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Objective: To assess the impact of exercise on bone metabolism in

postmenopausal women through meta-analysis, and to offer evidence-based

guidance for preventing and managing osteoporosis in this population.

Methods: We searched PubMed, Embase, and other databases using keywords

such as “exercise,” “postmenopausal women,” and “bone metabolism” to identify

randomized controlled trials published up to 2024 on the effect of exercise on

bone metabolism in postmenopausal women. Studies were selected according

to predefined inclusion and exclusion criteria. Data were analyzed using Review

Manager 5.4 and Stata17. Study quality was assessed with the Cochrane risk-of-

bias tool. Effect sizes were pooled as standardized mean differences(SMDs)with

95% confidence intervals(CIs), and heterogeneity was evaluated with the

I²statistic. A fixed-effects model was used when I²≤50%; otherwise, a random-

effects model was applied. The overall evidence certainty was rated using the

Grading of recommendations assessment, development, and evaluation

(GRADE)system.

Results: A meta-analysis of 24 studies(1067 subjects total)showed that exercise

significantly elevated the levels of alkaline phosphatase(ALP)(SMD = 0.49, 95%CI:

0.21-0.77, P = 0.0006), N-terminal propeptide of type I procollagen(P1NP)(SMD =

0.62, 95% CI: 0.24 to 1.01, P = 0.002)and osteocalcin(OC)(SMD = 0.21, 95% CI:

0.05 to 0.37, P = 0.01); exercise significantly reduced the levels of parathyroid

hormone(PTH)(SMD=-0.51, 95%CI: -0.77 to -0.25, P= 0.0001)and type I collagen

cross-linked C-terminal peptide(CTX)(SMD=-0.32, 95% CI: -0.51to-0.12, P =

0.001). Subgroup analyses showed that aerobic exercise(SMD=-0.35, 95% CI:

-0.65 to -0.06, P = 0.02) significantly reduced CTX levels, while both aerobic

exercise(SMD = 0.23, 95% CI: 0.01 to 0.44, P = 0.04)and resistance exercise

(SMD = 0.65, 95% CI: 0.10 to 1.20, P = 0.02)significantly increased OC levels.

Exercise interventions lasting ≤6 months(SMD=-0.45, 95% CI: -0.72 to -0.18, P =

0.001)and sessions of ≤60 min(SMD=-0.48, 95% CI: -0.80 to -0.17, P = 0.003)

both significantly reduced CTX levels, exercise interventions lasting ≤6 months

(SMD= 0.35, 95%CI: 0.13 to 0.57, P = 0.002)and sessions of ≤60min(SMD= 0.20,

95% CI: 0.01 to 0.39, P = 0.04)can significantly both increase OC levels.

Conclusion: Exercise significantly improves bone metabol ism in

postmenopausal women by reducing bone resorption and promoting bone

formation. Aerobic exercise lowers CTX levels, while both aerobic and
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resistance exercise increase OC levels. Short-term (≤6 months) and moderate-

length (≤60 minutes/session) interventions are particularly effective. However,

more high-quality randomized controlled trials are needed to confirm

these benefits.

Sys temat ic rev iew reg i s t ra t ion : ht tps : / /www.c rd . yo rk . ac .uk / ,

identifier CRD42024610810.
KEYWORDS

exercise, postmenopausal women, bone metabolism, osteoporosis, osteopenia,
randomized controlled trial, meta-analysis
1 Introduction

Osteoporosis is a systemic metabolic bone disease whose main

risk is fragility fracture and is recognized as a disease that seriously

affects the public health of society (1). Numerous studies have

confirmed that postmenopausal women are at high risk of

developing osteoporosis, with approximately 200 million women

worldwide suffering from osteoporosis after menopause. After

menopause, there is destruction of the trabecular structure of the

bone, which in turn leads to an increase in the brittleness of the

bone and a decrease in the mechanical strength of the bone, which

in turn increases the risk of fracture (2). With increasing age,

decreased physical activity, insufficient calcium intake, decreased

absorption, and decreased vitamin conversion can make bone

calcium highly susceptible to absorption and migration (3).

Therefore, it is of great practical significance to explore exercise

to improve bone metabolism and prevent osteoporosis in

postmenopausal women.

Previous studies have demonstrated that exercise improves

bone metabolism in postmenopausal women, thereby effectively

preventing and treating osteoporosis (4, 5). The effect of exercise on

bone metabolism in postmenopausal women has been a hot

research topic. Exercise can improve bone metabolism by

stimulating the secretion of growth factors by bone cells,

promoting blood circulation in the skeletal system, and

accelerating the absorption and metabolism of nutrients (6).

Additionally exercise can stimulate adaptive changes in the

skeletal system by increasing muscle loading, increasing bone

density and bone strength and thus improving bone health (7).

The effects of exercise on bone health in postmenopausal

women have been reviewed with a focus on bone mineral density

(BMD) (8–10), which is the most commonly used metric for

assessing bone health and reflects a relatively static bone mass

status (11). BMD does not fully reflect bone metabolism, and in

order to overcome this limitation and to understand the dynamic

response to bone remodeling with exercise, bone metabolism

markers are therefore used as dynamic indicators to evaluate

bone remodeling (11). In addition, as bone metabolism increases

with age, the potential clinical application of these markers could
02
assess fracture risk and measure bone health in postmenopausal

women (12). This article reviews the relevant studies on the changes

in various bone metabolism indicators in postmenopausal women

after various interventions such as aerobic exercise, resistance

exercise, impact exercise, Tai Chi, whole-body vibration training,

and combined exercise. Meta analysis is conducted on the outcome

indicators to compare the effects of exercise on bone metabolism,

providing a theoretical basis for postmenopausal women to exercise

scientifically to prevent and treat osteoporotic fractures.
2 Materials and methods

2.1 Protocol and registration

This comprehensive systematic review and meta-analysis

followed the guidelines outlined in the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

(13) (Supplementary Table S1). This study was registered with

the PROSPERO platform under the registration number:

CRD42024610810 (https://www.crd.york.ac.uk/).
2.2 Search strategy

The first author conducted the search from November 6 to 8,

2024. The databases Retrieved November 2024 by the first author.

PubMed, Embase, Cochrane Library, Web of Science, Scopus and

Google Scholar were searched. Randomized controlled trials (RCTs)

on the effects of aerobic and resistance exercise on bone metabolism

in middle-aged and elderly people were searched in each database.

The search terms included “Exercise, physical exercise,

postmenopausal women, osteoporosis, low bone mass, bone

metabolism, randomized controlled trial”. To identify more

potential studies, we manually searched gray literature, reference

lists of identified studies, and relevant registration website

(ClinicalTrials.gov) and consulted experts in this field. however,

due to the lack of standardized peer-review processes and limited

accessibility of detailed data, we decided to exclude gray literature
frontiersin.org
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from our analysis. The full search strategies for all databases are

shown in Supplementary Table S2.
2.3 Inclusion and exclusion criteria for the
studies

Inclusion criteria: Inclusion criteria: (i) Study type: RCTs on the

effects of exercise on bone metabolism in middle-aged and older

adults that have been published in various databases from the time of

their construction to November 6, 2024. Only peer-reviewed articles

published in English were included to ensure methodological quality

and accessibility of data; (ii) Study subjects: postmenopausal women

aged ≥45 years. In this study, “postmenopausal” was defined as a

serum follicle-stimulating hormone (FSH) level >25–30 IU/L,

natural amenorrhea for >12 months, or explicit mention in the

literature that the participants were in the postmenopausal stage. (iii)

Intervention: any form of physical exercise (which refers to the

cultural activities in which participants are physically active through

the importance of physical exercise with the purpose of

strengthening their physical fitness and improving their health),

and the intervention group was based on Physical exercise is the

focus of the intervention group, and there is no requirement for the

exercise mode and load volume. Control measures: the control group

only carries out daily life or original physical exercise and does not

receive additional exercise intervention. If the control group receives

conventional treatment, the experimental group should adopt

conventional treatment + exercise intervention at the same time.

