysis. The slopes of the three

phases were determined using mixed effects models to model

HOMA-b against duration, with random effects at the patient

level to allow each patient to contribute multiple values at

different time points. We used a random-intercept, random-slope

model to allow for variability between individuals. Moreover, we

excluded those whose first value was below the lower limit of

detection of the assay to ensure the finding did not represent a

floor effect (i.e., that the results were not an artifact of those below

the lower limit of the assay unable to fall).

We further explored clinical indicators related to residual

HOMA-b levels using cross-sectional data. Based on longitudinal

data, we incorporated the duration of diabetes as a continuous time-

varying covariate in the mixed effect model. We explored significant

associations (statistical interactions) between determinants of

interest and duration of diabetes on HOMA-b levels.

All analyses were carried out in SPSS version 24.0 or R version

3.2.2, including the mgcv package (for generalized additive models),

lme4 package (for mixed effects models), and segmented package

(for segmented regression). Normally distributed data were

presented as mean ± SD. Variables with a skewed distribution

were reported as median (quartile range: 25th, 75th). Categorical

variables were expressed as percentages. Normally distributed data
FIGURE 1

Flow-chart for enrollment.
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were compared using ANOVA, and non-normally distributed data

were compared using the Wilcoxon Rank Sum and Spearman

correlation test. Categorical variables were compared using a chi-

squared test. Furthermore, we performed univariate analyses to

compare clinical features in subjects with different levels of residual

beta-cell function. Multivariate logistic regression analyses were

performed to further investigate the possible determinants of beta-

cell function preservation. Two-sided statistical tests were

performed, and a p-value <0.05 (two-sided) was considered

statistically significant.
3 Results

3.1 Baseline clinical features

Clinical and biochemical characteristics of the 2898 patients in

cross-sectional analysis are presented in Table 1. At baseline, the

mean age was 60.0 years old (ranging from 12.0 to 94.0), and 55.7%

were male. The mean age of diagnosis was 48.4 years old (ranging

from 7.1 to 86.5), and the mean disease duration was 8.4 years

(ranging from 0.1 to 50.0). The average BMI (IQR) level was 25.0

(23.0, 27.4) kg/m2, meeting the diagnostic criteria for overweight in

China (19). The average HbA1c (IQR) level was 61.7 (50.8, 81.4)

mmol/mol. Moreover, the subjects’ blood pressure, glucose, and

lipids levels did not meet the strict control targets, and almost 80%

of the subjects combined at least one type of diabetic microvascular

or neurological complications.
3.2 Cross-sectional analysis identified
multi-phases of beta-cell function change

We used GAM to investigate the changing pattern of HOMA-b
with the course of the disease. HOMA-b was found to have a

nonlinear association with the disease duration, suggesting three

phases. As shown in Figure 2, the first phase lay within about 4 years

from diagnosis, during which the curve rose slightly. This was

followed by a second phase up until around 21 years after diagnosis,

during which the curve declined significantly, and the HOMA-b
level experienced a substantial reduction. Then, it progressed to the

third phase, where the curve flattened, indicating a continuous low

level of HOMA-b.
Segmented regression was used to model the slopes of different

phases. The estimated HOMA-b level at diagnosis was 63.4% (95%

CI: 61.4, 65.4). The breakpoints at which the slope changed were

modeled at 4.20 (95%CI: 2.31, 6.09) years and 20.90 (95%CI: 16.93,

24.84) years from diagnosis. During the first stage, the annual

change of HOMA-b was 3.34% (95% CI: 0.04, 6.52), suggesting

that beta-cell function would experience a brief ‘ascending phase’

after clinical diagnosis. During the second stage, the HOMA-b
decayed at -3.04% (95% CI: -3.78, -2.29) per year, forming the main

‘decline phase’ of beta-cell function. Then, during the third stage,

the annual change for HOMA-b descended to 0.17% (95% CI: -0.72,

1.05) per year, suggesting a ‘plateau phase’ thereafter. Figure 3
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shows the fitted slopes and Table 2 shows the estimated parameters

during the three phases.
3.3 Longitudinal data validated the multi-
phases in the cross-sectional model

The cross-sectional model was verified using longitudinal data

from both internal and external cohorts. In line with the estimated

inflection breakpoints, we calculated the slopes of each phase in the

HOMA-b curve with the course of the disease using the

longitudinal data. The numbers of individuals, observations, and
TABLE 1 Baseline clinical features of 2898 subjects.

