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Introduction: Perfluorooctane sulfonate (PFOS), known as a critical endocrine

disruptor, was linked to potential intergenerational effect in population studies.

Yet, the toxic metabolic mechanisms remain unclear, particularly at relatively low

PFOS concentration.

Methods: This study investigated the metabolic impacts of early-life (pregnancy

and lactation) PFOS exposure on adult Sprague-Dawley (SD) offspring rats using an

integrated transcriptomics and metabolomics approach. Metabolic phenotypes,

including glucose tolerance, lipids, and metabolic biomarkers were measured.

Results: Early-life exposure to 0.03 mg/kg PFOS was found to be associated with

elevated fasting and 15-minute blood glucose, serum insulin, and adiponectin

levels and a decrease of leptin level in dose of 0.3 mg/kg was observed.

Differentially expressed genes induced by PFOS exposure were enriched in

NOD-like receptor signaling, parathyroid hormone synthesis, secretion and

action, unsaturated fatty acid biosynthesis, insulin signaling, retinol metabolism,

fatty acid metabolism, glucagon signaling, type II diabetes, and PPAR signaling.

Differentially expressed metabolites were linked to citric acid cycle,

glycerophospholipid metabolism, and fatty acid biosynthesis. Coenrichment

analysis revealed feature changes in several pathways, including

glycerophospholipid metabolism, sphingolipid metabolism, and primary bile

acid synthesis (0.03 mg/kg), and retinol metabolism, linoleic acid metabolism,

DGlutamine and D-Glutamine biosynthesis, and fatty acid elongation (0.3 mg/kg).

Conclusion: Early-life exposure to PFOSmight lead tometabolic perturbations in

adult offspring, which might be triggered by changes in pathways, i.g.

glycerophospholipid metabolism, retinol metabolism, linoleic acid metabolism,

and fatty acid elongation. Further validation of these pathways is required.
KEYWORDS
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1 Introduction

The Developmental Origins of Health and Disease (DOHaD)

theory raised that early life-stage exposure to unfavorable chemical,

physical, nutritional, or psychosocial environments may induce long

term and diverse health issues. These effects are not limited to

hypoplasia, low immunity, growth retardation, and neurobehavioral

developmental disorders during the perinatal and childhood stages.

Instead, they may extend into adulthood and increase the susceptibility

to metabolic disease i.g. obesity, type 2 diabetes, and cardiovascular

disease (1–3).

Per- and poly-fluoroalkyl substances (PFAS), as persistent

chemicals, are renowned for their unique surfactant qualities,

which have led to their widespread utilization in various daily-life

products such as non-stick pans, fire extinguishers, and carpets (4).

Although the phase-out of PFOS and Perfluorooctanoic Acid

(PFOA) in some Western countries, their production unabated in

certain Asian countries, thus potentially creating risks for human

metabolic well-being due to their pervasive, long-lasting, and bio-

accumulative nature (5). Both of them have been detected across

tissues such as umbilical cord blood, liver, brain, and adipose

tissues, etc. (6, 7). Importantly, the placenta is not an effective

barrier to PFOS due to its physicochemical properties—particularly

its small molecular size, high protein binding, and resistance to

metabolism. As a result, PFOS can cross the placenta and

accumulate in the fetus and potentially interfere with critical

developmental processes (8). Evidence from epidemiological

studies indicated that maternal PFAS exposure can directly affect

fetal growth and development via the umbilical cord, thereby

resulting in an elevated risk of adverse birth outcomes (9).

Additionally, intrauterine PFAS exposure was recognized as

having potential detrimental effects such as blood pressure

abnormalities and atopic dermatitis in young offspring (10–13).

Recent reviews indicate that intrauterine and postnatal PFAS

exposure at the early-life stage may influence the offspring’s

physical growth, obesity, and the onset of menarche, although

findings remain inconsistent (14).

Studies in rodent animals revealed that exposure to PFOS at a

dosage of 1.5 mg/kg·bd could result in a notable and statistically

significant elevation of metabolic indicators, such as levels of

insulin, leptin, the area-under-curve (AUC) value at 10 weeks

after weaning, glucose (increased but not significant), and

decreased adiponectin level in adult offspring rats (15). Exposure

to PFOS at low concentrations during early life has been found to

induce long-term elevated blood glucose levels in offspring,

alongside the development of dysregulated glucose and insulin

resistance (16). In contrast, another animal experiment involving

neonatal rats exposed to 20 mg/kg·bd PFOS revealed a notable

decrease in glucose levels and changes in blood glucose levels were

not observed in adult rats exposed to gradient doses of 0.5-5.0 mg/

kg·bd (16). In line with the above-mentioned inconsistent

alterations of metabolic phenotypes at different doses among

adult rats, intrauterine exposure to PFOS and PFOA did not

result in obesity among adult offspring mice, while PFOA

exhibited a markable decrease of glucose, specifically in the doses
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at 0.01 and 0.1 mg/kg·bd (17). Long-term exposure of PFAS mixture

chemicals in adult male mice may trigger aberrant sperm

methylation and gene expression of offspring liver and fat (18).

One study examined the developmental toxicity of PFOS but the

outcome endpoints were limited to metabolic traits in newborn rat

only (19). Other studies, including ours, have shown significant

metabolic perturbances of PFOS and perfluorobutane sulfonate

(PFBS) exposure during pregnancy on maternal rats, but their

impacts on offspring remain largely unknown (20, 21). Taking

together, the majority of previous toxicological investigations only

focused on rodents who experienced PFOS exposure during

adulthood at high exposed doses or pregnancy toxicity. Long-

term metabolic intergenerational effects of intrauterine exposure

have long been overlooked, especially when exposure at relatively

low level. Thus, studies examining the intergenerational impacts of

early-life PFOS exposure are critical, especially for studies with

lower exposure concentrations, longer exposure durations, and a

more sensitive growth window for animals.