(iv) Out-come indicators: serum phosphorus, serum calcium,

osteocalcin (OC), 25-hydroxyvitamin D (25(OH)D), alkaline

phosphatase (ALP), parathyroid hormone (PTH), type I collagen

carboxy-terminal peptide (CTX), N-terminal propeptide of type I

procollagen (P1NP).

Exclusion criteria: (i) Duplicated published literature; (ii) Non-

RCT; (iii) Study subjects were not postmenopausal women; (iv)

Interventions did not meet the inclusion criteria and controls did

not meet the inclusion criteria; and (v) Outcome metrics did not

meet the outcome metrics associated with the inclusion criteria; (vi)

Unpublished studies, conference abstracts, and grey literature were

excluded due to the lack of complete methodological details and

peer review, which may affect data reliability.
2.4 Literature screening and data
extraction

The retrieved literature was imported into Endnote 20 software

and duplicates were removed from it. Two researchers then

screened the literature and extracted information based on

established inclusion and exclusion criteria. If disagreements were

encountered, they were discussed and resolved with a third

researcher. Characteristics of included studies included authors,

year of publication, country, sample size, and age (Table 1), and

characteristics of included interventions included type of exercise,

frequency of exercise, exercise period, duration of a single exercise
Frontiers in Endocrinology 03
session, control exercise status, and outcome indicators (Table 2).

Bone metabolism marker data were extracted as post-intervention

mean and standard deviation (SD).
2.5 Risk of bias assessment

For RCTs and clinical controlled trials, the risk of bias was

provided by the Review Manager 5.4 self-contained tool (14). Two

researchers each assessed the risk of bias in the selected literature

using the Cochrane Risk of Bias Assessment Tool. The assessment

included randomized sequence generation, allocation concealment,

blinding of investigators and subjects, blinded evaluation of study

out-comes, completeness of outcome data, selective reporting and

other biases. Each factor was assessed as high risk of bias, low risk of

bias, or unknown risk of bias. Disagreements that arose during the

assessment process were resolved through discussion.
2.6 Data analysis

Data were synthesized for the included outcome indicators

using Review Manager 5.4 software and stata17 software. The

outcome indicators of the studies included in this analysis were

all continuous variables. Since all the incorporated studies were

RCTs, the between-group differences at baseline should

theoretically approach zero. Therefore, post-intervention values

were used for the meta-analysis, and standardized mean

differences (SMDs) with 95% confidence intervals (95% CIs) were

selected as the effect measures for pooling the effect sizes. Statistical

inferences were made through heterogeneity tests and statistical

combined effect sizes. The heterogeneity test was evaluated using I2

values. In the heterogeneity test, P>0.10 indicated that the

heterogeneity of the literature included in this study was

negligible, and P ≤ 0.10 indicated that the heterogeneity of the

literature included in this study existed. 0≤I2 ≤ 25% indicated that

the heterogeneity was ignored, 25%<I2 ≤ 50% indicated that the

inclusion of the literature existed in a mild degree, 50%<I2 ≤ 75%

indicated that the inclusion of the study existed in a moderate

degree, and I2>75% indicated that the inclusion of the studies had

high heterogeneity. Literature with moderate to high heterogeneity

was analyzed using a random effects model, while literature with

mild or negligible heterogeneity was analyzed using a fixed

effects model.
2.7 Subgroup analysis

Subgroup analyses of OC and CTX were conducted according

to exercise type, intervention period (≤6 months vs. >6 months),

and session duration (≤60 minutes vs. >60 minutes). Due to the

limited number of studies, subgroup analyses were not performed

for other bone metabolism markers. In addition, because exercise

intensity was inconsistently defined across trials (e.g., based on

heart rate, load percentage, or perceived exertion) and only a few
frontiersin.org

https://doi.org/10.3389/fendo.2025.1597046
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Research characteristics.

Bone status (diagnostic criteria, measurement sites,
and measurement tools)

Healthy, no osteoporosis

Healthy, no osteoporosis

Osteoporosis: BMD more than 30% below the young adult mean (in
accordance with the Japanese diagnostic guidelines for osteoporosis)
Measurement site: Lumbar spine (L2–L4) BMD
Measurement tool: DXA

Osteopenia or osteoporosis: BUA T-score ≤ -1
Measurement site: calcaneus
Measurement tool: QUS

Healthy, no osteoporosis

Healthy, no osteoporosis

Osteopenia: -2.5 < T-score < -1.0
Measurement sites: Lumbar spine or hip BMD
Measurement tool: DXA

Healthy, no osteoporosis

Osteopenia: -2.5 < T-score < -1.0
Measurement sites: lumbar spine (L1–L4), femoral neck, and total hip BMD
Measurement tool: DXA

Osteopenia: -2.5 < T-score < -1.0
Measurement sites: hip or spine BMD
Measurement tool: DXA

Osteopenia: -2.5 < T-score < -1.0
Measurement sites: Lumbar spine (L1-L4) or femoral neck BMD
Measurement tool: DXA

Osteoporosis: T-score ≤ -2.5; Osteopenia: -2.5 < T-score < -1.0
Measurement sites: Lumbar spine (L1–L4), femoral neck, and total hip BMD
Measurement tool: DXA

Osteoporosis: T-score ≤ -2.5
Measurement sites: lumbar spine or hip BMD
Measurement tool: DXA

(Continued)
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Author (Year) Country and area Subject type
Sample size (n) Age

EG CG EG CG

Hatori (16) (1993) Japan Post-menopausal women 9/12 12
MG: 58 ± 5
HG: 56 ± 4

58 ± 8

Nelson (17) (1994) United States of America Post-menopausal women 20 18 61.4 ± 6.9 58.9 ± 8.1

Iwamoto (18) (2001) Japan Post-menopausal women 8 20 65.3 ± 4.7 64.9 ± 5.7

Ay (21) (2003) Turkish Post-menopausal women 23 23 54.28 ± 6.08 55.11 ± 5.32

Wu (19) (2005) Japan Post-menopausal women 31 33 54.4 ± 2.9 53.8 ± 2.9

Wu (20) (2006) Japan Post-menopausal women 31 33 54.4 ± 2.9 53.8 ± 2.9

Shen (38) (2010) United States of America Post-menopausal women 44 42 58.3 ± 7.7 57.6 ± 7.5

Tartibian (22) (2011) Iran Post-menopausal women 20 18 61.4 ± 6.9 58.9 ± 8.1

Wayne (37) (2012) United States of America Post-menopausal women 43/26 43
58.8 ± 5.5/
59.1 ± 4.9

60.4 ± 5.3

Bergström (23) (2012) Sweden Post-menopausal women 48 44 58.9 ± 4.3 59.6 ± 3.6

Baset (24) (2013) Turkey Post-menopausal women 11 12
SG: 55.9 ± 4.9
HIG: 55.6 ± 2.9

56.2 ± 4.0

Mosti (25) (2013) Norway Post-menopausal women 8 8 61.9 ± 5.0 66.7 ± 7.4

Roghani (26) (2013) Iran Post-menopausal women 8/9 10 45-65
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TABLE 1 Continued

Sample size (n) Age Bone status (diagnostic criteria, measurement sites,
and measurement tools)

Normal bone mass: T-score ≥ -1.0; osteoporosis: BMD T-score ≤ -2.5;
osteopenia: -2.5 < T-score < -1.0
Measurement sites: lumbar spine (L2–L4) and total hip BMD
Measurement tool: DXA

6.07

Normal bone mass: T-score ≥ -1.0; Osteopenia: -2.5 < T-score < -1.0;
Osteoporosis: T-score ≤ -2.5
Measurement sites: lumbar spine (L1–L4), femoral neck, trochanter, total hip,
and whole-body BMD
Measurement tool: DXA

