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Background: Diabetes mellitus (DM) has emerged as a rapidly growing global health
problem, imposing substantial socioeconomic burdens and multidimensional health
consequences, including adverse effects on male fertility. Although accumulating
evidence suggests associations between DM and male reproductive dysfunction,
comprehensive mechanistic insights, particularly through inflammatory pathways,
remain inadequately elucidated.

Method: We conducted a systematic literature search on Web of Science,
Embase, and PubMed databases (1972-2022) to investigate DM-related male
infertility through meta-analysis. Following PRISMA guidelines, eight of 168
studies on type 1 diabetes (T1D) and nine of 185 studies on type 2 diabetes
(T2D) were included to screen the relationship between diabetes and male
infertility. In addition, 10 of 840 inflammation-related studies (1961-2022)
underwent rigorous selection for mechanistic exploration. Meta-analysis was
conducted to evaluate the summary relative risk (RR) and 95% confidence
intervals (Cls) across the combined studies.

Results: Meta-analysis demonstrated a significant impairment of male fertility in
diabetic populations. Subgroup analyses revealed that T2D is more likely to cause
male infertility compared to T1D. Despite low between-study heterogeneity,
inflammmation biomarkers (e.g., TNF-a) were implicated in diabetes-induced male
infertility. Transcriptomic analyses further identified enriched inflammatory
pathways and altered expression of fertility-related genes.

Conclusion: Current evidence indicates that diabetes adversely affects male
fertility through inflammatory pathways.
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1 Introduction

Diabetes mellitus (DM) is a cluster of chronic disorders
characterized by persistent hyperglycemia resulting from impaired
insulin secretion (type 1 diabetes [T1D]) and/or insulin resistance
(type 2 diabetes [T2D]) (1). According to the International Diabetes
Federation (IDF), in 2021, DM affected over 1.2 million
pediatric T1D cases, and 541 million adults were at high risk of
T2D worldwide. DM has emerged as a critical global issue, with
significant social, health, and economic consequences (2). T1D can
develop at any age, but it is most prevalent among children and
adolescents, who produce very little or no insulin. Conversely, T2D
is more common in adults and accounts for approximately 90% of
all diabetes cases, characterized by impaired insulin utilization (1,
71). Emerging evidence links DM to male reproductive dysfunction,
particularly through sperm abnormalities (3, 32). Mechanistic
studies implicate multiple pathways, including proinflammatory
responses (4-6), oxidative stress (7, 8), hormone dysregulation
(luteinizing hormone [LH], follicle-stimulating hormone [FSH],
testosterone [T]) (9-12), increased glucose (13), and sperm
DNA fragmentation (14, 15). However, significant heterogeneity
across studies arises from differences in sample characteristics
(age, disease duration, sizes), methodological variability
(biomarker selection), and conflicting outcome measures,
which hinders the conclusive synthesis of DM-mediated male
infertility mechanisms.

Male infertility is defined as the inability to conceive following
1 year of twice-weekly unprotected intercourse (16). An increasing
body of evidence indicates that male infertility may be a harbinger
of future adverse health outcomes (17). Numerous factors
contribute to male infertility, including genetic abnormalities
(18, 19) and lifestyle risk factors (e.g., environment, nutrients,
smoking, stress, and endocrine disruptors) (20). These factors may
lead to immunologic disorders and sperm dysfunction (21),
testicular disorders (16), and oxidative stress (22). Unhealthy
lifestyles, including high-fat or high-sugar diets, are often
accompanied by diabetes. Studies suggest that diabetes
negatively impacts male fertility both directly and indirectly,
affecting spermatogenesis, penile erection, and ejaculation
(23-26).

As mentioned above, numerous studies have investigated the
relationship between diabetes and male fertility. Despite growing
recognition of DM-associated male infertility, current evidence
remains fragmented due to inconsistent experimental designs and
limited mechanistic integration. Meta-analysis, a robust statistical
method for synthesizing heterogeneous datasets (27, 28), offers a
solution by quantifying pooled effect sizes and identifying
modulatory factors. In this study, we employed a systematic
meta-analysis combined with bioinformatics validation to
quantify the magnitude of DM-induced male fertility impairment
across T1D/T2D subtypes, elucidate inflammation-centric
mechanisms through pathway enrichment analysis, and establish
evidence-based priorities for future therapeutic interventions.
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2 Methods

Meta-analyses were carried out in accordance with the
published guidelines of Meta-Analysis of Observational Studies in
Epidemiology and the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses.