Fortunately, the emergence of multi-omics technologies,

including transcriptomics and metabolomics, has revolutionized

the field of toxicology. These advanced approaches offer high

throughput and sensitivity, enabling the simultaneous detection of

multiple targets and identification of low-abundance gene

expressions and metabolites. While numerous studies have

applied metabolomics in toxicological research, the novelty of our

work lies in the integrated application of both transcriptomics and

metabolomics to comprehensively and systematically characterize

the molecular perturbations induced by PFOS exposure. By

combining these two powerful approaches, our study provides

deeper insights into the coordinated changes at both the gene and

metabolite levels, allowing for more precise identification of

disrupted biological pathways and critical molecular targets that

may underlie PFOS toxicity.

This study endeavored to: 1) comprehensively assess the

intergenerational glucolipid changes of PFOS exposure in adult

offspring, and 2) unravel the possible mechanisms through the

utilization of multi-omics technique.
2 Methods

2.1 Animal treatment

The PFOS Potassium Salt, with a purity of 98% and CAS

number 2795-39-3, was procured from Toronto Research

Chemicals. 3% starch gel was prepared to dissolve PFOS and

administered once daily via oral gavage throughout gestation and

lactation. The selection of oral gavage doses of FPOS at 0.03 and 0.3

mg/kg body weight was derived from the human tolerable daily

intake (TDI): 150 ng/kg body weight and the reference dose (RfD):

20 ng/kg·d launched by the European Food Safety Authority and the

Environmental Protection Agency of the United States, respectively.

To consider variations between humans and mice, a correction

factor of 10× for inter-individual differences and an interspecies

correction factor (toxicodynamics: 3 and toxicokinetics: 81) were
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applied (22, 23). Thus, the relevant doses range of 0.03 and 0.3 mg/

kg·bw·d were finally chosen to mimic PFOS exposure faced by

ordinary people. The lower dose (0.03 mg/kg·bw·d) may reflect

high-end exposure levels in the general population, while the higher

dose (0.3 mg/kg·bw·d) is comparable to levels observed in

occupational settings. The calculation formulas were described

elsewhere (24).

Female and male Sprague-Dawley (SD) rats aged 9-11 weeks

were procured from Hunan Silaike Jingda (China). Following a one-

week acclimatization period, SD rats were permitted to mate

overnight (female: male, 2:1). The verification of pregnancy was

confirmed by the presence of a vaginal plug. Subsequently, Random

assignment placed pregnant rats into three treatment groups, each

consisting of 7-8 rats. From gestational day 1 (GD1) until the time

of sacrifice, they were administered the assigned treatment orally.

Pregnant maternal rats were accommodated in a controlled

environment with specific pathogen-free conditions, ensuring a

temperature between 21-25°C, humidity levels maintained at 40-

60%, and a 12-hour light-dark photoperiod.

Body weight and diet consumption of maternal rats were

diligently documented daily. The postpartum rats were

euthanized at postnatal day 35 (PND 35) after they finished

lactation (PND 21), and measurements of litter weight, number

of fetuses, and stillbirths were recorded both at birth and 3 days

post-birth. Weaned offspring rats from all dams of maternal rats

were pooled and 10 of each treated group were randomly selected in

a 1:1 ratio of females to males (5 females and 5 males) to constitute

the F1 generation. After weaning at three weeks of age, the pups

were housed individually. Offspring rats per group were fed without

any treatment and body weight and dietary consumption every

week were recorded until sacrificed in the 12th week. In this study,

both female rats (PND 35) and offspring rats (9 weeks) were

euthanized through intraperitoneal injection of 8% chloral

hydrate under anesthesia, and various tissues, including blood,

liver, and pancreas were collected. The Ethics Committee of

Guilin Medical University approved this study.
2.2 Assessment of metabolic phenotypes

2.2.1 Oral glucose tolerance test and lipid profile
For the OGTT, 12-week-old offspring rats were subjected to an

overnight fast (12 hours) (25). Fasting blood glucose was promptly

quantified by an automated blood glucose meter (Logitech).

Subsequently, the rats were orally administered 50% glucose

solution and glucose levels were tested at intervals of 15, 30, 60,

and 120 minutes post-gavage, and the areas under the curve (AUC)

were calculated to facilitate quantitative comparisons. In this study,

AUC was used to reflect the function of insulin secretion and the

ability to maintain normal blood glucose levels. An increased AUC

suggest either insufficient insulin secretion or insulin resistance,

where cells do not secret enough insulin to lower the external

glucose level or exhibit reduced responsiveness to insulin, requiring

higher insulin levels to control blood glucose.
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Serum from fasting aortic blood samples was obtained and

subsequently analyzed by an automated biochemical analyzer (XL-

600, ERBA, Germany) to quantify the lipid profile, including total

triglyceride (TG), total cholesterol (TC), high-density lipoprotein

(HDL), and low-density lipoprotein (LDL).

2.2.2 Adipokine measurement
In this study, enzyme-linked immunosorbent assay (ELISA)

was applied to assess the serum expression levels of metabolic

molecules including adiponectin (CATALOG# 80570), lepti n

(CATALOG# 90040), and insulin (CATALOG#H203-1-1).

Homeostatic Model Assessment of Insulin Resistance (HOMA-

IR) was derived.
2.3 Transcriptomic sequencing

From each group, four liver samples (male: female= 2:2) were

randomly chosen for transcriptomic sequencing. Total RNA was

extracted using the TRIzol reagent (Invitrogen) following the

manufacturer’s instructions. RNA integrity and purity were

assessed using the Agilent 2100 Bioanalyzer (Agilent

Technologies) and NanoDrop spectrophotometer. Only samples

with RNA Integrity Number (RIN) ≥ 7.0, OD260/280 between 1.8–

2.2, and total RNA >1 µg were included for library preparation.

