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Introduction: Preeclampsia (PE) is a multisystem pregnancy complication.
Factors pointing to a placental origin are the development of the pathology
only during pregnancy, and its disappearance in the post-partum period.
Methods: Here, we aim to identify early predictive biomarkers. Whole blood and
serum samples were collected at the time of the first event of PE (V1) and same
samples after remote delivery (30-60 postpartum days, V2). These two samples
enabled investigation of PE markers found in V1 but absent in V2. To confirm that
these candidates are associated with PE, an investigation of associated placental
biopsy was also realized (J0).

Results: Our study identified a specific signature of PE including five Gene
Ontology clusters including “angiogenesis and differentiation”, “cell-cycle”,
“cell-adhesion”, “inflammatory response” and “cellular metabolism”. DUSP1
(Dual Specificity Phosphatase 1) gene was found specifically modulated in PE.
PE women have a higher concentration of DUSP1 in serum compared to healthy
donors. Interesting, at a distance from childbirth (V2), DUSP1 finds a rate like
control group showing its predictive interest as a promising predictive biomarker
of PE.

Discussion: The investigation of DUSP1 in a prospective study with a larger
cohort, including the severity aspect of the disease, is necessary to confirm its
value as a predictive biomarker in PE.
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Introduction

Preeclampsia (PE) is a progressive, multisystem pregnancy
complication that affects 3%-5% of pregnancies, making it one of
the major causes of maternal and fetal morbidity and mortality (1).
PE is responsible for hematological complications and severe organ
failure, particularly affecting the placenta, nervous system, liver, lungs,
kidneys, and cardiovascular system (2, 3). Fetal complications include
life-threatening complications such as intrauterine growth
retardation, malformations, and induced prematurity (4). PE is a
complex pathological process that originates at the maternal-fetal
interface (5, 6). It is widely accepted that PE is a disease of maternal
endothelium with placental origins. Supporting this theory is the
observation that the pathology develops only during pregnancy and
resolves in the postpartum period.

Several early prognostic clinical indicators (e.g., mean arterial
pressure) and ultrasonography markers (e.g., uterine artery pulsatility
index) have been combined to diagnose PE. At the biological level,
placental growth factor (PIGF) and pregnancy-associated plasma
protein A (PAPP-A) have been proposed to predict the risk of
preterm PE. With a positive predictive value of approximately
85%-90%, the Fetal Medicine Foundation (FMF) test was
developed to assess the risk of early PE. This means that 10%-15%
of FMF tests may yield a high-risk result but will not result in
premature PE (1). Other studies have focused on trophoblastic cells,
as placental cells, by examining their processes of migration and
invasion (7). Markers such as programmed death-ligand 1 (PD-L1)
(8) and angiopoietine like 4 (ANGPTL4) (9) have been shown to
significantly increase trophoblast invasion and migration in PE, and
have also implicated the yes-associated protein (YAP)-Hippo
trophoblast differentiation pathway (10). However, these factors
only contribute to a better understanding of PE physiopathology.

There has been growing interest in early predictive biomarkers for
PE. Effective predictive tests would facilitate early diagnosis, targeted
monitoring, and prompt management, using biomarkers capable of
identifying risk early in pregnancy (before 16 weeks) in women at high
risk of clinical complications (11). The anti-angiogenic factor soluble
fms-like tyrosine kinase 1 (sFlt-1), found in the placenta and measured
in plasma and serum, has been proposed as a specific biomarker for the
onset and severity of PE (12). Evaluation of the ratio of sFlt-1 to the
pro-angiogenic factor PIGF was found to have a high negative
predictive value (13) and can be used to predict the short-term
absence of PE in women for whom the disease was previously
suspected clinically. Unfortunately, its predictive value is strongly
linked to the prevalence of the disease. Ongoing studies are focused
on the selection of women for early intervention to prevent PE onset,
particularly through acetylsalicylic acid prescription (14). The ASPRE
trial showed that identification of at-risk women using a score that
includes mean arterial pressure, uterine artery pulsatility index, and
maternal serum PAPP-A and PIGF can reduce early PE (15, 16).
However, the overall rate was not decreased, which encourages further
studies on the identification of new tools or factors.