We conducted a meta-analysis to explore the relationship
between diabetes and male infertility. The literature included in this
study was retrieved from PubMed, Embase, and Web of Science. The
search terms diabetes or diabetes mellitus, male infertility or sterility,
inflammation or immune response or cytokines or chemokines were
used to search titles, keywords, and abstracts using the fuzzy search
option. The studies included were published between 1961 and 2022.
A flowchart of the selected papers is presented in Figure 1. Given the
limited number of studies, statistical tests for publication bias were
not performed. Heterogeneity was expressed using the I-squared test,
where a higher I-squared indicates greater heterogeneity. The Z-test
was used to represent the cumulative probability of the total effect.
The formula for the Z-test is as follows (29):

Z=(x-w/(c / \n)

Where: x is the sample mean; u is the overall mean; 6 is the
overall standard deviation; and n is the sample size. Z-value
represents the different probability (Z = ~ — eo: 0%; Z = ~ 0: 50%;
Z = ~ + oo 100%).

A total of 1,182 papers were initially retrieved. The titles and
abstracts were screened, and studies containing information on
diabetes mellitus and male fertility were selected. Among these, 840
experimental studies were first screened to ensure specific data
support for the subsequent meta-analysis. Of these, 168 papers were
related to type 1 diabetes, and 185 papers were related to type 2
diabetes. The publications were then assessed and selected if they
met all the following criteria:

i. The aim of the study was to evaluate the influence of
diabetes on male fertility.
ii. The full text of the study was available.
iii. The study was a primary research paper, not a
review article.

=

. The study reported the number of individuals and
included at least two groups (control and treatment).
v. Duplicate articles were excluded.

After the screening, 27 papers met the inclusion criteria. The
selected articles were analyzed using RevMan v5.4 (Cochrane,
London, UK). These studies were then divided into T1D (eight
papers), T2D (nine papers), and inflammation (10 papers) groups.
In this study, the fixed-effect model was applied as follows (30):

Yi:@+€i

Where: Y; is the observed effect in the study; © is the true effect
in the study; and g; is the difference between the true effect and the
observed effect.
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Articles identified in literature
(n=1182)

10.3389/fendo.2025.1600565

Articles retrieved for evaluation
(n=840 (168-T1D; 185-T2D))

Studies included:
n=7 (T1D)
n=9 (T2D)
n=10 (Inflammation)

FIGURE 1
Flow diagram of the papers selected for the meta-analysis.

After the analysis, the value of the I-square was used for
quantifying the heterogeneity, and the value of the Z-test was
used for comparing the cumulative probability of the occurrence
of the total effect amount.

Gene expression levels in RNA sequencing data were estimated
using the fragments per kilobase of transcript per million mapped
reads (FPKM) method. To screen differentially expressed genes
(DEGs), the criteria were set at p < 0.05 and fold change > 2.
Subsequently, enrichment analysis was performed on the identified
DEGs to characterize their functional roles. The number of DEGs
included in each functional term was counted, and the significance of
enrichment (represented by p-value) was calculated using the
hypergeometric distribution test. A smaller p-value indicates a
higher likelihood that the DEGs are enriched in the corresponding
functional term, suggesting a nonrandom association between the
DEGs and the biological process/pathway. In this study, two RNA-
seq databases (National Center for Biotechnology Information
[NCBI]: GSE184025 and GSE179100) from the testes of diabetic
male mice were further analyzed using Metascape to obtain the
enriched pathways. Briefly, the gene list was first uploaded to the
Metascape website, the species (human and mice) were selected, and
expression analysis was then performed. The enriched pathways were
subsequently obtained, as shown in Figure 2.