Subsequently, mRNA was isolated and utilized to construct cDNA

libraries following the standardized Illumina protocol. Basically,

mRNA was enriched using oligo(dT) magnetic beads, fragmented,

and reverse-transcribed into cDNA. After end-repair, A-tailing,

adapter ligation, and PCR amplification, the libraries were

quantified by Qubit and validated by Bioanalyzer. Sequencing was

performed using the Illumina HiSeq™ platform, generating ~20–50

million paired-end reads per sample that underwent subsequent

processing to acquire clean reads. Raw reads were quality filtered

using fastp, removing adapter contamination, low-quality reads

(Phred score < 20), and reads with >10% unknown bases (N). Clean

reads were aligned to the reference genome using HISAT2.

Mapping rates ≥90% were expected. Samples with unusually low

mapping rate, high duplication rate, or low total reads (<20 million)

were flagged and reviewed. These reads were then aligned to the

reference genome sequence. Principal Component Analysis (PCA)

and hierarchical clustering were used to detect outlier samples.

Outliers due to technical artifacts (e.g., low RNA quality, batch

failure) were excluded before downstream analyses.

DESeq and q-values (adjusted p-values by Benjamini and

Hochberg method) were utilized to determine the variations in

gene expression. Genes with a q-value of less than 0.05 were

recognized as showing differentially expressed genes (DEGs). The

Kyoto Encyclopedia of Genes and Genomes (KEGG) database and

the Gene Ontology (GO) database were employed for gene

annotation, biological interpretation, and clustering analysis.

Quantitative Real-Time PCR (qRT-PCR) was used to confirm the

differentially expressed target genes identified from RNA

sequencing. Eight differentially expressed genes and one
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housekeeping gene were selected. The gene-specific primers were

listed in Supplementary Table S1. Total RNA was reverse-

transcribed using a PrimeScript RT Reagent Kit. qPCR was

performed on a CFX96 Real-Time PCR System (Bio-Rad) using

SYBR Green Master Mix. Candidate gene selection of housekeepers

was pre-evaluated using geNorm and NormFinder to confirm stable

expression across conditions. Housekeeping Gene: typically,

GAPDH were used. More details were reported elsewhere (24).
2.4 Metabolomic profiling

Eight offspring liver samples (male: female= 4:4) in each treated

group were chosen randomly and ultrahigh-performance liquid

chromatography-mass spectrometry (UPLC-MS) was applied for

non-targeted metabolomic analysis, details were reported (24).

Progenesis QI software was used for metabolite alignment and

quantification. Peak deconvolution was done with default settings.

QC samples were injected at regular intervals throughout the run to

monitor instrument stability. Features with high missing rates

(>20% in QC or >50% in samples) or low repeatability

(coefficient of variation >30% in QC samples) were excluded.

Signal drift was corrected using QC-based robust LOESS signal

correction. Metabolite identification involved a two-step process

using generated MS1/MS2 pairs. Initially, an in-house library was

employed, which included chemical standards and a meticulously

curated compound list featuring precise mass, retention time, and

spectral patterns. Metabolomics data were normalized using

internal standard-based correction. Following this, data were log-

transformed and Pareto-scaled to stabilize variance for downstream

analyses. Additional identification methods involved the use of

accurate mass, isotope pattern, and MS/MS spectra against public

databases such as HMDB, PubChem, METLIN, and KEGG.
2.5 Statistical analysis

Differential gene expressions were analyzed using DESeq. PCA

was employed to investigate metabolite variability. Furthermore,

Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-

DA) was utilized to identify differential metabolites by filtering out

orthogonal variables unrelated to categorical variables, thus

obtaining robust information on group differences. Differential

metabolites were confirmed based on the p-value< 0.05.

Body weight, organ/body weight ratio, blood glucose levels,

lipid levels, and metabolic factors were described as mean ±

standard error (SE). Group comparisons were conducted using

one-way ANOVA analysis or nonparametric tests where

appropriate. LSD test or Dunnett’s T3 test was applied in terms

of the homogeneity of variance among different groups. Given that

the ratio of male: female rats among each treated group was same

and no sex difference was observed, thus no further stratified

analysis by offspring gender was conducted.
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2.6 Multi-omics integration

To benefit a comprehensive interpretation of the biological

relationships between DEGs and differentially expressed

metabolites (DEMs) in the offspring liver, we performed

simultaneous mapping to the KEGG pathway. This integrative

analysis aimed to elucidate the potential perturbed biological

pathways induced by early-life PFOS exposure. Further, the

metabolic pathway analysis for the candidate genes and

metabolites was conducted by online tool MetaboAnalyst 5.0.

All data analyses were conducted using R 3.4.1 and SPSS 22.0. A

significance level of 0.05 in a two-sided test was used.
3 Results

3.1 Early-life PFOS exposure and
phenotype changes in offspring

Results showed that early-life PFOS exposure resulted in a

subsequent reduction of body weight in 2- and 3-week-old

offspring rats (Supplementary Figure S1). Average body weights of

offspring rats at 0.03 and 0.3 mg/kg body weight PFOS exposure was

significantly lower than control group. However, catch-up growth

was observed from the 4th postpartum week, with a subsequent non-

significant change in body weight. Results of living births and 3-day

surviving pups were not significant changed across groups.

Analysis of OGTT revealed a correlation of PFOS exposure with

increased blood glucose levels during fasting and at 15 minutes in

adult offspring rats, as illustrated in Figure 1. PFOS exposure

also showed a trend towards increased AUC values, though not

reaching statistical significance (0.03 mg/kg.bd PFOS group vs

control group: 1025.18 vs 987). Moreover, significant elevation in

insulin levels (p < 0.05) was observed in 0.03 mg/kg group (49.8 vs

34.4 mmol/L in control group). Although not statistically significant,

there was a tendency noted for an elevation in HOMA-IR within

the PFOS-treated groups. Early-life PFOS exposure was linked to

increased alanine transaminase (ALT) levels and decreased aspartate

transaminase (AST)/ALT ratio. However, no significant changes were

found in the lipid profile. Analysis of metabolic factors revealed that

exposure to 0.03 mg/kg PFOS during early life significantly increased

serum adiponectin levels (5914 vs 4576 ng/ml in control group),

while exposure to 0.3 mg/kg PFOS significantly decreased leptin

levels (1.87 vs 0.93 ng/ml in control group) and adiponectin/leptin

ratio, compared to the controls (8965 vs 3189) (p< 0.01).