3.2
Osteopenia: T-score ≤ -1.0; Osteoporosis: T-score ≤ -2.5
Measurement sites: lumbar spine, hip, and whole-body BMD
Measurement tool: DXA

7.8 Only 4 participants (12.9%) met the criteria for osteoporosis (T-score ≤ −2.5)

6.0

The BMD T-score at the lumbar spine (L1–L4 or L2–L4) and/or femoral neck
and total hip ranges from -2.0 to -3.0, meeting the diagnostic criteria for
osteopenia or osteoporosis (according to WHO standards: T-score ≤ -2.5
indicates osteoporosis, and -1.0 to -2.5 indicates low bone mass/osteopenia)

0.70
Osteoporosis: T-score ≤ -2.5; Osteopenia: -2.5 < T-score < -1.0
Measurement sites: lumbar spine or femoral neck BMD
Measurement tool: DXA

5.4 Healthy, no osteoporosis

2.37 NR

±
The mean baseline BMD (0.517–0.585 g/cm²) was significantly lower than
that of healthy young adults. Based on the baseline BMD values, the
participants were diagnosed with osteopenia or osteoporosis

4.01 Healthy, no osteoporosis

According to the guidelines of the World Health Organization (WHO) and
the International Society for Clinical Densitometry (ISCD, 2023), BMD T-
scores are classified as follows: Normal bone mass: T-score ≥ -1; Osteopenia:
-2.5 < T-score < -1; Osteoporosis: T-score ≤ -2.5
Measurement device: Sonost 3000 densitometer
Measurement site: calcaneus

igh impact training group; QUS, quantitative ultrasound; BUA, broadband ultrasound attenuation;
g with blood flow restriction; LIRT, low-intensity resistance training.
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Author (Year) Country and area Subject type
EG CG EG CG

Pernambuco (27) (2013) Brazil Post-menopausal women 36 31 66.8 ± 4.2

Moreira (28) (2014) Japan Post-menopausal women 59 41 58.6 ± 6.71 59.3 ±

Wen (6) (2017) China, Taiwan Post-menopausal women 24 24 57.5 ± 3.5 58.8 ±

Baker (29) (2018) Australia Post-menopausal women 14 17 61.6 ± 9.2 61.6 ±

Sen (30) (2020) Turkey Post-menopausal women 15 18
WG: 55.0 ± 4.6
HIG: 53.1 ± 4.4

54.5 ±

Linero (31) (2021) South Korea Post-menopausal women 7/6/6 5
MHIRT: 56.43 ± 0.72
LIBFR: 55.71 ± 0.52
LIRT: 56.50 ± 0.99

56.83 ±

Pereira (32) (2021) Portugal Post-menopausal women 41 26 67.3 ± 6.5 69.9 ±

Kim (33) (2022) South Korea Post-menopausal women 14 15 81.14 ± 3.98 80.80 ±

Zaravar (34) (2024) Iran Post-menopausal women 7 6 65.100 ± 3.478
66.400
3.238

Guzel (35) (2024) Turkey Post-menopausal women 12 12 55.67 ± 3.44 54.42 ±

Pasa (36) (2024) Indonesia Post-menopausal women 14 14 45-69

EG, exercise group; CG, control group; HG, high intensity group; MG, moderate intensity group; WG, whole-body vibration (WBV); SG, strength training group; HIG, h
DXA, dual-energy X-ray absorptiometry; BMD, bone mineral density; MHIRT, moderate to high-intensity resistance training; LIBFR, low-intensity resistance trainin
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TABLE 2 Characterization of research interventions.

of the
uring

Outcome measures (units, baseline ranges,
measurement methods)

ific exercise

Baseline ranges:
Ca (mg/dL): 9.0 ± 0.2 (CG), 9.2 ± 0.4 (MG), 9.4 ± 0.5 (HG)
P (ng/mL): 3.6 ± 0.3 (CG), 3.5 ± 0.3 (MG), 3.7 ± 0.5 (HG)
OC (ng/mL): 11.8 ± 2.6 (CG), 12.0 ± 2.3 (MG), 11.6 ± 2.4
(HG)
ALP (U/L): 167 ± 29 (CG), 177 ± 30 (MG), 196 ± 37 (HG)
Measurement methods: OC was measured by RIA; Ca, P, and
ALP were measured using automated methods

rogram

Baseline ranges:
OC (nmol/L): 1.163 ± 0.224 (CG), 1.094 ± 0.245 (EG)
25(OH)D (nmol/L): 79.8 ± 27.5 (CG), 68.3 ± 25.2 (EG)
PTH (pmol/L): 2.853 ± 0.851 (CG), 2.855 ± 1.011 (EG)
Measurement methods: OC and PTH were measured using
IRMA, and 25(OH)D was measured using Competitive
Protein-Binding Analysis

additional

Baseline ranges:
Ca (mg/dl): 9.4 ± 0.4 (EG), 9.3 ± 0.4 (CG)
P (mg/dl): 3.6 ± 0.4 (EG), 3.5 ± 0.4 (CG)
ALP (IU/l): 214 ± 69 (EG), 216 ± 52 (CG)
Measurement method: Ca, P, and ALP were measured using
standard automated laboratory techniques

asked to
ry lifestyle
eriod

Baseline ranges:
PTH (pg/mL): 72.68 ± 47.01 (EG), 68.89 ± 25.34 (CG).
Measurement method: Iodine-125 RIA

intervention

Baseline ranges:
OC (ng/mL): 9.50 ± 2.42 (EG), 9.23 ± 2.09 (CG)
Measurement method: Sandwich enzyme immunoassay using
polyclonal antibodies

intervention

Baseline ranges:
OC (ng/mL): 9.50 ± 2.42 (EG), 9.23 ± 2.09 (CG)
Measurement method: Sandwich enzyme immunoassay using
polyclonal antibodies

exercise

Baseline ranges:
P (mg/dl): 3.7 ± 0.5 (EG and CG), 3.7 ± 0.5 (CG)
Ca (mg/dl): 9.4 ± 0.2 (EG), 9.4 ± 0.4 (CG)
ALP (U/L): 81.6 ± 20.1 (EG), 75.3 ± 18.6 (CG)
Detection method: NR

(Continued)
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Athor Interventions
Frequency of
intervention

Intervention
cycle

Duration of one
intervention

Exercise status
control group d
the trial

Hatori (16) Walking 3 times/week 7 months 30 minutes
Not undertaking a spe
program

Nelson (17) High-intensity strength training 2 times/week 1year 45 minutes No strength training p

Iwamoto (18)
Brisk walking and gymnastic
exercises

NR 2 years NR
Daily activities only, n
exercise interventions

Ay (21) Aquatic aerobics exercises 3 times/week 6 months 45 minutes
The control group was
maintain their sedenta
throughout the study p

Wu (19) Walking 3 times/week 24 weeks 45 minutes No additional exercise

Wu (20) Walking 3 times/week 1 year 45 minutes No additional exercise

Shen (38) Tai Chi 3 times/week 24 weeks 60 minutes
Placebo, no additional
intervention
c

o
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TABLE 2 Continued

Exercise status of the
Outcome measures (units, baseline ranges,
measurement methods)

onal

Baseline ranges:
P (mg/dL): 3.8 ± 0.5 (EG), 3.6 ± 0.6 (CG)
Ca (mg/dL): 9.5 ± 0.7 (EG), 9.3 ± 0.7 (CG)
CTX (ng/mL): 0.5 ± 0.1 (EG and CG)
25(OH)D (pg/mL): 41.5 ± 21.9 (EG), 42.3 ± 20.6 (CG)
PTH (pg/mL): 92.5 ± 46.6 (EG), 94.9 ± 46.6 (CG)
OC (ng/mL): 25.8 ± 8.4 (EG), 24.4 ± 7.7 (CG)
Measurement methods: CTX and OC were measured using
ELISA, 25(OH)D by Radioreceptor Assay, PTH by
Electrochemiluminescent Method
P, Ca: NR