Correlation analysis between inflammation, male fertility
parameters, and glucose levels was performed using the
Pearson correlation coefficient by SPSS (IBM, V.20). The data
were extracted from published papers (9, 12, 13). The formula
was as follows (31):

Pixy) = cov(X,Y)/(0ox, Oy)

Where: Py yy is the Pearson correlation coefficient of two
continuous variables (X, Y); cov(X, Y) is the covariance between
them; and oy, Oy are the standard deviations, respectively.
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3 Results
3.1 Diabetes causes male infertility

To objectively evaluate the association between DM and male
infertility, we conducted a meta-analysis approach utilizing the
fixed-effect model. The included studies are presented in Tables 1, 2.
Eight papers analyzed TI1D vs. male infertility, involving 196
individuals in the diabetic group and 226 control individuals.
Nine articles examined T2D vs. male infertility, including 410
diabetic individuals and 440 controls. According to the forest plot
(Figure 3), there were more cases of male infertility in the diabetes
group than in the control group. The total Z-test value (Z = 12.91;
p < 0.00001) indicates that diabetes significantly reduces male
fertility, and the heterogeneity was not significant (RR = 72.04;
95% confidence interval [CI] = 37.64, 137.90; I-square = 12%).
Based on the Z-test of the subgroup meta-analysis, T2D (RR =
92.16; 95% CI = 37.73, 225.12; Z = 9.93; p < 0.00001) showed a
higher probability of causing male infertility than T1D (RR = 49.18;
95% CI = 19.17, 126.22; Z = 8.10; p < 0.00001). Heterogeneity
remained nonsignificant in T1D studies (I-square = 0%) and
moderate in T2D studies (I-square = 44%), suggesting greater
consistency in T1D-related infertility outcomes (Supplementary
Figure S1).

3.2 Inflammation assumes crucial roles in
diabetes-induced male infertility

To identify the mechanisms of diabetes-induced male infertility,
we summarized and calculated the frequency of the contributing
factors. These included inflammation, oxidation, hormonal (e.g.,
FSH, testosterone), and apoptosis pathways involved in male
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FIGURE 2
Bioinformatics pipeline (https://metascape.org/gp/index.ntml#/
main/stepl).

infertility. Among them, inflammation was the most frequent
factor, accounting for 20.4% (Figure 4). Given its predominance
among the identified factors, inflammation was selected for in-
depth meta-analytical validation. Eleven studies were included in
the subsequent analysis (Table 3).

According to the forest plot (Figure 5), the Z-test for the overall
effect showed significant statistics (Z = 7.82, p < 0.00001), indicating

TABLE 1 Summary of the information on male infertility in T1D.

10.3389/fendo.2025.1600565

that inflammation is an important factor in diabetes-induced male
infertility. Ten studies were included in the meta-analysis, involving
263 diabetes-induced infertility individuals, of whom 225 events
showed increased inflammatory activity (RR = 35.98; 95% CI =
14.66, 88.29). The fixed-effects model revealed exceptional
consistency across studies (I-square = 0%), eliminating concerns
regarding interstudy heterogeneity (Supplementary Figure S2). This
robust association underscores inflammation as a pivotal mediator
in diabetes-associated male infertility.

3.3 Diabetes leads to male infertility
through an inflammatory process

We searched two RNA-seq databases from the testes of diabetic
male mice available at the NCBI related to diabetes-associated male
infertility. Gene expression levels in the RNA sequencing data were
estimated using the FPKM method. DEGs were screened using the
criteria of p < 0.05 and fold change > 2.

Subsequently, the altered gene expression data from the diabetic
and control groups were separated, combined, and further analyzed
using an online analytical tool (http://metascape.org) (Figure 2).
Based on the enriched pathways of the differentially expressed genes
(Figure 6), most pathways were closely related to male fertility and
included two notable pathways: innate immune response and
inflammatory response. These findings suggest that diabetes can
strongly influence male fertility through inflammatory pathways at
the gene expression level.

To explore interactions among diabetes, male infertility, and
inflammation, we conducted a correlation analysis. The results
demonstrated that the inflammatory pathway biomarker tumor
necrosis factor alpha (TNF-0)) was significantly negatively correlated
with male fertility parameters, including testosterone, testis weight,
sperm motility, and sperm concentration, particularly testosterone and
sperm motility (Figure 7). In contrast, TNF-o. was positively correlated
with glucose levels. These findings provide further evidence of the role
of inflammation in diabetes-induced male infertility. Diabetes disrupts
the inflammatory system, contributing to male infertility.