The aim of this study was to identify new early biomarkers of PE
based on a transcriptional signature present at the time of the event,
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using both maternal peripheral blood and placental biopsy samples.
The secondary objective was to evaluate the evolution of this
signature’s expression during the progression of pregnancy,
particularly at the time of delivery, using samples from maternal
blood and placental tissue.

Materials and methods
Ethics statement

This single-center, prospective, longitudinal study was
conducted in accordance with the Declaration of Helsinki and
French laws on research involving humans. The study protocol
was approved by an independent national ethics review board,
“CPP Sud Mediterranean 1”7 (approval no. 2010-A00633-36). All
pregnant women provided written informed consent. Participants
were recruited at the gynecology-obstetrics departments of Hopital
de la Conception and Hopital Nord (Marseille, France) between
February 2019 and July 2020.

Study participants and sample collection

The study included 10 pregnant women as controls and 10
pregnant women diagnosed with PE between 20 and 37 weeks of
gestation (Table 1). Pregnant women with PE presented with arterial
hypertension (systolic blood pressure greater than or equal to 140
mmHg and/or diastolic blood pressure greater than or equal to 90
mmHg) associated with proteinuria (positive urine dipstick or
proteinuria greater than 0.3 g protein per 24 h). PE and control
groups were matched for maternal age and gestational age at inclusion.

Clinical parameters recorded included maternal age, geographic
origin, body mass index (kg/m?), and obstetrical characteristics
(gestational age, parity, spontaneous or induced pregnancy, and any
pregnancy-related complications). Detailed fetal outcomes were
monitored, including ultrasound findings, fetal heart rate analysis,
and neonatal data.

Total blood samples (PAXgene tubes, PreAnalytiX) were
collected at the time of PE diagnosis (and at matched gestational
age for controls) and again 4-6 weeks postpartum (Supplementary
Figure S1). PAXgene tubes were stored at 4°C for 24 h, then frozen at
—20°C for 24 h before permanent storage at —80°C. A placental biopsy
was also performed at the time of delivery for all participants. Each
biopsy consisted of a macroscopically selected placental area of 2x2
cm including both chorionic and basal membranes. Biopsies were
preserved in RNAlater (Thermo Fisher Scientific) for 24 h at 4°C,
then frozen for 24 h at —20°C, and finally stored at —80°C.

RNA extraction

Total RNA from whole blood samples was extracted using the
PAXgene Blood RNA Kit (Qiagen) according to the manufacturer’s
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TABLE 1 Initial characteristics of the population at the time of inclusion.

Characteristics Control (n=10) n (%)

10.3389/fendo.2025.1576240

Preeclampsia (n=10) n (%)

p-value

Pregnant women

Age (years) 29.50 + 4.45 31.20 +£7.43 0.54
Geographical origin
« Caucasian 7 (70) 9 (90) 0.58
o African 3 (30) 1(10) ’
o Asian 0 0
BMI (Kg/m?) 23.70 + 427 24.50 + 3.98 0.68
Smoking status
o Absence 9 (90) 10 (100) -
« Active (>10 cig/day) 1 (10) 0 (0)
Obstetrical characteristics
Gestational age at diagnosis (weeks) 314 +4.30 29.5+3.13 0.29
Conception type
« Spontaneous pregnancy 10 (100) 8 (80) 0.47
« Induced IVF pregnancy 0 (0) 2 (20)
Delivery route
« Vaginal delivery 8 (80) 0 (0) 0.0007
« Caesarean section 2 (20) 10 (100)
Maternal complications
« Absence 10 (100) 6 (60)
« Presence 0 (0) 4 (40)
- Uncontrolled hypertension 0 (0) 3 (30) 0.0867
- Proteinuria >6g/day 0 (0) 2 (20)
- Acute renal failure 0 (0) 1(10)
- HELLP syndrome 0 (0) 2 (20)
Fetal outcome
Gestational age at birth (weeks) 395+ 1.13 30.1 +3.1 <0.001
Days between inclusion and delivery 61.6 + 31.25 3.3 +3.05 <0.001
Fetal growth
« Eutrophic fetus 10 (100) 7 (70) 0.21
« Intrauterine growth retardation 0 (0) 3 (30)
Fetal Doppler
« Normal fetal Doppler 10 (100) 7 (70) 0.21
« Doppler anomalies 0 (0) 3(30)
Neonatal complications
« Absence 8 (80) 2 (20)
« Presence 2 (20) 8 (80)
. 0.02
- Fetal growth restriction 0 (0) 4 (40)
- Respiratory distress 2 (20) 3 (30)
- Neonatal death 0 (0) 1 (10)
Birth weight (g) 31744 + 281 1203.5 £ 611.1 <0.001