,

Baseline ranges:
CTX (ng/mL): 0.554 ± 0.259 (Randomized to Tai Chi), 0.594
± 0.30 (Per Protocol Tai Chi), 0.603 ± 0.231 (Randomized to
Usual Care)
OC (ng/mL): 16.29 ± 6.01 (Randomized to Tai Chi), 15.52 ±
4.94 (Per Protocol Tai Chi), 17.11 ± 7.02 (Randomized to
Usual Care)
Measurement methods: CTX was measured using ELISA, and
OC was RIA

le
Baseline ranges:
CTX (ng/l): 421 ± 142 (EG), 419 ± 166 (CG)
Measurement methods: ECLIA

, Baseline ranges:
OC (ng/ml): 13.6 ± 2.4 (SG), 13.6 ± 6.0 (HG), 14.2 ± 3.4 (CG)
Measurement method: ELISA

and

Baseline ranges:
CTX (ng/ml): 0.743 ± 0.200 (EG), 0.576 ± 0.051 (CG)
P1NP (mg/l): 54.25 ± 15.36 (EG), 51.67 ± 12.36 (CG)
Measurement methods: CTX by RIA; P1NP by Serum
CrossLaps ELISA

onal

Baseline ranges:
P(mg/dl): 3.86 ± 0.40 (AG), 3.33 ± 0.43 (AG+RG), 3.79 ± 0.42
(CG)
Ca (mg/dl): 9.10 ± 0.11 (AE), 8.91 ± 0.16 (AG+RG), 9.06 ±
0.38 (CG)
ALP (ALP, U/L): 218.00 ± 68.32 (AG), 222.44 ± 60.96 (AG
+RG), 181.50 ± 83.36 (CG)
Measurement methods:
P and Ca: standardized biochemical analysis
ALP: ELISA
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Athor Interventions
Frequency of
intervention

Intervention
cycle

Duration of one
intervention

control group during
the trial

Tartibian (22) Walking and running exercises 3–4 times/week 12/24 weeks 25–30 minutes
Daily activities only, no addit
exercise interventions

Wayne (37) Tai Chi 4 times/week 9 mouths 90 minutes
No designated athletic trainin
only routine medical care

Bergström (23) Aerobic exercise 3 times/week 1 year 30 minutes Maintaining a sedentary lifest

Baset (24)
Strength Training/High Impact
Training

3 times/week 6 mouths 45 minutes
No designated athletic trainin
just maintaining normal daily
activities

Mosti (25)
Maximum Strength Squat
Movement

3 times/week 12 weeks 30–40 minutes
Continue their daily activities
any existing exercise habits

Roghani (26) Aerobics/Aerobic + Resistance 3 times/week 6 weeks 30 minutes
Daily activities only, no addit
exercise interventions
i

g

y

g

i
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TABLE 2 Continued

s of the
during

Outcome measures (units, baseline ranges,
measurement methods)

, no additional
ns

Baseline ranges:
OC (ng/ml): 16.4 ± 7.18 (EG), 19.9 ± 5.9 (CG)
Measurement method: ELISA

, no additional
ns

Baseline ranges:
Ca (mg/dL): 9.61 ± 0.33 (EG), 9.50 ± 0.23 (CG)
25(OH)D (nmol/L): 51.8 ± 25.2 (EG), 48.1 ± 19.6 (CG)
PTH (pg/mL): 46.62 ± 15.54 (EG), 43.61 ± 15.20 (CG)
CTX (ng/mL): 0.330 ± 0.159 (EG), 0.352 ± 0.182 (CG)
Measurement method:
Ca and 25(OH)D: IRMA
PTH: Chemiluminescence immunoassay
CTX: ECLIA

any other
ivity or sport

Baseline ranges:
CTX (nmol/L): 0.69 ± 0.26 (EG), 0.89 ± 0.48 (CG)
Measurement method: ELISA

tic training,
l care

Baseline ranges:
P1NP (mg/L): 62.3 ± 27.0 (EG), 62.2 ± 25.3 (CG)
Measurement method: NR

tic training,
rmal daily

Baseline Ranges:
OC (ng/mL): 4.82 ± 1.69 (WG), 2.81 ± 1.84 (HG), 3.66 ± 2.29
(CG)
CTX (ng/mL): 0.43 ± 0.23 (WG), 0.45 ± 0.20 (HG), 0.38 ±
0.20 (CG)
Measurement methods:
OC: Solid phase chemiluminescence
CTX: ECLIA

training

Baseline Ranges:
CTX (ng/ml): 0.46 ± 0.10 (MHIRT),0.52 ± 0.07 (MHIRT),
0.40 ± 0.05 (LIRT)
Measurement method:
ECLIA

, no additional
ns

Baseline ranges:
OC (mg/L): 18.8 ± 7.1 (EG), 16.6 ± 13.1 (CG)
P1NP (mg/L): 49.9 ± 18.9 (EG), 38.0 ± 27.5 (CG)
Measurement method:
Chemiluminescence method (for both OC and P1NP)

(Continued)
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Athor Interventions
Frequency of
intervention

Intervention
cycle

Duration of one
intervention

Exercise statu
control grou
the trial

Pernambuco (27) Aquatic aerobics exercises 2 times/week 8 months 50 minutes
Daily activities onl
exercise interventio

Moreira (28) High-intensity water exercise 3 times/week 24 weeks 50–60 minutes
Daily activities onl
exercise interventio

Wen (6) Aerobic exercise 3 times/week 10 weeks 90 minutes
Not participating i
regular physical ac

Baker (29) Whole Body Vibration Training 3 times/week 12 weeks 20 minutes
No designated athl
only routine medic

Sen (30)
Whole Body Vibration Training/
High Impact Training

3 times/week 24 weeks 20–60 minutes
No designated athl
just maintaining no
activities

Linero (31) Resistance exercise 3 times/week 12 weeks 90 minutes No specific exercise

Pereira (32) Handball exercise 2–3 times/week 16 weeks 60 minutes
Daily activities onl
exercise interventio
p

y

y

n
t

e
a

e

y
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TABLE 2 Continued

ion Duration of one
intervention

Exercise status of the
control group during
the trial

Outcome measures (units, baseline ranges,
measurement methods)

60 minutes
Daily activities only, no additional
exercise interventions

Baseline ranges:
OC (ng/mL): 8.04 ± 3.93 (EG), 9.18 ± 3.09 (CG)
ALP (mg/L): 7.75 ± 4.47 (EG), 10.15 ± 3.91 (CG)
Measurement methods:
OC: Immunoassay
ALP: ELISA

60 minutes
Did not train for a specific sport,
but maintained their daily
activities

Baseline ranges:
25(OH)D (ng/mL): 27.99 ± 6.540 (EG), 28.08 ± 5.995 (CG)
PTH (pg/mL): 64.99 ± 14.516 (EG), 64.21 ± 16.097 (CG)
Measurement methods:
25(OH)D: ECLIA
PTH: Commercial reagent kits

25–40 minutes
Maintain daily activity level
without any exercise training

Baseline ranges:
25(OH)D (ng/mL): 18.95 ± 10.08 (EG), 16.62 ± 9.2 (CG)
Measurement method: NR

30 minutes
Maintain daily habits without any
structured physical activity

Baseline ranges:
PTH (pg/mL): 151.87 ± 39.84 (Walking), 175.91 ± 57.33
(Bone Joint Exercise), 142.61 ± 26.74 (Control Group, CG)
Measurement method: ELISA

te intensity group; WG, whole-body vibration (WBV); SG, strength training group; HIG, high impact training group; AG, aerobic exercise group; RG, resistance
w-intensity resistance training with blood flow restriction; LIRT, low-intensity resistance training; IRMA, immunoradiometric Assay; ELISA, enzyme-linked
C, osteocalcin; PTH, parathyroid hormone; ALP, alkaline phosphatase; 25(OH)D, 25-hydroxyvitamin D; CTX, type I collagen cross-linked C-terminal peptide;
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Athor Interventions
Frequency of
intervention