Evaluation of liver pathology indicated the absence of

hemorrhage, edema, or inflammatory cell infiltration in the liver,

as well as no evidence of hepatocyte steatosis or ballooning

(Supplementary Figure S2). Similarly, the pancreas pathology

assessment revealed no signs of islet cell swelling, inflammatory

cell infiltration, or vacuolization. Furthermore, no significant

changes were found in the relative weights of the liver and

pancreas in the PFOS exposure groups.
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3.2 Alterations in the transcriptomic
sequencing

260 DEGs in the liver of adult offspring rats exposed to 0.03 mg/

kg PFOS were identified, with 81 up-regulated and 179 down-

regulated genes (Figure 2). Similarly, in the 0.3 mg/kg PFOS group,

361 DEGs were identified, comprising 122 up-regulated and 239

down-regulated genes.

Pathway enrichment analysis demonstrated that PFOS

exposure at 0.03 mg/kg resulted in significant pathway changes in

the parathyroid hormone synthesis, secretion and action pathway,

as depicted in Figure 3A. Moreover, 0.3 mg/kg dose led to changes

in multiple pathways, including biosynthesis of unsaturated fatty

acids, insulin signaling pathway, AMPK signaling pathway, insulin

resistance, fatty acid degradation, retinol metabolism, fatty acid

metabolism, fatty acid elongation, glucagon signaling pathway, type

II diabetes mellitus, and PPAR signaling pathway (Figure 3B).

Detailed information regarding the enrichment analysis can be

found in Supplementary Table S2.

To validate the findings, qPCR analysis was conducted, and the

results of all examined genes in qPCR analysis demonstrated a

consistent expression pattern with the transcriptomic data

(Supplementary Figure S3).
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3.3 Alterations in the metabolomic profile

Non-targeted UPLC-MS analysis of adult offspring liver

generated 3350 ion fragments. The OPLS-DA model was utilized

for analyzing metabolite differences between groups (Figure 2;

Supplementary Figure S4). Notably, a total of 254 metabolites (34

increased and 220 decreased, negative ion mode) exhibited

significant alterations in the 0.03 mg/kg dosed group, including

the up-regulated metabolites, such as top 5 most significantly

increased metabolites: PS (14:1(9Z)/16:0), PE(15:0/20:1(11Z)),

f a s c i c u l i c a c i d C , PE ( 1 8 : 4 ( 6Z , 9Z , 1 2Z , 1 5Z ) / 1 8 : 0 ) ,

mesobilirubinogen, and beta-Elemonic acid, and down-regulated

metabolites: notoginsenoside T1, (3S,3’R,5R,6R)-7’,8’-Didehydro-

3,6-epoxy-5,6-dihydro-beta, beta-carotene-3’,5-diol, carbetocin,

and tigecycline. Meanwhile, 1002 metabolites (7 increased and

995 decreased, positive ion mode) were altered in the 0.03 mg/kg

dosed group. For the 0.3 mg/kg dosed exposure, 275 metabolites

were changed, including 150 increased metabolites (such as

isolimonic acid, homocarnosine, fasciculi acid C, tanacetol A,

ligustroside, and O2’-4a-cyclic-tetrahydrobiopterin) and 125

decreased metabolites (such as 2-Hexaprenyl-3-methyl-6-

methoxy-1,4 benzoquinone, colistin, dicyclomine, and fumonisin

B4) with the highest |log2FC| and VIP values. Similarly, 280
FIGURE 1

Impact of PFOS exposure during early life on glucose tolerance, lipid profiles, and adipokines of 9-week-old offspring rats. (A–H, J–S): x-axis refer
to different exposure groups and y-axis refer to different metabolic indicators. (I): OGTT glucose levels for different exposure groups. Mean and
standard error were reported in broken line plot and bar plot. The sample size of control and PFOS treatment at doses of 0.03 and 0.3 mg/kg were
10, 10 and 10, respectively, with male: female ration= 5:5 across groups. A two-tailed p-value< 0.05 was designated as the significance threshold.p-
value< 0.05 was designated as the significance threshold.
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metabolites (positive ion mode) were observed to be changed in the

0.3 mg/kg PFOS group, with 36 increased and 244 decreased

metabolites, respectively.

Classification results from the HMDB database indicated that

the differentiated metabolites due to PFOS exposure at dose of

0.03 mg/kg (negative ion mode) were primarily associated with

glycerophospholipids, prenol lipids, fatty acyls, carboxylic acids

and derivatives, steroids and steroid derivatives, organooxygen

compounds, and imidazolopyrimidines (Supplementary Figure S5).

Similarly, the altered metabolites at dose of 0.3 mg/kg exhibited

similarities with the 0.03 mg/kg group and were mainly involved in

glycerophospholipids, carboxylic acids and derivatives, organooxygen

compounds, fatty acyls, steroids and steroid derivatives. The enriched

metabolic pathways of the differentiated metabolites at both PFOS

doses (positive ion mode) were largely consistent with those in the

negative ion mode.