BMI, body mass index; HELLP syndrome, syndrome of hemolysis, elevated liver enzymes, and low platelet count.

instructions. Briefly, total blood was lysed using proteinase K, and
nucleic acids were precipitated by ethanol. DNA was digested with
RNase-free DNase I for 15 min at room temperature. Total RNA was
eluted and incubated at 65°C for 5 min before being stored at -80°C.

Total RNA from placental biopsies was extracted using the
RNeasy Mini Kit according to the procedure recommended by the
manufacturer (Qiagen). After dissolution of placental tissue in RLT
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buffer with (RLT)-B-mercapto-ethanol, nucleic acids were
precipitated with ethanol. DNA digestion was performed with
RNase-free DNase I for 15 min at room temperature. Total RNA
was eluted and stored at —80°C.

The quality and quantity of extracted RNA were evaluated using
the Bioanalyzer 2100 (Agilent Technologies) and a NanoDrop
Spectrophotometer (Nanodrop Technologies).
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RNA-sequencing and data processing

Reads were aligned and quantified using STAR (https://doi.org/
10.1093/bioinformatics/bts635) on the hgl9 genome assembly with
GENCODE v19 annotations. The raw gene count table was
variance-stabilized and reduced into principal components and
uniform manifold approximation and projection (UMAP) for
quality control. The raw count table was also used to perform
differential expression analysis (DEA) using the Deseq2 framework
(17), with apeglm shrinkage applied to the log, fold change (18).
Individual DEA results were compiled into integration plots,
retaining genes that were significant in at least one design based
on a Benjamini-Hochberg adjusted p-value <0.05 in at least one
design. Data from RNASeq data analysis were submitted on the
GEO data collection (GSE262147). Gene expression changes (up- or
downregulation) were evaluated relative to control samples.

Quantitative reverse transcription-
polymerase chain reaction

Reverse transcription of isolated RNA was performed using the
Moloney murine leukemia virus reverse transcriptase kit (Life
Technologies) and oligo(dT) primers. Gene expression was
evaluated using real-time qPCR with the Smart SYBR Green
Fast Master Kit (Roche Diagnostics) and specific primers
(Supplementary Table S1). qPCRs reactions were performed using
a CEX Touch Real-Time PCR Detection System (Bio-Rad). Results
were normalized to the expression of the ACTB housekeeping gene
and are expressed as relative quantity (RQ) using the 272 with ACt
= Ctrarget = Ctacrp as previously described (19).

Immunoassays

FLT1 (fms related receptor tyrosine kinase 1) and DUSP1 (Dual
Specificity Phosphatase 1) levels were quantified in serum from study
population with appropriate ELISA (enzyme-linked immunosorbent
assay) according to the manufacturer’s instructions (Antibodies). The
sensitivity was 6.99 pg/ml for FLT1 and 9.4 pg/ml for DUSP1.

Protein interactome
The protein interactome between DUSP1 and FLT1 was

generated using the STRING functional association networks
protein software.

Statistical analysis
Descriptive statistics of the initial characteristics of the population

were carried out using R software version 3.6.1. Quantitative variables
were described using the mean and standard error of the mean (SEM).
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Qualitative variables were described using percentages and p-values.
Categorical variables were compared using the Chi-square test or
Fisher’s exact test, as appropriate. The alpha risk was defined at 5%.
Statistical analysis of gene signatures was performed using GraphPad
Prism 6 (Graphpad Software Inc.). Gene expression was analyzed using
the one-way ANOVA (analysis of variance) test and Tukey’s multiple
comparisons test. Values represent the mean + SEM. The limit of
significance was set at p<0.05.