Variable Value

FCP, pmol/L 865.8 (599.4, 1185.5)

HOMA-b, % 58.0 (35.9, 95.6)

Age, year 60.0 (50.0, 69.0)

Age of diagnosis, year 48.4 (40.3, 56.7)

Duration, year 8.4 (2.6, 15.8)

Male, n (%) 1614 (55.7)

BMI, kg/m2 25.0 (23.0, 27.4)

HbA1c, mmol/mol 61.7 (50.8, 81.4)

HbA1c, % 7.8 (6.8, 9.6)

LDL-C, mmol/L 2.73 (2.07, 3.45)

TG, mmol/L 1.53 (1.07, 2.34)

UA, mmol/L 308.0 (250.0, 373.0)

SBP, mmHg 130.0 (125.0, 138.0)

DBP, mmHg 78.0 (74.0, 85.0)

Smoking, n (%) 573(19.8)

Drinking, n (%) 292 (10.1)

Diabetic retinopathy, n (%) 489 (16.9)

Diabetic nephropathy, n (%) 591 (20.4)

Diabetic neuropathy, n (%) 2286 (78.9)

Insulin, n (%) 923 (31.8)

Metformin, n (%) 1970 (68.0)

Sulfonylureas, n (%) 551 (19.0)

TZDs, n (%) 191 (6.6)

a-glucosidase inhibitors, n (%) 2086 (72.0)

SGLT-2 inhibitors, n (%) 1101 (38.0)

GLP-1 Ras, n (%) 397 (13.7)

DPP-4 inhibitors, n (%) 548 (18.9)

MetS, n (%) 1944 (67.1)
Data are presented as mean ± SD, median (25th, 75th) or n (%), depending on variable type
and distribution. BMI, body mass index; TG, total cholesterol; LDL-C, low density lipoprotein
cholesterol; UA, urea; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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the estimated slopes at distinct phases are presented in Table 3. The

decline pattern of HOMA-b was similar to that seen in the cross-

sectional model. It consisted of an initial ‘ascending stage,’ followed

by a ‘decline stage’ with substantial fall, and then a continuous

‘plateau stage’.
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3.4 Factors associated with residual beta-
cell function

The 2898 subjects in the cross-sectional analysis were grouped

according to their residual HOMA-b levels. Subjects with their

HOMA-b points above the GAM model fitting curve (Figure 1)

were considered to have ‘preferable residual beta-cell function’ and

classified into ‘Group 1’. In contrast, others having ‘inferior beta-cell

function’ were assigned to ‘Group 2’.

Univariate analysis showed that compared to Group 2, age (61.0

vs. 58.0 years, p<0.001), age of diagnosis (49.3 vs. 47.3 years,

p<0.001), BMI (25.7 vs. 24.5 kg/m², p<0.001), levels of LDL-C

(2.85 vs. 2.57 mmol/L, p<0.001), UA (320.0 vs. 294.0 mmol/L,

p<0.001) and proportion of MetS (71.5% vs. 62.8%, p<0.001) were

higher in Group 1. In comparison, the HbA1c level (55.2 vs.71.6

mmol/mol, p<0.001) and proportion of insulin use (28.3% vs.

35.4%) were lower in Group 1. Notably, the proportions of

diabetic retinopathy (19.2% vs. 14.6%), diabetic neuropathy

(82.5% vs. 75.5%) and in Group 1 were significantly higher than

those in Group 2 (Table 4).

Further multivariate analyses showed that higher BMI levels

(OR = 1.103, [95%CI 1.048, 1.161], p<0.001), UA levels (OR =

1.003, [95%CI 1.001, 1.005], p=0.014), MetS (OR = 1.526, [95%CI

1.021, 2.279], p=0.039) and lower HbA1c levels (OR = 0.696, [95%

CI 0.628, 0.771], p<0.001) were independently associated with

higher residual HOMA-b level (Table 5).
3.5 Factors associated with beta-cell
function decline rate

We focused on the second stage in the above models, which was

the main ‘decline phase’ of HOMA-b. Using longitudinal follow-up
data, the mixed effect linear model showed that HOMA-b levels

decreased with increased disease duration and HbA1c levels.

