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Lipidomics, an emerging field in medical research, has deepened our

understanding of lipid metabolism, signal transduction pathways, and

intercellular communication through qualitative and quantitative analyses of

patient lipid profiles. It has closely linked these biological processes to the

occurrence and progression of diseases, opening new avenues of research and

providing new perspectives on the diagnosis, treatment, and personalized

medicine of clinical diseases. Gynecological diseases have a profound impact

on women’s health but often face challenges due to delayed diagnosis and

inadequate treatment options. Lipids play a crucial role in regulating cell

proliferation, differentiation, and signal transduction, making them significant in

the occurrence and development of gynecological diseases. The technological

progress in lipidomics has greatly advanced our comprehension of lipid

metabolism and biochemical mechanisms in these diseases, while also offering

new technical pathways for identifying potential biomarkers. Thus, this review

summarized the application of lipidomics in gynecological diseases, especially

those with high incidence rates such as ovarian cancer, cervical cancer, and

endometriosis, to assesses its application potential in the diagnosis, prognosis

monitoring, and development of new treatment strategies for gynecological

diseases, and discusses its future development trends.
KEYWORDS

lipidomics, gynecological diseases, diagnosis, mass spectrometry, treatment, cell-
cell communication
1 Introduction

Omics technologies have been widely applied in the field of life sciences to

systematically investigate the structure and function of organisms, aiming to uncover

regulatory mechanisms. These technologies play a pivotal role in disease diagnosis,

treatment, and prognosis, and are considered one of the important technical tools for

advancing precision medicine. Among them, genomics serves as the foundation of omics
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research, providing genetic information of an organism;

epigenomics investigates the regulatory mechanisms that control

gene expression through chemical modifications such as DNA

methylation and histone modifications; transcriptomics focuses

on gene expression patterns and transcriptional regulation,

revealing dynamic changes in gene expression; proteomics

explores the structure and functional states of proteins, the final

products of gene expression; and metabolomics analyzes small

molecule metabolites and their dynamic changes within the

organism. Lipidomics, focusing specifically on lipids, investigates

their diverse structures, functions, and dynamic alterations. Lipids,

as crucial components of cellular metabolism, reflect the ultimate

effects of gene expression and protein activity under various

physiological and pathological conditions. These omics disciplines

complement and support each other, collectively contributing to

biomarker screening, disease mechanism research, drug target

identification, disease stratification, and the provision of

personalized treatment. Figure 1 summarizes the functions of

each omics field.

Lipid metabolism, constituting approximately 70% of the

metabolites in plasma, represents a fundamental component of

the human metabolic network. Lipids, as major components of cell

membranes and lipid droplets, are deeply involved in critical

biological processes such as signal transduction, energy supply,

and intercellular communication (1). Under pathological

conditions, dysregulation of lipid metabolism is closely linked to a

variety of diseases, including cardiovascular diseases, metabolic

syndrome, and cancer. Lipidomics focuses on the study of these
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metabolic end products, revealing real-time dynamic changes in

cellular metabolism, and provides a more direct reflection of

biochemical alterations in disease states compared to other omics

approaches (2). By bridging gene expression, protein function, and

downstream metabolic outcomes, lipidomics occupies a central role

in integrative multi-omics research.

Lipids play a crucial multidimensional role in the

pathophysiology of gynecological diseases, influencing cellular

function, signal transduction, energy metabolism, and

inflammatory responses (3). For instance, in gynecological

cancers, lipid metabolism is reprogrammed to support the energy

demands of rapidly proliferating cancer cells (4–6). However, the

molecular underpinnings of many gynecological diseases remain

insufficient, with many disease etiologies yet to be fully elucidated.

Diseases such as ovarian cancer and endometriosis often face

diagnostic delays, while current treatment options for endometrial

cancer and polycystic ovary syndrome are still inadequate to meet

clinical needs. These diseases pose significant threats to women’s

health, yet the existing clinical strategies remain challenging.

Lipidomics, empowered by advancements in high-resolution mass

spectrometry and liquid chromatography, has emerged as a

powerful tool for revealing metabolic states and physiological

abnormalities (7). These advancements have greatly expanded the

scope and depth of lipidomics research, offering new insights into

the mechanisms of gynecological diseases and laying the foundation

for the development of novel diagnostic tools, personalized

therapeutic strategies, and prognostic monitoring approaches.
FIGURE 1

An introduction to multi-omics functions.
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This review summarizes the latest advancements and potential

applications of lipidomics in the study of gynecological diseases.
2 Lipidomics strategy and process: an
overview

2.1 Lipid classification and function

Lipids are part of biological membranes and are involved in the

regulation of cellular activities such as signaling, immune response,

and energy storage. They play essential roles in cell proliferation,

survival, death, and intercellular interactions, and are constantly

changing along with physiological, pathological, and environmental

changes, thereby affecting the development of various diseases such

as metabolic diseases, cardiovascular diseases and tumors (8).