Results
Study design

We conducted a prospective, longitudinal study to investigate
novel biomarkers for PE diagnosis. Ten patients with PE were
included during the study period at a university medical center. Ten
pregnant women with normal pregnancies and no significant
medical history were matched as controls to the PE patients
based on maternal age and gestational age at the time of
PE diagnosis.

The study design is shown in Supplementary Figure S1. Whole
blood and serum samples were collected at the time of the first PE
event (V1), and the same types of samples were collected after
remote delivery (30 to 60 postpartum days, V2). These two samples
enabled the investigation of PE markers found in V1 but absent in
V2. To confirm that these biomarkers were associated with PE,
placental biopsies collected after delivery were also analyzed (JO).

We first focused on the study population at the time of inclusion.
As illustrated in Table 1, maternal age (years) at diagnosis was
comparable between cases and controls, 31 + 7.43 and 29.5 + 4.45,
respectively (p=0.54). Gestational age (weeks) at diagnosis showed no
significant difference between the two groups: 29.54 + 3.13 in PE and
31.38 £ 4.30 in controls (p=0.29). No significant differences were
observed for body mass index and smoking.

Considering pregnancy outcomes in the two groups (Table 1),
as expected, gestational age at delivery was significantly earlier in
the PE group (30.07 + 3.12) than in the control group (39.52 £ 1.13)
(p<0.001). The time between inclusion and delivery (days) was
significantly shorter in the PE group (3.3 + 3.05) than in the control
group (61.6 = 31.25) (p<0.001). Patients with PE delivered by
cesarean section in 100% of cases, compared to 20% in the
control group (p = 0.0007). Serious maternal complications were
observed in the PE group, such as uncontrolled hypertension (30%),
heavy proteinuria (20%), acute renal failure (10%), and HELLP
syndrome (20%). However, no significant differences were observed
between the two groups (p = 0.0867).

Similarly, there were also significant differences in neonatal
outcomes. Neonatal weight (g) was significantly lower in the PE
group (1,203.5 + 611.1) than in the control group (3,174.4 + 28)
(p<0.001). Neonatal complications were significantly increased in
the PE group (80% vs. 20%, p=0.02). In our cohort, they mainly
consisted of severe sepsis (40%) and respiratory distress (30%), as
well as one case of neonatal death.
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Preeclampsia RNA profile

After raw data normalization, differences between samples from
pregnant women with PE and healthy donors were visualized in
Figure 1. The hierarchical clustering heatmap showed that placental
samples clustered separately from whole blood samples (Figure 1A).
RNA-seq analysis revealed 23,919 differentially expressed genes
(fold change >2 and false discovery rate (FDR) < 0.05) with
sufficient variance for statistical analysis using DESeq2, as
illustrated in the volcano plot (Figure 1B). Principal component
analysis demonstrated contrasts among the two investigated groups
regarding the sample type (Figure 1C) but not by study group (PE
vs. control) (Figure 1D). When the sample type variable was
excluded, no clear grouping emerged by study group among
individuals (Figures 1E, F).

We next investigated gene modulation between PE and control
groups at each of the three time points: V1, BP, and V2. Differential
expression analysis was adjusted for time as a covariate. After
filtering for variance and significance (p<0.05), 300 genes were
identified as significantly modulated based on Benjamini-Hochberg
adjusted p-value <0.05 in at least one comparison. When focusing
on the model adjusted for time, 27% of these genes (81) were
upregulated and 20% (61) were downregulated (Figure 2A).
Notably, at the time of first inclusion (V1), corresponding to the
initial PE event, 108 genes were found to be upregulated in whole
blood samples from the PE group compared to controls (Figure 2B).
A similarly high number of upregulated genes was observed in the
transcriptional signature of placental biopsies (Figure 2D). In
contrast, at V2—corresponding to the postpartum sample—
upregulated and downregulated gene counts were more balanced.
The aim of this study was to determine relevant biomarkers that
might reflect the pathophysiological mechanisms underlying PE.
We therefore focused on genes that were up- or down-regulated in
whole blood at V1, absent at V2, and concurrently expressed in
placenta samples from PE patients but not controls. Under these
conditions, 25 genes were identified as a specific PE signature, as
shown in the hierarchical clustering (Figure 3A) and volcano
plot (Figure 3B).