References Country Model types Sample size Male infertility in T1D
Condorelli et al. (3) Ttaly T1D patients 138 Increased
Simas et al. (15) Brazil T1D patients 112 Increased
Vignera et al. (32) Italy T1D patients 52 Increased
Shi et al. (33) China T1D male mice 24 Increased
Alves et al. (34) Portugal T1D patients 10 Increased
Rakhshandeh et al. (11) Iran T1D patients 14 Increased
Ballester et al. (35) Spain T1D male mice 60 Increased
Akondi et al. (36) India T1D rats 12 Increased

TID, type 1 diabetes.
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TABLE 2 Summary of information on male infertility in T2D.

10.3389/fendo.2025.1600565

References Countries Model species Sample size Male infertility in T2D
Diniz et al. (37) Portugal T2D rats 14 Increased
Long et al. (38) China T2D rats 16 Increased
Ahangarpour et al. (39) Iran T2D male mice 16 Increased
Ahangarpour et al. (40) Iran T2D male mice 16 Increased
Abbasihormozi et al. (41) Iran T2D patients 110 Increased
Kharazi et al. (10) Iran T2D rats 16 Increased
Rahimiyan-Heravan et al. (42) Iran T2D male rats 12 Increased
Al-Shaeli et al. (43) Iraq T2D male mice 10 Increased
Irgam et al. (44) India T2D patients 640 Increased

T2D, type 2 diabetes.

4 Discussion

This is the first study to carry out a meta-analysis assessing the risk
of male infertility in individuals with diabetes compared with controls.
Based on the meta-analysis of the included studies, we propose that
diabetes has a substantial impact on male reproduction. The
underlying mechanisms are highly complex, and this paper primarily
focuses on analyzing and discussing the role of inflammation.

Diabetes could lead to severe metabolic disease and complications
(50). According to the IDF (71), diabetes rates are increasing

worldwide. As early as 500-600 bc, two Indian physicians described
the distinction between types 1 and 2 diabetes: type 1 being associated
with onset in youth, and type 2 linked to obesity (51). Although types 1
and 2 diabetes show different characteristics, this study found that both
have a substantial adverse effect on male fertility (3, 14, 26, 45, 52-55).
This study included 27 papers for meta-analysis. Eight articles involving
422 individuals evaluated the risk of T1D on male fertility, yielding
statistically significant results (p < 0.00001). Nine papers involving 850
individuals evaluated T2D in male fertility, also showing statistically
significant results. Although some included studies had small sample

DM Control Risk Ratio Risk Ratio

Study or Subgroup Events Total Events Total Weight M.H, Fixed, 95% Cl _Year M.H, Fixed, 95% CI
1.1.1 T1D vs male infertility
BALLESTER 2004 30 30 0 30 58% 61.00 [3.90, 953.95] 2004
Akondi 2011 6 6 0 6 58% 13.00(0.89, 189.39] 2011
Vignera 2015 32 32 0 20 71% 41.36 [2.67,639.92] 2015 -
Alves 2015 5 5 0 5 58% 11.00 [0.77,158.01) 2015 T
Shi 2017 14 14 0 10 67% 21.27 [1.42,319.53] 2017 e
Condorelli 2018 38 38 0 100 3.2% 199.41([12.56,3166.98) 2018 —t
Simas 2020 64 64 0 48 6.6% 97.25(6.17,1532.96] 2020 —_—*
Rakhshandeh 2022 7 7 0 7 58% 15.00 [1.02, 220.92) 2022
Subtotal (95% CI) 196 226 46.8% 49.18 [19.17, 126.22] -
Total events 196 0
Heterogeneity: Chi*= 4.54, df=7 (P=0.72); F= 0%
Test for overall effect: Z=8.10 (P < 0.00001)
1.1.2 T2D vs male infertility
Ahangarpour 2014 8 8 0 8 58% 17.00[1.14,252.54] 2014 "
Ahangarpour 2015 8 8 0 8 58% 17.00[1.14,252.54] 2015 -
Long 2018 8 8 0 8 58% 17.00[1.14,252.54] 2018 -
Abbasihormozi 2018 70 70 0 40 7.4% 81.42(5.18,1279.95) 2018 S —
Heravan 2020 6 6 0 6 58% 13.00[0.89, 189.39] 2020 -
Irgam 2021 290 290 0 350 5.3% 700.79[43.92,11181.89) 2021 —k
Kharazi 2021 8 8 0 8 58% 17.00[1.14,252.54] 2021 -
Shaeli 2022 8 5 0 5 58% 11.00(0.77,158.01) 2022 T
Diniz 2022 7 7 0 7 58% 15.00[1.02, 220.92] 2022 —
Subtotal (95% CI) 410 440 53.2% 92.16 [37.73, 225.12] -
Total events 410 0
Heterogeneity: Chi*= 14.35, df= 8 (P = 0.07); F= 44%
Test for overall effect: Z=9.93 (P < 0.00001)
Total (95% ClI) 606 666 100.0% 72.04 [37.64, 137.90] L 4
Total events 606 0