Further annotation and enrichment analysis of the DEMs using

the KEGG database revealed metabolic pathway changes at dose of

0.03 mg/kg, primarily involving the altered pathways of primary

bile acid biosynthesis and porphyrin and chlorophyll metabolism in

the negative ion mode, as well as the phospholipase D signaling

pathway and choline metabolism in cancer in the positive ion mode

(Figures 3C, E). Besides, PFOS exposure in 0.3 mg/kg group mainly
Frontiers in Endocrinology 06
affected the citrate cycle pathway (negative ion mode) and

thermogenesis (positive ion mode) (Figures 3D, F). Detailed

statistics of the metabolites enriched in each significant pathway

were summarized in Supplementary Table S3.
3.4 Integrated multi-omics analysis

An in-depth analysis of the DEGs and DEMs was applied using

MetaboAnalyst 5.0. The impact-value threshold was derived

through pathway topology analysis, and the top 10 metabolic

pathways with the lowest p-values were shown as the most

potential target pathways (Figure 4). These included

glycerophospholipid metabolism, porphyrin and chlorophyll

metabolism, sphingolipid metabolism, primary bile acid

biosynthesis, alpha-Linolenic acid metabolism, glutathione

metabolism, biosynthesis of unsaturated fatty acids, one-carbon

pool by folate, taurine and hypotaurine metabolism, and pentose

and glucuronate interconversions. In 0.03 mg/kg PFOS exposed

group, four pathways exhibi ted s ignificance , namely

glycerophospholipid metabolism, porphyrin and chlorophyll

metabolism, sphingolipid metabolism, and primary bile acid

biosynthesis. In the case of 0.3 mg/kg PFOS exposure, five out of
FIGURE 2

DEGs and DEMs in 9-week-old offspring rats. DEGs: differentially expressed genes. DEMs: differentially expressed metabolites. Each transcriptome
sequencing group comprised 4 liver samples (male: female ration= 2:2). A cutoff of p-value<0.05 was employed to determine up and down
regulation. For metabolome measurements, 8 liver samples (male: female ration= 4:4) were used in each group with a cutoff of p-value<0.05 and
log2FC>0 or <0 applied. In the volcano plot, red points indicate up-regulated gene expression or metabolites, while blue points signify down-
regulation. The names of the top 5 significantly up or down-regulated genes and metabolites were annotated.
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the ten pathways were significant, including retinol metabolism,

neomycin, kanamycin and gentamicin biosynthesis, linoleic acid

metabolism, D-Glutamine and D-glutamate metabolism, and fatty

acid elongation. Detailed statistics of the co-enriched pathway
Frontiers in Endocrinology 07
analysis and the genes and metabolites involved in each pathway

were summarized in Supplementary Table S4.

To enhance the understanding of molecular connectivity and

toxicity mechanisms related to differentially expressed genes and
FIGURE 3

KEGG pathway analysis of DEGs and DEMs (N=4 for each group of transcriptomics and N=8 for each group of metabolomics) in 9-week-old
offspring rats. (A, B): KEGG enrichment pathways for transcriptome of different exposure groups. (C, D): KEGG enrichment pathways for
metabolome (-) of different exposure groups. (E, F): KEGG enrichment pathways for metabolome (+) of different exposure groups. DEGs:
differentially expressed genes. DEMs: differentially expressed metabolites. Each symbol represents a KEGG pathway. On the y-axis, pathway names
were indicated and Y-axis text labels were color-coded to indicate their corresponding significance levels based on q-value or p-value: red (<0.05),
yellow (0.05-0.10), blue (0.10-0.20), and black (0.20-). The top 20 KEGG enriched pathways were visualized.
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differential metabolites, these features were projected onto the co-

enrichment pathways of the different PFOS exposure groups. The

most significant co-enrichment pathways and proposed mechanistic

hypothesis were depicted in Figure 5, and the annotated names, statistics

of the group comparisons and feature predictions were summarized in
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Supplementary Table S5. At 0.03 mg/kg PFOS exposure,

glycerophospholipid metabolism emerged as the most significantly

perturbed pathway, while at 0.3 mg/kg, retinol metabolism was

prominently affected. These dose-dependent pathway alterations

suggest differential mechanisms of metabolic disruption.
FIGURE 5

Co-enriched pathways of DEGs and DEMs induced by early-life PFOS exposure in 9-week-old offspring rats (N=4 for transcriptomics and N=8 for
metabolomics). (A) pathway of glycerophospholipid metabolism for 0.03 mg/kg group. (B) pathway of retinol metabolism for 0.3 mg/kg group. DEGs,
differentially expressed genes. DEMs, differentially expressed metabolites. Only the most significant pathways of each dose of PFOS exposure group were
presented. Official name of genes and metabolites, information of other significant pathways can be referred to Supplementary Tables S4, S5. The filled
color accounts for the direction of gene or metabolite regulation (red: up-regulated, green: down-regulated).
FIGURE 4

KEGG co-enrichment analysis for DEGs and DEMs in livers of 9-week-old offspring rats (N=4 for each group in transcriptomics and N=8 for each
group in metabolomics). (A) Co-enrichment analysis for 0.03 mg/kg PFOS exposed group vs control group; (B) Co-enrichment analysis for 0.3 mg/
kg PFOS exposed group vs control group. DEGs, differentially expressed genes. DEMs, differentially expressed metabolites. Significant pathways were
marked as red font, and the color of the circle indicates significance, with a deeper shade of red corresponding to lower p-values.
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4 Discussion

The intrauterine and early childhood periods represent crucial

stages of fetal growth and development, characterized by heightened

susceptibility to environmental chemical exposures. Building upon

previous epidemiological findings, this study aimed to establish an

early-life exposure model in SD rats to unravel the detrimental

effects of PFOS exposure during early development on the

metabolic health of adult offspring. Our findings revealed

significant disruptions in glucose homeostasis and alterations in

adipokine profiles induced by early-life PFOS exposure. Through

comprehensive analysis, we identified specific metabolic pathways,

as well as corresponding genes and metabolites, that were perturbed

by PFOS exposure. These mechanistic insights contribute to a

deeper understanding of the metabolic toxicity induced by PFOS

exposure and pave the way for further environmental regulation

of PFOS.
4.1 Metabolic phenotype

Previous studies showed dose-dependent reproductive toxicity of

PFOS, with significant effects observed at higher doses. For example, a

dose of 3.2 mg/kg·d of PFOS during pregnancy was found to

significantly reduce the number of live births, prolong the

pregnancy duration, and decrease the number of blastocysts.