Interven
cycle

Kim (33) Aerobic + Resistance 2 times/week 6 months

Zaravar (34) Aquatic aerobics exercises) 3 times/week 8 weeks

Guzel (35) Walking 3 times/week 10 weeks

Pasa (36) Walking and bone joint exercise 3 times/week 8 weeks

EG, exercise group; CG, control group; HG, high intensity group; MG, moderate intensity group; MG, moder
exercise group; RIA, radioimmunoassay; MHIRT, moderate to high-intensity resistance training; LIBFR, lo
immunosorbent Assay; ECLIA, electrochemiluminescence Assay; P, serum phosphorus; Ca, serum calcium; O
P1NP, N-terminal propeptide of type I procollagen; NR, not reported.
t

a
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studies provided sufficient data, we did not conduct subgroup

analyses by intensity.
2.8 Sensitivity analysis

We performed sensitivity analysis by eliminating studies one by

one to verify the robustness of the results.
2.9 Publication bias

We used a funnel plot and Egger’s test to detect publication bias

when ≥10 studies with the same outcome were included in

the analysis.
2.10 Certainty of evidence

We applied the Grading of recommendations assessment,

development, and evaluation (GRADE) system to assess the

certainty of evidence. Each outcome was evaluated from the

following six aspects: study design, risk of bias, inconsistency,

indirectness, imprecision and other considerations. Then the

certainty of evidence was accordingly graded as “high”,

“moderate”, “low”, or “very low” (15). GRADE pro GDT online

tool was used to present the summary of findings.
3 Results

3.1 Results of literature screening

The initial screening identified 1653 articles, including 331

articles in PubMed database, 365 articles in Embase database, 278

articles in Cochrane Library database, 225 articles in Web of Science

database, 178 articles in Scopus database, and 276 articles in Google

Scholar database. We obtained 835 articles by de-weighting with

EndNote 20 software, excluded 751 articles after reading the titles

and abstracts, excluded 7 articles with low relevance, and read

through the full text of the remaining 84 articles to assess whether to

include them. Among them, 13 interventions did not match the

target group, 9 controls did not meet the criteria, 15 interventions

did not meet the inclusion criteria, 12 outcome indicators did not

match, 7 had no control, and 4 were unable to extract data, and

finally, the remaining 24 papers (6, 16–38) were included in the

Meta-analysis. (Figure 1).
3.2 Characteristics of the included studies

A total of 24 papers published between 1993–2024 were

included in this study, and the total number of subjects was 1067

(575 in the experimental group and 492 in the control group), aged
Frontiers in Endocrinology 10
45 years or older. Among the countries of publication, five articles

were published in Japan (16, 18–20, 28), four in Turkey (21, 24, 30,

35), three in Iran (22, 26, 34), three in the United States (17, 37, 38),

one in Brazil (27), one in Sweden (23), one in Norway (25), one in

Indonesia (36), Taiwan, China 1 article (6), 1 article (29) in

Australia, and 1 article in Portugal (32). The intervention group

included 12 articles on aerobic exercise (6, 16, 18–23, 26, 27, 32, 34–

36), 4 articles on resistance exercise (17, 24, 25, 31), 3 articles on

aerobic combined with resistance exercise (26, 28, 33), 2 articles on

whole-body vibration training (29, 30), 2 articles on percussive

exercise (24, 30), 2 article on Tai Chi exercise (37, 38). The

intervention period was 6 weeks-2 years, the frequency of exercise

was 2–4 times/week, and the duration of exercise was 25–90

minutes/session (Table 2).
3.3 Risk of bias

Nine studies (6, 24, 25, 27–30, 32, 37) reported the method of

random sequence generation (computer-generated random

numbers, variable block randomization, stratified randomization,

coin tossing, urn design). One study (29) provided information on

allocation concealment, stating that sealed opaque envelopes were

used. Twenty-two studies (6, 16–34, 37, 38) reported the number of

dropouts and losses to follow-up. Four studies (17, 29, 37, 38)

conducted an intention-to-treat (ITT) analysis, while seventeen (6,

16, 18–21, 23–28, 30–33, 37) performed a per-protocol (PP)

analysis; four (22, 34–36) did not specify whether ITT or PP was

applied. Four studies (29, 30, 37, 38) reported a trial registration

number. In summary, since blinding is difficult to implement in

exercise intervention studies, most studies were judged to be at

“high risk” of bias. The results of the risk of bias assessment are

shown in Figures 2 and 3.
3.4 Meta-analysis results

3.4.1 Effect of exercise on serum phosphorus in
postmenopausal women

There were 4 RCTs (16, 18, 22, 38) on the effect of exercise on

serum phosphorus in postmenopausal women. Meta-analysis

showed negligible heterogeneity of the included studies in the

exercise group compared to the control group (I2 = 0%, P = 0.71),

so a fixed-effects model was used (Figure 4). The results showed that

serum phosphorus (SMD = 0.10, 95% CI: -0.18 to 0.39, P = 0.48)

tended to increase in the exercise group compared to the control

group but was not significant. (Figure 4).

3.4.2 Effect of exercise on serum calcium in
postmenopausal women

There were 5 RCTs (16, 18, 22, 26, 38) on the effect of exercise

on serum calcium in postmenopausal women. Meta-analysis

showed that the included studies could be mildly heterogeneous

in the exercise group compared to the control group (I2 = 39%, P =
frontiersin.org
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0.12), so a fixed-effects model was used (Figure 5). The results

showed that serum calcium (SMD = 0.10, 95% CI: -0.13 to 0.34, P =

0.39) tended to increase in the exercise group compared to the

control group but was not significant (Figure 5).
Frontiers in Endocrinology 11
3.4.3 Effect of exercise on 25(OH)D in
postmenopausal women

There were 5 RCTs (17, 22, 28, 34, 35) on the effect of exercise

on 25(OH)D in postmenopausal women. Meta-analysis showed
FIGURE 2

Risk of bias of the included studies.
URE 1FIG

PRISMA study flow diagram.
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negligible heterogeneity in the included studies in the exercise

group compared to the control group (I2 = 0%, P = 0.76), so a

fixed-effects model was used (Figure 6). The results showed that

serum calcium (SMD = 0.18, 95% CI: -0.04 to 0.41, P = 0.11) tended

to increase in the exercise group compared to the control group but

was not significant (Figure 6).
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3.4.4 Effect of exercise on PTH in
postmenopausal women

There were 5 RCTs (17, 21, 22, 28, 34) on the effect of exercise

on PTH in postmenopausal women. Meta-analysis showed that the

included studies could be mildly heterogeneous in the exercise

group compared to the control group (I2 = 32%, P = 0.19), so a fixed

effects model was used (Figure 7). The results showed a significant

decrease in PTH in the exercise group compared to the control

group (SMD=-0.51, 95% CI: -0.77 to -0.25, P = 0.0001) (Figure 7).

3.4.5 Effect of exercise on ALP in
postmenopausal women

There were 5 RCTs (16, 18, 26, 33, 38) on the effect of exercise

on ALP in postmenopausal women. Meta-analysis showed

negligible heterogeneity in the included studies in the exercise

group compared to the control group (I2 = 0%, P = 0.93), so a

fixed-effects model was used (Figure 8). The results showed a

significant increase in ALP in the exercise group compared to the

control group (SMD = 0.49, 95%CI : 0.21 to 0.77, P =

0.0006) (Figure 8).

3.4.6 Effect of exercise on P1NP in
postmenopausal women

There were 3 RCTs (25, 29, 32) on the effect of exercise on P1NP

in postmenopausal women. Meta-analysis showed negligible

heterogeneity in the included studies in the exercise group

compared to the control group (I2 = 13%, P = 0.32), so a fixed-

effects model was used (Figure 9). The results showed a significant

increase in P1NP in the exercise group compared to the control

group (SMD = 0.62, 95% CI: 0.24 to 1.01, P = 0.002) (Figure 9).