Notably, the age of diagnosis was associated with HOMA-b
decline rate since there was a significant interaction

(Coefficient=0.0009 [95%CI: 0.0002, 0.0016]) between age of

diagnosis and disease duration on HOMA-b levels over time.

This suggests that the earlier the disease diagnosis, the faster the

rate at which HOMA-b declines with the disease course (Table 6).
4 Discussion

The “three-phase HOMA-b model” is clinically relevant and

highly consistent with previous literature. Firstly, the “ascending

phase” usually emerges after short-term interventions (such as

intensive insulin therapy, oral medications, or lifestyle

interventions), accompanied by increased insulin secretion and

improved glycemic control. This so-called “clinical remission

period” (9, 20–22) is equivalent to the first stage in this study.

Secondly, the following ‘decline phase’ was also witnessed. The well-

known UKPDS reported a decline rate of 5% per year in British type

2 diabetic patients (2), while in Chinese populations, this figure was
FIGURE 3

Scatterplots of ln (HOMA-b) against duration of diabetes in 2898
individuals with type 2 diabetes. The blue line shows three straight
lines of best fit meeting at the optimal breakpoint from segmented
regression analysis.
FIGURE 2

Scatterplots of ln (HOMA-b) against duration of diabetes in 2898
individuals with type 2 diabetes. The blue line shows generalized
additive modelling (non-linear) line of best fit.
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2% (11). Different genetic backgrounds, intervention programs may

contribute to the varied decline rates. Thirdly, as for the ‘plateau

phase,’ the Veterans Affairs Diabetes Trial (VADT) showed that the

C-peptide levels decreased progressively from 0–3 years after

diagnosis until 15 years’ duration and then remained stable after

16–18 years, suggesting that beta-cell function loss would tend to

stabilize at a certain point (10).

Moreover, the continues change pattern was also observed. The

Belfast Diet Study (8) used HOMA-b to explore changes in beta-cell

function in type 2 diabetic patients and found an initial slow decline

(1.7% decline per year) period followed by a rapid decline (18.2%

decline per year). Unfortunately, the follow-up was terminated
Frontiers in Endocrinology 06
before the 10th year post-diagnosis, so no further changes

thereafter were observed. More consistent results came from

another Chinese study (23). Ding et al. followed 1570 type 2

diabetic subjects for up to 35 years. They found that beta-cell

function remained unchanged within 5 years after diagnosis,

declined by 2% annually between 5 and 22 years, and remained at

a low level thereafter (23). Despite the detailed differences, the above

results are consistent with this study.

As for the potential underlying pathophysiological mechanisms,

each phase needs to be discussed separately. The beta-cell function

decline in type 2 diabetes broadly resulted from beta-cell number

reduction, beta-cell exhaustion, and beta-cell de-differentiation or
TABLE 3 Estimated levels and decline rates of HOMA-b from mixed effect models of longitudinal data.

Phase Internal cohort External cohort

Phase 1: 0-4.2 years from diagnosis

Estimated HOMA-b (%) level at diagnosis § [95% CI] 62.7 [55.2, 71.2] 56.7 [44.3, 68.8]

Number of individuals/observations 177/403 62/142

Slope 1[95% CI] 0.0402[-0.00837, 0.0888] *** 0.1109[0.0082, 0.2136] *

Percentage change per year † [95% CI] 3.94[-0.01, 8.49] *** 11.73[0.82, 23.89] *

Phase 2: 4.3-20.9 years from diagnosis

Number of individuals/observations 688/2081 117/411

Slope 2[95% CI] -0.0398[-0.0492, -0.0304] *** -0.0291[-0.0520, -0.0059] *

Percentage change per year † [95% CI] -4.06[-5.04, -3.09] *** -2.87[-5.07, -0.59] *

Phase 3: 21.0-50.0 years from diagnosis

Number of individuals/observations 272/832 58/152

Slope 3[95% CI] -0.0008[-0.0122, 0.0106] -0.0030 [-0.0061, 0.0001]

Percentage change per year † [95% CI] -0.08[-1.22, 1.05] -0.03[-0.06, 0.01]
§Exponential of intercept taken to show estimated HOMA-b at diagnosis;†calculated from the exponential of b(the regression slope)-1; * p<0.05; ***p<0.001.
TABLE 2 Estimated levels and decline rates of HOMA-b from segmented regression analysis of cross-section data.