However, no significant embryotoxicity was observed in other

exposure groups (0, 0.1, 0.4, 1.6 mg/kg·d) (26). Similarly, a dose of

1.5 mg/kg·d of PFOS during pregnancy led to a significant weight loss

of offspring, while an exposure of 3.0 mg/kg·d resulted in a significant

increase in neonatal offspring deaths (27). In this study, we used

relatively low doses based on environmental limit standards. We

observed that PFOS exposure tend to lower the body weight of

offspring, but a catch-up growth occurred from the fourth week. This

finding aligns with a population-based study showing an association

of prenatal PFAS exposure with lower standardized BMI in infants,

with a weakened association as age advances (28, 29).

This study found that 0.3 mg/kg·d PFOS exposure could

increase FBG and OGTT 15min blood glucose levels in the

offspring adult rats. FBG testing serves as a convenient screening

method for diabetes (30). Although no significant differences were

observed in blood glucose levels during OGTT at 1h and 2h, and

AUC values, the elevated FBG and OGTT 15min glucose levels

indicated an imbalance in glucose homeostasis in the PFOS-L group

(0.03 mg/kg·d), suggesting early damage to glucose tolerance.

Additionally, the fasting insulin level was increased in the 0.3 mg/

kg·d PFOS group, indicating early insulin resistance. Interestingly,

our study did not observe a dose-response trend between PFOS and

glucose changes in offspring rats. Previous studies had reported

severe liver and kidney damage, liver cell congestion, necrosis, and

inflammatory cell infiltration with high PFOS exposure, leading to a

complete disruption of blood glucose homeostasis and even rat

mortality (31). Wang et al. demonstrated that high PFOS exposure
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(30 mg/kg·d) led to a significant decrease in blood glucose levels,

while exposure doses of 0.3 and 3.0 mg/kg·d resulted in increased

blood glucose levels (32). Perinatal exposure to PFOS at doses of 0.3

and 3.0 mg/kg·d induced elevated serum insulin levels, increased

insulin resistance index, and impaired b-cell function in adult

offspring rats (16). Notably, the doses of 0.3 and 3.0 mg/kg·d used

in previous studies were approximately 10 times and 100 times

higher than the equivalent exposure dose in general population,

with the higher dose (3.0 mg/kg·d) reflecting occupational exposure

levels (33). Our study extended the investigation to a lower PFOS

exposure level of 0.03 mg/kg·d, which approximates the human

equivalent exposure dose. The results indicated that PFOS may

potentially affect blood glucose homeostasis at this exposure level.

Nevertheless, this study did not reveal a dose-response relationship

due to the utilization of lower exposure doses, shorter exposure

times, and a limited sample size, the observed subtle phenotypic

alterations in the PFOS-treated groups, coupled with alterations in

gene expression and metabolites, still hold considerable

significance. This is particularly noteworthy given the exposure

levels employed in this study.

Adiponectin, a specific protein secreted by adipocytes, binds to

G protein-coupled receptors and plays pivotal role in enhancing

insulin sensitivity, regulating carbohydrate and lipid metabolism,

and correcting hyperinsulinemia and insulin resistance (34).

Consistent with our findings of increased serum adiponectin

levels in offspring rats exposed to 0.03 mg/kg·d PFOS, studies

conducted in the Taiwan Hypertensive Adolescent cohort and the

Viva cohort demonstrated that exposure to PFNA and PFHxS,

respectively, also increased serum adiponectin levels (35, 36).

Leptin, an adipokine produced by adipocytes, acts in opposition

to adiponectin and is crucial in the development of insulin

resistance, obesity, and diabetes. The adiponectin/leptin ratio is a

sensitive indicator for assessing the risk of insulin resistance, and

cardiovascular diseases (37). Interestingly, our study revealed a

significant decrease in leptin levels and increase in the

adiponectin/leptin ratio following exposure to 0.3 mg/kg·d PFOS,

which contrasts with several previous studies reporting increased

leptin levels and decreased adiponectin levels associated with PFAS

exposure (38, 39). However, Shelly et al. demonstrated a significant

inverse association between PFOS, PFDA, and reduced leptin levels

in girls aged 7 and 13 years, which can support our findings (40).

Additionally, In a study conducted within the Viva cohort, no

significant correlation was observed between PFAS and levels of

adiponectin or leptin (41), suggesting that the roles of adiponectin

and leptin in PFAS-induced metabolic abnormalities remain

inconclusive. It is worth noting that even though individuals with

typical diabetes or lipid abnormalities often exhibit significant

reductions in adiponectin and elevations in leptin, early

compensatory mechanisms may happen in generally healthy

individuals or animal models. Furthermore, the health effects of

metabolic factors such as leptin may follow a “U” shaped pattern,

where high levels can lead to leptin resistance and obesity, while low

levels may be linked to immune dysfunction and infection (42, 43).
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4.2 Altered gene expression and relevant
pathways

Transcriptomic sequencing analysis using liver samples from adult

offspring rats exposed to PFOS during early life revealed significant

metabolic alterations primarily associated with parathyroid hormone

(PTH) pathways and multiple pathways related to fatty acid

metabolism, glycemic control, and insulin resistance. PTH is a vital

hormone involved in maintaining calcium homeostasis and bone

mineralization. Dysregulated PTH secretion can lead to conditions

such as primary or secondary hyperparathyroidism, often

accompanied by renal diseases. Elevated PTH levels may also impact

cardiovascular health and the development of diabetesmellitus (44, 45).

As the relationship between PFAS exposure and PTH remains unclear,

further investigation is warrant to unveil the underlying mechanisms

of action.