3.4.7 Effect of exercise on CTX in
postmenopausal women

There were 7 RCTs (6, 22, 23, 25, 28, 31) on the effect of exercise

on CTX in postmenopausal women. Meta-analysis showed

moderate heterogeneity of the included studies in the exercise

group compared to the control group (I2 = 35%, P = 0.12), so a

fixed-effects model was used (Figures 10-12). The results showed

that the CTX levels in the exercise group were significantly lower

than those in the control group (SMD = -0.32, 95% CI: -0.51 to

-0.12, P = 0.001). The results of the subgroup analysis by exercise

type showed that aerobic exercise (SMD = -0.35, 95% CI: -0.65 to

-0.06, P = 0.02) significantly reduced CTX levels; resistance exercise

(SMD = -0.32, 95% CI: -1.10 to 0.47, P = 0.43), combined aerobic

plus resistance exercise (SMD = -0.34, 95% CI: -0.74 to 0.06, P =

0.10) and Tai Chi (SMD = -0.24, 95% CI: -0.63 to 0.15, P = 0.23)

showed a trend toward reducing CTX, but without statistical

significance (Figure 10). The further stratification of sample size

may have resulted in smaller pooled effect sizes and an insufficient

number of studies, leading to unstable statistical results and less

convincing findings. The results of cycle subgroup analysis showed

that exercise for ≤6 months (SMD=-0.45, 95% CI: -0.72 to -0.18, P =

0.001) significantly reduced CTX levels; exercise for >6 months

(SMD=-0.17, 95% CI: 0.46 to 0.11, P = 0.22) had a trend to reduce

CTX levels and was not significant (Figure 11). Subgroup analysis of
FIGURE 3

Risk of bias summary of the included studies.
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the duration of a single exercise session showed that exercise of ≤60

min (SMD=-0.48, 95% CI: -0.80 to -0.17, P = 0.003) significantly

reduced CTX levels, and exercise of >60 min (SMD=-0.22, 95% CI:

-0.47 to 0.03, P = 0.09) had a trend to reduce CTX levels and was not

significant (Figure 12).
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3.4.8 Effect of exercise on OC in postmenopausal
women

There were 11 RCTs (16, 17, 19, 20, 22, 23, 25, 27, 32, 33, 37)on

the effect of exercise on OC in postmenopausal women. Meta-

analysis showed moderate heterogeneity of the included studies in
FIGURE 4

Forest plot of the effect of exercise on serum phosphorus in postmenopausal women. EG, exercise group; CG, control group; HE, high intensity
exercise; ME, moderate intensity exercise; AE, aerobic exercise; RE, resistance exercise; SD, standard deviation; Std, standard; IV, inverse variance; df,
degrees of freedom.
FIGURE 5

Forest plot of the effect of exercise on serum calcium in postmenopausal women. EG, exercise group; CG, control group; HE, high intensity
exercise; ME, moderate intensity exercise; AE, aerobic exercise; RE, resistance exercise; SD, standard deviation; Std, standard; IV, inverse variance; df,
degrees of freedom.
FIGURE 6

Forest plot of the effect of exercise on 25(OH)D in postmenopausal women. EG, exercise group; CG, control group; SD, standard deviation; Std,
standard; IV, inverse variance; df, degrees of freedom.
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the exercise group compared to the control group (I2 = 14%, P =

0.29), so a fixed-effects model was used (Figures 13-15). The results

showed a trend of increasing OC in the exercise group compared to

the control group (SMD = 0.21, 95% CI: 0.05 to 0.37, P = 0.01) and

were not significant. The subgroup analysis by exercise type showed

that aerobic exercise (SMD = 0.23, 95% CI: 0.01 to 0.44, P = 0.04)

and resistance exercise significantly (SMD = 0.65, 95% CI: 0.10 to

1.20, P = 0.02) increased OC levels; impact exercise (SMD = 0.34,

95% CI: -0.17 to 0.85, P = 0.19), combined aerobic plus resistance

exercise (SMD = 0.23, 95% CI: -0.50 to 0.96, P = 0.54), Tai Chi
Frontiers in Endocrinology 14
(SMD = -0.03, 95% CI: -0.42 to 0.35, P = 0.86) and whole body

vibration training (SMD = -0.09, 95% CI: -0.69 to 0.51, P = 0.77)

showed a trend toward reducing OC, but without statistical

significance (Figure 13). The refinement of sample size

classification may have resulted in a smaller pooled effect size,

and the insufficient number of studies led to unstable statistical

results, making the findings less convincing. Cycle time subgroup

analysis showed that exercise ≤6 months (SMD = 0.35, 95% CI: 0.13

to 0.57, P = 0.002) significantly elevated OC. exercise >6 months

(SMD = 0.06, 95% CI: -0.17 to 0.28, P = 0.62) showed a trend toward
FIGURE 7

Forest plot of the effect of exercise on PTH in postmenopausal women. EG, exercise group; CG, control group; SD, standard deviation; Std,
standard; IV, inverse variance; df, degrees of freedom.
IGURE 8F

Forest plot of the effect of exercise on ALP in postmenopausal women. EG, exercise group; CG, control group; HE, high intensity exercise; ME,
moderate intensity exercise; AE, aerobic exercise; RE, resistance exercise; SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of
freedom.
FIGURE 9

Forest plot of the effect of exercise on P1NP in postmenopausal women. EG, exercise group; CG, control group; SD, standard deviation; Std,
standard; IV, inverse variance; df, degrees of freedom.
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FIGURE 10

Forest plot of the effect of exercise on CTX in postmenopausal women (subgroup analysis of exercise type). EG, exercise group; CG, control group;
SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of freedom.
FIGURE 11

Forest plot of the effect of exercise on CTX in postmenopausal women (subgroup analysis of exercise cycles). EG, exercise group; CG, control
group; SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of freedom.
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increasing OC levels and was not significant (Figure 14). Subgroup

analysis of the duration of a single exercise session showed that

exercise for ≤60 min (SMD = 0.20, 95% CI: 0.01 to 0.39, P = 0.04)

elevated OC content; exercise for >60 min (SMD=-0.22, 95% CI:

-0.07, 0.50, P = 0.13) tended to decrease OC content and was non-

significant (Figure 15). 11 studies reported the effect of exercise on

OC in postmenopausal women, so we assessed their publication

bias. The funnel plot (Supplementary Figure S1) and Egger’s test

(P = 0.953) (Table 3) showed no evidence of publication bias.
3.5 Sensitivity analysis

The effect sizes after each indicator were removed from the study

on a study-by-study basis were within the 95%CI of the total effect size,

and therefore the effect on the total combined effect size was small and

acceptable, strengthening the results of the original meta-analysis and

making it more convincing (Supplementary Figures S2-S9).
3.6 Certainty of evidence

The certainty of evidence was rated as low for two outcomes (CTX

and OC). The evidence of the remaining outcomes was rated as very

low certainty. The reasons for downgrading were mainly attributed to

the risk of bias of included studies and imprecision. The results of

certainty of evidence are shown in Supplementary Table S3.
4 Discussion

Exercise, as an effective non-pharmacological intervention, may

be the main reason for the improvement of bone health since bone
Frontiers in Endocrinology 16
responds to mechanical loads and acts on the skeleton through

muscular forces and ground reaction forces, which increase the

density and strength of bone minerals (39). Exercise is widely

recommended for the prevention of osteoporosis due to the

osteogenic effects of these forces and the lack of side effects (39).

To investigate the role of exercise on bone metabolism in

postmenopausal women, the present study conducted a meta-

analysis of relevant RCTs published to date, which is the gold

standard for evaluating interventions and resides at the top of the

evidence hierarchy for individual studies. The overall quality of the

24 RCTs included in the study was high, thus enhancing the

reliability of the findings.