Phase Parameter

Phase 1

Estimated HOMA-b (%) level at diagnosis § [95% CI] 63.4 [61.4, 65.4]

Slope 1 [95% CI] 0.0339 [0.0004, 0.0674] ***

Percentage change per year † [95% CI] 3.34% [0.04, 6.52] ***

Phase 2

Breakpoint1 (year) [95% CI] 4.20 [2.31, 6.09]

Slope 2 [95% CI] -0.0309 [-0.0385, -0.0232] ***

Percentage change per year † [95% CI] -3.04% [-3.78, -2.29] ***

Phase 3

Breakpoint2 (year) [95% CI] 20.90 [16.93, 24.84]

Slope 3 [95% CI] 0.0017 [-0.0073, 0.0106]

Percentage change per year † [95% CI] 0.17% [-0.72, 1.05]
§Exponential of intercept taken to show estimated HOMA-b at diagnosis; †calculated from the exponential of b (the regression slope)-1; ***p<0.001.
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trans-differentiation into other cell types (24), all closely related to

glucotoxicity/lip-toxicity (25). Apart from beta-cell number

reductions, which are difficult to reverse, the other two processes

can be reversed after removing glucotoxicity/lip-toxicity (24).

In this model, the first ‘ascending phase’ may result from the

glucose and lipid-lowering therapy initiated after diagnosis which

improved the underlying pathophysiological conditions and

restored beta-cell function. Therefore, early screening and

treatment should be conducted to seize the time window for beta-

cell protection (26) (Figure 4). The following ‘decline phase’ was

described by A. Bagust as the ‘fully developed stage of type 2

diabetes’, which was characterized by a significant irreversible
Frontiers in Endocrinology 07
decline of beta-cell function (8). Its relevant pathophysiological

processes may include accelerated beta-cell apoptosis, rapid beta-

cell exhaustion, and irreversible beta-cell dedifferentiation (8)

(Figure 4). Moreover, the Counterpoint Study (27) and The

Scandinavian Obesity Study (28) confirmed that as the duration

of diabetes increases, an irreversible ‘turning point’ would be passed

with beta-cells underwent irreversible damage. Regarding this

‘turning point’, B. TOPP et al. put forward a hypothesis (29):a

regulation system would attempt to maintain the insulin secretion

level by reducing beta-cell loss and/or increasing beta-cell

replication at the early stage of the disease. However, the

regulatory ability gradually weakens and eventually reaches an
TABLE 4 Clinical characteristics of subjects with distinct levels of residual b-cell function.