As observed in this study, the effects of PFOS on pathways

related to glucolipid metabolism involve several genes with

significantly changed expression levels, such as Acot, Elovl, Irs2,

G6pc, Gck, Gys2, Pik3r1 (Pi3ka), Socs3, Ppp1r3c, Ppp1r3b, Fasn,

Foxo1, Cpt1a, Ldha. Acot1, Acot2, Acot4, Acot3, Elovl2 and Elovl5

are among the key genes that affect lipid and sterol metabolism.

Among them, Acyl coenzyme A thioesterases (Acot) are an

important class of peroxisomes that catalyze the synthesis of free

fatty acids and coenzyme A from acyl coenzyme A (short, medium,

long and extra-long chains), bile acid-CoA and methyl-branched-

CoA (46). Elovl2 and Elovl5 are important regulatory genes for

polyunsaturated fatty acids and Elovl2 prolongs the synthesis of

arachidonic acid, eicosapentaenoic acid Elovl2 lengthens the carbon

chain length of arachidonic, eicosapentaenoic, docosapentaenoic

and linolenic acids and also contributes to the synthesis of PPARa
ligands. Similarly, Elovl5 is involved in the elongation of a variety of

polyunsaturated long-chain fatty acids from C18-C20 (47). Irs2,

G6pc, Gck, Gys2, and Pik3r1 are important regulatory genes in the

tricarboxylic acid cycle and insulin signaling pathway (48). In

addition to the classical attenuated negative feedback regulation

of cytokine signaling, Socs have been increasingly suggested to play

an critical role in receptor tyrosine kinase signaling, such as

inhibition of insulin signaling. the Socs protein family has effects

in inhibiting leptin and insulin signaling pathways. Evidence

suggests that Socs3 plays critical role in the leptin resistance, with

Socs proteins (Socs1, Socs3, Socs6 and Socs7) can reduce insulin

action (49). Ppp1r3c and Ppp1r3b can be widely expressed in liver,

muscle, and cardiac muscle and can target glycogen granules by

dephosphorylating and activating glycogen synthase Ppp1r3c

heterozygous deletion in mice resulting in reduced tissue glycogen

levels with progressive glucose intolerance, hyperinsulinemia and

insulin resistance with age (50). Fatty acid synthase (Fasn) is an

important regulatory enzyme in adipose ab initio synthesis, while

abnormal expression of Fasn is closely associated with the

development of diabetes (51). Foxo1 serves as a critical

transcription factor in glucose metabolism. In the liver, Foxo1

becomes active during fasting and is deactivated upon feeding in

typical physiological circumstances. This process is one of the
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crucial mechanisms through which insulin can rapidly and

effectively inhibits hepatic glucose production during the

postprandial state. In cases of insulin resistance, phosphorylated

Foxo1 translocates into the nucleus, where it associates with PGC-

1a, thereby triggering the expression of target genes accounted for

gluconeogenesis in the liver, such as G6p and Pepck (52). Cpt1

serves as a pivotal factor regulating the intake of long-chain fatty

acids into mitochondria for b-oxidation. Situated on the outer

mitochondrial membrane, Cpt1 transforms long-chain acyl-

coenzyme A into acylcarnitine equivalents. These equivalents are

subsequently transported into the mitochondria by acylcarnitine

translocase, only to be converted back into acyl-coenzyme A by

Cpt2 (53). Cpt1a is one of the three isoforms of Cpt1, and Cpt1a

deficiency can cause acute fatty liver and hepatic encephalopathy

during pregnancy (54). Lactate dehydrogenase a (Ldha) is one of the

key rate-limiting enzymes in anaerobic enzymes of the body and is

an important factor in maintaining glucose homeostasis.
4.3 Metabolomic alterations and metabolic
pathways

In this study, metabolomics analysis of livers in offspring adult rats

revealed that PFOS exposure induced both porphyrin and chlorophyll

metabolism, citrate cycle, and disturbances in lipid metabolism,

involving mainly malic acid, a-ketoglutarate, glucuronide bilirubin,

bile acid, glycine, levulinic acid, phenylalanine, L-urobilin,

mesobilirubinogen, bilirubinogen, S-acetyldihydrothioctinamide-E,

taurine. In addition to malic acid, extended carboxylic acid and

levulinic acid have an impact on metabolic process of offspring rats

(55, 56). a-ketoglutaric acid is also an vital intermediate in the

tricarboxylic acid cycle, while glucuronide bilirubin, bile acid, L-urea

bilirubin, mesobilirubinogen, and bilirubinogen are mainly important

metabolites or raw materials in bile acid metabolism, suggesting that

PFOS exposure may trigger disturbances in bile acid metabolism (57).

Perturbation of bile acid synthesis from cholesterol may be one of the

pathways through which PFAS affects blood and liver cholesterol

levels. Results from animal studies suggest that PFOS and PFOA

exposure increases serum bile acid levels and decreases bile acid

secreted in the feces, while causing a downregulation of CYP7A1

expression and consequently an imbalance in cholesterol homeostasis

(58, 59). In addition, CYP7A1 is regulated by FXR, but HNF4a and

PPARa also play a regulatory role (60). Taurine is a functional amino

acid with high content in the organism and has complex biological

roles, including anti-inflammatory, antioxidant, and regulation of

intracellular calcium ion homeostasis (61). Taurine is an essential

part of cellular life processes as well as other differentially altered

amino acids such as glycine, phenylalanine, etc. Che-Jung Chang et al.

found PFNA exposure to be associated with altered amino acids such

as taurine and glycine in a study of PFAS exposure, metabolome of the

placenta of pregnant women and fetal growth, which could support

the findings of this study (62).