The results of the subgroup analysis in this study indicate that

an exercise duration of ≤6 months and a session length of ≤60

minutes are more effective in reducing the bone resorption marker

CTX, while significantly increasing the bone formation marker OC.

Exercise exerts mechanical loading on bone tissue, which suppresses

the secretion of sclerostin by osteocytes, thereby relieving the

inhibition of the Wnt/b-catenin signaling pathway. This promotes

the intracellular accumulation of b-catenin and its translocation

into the nucleus, where it activates the expression of bone

formation–related genes and enhances osteogenic activity (40–

42). This pathway not only facilitates the differentiation and

proliferation of osteoblasts but also upregulates osteoprotegerin

expression, further inhibiting osteoclast activity and collectively

shifting bone metabolism toward a state that favors bone formation

(42, 43). In addition, Bone responds to mechanical loading with

rapid saturation and recovery of sensitivity: during a single training

bout, a limited number of loading cycles is sufficient to trigger

osteogenic signaling, and prolonging the duration or increasing the

number of cycles does not proportionally enhance the bone-

forming effect (44). Short-duration (≤60 min) and regular

mechanical loading, combined with adequate rest intervals, can
FIGURE 12

Forest plot of the effect of exercise on CTX in postmenopausal women (subgroup analysis of the duration of a single exercise session). EG, exercise
group; CG, control group; SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of freedom.
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effectively maintain the mechanosensitive of bone cells and thereby

enhance bone metabolic responses (45). In addition, bone turnover

markers such as P1NP and CTX have been shown to change

significantly within several weeks to months of exercise

intervention, suggesting that an intervention period of ≤6 months

is sufficient to induce measurable improvements in bone

metabolism (46). When mechanical loading is maintained in a

fixed pattern over a long term, the mechanosensitive of bone cells

gradually declines, leading to a “desensitization” phenomenon and

reduced bone formation efficiency per training unit (47).

Furthermore, long-term interventions are more likely to be

affected by reduced adherence, soft tissue fatigue, hormonal

fluctuations, and limited energy availability, all of which can

attenuate positive adaptations in bone metabolism (48).

Therefore, exercise prescriptions should emphasize moderate

session duration, regular frequency, and periodic adjustments,
Frontiers in Endocrinology 17
rather than simply extending the intervention time, to avoid

plateaus and maximize the benefits of bone remodeling.

In their meta-analysis on the effects of Tai Chi on bone health in

postmenopausal women, Liu et al. selected “6 months” as the cutoff

point for intervention duration based on the physiological rationale

of the bone remodeling cycle (49). The bone remodeling cycle

typically takes 3–4 months to complete the sequential processes of

bone resorption, formation, and mineralization, while achieving a

new steady-state bone mass requires at least 6–8 months (50).

Therefore, a 6-month intervention period ensures coverage of a full

bone metabolic cycle, allowing for a more accurate assessment of

the cumulative effects of exercise on bone mineral density.

Most meta-analyses related to the improvement of bone health

by exercise have focused on bone mineral density (9, 51–54). In

contrast, there are relatively few in-depth studies on the effects of

exercise on bone metabolism. The health of bone metabolism is
FIGURE 13

Forest plot of the effect of exercise on OC in postmenopausal women (exercise type subgroup analysis). EG, exercise group; CG, control group; HE,
high intensity exercise; ME, moderate intensity exercise; SG, strength training group; HG, high impact training group; WBV, whole body vibration; HI,
high impact; SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of freedom.
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FIGURE 14

Forest plot of the effect of exercise on OC in postmenopausal women (exercise cycle subgroup analysis). EG, exercise group; CG, control group; HE,
high intensity exercise; ME, moderate intensity exercise; SG, strength training group; HG, high impact training group; WBV, whole body vibration; HI,
high impact; SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of freedom.
FIGURE 15

Forest plot of the effect of exercise on OC in postmenopausal women (subgroup analysis of the duration of a single exercise session). EG, exercise
group; CG, control group; HE, high intensity exercise; ME, moderate intensity exercise; SG, strength training group; HG, high impact training group;
WBV, whole body vibration; HI, high impact; SD, standard deviation; Std, standard; IV, inverse variance; df, degrees of freedom.
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crucial for maintaining bone strength and stability, which involves

multiple aspects of bone growth, remodeling, and repair. By

promoting bone metabolism, it not only enhances the stress

resistance of bones and reduces the risk of fracture, but also

improves the bone microstructure and enhances the overall

quality of bones. Therefore, strengthening research on the

relationship between exercise and bone metabolism is of great

significance in preventing osteoporosis and promoting bone

health. Under physiological conditions, bone resorption and bone

formation maintain a dynamic balance in bone metabolism (55).

Bone metabolism markers are metabolites produced in the process

of bone transformation and play an important role in the diagnosis

and treatment of osteoporosis because they can timely and

accurately reflect the state of bone transformation in the human

body (56). Bone metabolism includes two processes: bone

resorption and bone formation. Bone resorption is a process in

which osteoclasts break down part of the bone and form a cavity

(bone resorption cavity), during which bone metabolites are formed

that can enter the bloodstream or be excreted through urine, a

process that lasts 4–6 weeks (57). Bone formation, on the other

hand, takes place in the cavity formed by bone resorption, during

which molecules secreted by osteoblasts can enter the bloodstream

while completing cavity ossification (58). Bone formation markers

reflect the activity of osteoblasts, and the bone formation markers

included in this exploration are OC, ALP, BALP, and P1NP.Bone

resorption markers reflect the activity of osteoclasts, and the bone

resorption markers included in this study are CT. It has been

suggested that bone resorption may have an impact on bone health

in the context of reduced or unchanged bone resorption (59). In

terms of predicting fracture risk, bone metabolism markers have

been correlated with fracture risk, with higher concentrations of

bone metabolism markers being associated with greater fracture

risk (12). Other studies have shown that bone metabolism markers

are more useful in understanding the state of bone mass by their

ability to capture information about bone transition state, which is

the 2nd most important factor in the development of osteoporosis

and the occurrence of fragility fractures, as opposed to BMD by

measuring bone mass (60). It has also been suggested that bone

metabolic markers may influence fracture risk independently of

BMD (by influencing bone strength) (61). Bone metabolism

markers have a unique advantage in monitoring therapy in that

they respond rapidly to changes in bone physiology and remain

relatively stable, which can help physicians to have sufficient

response time to determine adjustments to treatment regimens in

the event of poor efficacy, which can be particularly useful in

patients with demanding treatment regimens such as

bisphosphonate therapy (62). In conclusion, through the

unremitting efforts of researchers, bone metabolism markers are
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becoming richer and richer, their application aspects are becoming

broader and broader, and their role in the diagnosis and treatment

of osteoporosis is becoming more and more prominent, but more

research is needed to improve the diagnostic and therapeutic system

of bone metabolism biochemical markers to be widely used in

the clinic.

The results of the meta-analysis showed that, compared with

the control group, exercise was effective in increasing the levels of

bone formation markers, such as ALP, P1NP, and OC, in

postmenopausal women. ALP on the other hand widely present

in various tissues of the human body, serum ALP is mainly derived

from liver, bone and kidney tissues, it is a marker of bone formation,

and studies suggest that ALP has an important role in the

pathogenesis of osteoporosis (63). Serum ALP levels are

significantly elevated in pathological conditions, such as the

occurrence of diseases of the hepatobiliary system, as well as bone

diseases (64). The level of P1NP in the serum reflects the ability of

osteoblasts to synthesize osteoclasts collagen and forms the basis of

a laboratory index for monitoring osteoblast viability and bone

formation (65). Its blood level mainly reflects the rate of type I

collagen synthesis and bone conversion, and is a specific and

sensitive indicator of new bone formation (66).The results of

Kohrt et al. (67) showed that P1NP increased with exercise

(P<0.001), suggesting that exercise promotes the synthesis of

P1NP, which, in turn, enhances osteoclast viability and promotes

bone formation. OC is a protein secreted by osteoblasts secreted

protein that plays an important role in maintaining bone health

(68). Numerous studies have shown that exercise can promote

osteogenic differentiation of bone marrow mesenchymal stem cells

and osteoblasts, promote bone formation, improve bone

metabolism, and thus prevent and control osteoporosis (69).OC is

a key osteogenic factor in the process of bone formation, and thus

exercise can promote blood circulation and metabolism in the

skeleton, which may stimulate osteoblasts to secrete more OC

(70). Exercise activates the mechanotransduction pathways in

osteocytes by applying mechanical load, thereby upregulating the

expression of osteogenic markers such as OC and ALP, while

simultaneously inhibiting bone resorption by regulating the

balance of osteoprotegerin (OPG) and receptor activator of

nuclear factor kB ligand (RANKL). Specifically, exercise increases

OPG expression and decreases RANKL expression, thereby

suppressing osteoclast differentiation and activity (71). Animal

studies have shown that treadmill and vibration training can

reduce RANKL and increase OPG (72), and mechanical strain

can directly inhibit RANKL expression (73).