Gene Ontology (GO) analysis of “Biological Process” terms
revealed five GO clusters. In decreasing order, 30.8% of genes were
associated with “angiogenesis and differentiation,” 26.9% with “cell
cycle,” 19.2% with “cell adhesion,” 15.4% with “cellular
metabolism,” and 7.7% with “inflammatory response” (Figure 3C
and Supplementary Table S2).

Identification of a specific signature for
preeclampsia

Genes identified were next evaluated using quantitative reverse
transcription—-polymerase chain reaction (qQRT-PCR) (Figure 4).
Among the genes associated with “cellular metabolism,” only
A2M showed a significant difference between V1 and V2 in the
PE group (p = 0.0236) (Figure 4A). No significant differences were
observed for TCN2, SPAG6, and ADAMTS2.
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Within the “inflammatory response” cluster, only TNFRSF21
was significantly increased at V1 in the PE group compared to the
control group (p<0.0001), and a significant decrease was observed
in the PE group between V1 and V2 (p<0.0001) (Figure 4B). No
differences were found for CDI63.

Among the four genes associated with the “cell adhesion”
cluster (ITGA2B, THBS1, EPCAM, SDKI), two (THBSI1 and
SDK1I) were differentially modulated between the PE and control
groups (Figure 4C). THBSI was significantly increased in the PE
group at the placental level (p=0.0073), although no statistical
difference was observed at the blood level. SDKI was significantly
increased at V1 in PE compared to the control group (p=0.0099),
and showed a significant decrease between V1 and V2 in the PE
group (p=0.0267) (Figure 4C).

Among the seven genes associated with the “cell cycle” cluster
(BIN2, PERI, MIR25, IRS2, ESRG, STAG3, GPERI), three were
differentially modulated between the PE and control groups
(Figure 4D). In whole blood, MIR25 was significantly increased at
V1 in PE compared to the control group (p = 0.0012) and for the PE
group, a significant decrease was observed between V1 and V2
(p=0.044) (Figure 4D). At the placental level, ESRG and GPERI
were significantly increased in the PE group compared to the
control (p<0.0001 and p=0.0017, respectively).

Finally, we identified eight modulated genes associated with
the “angiogenesis and differentiation” cluster (GRBI0, FN1, FLT1,
DUSPI, NRP1, ANG, ARMCI2, FSTLI) (Figure 4E). Among them,
six genes were found differentially modulated between the
investigated groups (FN1, FLT1, ANG, GRBIO, FSTLI, DUSPI).
FNI and ANG were significantly increased in placental biopsies
from PE patients compared to controls (p=0.0007 and p<0.0001,
respectively). FSLTI and GRBI0 were significantly increased at V1
in PE compared to the control group (p=0.0007 and p<0.0001,
respectively), and both showed significant decreases between V1
and V2 in the PE group (p<0.0001 and p=0.007, respectively).
Interestingly, FLT1, a well-established biomarker in PE (13), also
showed consistent modulation in our study. FLTI was
significantly increased at V1 in the PE group compared to the
control group (p<0.0001) and significantly decreased at V2 in the
PE group compared to V1 (p<0.0001). At the placental level, FLT1
was also significantly overexpressed in PE patients compared to
controls (p<0.0001), further confirming its relevance in PE
pathophysiology (13, 20-22)Among all the investigated genes,
DUSPI1 showed the same state of significant expression
modulation as FLTI: (1) significantly increased at V1 in PE
compared to controls (p=0.0185); (2) significantly decreased at
V2 in PE compared to V1 (p=0.0011); and (3) significantly
increased at the placental level in PE compared to controls (p =
0.0006). Taken together, our findings highlight DUSPI as a
promising gene of interest in PE.