Variable Group 1 (n=1433) Group 2 (n=1465) p value

FCP, pmol/L 1082.4 (819.2, 1418.6) 682.7 (506.2, 905.8) 0.000***

HOMA-b, % 96.50 (73.70, 137.00) 36.23 (26.05, 46.53) 0.000***

Age, year 61.0 (51.0, 70.0) 58.0 (49.0, 68.0) 0.000***

Age of diagnosis, year 49.3 (41.3, 57.7) 47.3 (39.2, 55.6) 0.000***

Duration, year 8.4 (2.6, 15.8) 8.2 (2.5, 15.7) 0.735

Male, n (%) 796 (55.4) 818 (55.8) 0.876

BMI, kg/m2 25.7 (23.4, 27.8) 24.5 (22.6, 26.8) 0.000***

HbA1c, % 7.2 (6.4, 8.6) 8.7 (7.4, 10.4) 0.000***

HbA1c, mmol/mol 55.2 (46.4, 70.5) 71.6 (57.4, 90.2) 0.000***

SBP, mmHg 130.0(125.0,139.0) 130.0(125.0,138.0) 0.541

DBP, mmHg 78.0(73.0, 84.0) 78.0(74.0,85.0) 0.141

Smoking, n (%) 281(19.6) 292 (19.9) 0.827

Drinking, n (%) 144 (10.0) 148 (10.1) 0.962

LDL-c, mmol/L 2.85 (2.20, 3.52) 2.57 (1.96, 3.37) 0.000***

TG, mmol/L 1.55 (1.09, 2.33) 1.50 (1.04, 2.35) 0.196

UA, mmol/L 320.0 (262.0, 386.3) 294.0 (240.0, 358.8) 0.000***

Diabetic retinopathy, n (%) 208 (14.6) 281 (19.2) 0.001**

Diabetic nephropathy, n (%) 305 (21.3) 286 (19.5) 0.239

Diabetic neuropathy, n (%) 1080 (75.5) 1206 (82.5) 0.000***

Insulin, n (%) 405 (28.3) 518 (35.4) 0.000***

Metformin, n (%) 960 (70.0) 1010 (68.9) 0.290

Sulfonylureas, n (%) 301 (21.0) 250 (17.1) 0.063

TZDs, n (%) 106 (7.4) 85 (5.8) 0.135

a-glucosidase inhibitors, n (%) 1050 (73.3) 1036 (70.7) 0.142

SGLT-2 inhibitors, n (%) 581 (40.5) 520 (35.5) 0.078

GLP-1 Ras, n (%) 216 (15.1) 181 (12.4) 0.089

DPP-4 inhibitors, n (%) 286 (20.0) 262 (17.9) 0.115

MetS, n (%) 1024 (71.5) 920 (62.8) 0.000***
Data are presented as mean ± SD, median (25th, 75th) or % (n), depending on variable type and distribution. BMI, body mass index; TG, total cholesterol; LDL-C, low density lipoprotein
cholesterol; UA, urea; SBP, systolic blood pressure; DBP, diastolic blood pressure. **p<0.01;***p<0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1602796
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cheng et al. 10.3389/fendo.2025.1602796
unstable saddle point at which even a modest event (such as an

infection or an over-indulgence) would propel the subject into the

subsequent phase of sudden accelerated disease progression. During

the last ‘plateau phase’, patients tend to have persistently low levels

of beta-cell function, resulting in failed oral drug treatment, drastic

blood sugar fluctuation, and multiple complications (3–6). Insulin

therapy often needs to be initiated at this stage (Figure 4).
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We further analyzed clinical factors associated with residual

beta-cell function. Univariate analysis showed inverse correlations

of diabetic retinopathy and diabetic neuropathy, which was

consistent with previous reports (6). After adjusting for multiple

variables, higher BMI, UA and MetS proportion levels were still

correlated with higher residual HOMA-b level. The positive

correlations were particularly significant among overweight or

obese subjects (30, 31). Notably, this did not mean MetS is

beneficial to beta-cell preservation, since free fatty acids, UA, and

related inflammation could cause insulin resistance and a

compensatory increase in insulin secretion, which would

ultimately damage beta-cell function (32, 33). In this study, the

average BMI level was 25.0 kg/m², reaching the criteria of

overweight for Chinese (16). Therefore, fat loss and muscle

building should be conducted in this group of people (34). The

elevated HbA1c and reduced beta-cell function were thought to be

causally related: the glucotoxicity may damage beta-cell function

(24) while correspondingly, the decreased insulin level would cause

an increased blood glucose level (5). Therefore, active blood glucose

control can break this vicious cycle and prevent disease progression.

We also observed that insulin use was related to lower residual

HOMA-b levels. However, prior studies demonstrated that early

insulin intervention preserves beta-cell function (35). This suggests

that insulin treatment would be initiated belatedly in our patients,

potentially missing the optimal window for beta-cell protection.

Thus, in clinical practice, adequate attention should be paid to beta-

cell function protection. Timely use of agents with potential b-cell-
protective effects [e.g., GLP-1Ras (36), SGLT-2 inhibitors (37),

DPP-4 inhibitors (38)] is advisable.

Moreover, we found that early disease onset was associated with

faster beta-cell function decline. Similar results have been reported

in the ‘Restoring Insulin Secretion (RISE) Study’ and ‘Treatment

Options for Type 2 Diabetes in Adolescents and Youth (TODAY)

Study’ (39, 40). This arises from both genetic and environmental

factors. A genome-wide association study (GWAS) by the Progress

in Diabetes Genetics in Youth Consortium (ProDiGY) (41)

highlighted the key role of genetic background. In contrast, socio-

environmental factors—such as later bedtimes (42) and fewer

medical visits (43)—may reduce residual beta-cell function.

Unfortunately, the incidence and prevalence of early-onset type 2

diabetes (in those aged ≤40 years) are rising globally (1). Thus, early

combination therapy is recommended for young adults (<40 years)

with type 2 diabetes (44).