The results of this study showed that exercise significantly

reduced the levels of bone resorption markers such as PTH and

CTX in postmenopausal women. PTH is a hormone that regulates
TABLE 3 Egger test results.

Std_Eff Coefficient Std. err t P>|t| (95% conf. interval)

slope .1926973 .3412466 0.56 0.580 -.5307131.9161077

bias .0602132 .9994193 0.06 0.953 -2.058461 2.178887
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ca lc ium and phosphorus metabo l i sm, and 15 .6% of

postmenopausal osteoporosis patients had elevated PTH. The

results of the study on the correlation between osteoporosis-

related hormones and bone mineral density showed that the level

of serum PTH was negatively correlated with bone mineral density,

which allowed early detection of osteoporosis (74). Its reduction by

exercise may imply improve bone health in middle-aged and older

adults. CTX is the most widely used marker of collagen degradation,

and the level of CTX reflects the bone resorption activity of

osteoclasts. CTX is a valid marker for metabolic bone diseases

characterized by significantly increased osteoclast activity (75). CTX

correlates with the degree of bone resorption and responds rapidly

and sensitively to antiresorptive therapy. Detection of serum CTX

levels can predict the severity of bone conversion, and serve as a

clinically important reference index for assessing bone conversion-

related diseases (58). Exercise-induced changes in PTH and CTX

concentration levels are consistent with a study on the effects of

bath therapy and aquatic exercise on these two hormones (11).

The results also showed that exercise did not significantly affect

serum phosphorus , serum calc ium and 25(OH)D in

postmenopausal women. Serum phosphorus and serum calcium

play several important roles in bone metabolism with exercise

intervention, which is involved in bone formation and repair,

influences changes in bone metabolism markers, regulates acid-

base balance and cellular osmotic pressure, and interacts with

calcium and phosphorus (76–78). For serum phosphorus and

serum calcium, exercise may indeed have some effect on them,

but the exact effect varies from person to person. Exercise promotes

an increase in metabolic rate, which in turn affects the phosphorus-

calcium balance in the blood (79). 25(OH)D is the main form of

vitamin D in the body and is essential for calcium absorption and

bone health (80). 25(OH)D acts as a calcium-regulating hormone

that inhibits the elevation of PTH, increases osteomineralization to

prevent bone loss, strengthens muscles, improves balance, and

prevents falls in the elderly (80). Groenendijk (81) and others

showed that fortified milk supplementation and exercise

intervention successfully improved 25(OH)D concentrations and

the balance of bone turnover markers in Chinese middle-aged and

elderly people. The effects of exercise on bone metabolism are

complex, and although serum phosphorus, serum calcium, and 25

(OH)D play important roles in bone health, the specific effects of

exercise on serum phosphorus, serum calcium, and 25(OH)D may

not be significant, possibly due to differences in exercise modalities

and intensities, as well as individual differences.

Our subgroup analysis demonstrated that both aerobic and

resistance exercise significantly increased OC levels in

postmenopausal women, while aerobic exercise also reduced CTX

levels. Previous studies suggest that aerobic exercise may increase

osteoprotegerin levels, which helps suppress osteoclastogenesis and

reduce bone loss, thereby leading to decreased serum CTX and

elevated OC levels (23, 82). In contrast, resistance exercise promotes

osteoblast activity through direct mechanical loading, resulting in

increased OC levels (82, 83). High-load and explosive training

methods enhance one-repetition maximum (1RM) strength and
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rate of force development, thereby stimulating bone formation,

increasing bone mineral content, and potentially triggering adaptive

skeletal responses through mechanical stress (25). High-impact

exercise, by increasing mechanical loading on the skeleton,

significantly improves bone mineral density of the lumbar spine

and femoral neck, while also promoting an increase in bone

formation markers (e.g., OC) and reducing bone resorption

markers (e.g., P1NP), thus improving bone metabolism in

postmenopausal women with osteoporosis (30). Tai Chi, as a

mind–body exercise, may indirectly reduce fall risk by improving

balance and muscle strength, while also slowing bone loss and

slightly increasing bone density (e.g., in the femoral neck region)

through moderate mechanical loading (37). Whole-body vibration

training promotes bone formation and reduces bone resorption

through high-frequency, low-amplitude mechanical stimulation,

thereby increasing bone density and mechanical strength, with

particularly notable effects in the femoral neck and lumbar spine

regions (29).

Limitations: (i) As the study was an analysis of different bone

metabolism by different exercise types, the refinement of the sample

size classification may have resulted in a smaller amount of

combined effects, which may have had a certain impact on the

results, so the analysis was not carried out on the exercise types; (ii)

The included studies exhibited heterogeneity in the methods used to

measure bone metabolism markers (e.g., IRMA, ELISA), which may

affect the comparability and synthesis of the results; (iii) Most of the

included studies involved short-term interventions and lacked long-

term follow-up data (>2 years); therefore, the sustainability of the

intervention effects and their long-term impact on bone health

could not be clearly evaluated; (iv) Since all included studies were

RCTs, the between-group differences at baseline should

theoretically approach zero, which justified our use of post-

intervention values for the meta-analysis. However, although

randomization balances baseline differences, potential

confounding factors may not be fully controlled, which could

introduce some bias into the results. Future studies should

prioritize reporting baseline data and change-from-baseline values

to allow for more comprehensive analyses; (v) This study only

searched English-language databases, potentially omitting relevant

studies published in other languages (e.g., Chinese, Spanish), which

may limit the comprehensiveness and representativeness of the

results. Future research should include multilingual databases to

reduce potential language bias; (vi) The applicability of our study

results to populations from different regions or ethnic backgrounds

may be limited, particularly in groups with substantial differences in

baseline bone health, lifestyle, or genetic background, and thus

should be generalized with caution; (vii) In the study, although the

6-month intervention duration was justified based on the

physiological rationale of the bone remodeling cycle, the cut-off

point of 60 minutes for single-session exercise duration lacks a clear

physiological basis. The choice of this cut-off may be more related to

the distribution of the data or operational convenience rather than

physiological significance. Therefore, we acknowledge the potential

bias that may be introduced by this arbitrary cut-off.
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5 Conclusion

The systematic review and meta-analysis of this study

demonstrated that regular exercise has significant effects on bone

metabolism in postmenopausal women by reducing bone

resorption and enhancing bone formation. Aerobic exercise

effectively decreases CTX levels, while both aerobic and resistance

exercise effectively increase OC levels. Short-term interventions (≤6

months) and moderate-duration sessions (≤60 minutes per session)

show notable benefits in lowering CTX and elevating OC. However,

more rigorously designed randomized controlled trials are needed

to confirm the benefits of exercise on bone metabolism and to

determine the optimal intervention strategies. Due to the small

number of studies, it was not possible to determine the effects on

other bone metabolism metrics. However, more rigorously designed

randomized controlled trials are needed to validate the benefits of

exercise on bone metabolism and to explore its optimal protocol.
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