Cellular lipids are structurally diverse, containing hundreds of

thousands of different molecular lipid species. In 2005, the LIPID

MAPS consortium published a classification scheme that classified

individual lipid molecular species into eight categories: fatty acid

(FA), glycerolipid (GL), glycerophospholipids (GP), sphingolipids
Frontiers in Endocrinology 03
(SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and

polyketides (PK) (9). The bio-logical functions of lipid classes are

generally defined by their head groups (10). The large number of

aliphatic chains in lipids, varying in length, unsaturation, double

bond position, cis-trans isomerism, and branched chains, further

contributes to the complexity and functional diversity of lipid

species (11). The complexity of their impact on biological

processes is due to their unique physical and chemical properties

which play major roles in essential cellular functions (12).

Furthermore, lipids contribute to a wide array of physiological

and pathological processes. For example, the phospholipid (PL)

bilayer, which is the basic skeleton of the cell membrane, ensuring

the integrity and relative independence of the cell (13). FAs and

triglycerides (TGs), the energy source for many cells, maintain basic

cellular activities and functions. Many lipid molecules such as

arachidonic acid and lysophospholipids (LPs) act as secondary

signaling molecules. Lipidomics can clearly reveal the important

role of lipids in human health and disease by identifying and

quantifying alterations in cellular lipid signaling metabolism,

transport, and homeostasis (14–16). Figure 2 briefly describes the

classification of lipids and their function within cells.
FIGURE 2

Lipid classification and function.
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2.2 Selection of appropriate lipidomics
strategies for analysis

Lipidomics is the comprehensive, systematic, qualitative, and

quantitative analysis and identification of lipids in organisms,

tissues, and cells. The core objective of lipidomics is to elucidate

the basic structure and function of lipids. By comparing the changes

in lipids and their interacting molecules across different

pathophysiological states, researchers can uncover the underlying

relationship between lipid metabolism and physiological and

pathological processes in cells, organs, and organisms. This

analytical approach shows significant potential in exploring the

pathogenesis of clinical diseases, identifying potential therapeutic

targets, and discovering biomarkers for early diagnosis and

prognostic monitoring (17).

Lipidomics technology has evolved over the past three decades,

encompassing key methodological processes including lipid

extraction, separation, analysis, identification, and bioinformatic

interpretation (18). High-resolution mass spectrometry (HRMS)

has become the cornerstone of lipidomics research owing to its

exceptional sensitivity and resolution (19). This advancement has

significantly facilitated in-depth structural analysis, identification of

novel lipid molecules, and quantitative measurement of lipid

abundance (20), which has opened new avenues for the discovery

of potential disease biomarkers and deepened our understanding of

the relationship between lipid metabolism alterations and

disease pathogenesis.

The selection of an appropriate analytical strategy is crucial for

the successful implementation of lipidomics studies. Mass

spectrometry (MS)-based lipidomics can be categorized into

targeted, untargeted, and pseudo-targeted approaches, each

suitable for different research contexts and emphases, enabling

comprehensive lipid profiling from various perspectives.

Choosing the most appropriate strategy based on specific research

objectives ensures both the accuracy and the interpretive value of

the lipidomics data.

2.2.1 Untargeted lipidomics
Untargeted lipidomics is a comprehensive and exploratory

analytical approach, which aims to provide a comprehensive and

unbiased analysis of organismal lipids by identifying global changes

and the abundance of lipid molecules. HRMS is the tool of choice

for non-targeted lipidomic analyses because of its excellent mass

resolution and accuracy, particularly for elucidating the structural

composition of lipids (21). HRMS techniques include Quadrupole

Time-of-Flight Mass Spectrometry (Q-TOF MS), Orbitrap MS, and

Fourier transform ion cyclotron resonance MS. The accurate

identification and quantification of lipids are key to untargeted

lipidomics, which is particularly suitable for screening novel lipid

biomarkers associated with diseases. The main data acquisition

modes used in untargeted workflows are data-dependent

acquisition (DDA), information-dependent acquisition (IDA),

and data-independent acquisition (DIA) modes. Among these,

DDA/IDA, a classical mass spectrometry data acquisition mode,
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has a higher sensitivity and analytical throughput, allowing for a full

range of lipid biomarkers (22), providing a foundation for a

comprehensive understanding of the lipid composition and

metabolic pathways in biological samples.