The strengths of our study are as follows. First, we had a large

sample size of 2892 subjects and a prolonged disease course

coverage of 50 years. This ensured the statistical power and

enabled long-term continuous observation. Second, the diabetic-

associated antibodies including IAA, GADA and ICA, were

detected to exclude autoimmune diabetes such as LADA (45).

This largely reduces the heterogeneity of the cohort. Third, this

study combined cross-sectional and longitudinal data from multi-

centers, which enhanced the reliability of the conclusions.

The limitations of our study are as follows. First, although the

results are consistent with previous studies, it must be noted that the

‘three-phase HOMA-b model’ is still largely based on statistical
TABLE 5 Possible determinants of residual b-cell function.

Variable OR 95% CI p value

Age, year 0.987 0.967-1.009 0.241

Age of diagnosis, year 1.012 0.989-1.036 0.317

BMI, kg/m2 1.103 1.047-1.161 0.000***

HbA1c, mmol/mol 0.695 0.627-0.771 0.000***

LDL-C, mmol/L 0.891 0.735-1.079 0.238

UA, mmol/L 1.003 1.001-1.005 0.015*

Diabetic retinopathy 0.997 0.648-1.513 0.989

Diabetic neuropathy 0.693 0.429-1.119 0.134

Insulin use 0.929 0.623-1.386 0.719

MetS 1.526 1.021-2.279 0.039*
Multivariable logistic regression including all the variables with significant differences in the
univariant analysis was performed. *p<0.05; ***p<0.001. BMI, body mass index; LDL-C, low
density lipoprotein cholesterol; UA, urea.
TABLE 6 Longitudinal mixed model exploring the effect of clinical
characteristics on FCP and HOMA-b levels over time.

Variable
HOMA-b

b [95% CI] p value

Duration, year -0.0874 [-0.1459, 0.0291] 0.003**

Male -0.0320 [-0.2393, 0.1753] 0.762

Age of diagnosis, year -0.0029 [-0.0121, 0.0064] 0.546

BMI (kg/m2)>25.0 -0.0036 [-0.2372, 0.2302] 0.976

HbA1c, mmol/mol -0.0648 [-0.1227, -0.0068] 0.028*

UA, mmol/L 0.0003 [-0.0007, 0.0012] 0.591

Insulin use -0.0016 [-0.3203, 0.2878] 0.916

MetS -0.1638 [-0.4560, 0.1284] 0.271

Duration: Male 0.0012 [-0.0142, 0.0166] 0.880

Duration: Age of diagnosis 0.0009 [0.0002, 0.0016] 0.012*

Duration: BMI -0.0063[-0.0237, 0.0111] 0.477

Duration: HbA1c 0.0013[-0.0029, 0.0056] 0.539

Duration: UA 0.0001 [-0.0001, 0.0001] 0.620

Duration: Insulin use 0.0079 [-0.153, -0.0312] 0.503

Duration: MetS 0.0179 [-0.0046, 0.0404] 0.119
This model shows that age of diagnosis is associated with HOMA-b decline over time, because
there was a significant interaction between age of diagnosis and DM duration on ln(FCP) and
ln(HOMA-b) levels; BMI, body mass index; UA: urea; *p<0.05; **p<0.01.
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analysis of a single Chinese Han population. The turning points and

change rates within each phase may vary among different

populations. Also, variability in treatment regimens, survivor bias,

or misclassification of disease onset might affect the existence of

multi-phases. Therefore, multi-center, large-sample prospective

studies across diverse ethnic groups should be conducted in the

future, and the underlying pathophysiological mechanisms also

require further investigations. Second, despite the strict control

over the inclusion and exclusion criteria, it is still possible that some

LADA and classic T1DM patients were included, which increases

the heterogeneity of the cohort. Third, this study used HOMA-b to

evaluate beta-cell function, which reflected basal insulin secretion

(46) but failed to capture the dynamic changes in insulin response.

We will strive to adopt OGTT-derived indices in future studies to

more comprehensively reflect beta-cell function.

In conclusion, this study revealed the complex model of beta-

cell function change in type 2 diabetes. Based on this model, the

pathophysiological mechanisms underlying different phases would

be investigated and targeted clinical interventions could be

implemented in the specific population.
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