i . - - R = : : : :
Heterogeneity: Chi*= 18.09, df= 16 (P = 0.32); F=12% 0.001 o1 10 1000

Test for overall effect: Z=12.91 (P < 0.00001)
Test for subaroun differences: Chi*= 0.90. df=1 (P = 0.34). F= 0%

FIGURE 3

Favours [DM] Favours [control]

Meta-analysis of the association between diabetes and male infertility. (T1D, type 1 diabetes; T2D, type 2 diabetes).
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FIGURE 4
Factors contributing to male infertility caused by diabetes.

sizes, the meta-analysis findings are consistent with our previous studies
(56, 57). These results suggest that diabetes has a detrimental impact on
male fertility. Interestingly, we found that type 2 diabetes was associated
with a higher risk of male infertility than type 1 diabetes. This may be
because type 2 diabetes is characterized by insulin resistance as its core
feature and is accompanied by various complications, such as chronic
hyperglycemia, lipid metabolism disorders (58), and systemic low-
grade inflammation (59). These complications could negatively impact
male reproductive function (26, 60).

Studies have established an association between inflammatory
biomarkers and the occurrence of diabetes and its complications (61~
63). According to our results, diabetes may induce male infertility
through several pathways. Among them, inflammation (20.4%) was
observed more frequently than hormonal (16.7%), apoptotic (13%),
and oxidative (9.3%) pathways. The 10 studies included here involved
263 diabetes-induced male infertile individuals and 208 controls. The
forest plot indicated that inflammatory reactions were active in
diabetes-induced male infertility. These data consistently confirm that

inflammatory pathways (TNF-o.) serve as important mechanisms
mediating male infertility in diabetes. Moreover, TNF-o. showed a
significant negative correlation with core male fertility indicators, such
as sperm motility, sperm concentration, and testosterone levels,
highlighting the causal role of inflammatory pathways in diabetes-
induced male infertility and providing critical evidence for subsequent
mechanistic research. Despite the strong consistency of the results, the
inclusion of both animal and human studies introduced limitations and
heterogeneity. A major limitation was the overreliance on rodent
models in the included studies, which may reduce the applicability of
the findings to human male fertility. This limitation primarily arises
from significant differences between rodents and humans in
physiological characteristics, metabolic mechanisms, and reproductive
system structure. For instance, the spermatogenic cycle of mice (35
days) is much shorter than that of humans (74 days) (64, 65), and the
ratio of Sertoli cells to germ cells in the seminiferous tubules also differs
from that in humans (66). Such structural disparities may lead to
variations in the duration and intensity of inflammatory effects on

TABLE 3 Summary of the studies related to inflammation in DM-caused male infertility.

Inflammatory
References Country Model types Sample size reaction in DM-male
infertility
Condorelli et al. (3) Ttaly DM 193 Increased
Skurikhin et al. (45) Russia T1D 20 Increased
Maresch et al. (46) Germany T1D 20 Increased
Rakhshandeh et al. (11) Iran T1D 14 Increased
Heeba and Hamza (47) Egypt T1D 16 Increased
Han et al. (48) China T1D 140 Increased
Khalil et al. (49) Malaysia T2D 12 Increased
Nna et al. (7) Malaysia T1D 16 Increased
Jiang et al. (5) Germany DM 20 Increased
Bakhshwin et al. (4) Saudi Arabia T2D 20 Increased