DUSP1 modulation in preeclampsia

We next evaluated levels of DUSP1 in serum samples using
immunoassays. As illustrated in Figure 5A, DUSP1 was barely
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FIGURE 2
Modulated genes associated with preeclampsia. (A) Clusters show 300 modulated genes obtained after adjustment and selection based on variance and
p<0.05, according to the Benjamini-Hochberg method. (B—D) Venn diagrams illustrated up- and down-modulated genes in preeclampsia (PE) versus
control group for (B) V1, (C) V2 and (D). BP, biopsy from placenta. Each intersection shows the number of genes that are neither up- nor down-regulated.
(+) and (-) indicate p-value <0.05 and absolute value of log2FoldChange > 0.1.

detected in healthy donor serum during pregnancy (V1) or  decreased after childbirth; at V2, levels were similar to those
postpartum (V2). Interestingly, pregnant women with PE showed  observed in the control group (p<0.000I). A similar modulation
significantly higher concentrations of DUSP1 at V1 compared to  pattern was observed for FLT1 concentrations, which were
controls (p<0.0001), suggesting that DUSP1 could be an interesting  significantly elevated in PE donors compared to healthy donors at
biomarker. Focusing on the PE group, we found that DUSP1 levels V1, then decreased at V2 (p<0.0001) for all comparisons.
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FIGURE 3
Specific genes associated with preeclampsia. Based on the selection of 300 genes modulated in V1, absent in V2, and present in the placental biopsy
(BP) for the PE group compared to the control (T) group, 25 genes were identified as a specific signature of PE. (A) Hierarchical clustering and (B)
volcano plot illustrated the 25 modulated genes. (C) Graph illustrating the Gene Ontology (GO) analysis based on “Biological Process,” including the
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To further investigate molecular signature changes involving
DUSPI and their potential role in PE pathophysiology, we
performed a protein pathway analysis (Figure 5B). This analysis
identified 12 proteins associated with DUSP1. Among them, FLT1

Frontiers in Endocrinology

was found, suggesting shared signaling pathways that may explain
their similar expression profiles. There were also proteins associated
with VEGF (vascular endothelial growth factor) and PGF (placental
growth factor), which have previously been described as associated
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FIGURE 5

DUSP1 represents a biomarker candidate of preeclampsia. (A) Quantification of DUSP1 and FLT1 protein levels by immunoassay in serum samples (V1
and V2) from nine controls (C) and nine preeclamptic women (PE). Statistical analysis was performed using one-way ANOVA (analysis of variance)
and Tukey's multiple comparisons test. ****p< 0.0001.. (B) Protein pathways linked to DUSP1.

with PE pathophysiology (13)Taken together, these results highlight
DUSPI as a promising blood-based biomarker candidate for the
diagnosis of PE in pregnant women.

Discussion

The clinical diagnosis of PE remains challenging and is often
delayed due to the lack of reliable early biomarkers. Although
studies have used large biobanks and cohorts, the identification of
efficient biomarkers for early PE diagnosis is still warranted. In this
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study, we adopted a specific study design strategy to investigate new
candidate biomarkers by evaluating gene expression at both the
blood and placental levels in women with PE—specifically focusing
on genes not expressed postpartum, at a distance from delivery. Our
study highlights DUSP1 as a promising non-invasive blood
biomarker candidate for PE.

Current screening tools are essentially in the form of diagnostic
trees combining several risk factors for PE to predict its occurrence
in the short term. They combine several early markers: clinical
(mean blood pressure), ultrasound (pulsatility index of uterine
arteries) and biological (PAPP-A and PIGF), allowing to predict
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the risk of PE before term—with a false-positive rate of
approximately 10%-15% (23, 24). Recent data from literature has
opened new avenues through molecular approaches, particularly by
exploring gene expression in this pathology (25-27). However,
many studies focus on the investigation of genes on samples, at
the blood or placenta level, only at the time of diagnosis. The
strength of our study was primarily its prospective design, which
contributed to its robustness. Controls were rigorously matched to
patients with PE based on two major confounding factors: maternal
age and gestational age at diagnosis. The two groups (PE and
control) were comparable across all baseline characteristics, thereby
addressing potential confounding bias. Another strength of our
study is its transversality, as patients in each group were followed
from the first clinical manifestations of PE through to the postnatal
period. Each patient was evaluated at the three major stages of the
disease: diagnosis (first symptoms), childbirth (signs of severity
requiring fetal delivery and/or maternal intervention), and
postpartum (remission). This transversality is a major asset,
allowing us to follow the evolution of the PE transcriptional
signature in parallel with the progression of the disease.