The observation that different PFOS doses perturb distinct

metabolic pathways—such as bile acid biosynthesis at 0.03 mg/kg
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and retinol metabolism and fatty acid elongation at 0.3 mg/kg—

l ikely reflects non-linear, threshold-dependent toxicity

mechanisms. PFOS, as a persistent environmental contaminant, is

known to exhibit pleiotropic biological effects, and its toxicity often

depends not only on dose but also on tissue accumulation, receptor

binding affinity, and compensatory metabolic capacity. At lower

doses (e.g., 0.03 mg/kg), PFOS may selectively engage high-affinity

targets or signaling pathways, such as those regulating bile acid

synthesis via FXR (farnesoid X receptor) or related nuclear

receptors, leading to subtle but biologically meaningful metabolic

disruptions (63). In contrast, higher doses (e.g., 0.3 mg/kg) may

overwhelm homeostatic mechanisms, leading to broader metabolic

perturbations such as disruptions in retinol metabolism and fatty

acid elongation, which may be secondary to mitochondrial stress,

ER dysfunction, or PPARa activation (64).

This dose-dependent switching of pathways suggests the

existence of multiple toxicity mechanisms that are activated in a

hierarchical manner, depending on PFOS exposure levels. It also

supports the concept of dose thresholds, where specific toxic effects

only emerge beyond certain concentrations. While our study does

not allow for the precise determination of these thresholds, the

distinct pathway profiles observed at different doses highlight the

importance of considering non-linear dose-response relationships

in PFOS risk assessment.
4.4 Integrative multi-omics

Several co-enriched pathways induced by early-life PFOS

exposure were identified in this study. In a recent systematic

review paper, changes in glycerophospholipid metabolism and

linoleic acid metabolism induced by PFAS exposure were found

in several studies, and are essential for vital biological membrane

functions, while fatty acids and carnitines play a significant role in

the energy supply pathway of fatty acid oxidation (65). For example,

perfluorononanoic acid (PFNA) and perfluoroundecanoic acid

(PFUnDA) were found to be significantly associated with

glycerophosphocholines and linoleic acid metabolism (66).

Another case-control study identified 35 PFAS- and type 2

diabetes-related metabolite features and two pathways dominated

by glycerophospholipids and diacylglycerols, which can support our

findings (67). Altered glycerophospholipid metabolism may impair

insulin signaling via Plpp3 downregulation, reducing GLUT4

expression and promoting insulin resistance. In parallel, increased

LPA (lysophosphatidic acid) from Pld1 may activate inflammatory

pathways that disrupt PI3K/Akt signaling, contributing to

dysregulation of glucose homeostasis, leptin, and adiponectin (68).

Besides, significant changes in retinol metabolism was observed

in 0.3 mg/kg group, which is consistent with a maternal-child paired

study as they found that PFAS exposure in maternal blood was

correlated with retinol metabolism (69). Disruption in retinol

metabolism may involve elevated RBP4/retinol, activating

STRA6–JAK2–STAT5 signaling, which increases SOCS3 and

PPARg, further suppressing insulin signaling and promoting lipid

accumulation. Conversely, retinoic acid (ATRA) and b-carotene
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appear to engage pathways (e.g., STAT3, AMPK/PPAR-a) that may

partially counterbalance these effects by improving insulin

sensitivity and adiponectin levels (70). More studies are

warranted for other co-enriched pathways.

Several limitations merit consideration. Firstly, the non-

targeted metabolomics approach used in this study might not

have fully encompassed all metabolite varieties due to its inherent

characteristics. The constraints of metabolite database might have

led to the omission of specific metabolites from distinct pathways.

Furthermore, a less stringent significance threshold was applied to

determine differential metabolites and pathway enrichment. While

this cut-off is commonly used to maximize the identification of

differential metabolites for enrichment, it is important to consider

the potential inflation of type I errors resulting from multiple

testing. Secondly, differential metabolites and biological pathways

identified in this study warrant further validation. More detailed

metabolic measurements such as Insulin Tolerance Tests (ITT)

need to be considered in future studies. Thirdly, omics analysis was

limited to liver tissue. While the liver plays a central role in

metabolic regulation, contributions from other organs such as

adipose tissue, skeletal muscle, and pancreas—particularly in

relation to insulin resistance and adipokine secretion—were not

directly assessed and warrant further investigation in future multi-

tissue studies. Lastly, although this study has identified alterations at

the gene expression and metabolic levels associated with early-life

PFOS exposure, it remains possible that some phenotypic

manifestations of disease outcomes—such as metabolic syndrome,

insulin resistance, or obesity—may not fully emerge until later in

life or during aging. Therefore, long-term, life-course investigations

in offspring following early-life exposure are essential, particularly

at environmentally relevant low-dose exposures that may produce

subtle but persistent effects. Additionally, the role of epigenetic

modifications—such as DNA methylation or histone remodeling—

in key metabolic pathway genes warrants further investigation, as

these changes may serve as long-lasting “molecular memories” that

maintain metabolic dysregulation long after the initial exposure

(71). Understanding these epigenetic mechanisms may provide

critical insights into how early-life environmental insults can

program chronic disease risk (72).

In summary, findings in this study underscore the potential of

early-life PFOS exposure to contribute to the development of metabolic

disorders such as insulin resistance and type 2 diabetes later in life.

They also highlight the importance of incorporating developmental

exposure and low-dose effects into human health risk assessments. The

results call for strengthened regulatory oversight and further research to

better understand and mitigate the intergenerational impacts of PFOS

and related environmental contaminants.
5 Conclusion

Our study suggested that early-life PFOS exposure has the

potential to affect glucose homeostasis in adult offspring rats, as

indicated by elevated blood glucose level of OGTT and insulin level,

but not a dose-response relationship. Several key co-enriched
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biological pathways, including glycerophospholipid metabolism

and retinol metabolism, as well as DEGs and DEMs, were

identified. Findings in this study provide valuable understanding

into the fundamental biological mechanism that may contribute to

the observed epidemiological associations. However, further in vitro

and in vivo studies are necessary to validate and elucidate the exact

toxic pathways involved.
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