DM, diabetes.
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Diabetes-infertility Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M.H, Fixed, 95% Cl _Year M.H, Fixed, 95% Cl
Heeba 2015 8 8 0 8 95% 17.00[1.14,252.54] 2015
Maresch 2017 1" 1" 0 9 104% 19.17[1.28,286.39] 2017
Skurikhin 2017 10 10 0 10 95% 21.00(1.40,315.98] 2017 S
Condorelli 2018 55 93 0 100 92% 119.27(7.47,1903.44] 2018 _—
Hana 2019 100 100 0 40 136% 81.59(5.19,1282.60] 2019 D —
Nna 2019 8 8 0 8 95% 17.00[1.14,252.54] 2019 T
Jiang 2020 10 10 0 10 95%  21.00[1.40,315.98] 2020 -
Khalil 2021 6 6 0 6 95% 13.00(0.89,189.39] 2021 |
Rakhshandeh 2022 7 7 0 7 95% 15.00(1.02,220.92] 2022 .
Bakhshwin 2022 10 10 0 10 95%  21.00[1.40,315.98] 2022 -
Total (95% Cl) 263 208 100.0%  35.98[14.66, 88.29] >
Total events 225 0
Heterogeneity: Chi*= 3.28, df= 9 (P = 0.95); F= 0% ! t y i
o 0.001 0.1 10 1000
Test for overall effect: Z= 7.82 (P < 0.00001) Favours [diabetes] Favours [control]
FIGURE 5
Meta-analysis of inflammation in diabetes-induced male infertility.
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FIGURE 6
Genetic pathway enrichment analysis (https://metascape.org/).
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Correlation analysis of the TNF-o inflammatory pathway. Different colors represent different correlations. (Blue represents negative correlation;
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spermatogenesis. More importantly, the species-specificity of
inflammatory pathways may limit the extrapolation of results. Here,
we demonstrated that inflammation is a high-risk factor through which
diabetes can cause male infertility. This analysis clarifies the mechanism
by which diabetes induces male infertility via inflammatory pathways;
however, the limitations of rodent models indicate that these findings
require further validation in humans. In addition, genetic disorders
were observed in diabetic male mice. Metascape analysis of gene
expression in fertility pathways and inflammatory pathways further
confirmed that inflammation plays a vital role in diabetes-induced
male infertility. Pearson coefficient analysis showed the relationships
among inflammation, diabetes, and male infertility. TNF-a is a
cytokine with tumor necrosis activity and plays a role in
inflammation (67). This study found that TNF-o is positively
associated with diabetes and negatively associated with male fertility
parameters, including testosterone, testis weight, sperm motility, and
sperm concentration, confirming the results of the meta-analysis and
gene expression pathway analysis. Another notable finding was that
TNF-o. was positively correlated with glucose levels. Studies have
confirmed that elevated glucose is an important pathological feature
of metabolic diseases such as type 2 diabetes and obesity (68). This
association was not merely a concomitant phenomenon. The feedback
regulation of TNF-o by glucose in the diabetes model creates a vicious
cycle: high glucose levels stimulate the secretion of TNF-0,, forming a
vicious cycle of hyperglycemia—increased TNF-o—more severe
hyperglycemia (69). Importantly, oxidative stress induced by high-
sugar conditions negatively impacts sperm quality, which in turn
indirectly affects normal male reproductive function (70). In addition,
oxidative stress and hormonal imbalance are important contributors to
male infertility in diabetes (54). The cycle of diabetes—oxidative
stress—inflammation activation—hormonal imbalance—aggravated
oxidative stress and inflammation—continuous damage to
reproductive function—male infertility represents the core
mechanism of male infertility in diabetes. Therefore, not only
anti-inflammatory approaches, but also strategies targeting oxidative
stress and hormonal imbalance, may be potential treatment
directions for improving male infertility in diabetes. Consequently,
comprehensive interventions addressing these three aspects—including
anti-inflammatory therapy, antioxidant treatment, and testosterone
supplementation—may become the key strategies for enhancing
fertility in diabetic men in the future. Of course, this study represents
a preliminary exploration in this field, and further high-quality studies
are needed to validate these conclusions.

5 Conclusions

In summary, this meta-analysis demonstrates a significant risk
of male infertility in diabetic populations, with T2D exhibiting
greater reproductive toxicity than T1D. Mechanistically, chronic
inflammation appears to be an important mediator, as indicated by
correlation analysis and transcriptomic signatures. In the future,
targeting inflammation may become a potential therapeutic strategy
for diabetic male infertility.
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SUPPLEMENTARY FIGURE 1
The funnel plot corresponding to Figure 3.
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