Our study highlighted a specific gene signature of PE. Among
the modulated genes, the associated biological processes have
previously been described in the pathophysiology of PE (28, 29).
Interestingly, we also identified the FLTI gene, whose role as a
biomarker in PE is well documented (12, 30). The presence of this
gene indicates that the cohort choice and design strategy of
the study is similar to previous studies. We showed that FLTI
has the same significant expression modulation profile as DUSPI,
with both genes returning to a physiological baseline after
pregnancy. We also found that FLTI is part of the DUSPI
pathway. Additional studies based on other cohorts should be
carried out to define the relevance of DUSP1 and FLT1 in PE,
either as individual biomarker candidates or as part of a
combined signature.

Our study identified DUSP1 as a biomarker candidate for PE.
DUSP1 belongs to a large superfamily of 30 types of DUSP involved
in signal transduction pathways that inactivate mitogen-activated
protein (MAP) kinases. Specifically, DUSP1 modulation affects
several pathways, including MAP kinase phosphatase activity,
tyrosine kinase receptor activity, angiogenesis, and cell-cell
signaling (31). Its role in tumor biology is well documented (32).

Interestingly, several studies have also highlighted the
relationship between DUSP1 and hypoxia, a major contributor to
the placental abnormalities observed in women with PE. Hypoxic
conditions lead to DUSPI overexpression and increased interaction
with hypoxia-inducible factor 1-alpha (HIF-1a), a molecule (33)
involved in PE pathogenesis (34, 35). DUSP1 has also been
identified as a contributing gene in cases of recurrent miscarriage
(36, 37). DUSP1 expression abnormalities in primary human
decidual stromal cells or decidua tissue have been linked to the
pathophysiology of recurrent miscarriages. Further studies are
needed to highlight the mechanism of action of DUSP1 in PE.

Frontiers in Endocrinology

10.3389/fendo.2025.1576240

Previous studies have investigated DUSP1 as a potential
biomarker for the identification of PE (38). The authors investigated
DUSPI expression in placental tissue and umbilical cord blood. The
authors reported conflicting data regarding DUSP1 expression in
placental tissue: DUSP1 mRNA expression in the PE group was
significantly lower than in the healthy group, whereas protein levels
assessed by immunohistochemistry were similar between PE and
control groups. Considering DUSP1 as a biomarker, the authors
investigated DUSP1 protein levels in umbilical cord blood and
found significantly lower DUSP1 expression in PE women
compared to healthy donors. Moreover, the authors used a limited
cohort (400 controls versus 5 PE samples) and did not investigate the
gestational age at diagnosis that constitutes a major confounding
factor associated with potential confusion bias. In contrast, Yonghong
Wang et al. reported an indirect role for DUSP1 in the occurrence of
PE (39). The authors reported that miR-141-5p reduced DUSP1
expression in vitro, thereby affecting the MAPK/ERK pathway and
promoting PE features. Although further studies are needed to identify
the role of DUSP1 in PE, this study demonstrated DUSP1 expression
in immortalized JEG-3 trophoblastic cells (39), whose role in
pregnancy and involvement in PE pathogenesis still need to
be defined.

In our prospective study, healthy donors were matched with
PE patients based on the two main factors: maternal age and
gestational age at diagnosis. To prevent any potential bias, both
groups were comparable in all baseline characteristics. From the
earliest clinical signs of PE through the postpartum period,
patients in each group were monitored. As a result, each patient
contributed samples at the three major stages of the disease:
diagnosis (first symptoms), delivery (severe signs indicating the
need for fetal birth and/or maternal rescue), and postpartum
(remission). This transversality is a key advantage for tracking
the evolution of the PE transcriptional signature in relation to
disease progression.

Our study is limited by the size of the cohort. Validation of
DUSP1 as a biomarker candidate for PE should be conducted in
larger, multicenter cohorts.

In conclusion, based on an original study design, we report a set
of genes associated with PE, some of which have been previously
linked to the pathophysiology of the disease. Further investigation
of DUSPI in a larger cohort—both before and after the onset of PE,
and including assessments of disease severity—is necessary to
confirm its value as a biomarker. The RANSPre study, a French
multicenter cohort, may provide an alternative strategy to evaluate
this candidate further.
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