2.2.2 Targeted lipidomics
Targeted lipidomics allows the precise identification and

quantification of specific lipid molecules with higher accuracy and

sensitivity. This approach is often used to validate key lipid molecules

or potential biomarkers that have been initially identified through

non-targeted lipidomics analyses (23). Targeted lipidomic studies

typically employ birdshot methods to rapidly analyze large numbers

of samples and identify significantly altered lipid classes, which can be

coupled with MS to determine the lipid content. The main

quantitative modes of targeted lipidomics are multiple reaction

monitoring (MRM) and parallel-reaction monitoring, which are the

most widely used techniques (24). Ultra-performance liquid

chromatography-triple quadrupole mass spectrometry (UPLC-

QQQ MS) is the most commonly used technique for targeted

lipidomics, with a wide linear range, high sensitivity and stability,

and significant advantages in the quantification of low-abundance

analytes, making it highly suitable for biomarker discovery, disease

diagnostics, and therapeutic research.

2.2.3 Pseudo-targeted lipidomics
Pseudo-targeted lipidomics combines the advantages of both

targeted and non-targeted lipidomics to ensure the detection of a

sufficient number of compounds and their quantitative accuracy

(25). Based on the information from non-targeted lipidomics

methods using targeted technology to achieve high coverage of

lipidomics data collection, comprehensive lipid analysis can be used

to screen for the highest number of compounds and discover new

differential lipids or lipid classes. This technique is known for its

highly sensitivity, reliability, good coverage, making is suitable for

the study of metabolic characteristics in complex diseases and the

discovery of potential therapeutic targets (26).
2.3 Lipidomics methods and procedures

The lipidomics workflow is a complex and intricate process that

encompasses the interdisciplinary intersection of chemistry,

biology, computer science, and medicine (27). Each step is

crucial, not only for ensuring the accuracy and reliability of

experimental results, but also for deepening our understanding of

lipid metabolic networks. With the emergence of new technologies,

such as high-throughput sequencing, advancements in MS, and the

development of bioinformatics tools, the lipidomics workflow is

continuously being optimized and upgraded. The core workflow

typically includes four essential steps: sample collection, lipid

extraction, metabolite detection, and data analysis. These steps

form the backbone of lipidomics research, and the application of

new technologies infuses this framework with vitality. Figure 3

summarizes the lipidomics analysis process.
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2.3.1 Sample selection
Various biological samples such as tissue, plasma, serum, urine,

and exosomes can be used for lipidomic studies. To ensure the

quality of the samples, they are quickly frozen in liquid nitrogen and

stored at ultra-low temperatures to inhibit enzymatic activity and

prevent lipid degradation. The sample should be homogenized to

ensure that the extracted lipids are representative of the entire

sample (28). Extraction of lipids, which follows, is central to the

entire lipidomics workflow.

2.3.2 Lipid extraction
Lipidomics requires efficient and reproducible sample

extraction methods that cover a wide range of analytes.

Commonly used extraction techniques include liquid-liquid

extraction (LLE), solid-phase extraction (SPE), and solid-phase

microextraction (SPME). SPE effectively enriches lipids with a

very low endogenous abundance and is suitable for targeted

lipidomic analysis, whereas LLE achieves comprehensive lipid

extraction and is the most commonly used and well-established

technique for non-targeted whole-lipid analysis (29). Folch or Bligh

and Dyer method is considered to be the gold standard for lipid

extraction. SPME is suitable for small sample sizes and low target

concentrations. In addition, supercritical fluid extraction and

ultrasonic-assisted extraction offer benefits like shorter processing

times and reduced solvent consumption (30). For compounds that

are difficult to detect or isolate, derivatization can change their

structural properties, thereby improving the detection sensitivity,

ionization efficiency, and quantitative accuracy (31, 32).

2.3.3 Detection based on MS separation
Mass spectrometry-based separation and identification are

central to lipidomics analysis. Lipid samples are typically first

separated using chromatography techniques and subsequently

identified by HRMS to determine lipid types, structural

characteristics, and molecular weights. MS has become an

essential tool in lipidomics research due to its high sensitivity,

high resolution, and molecular specificity (33). The analytical

workflow depends on the performance of the mass analyzer and

the structural resolution required for lipid identification and

quantification (34). Commonly chromatographic techniques

include normal-phase liquid chromatography (NPLC),

hydrophilic interaction liquid chromatography (HILIC), and

reversed-phase liquid chromatography (RPLC), each facilitating

efficient separation of different lipid species (35, 36). Sample

preparation often involves ionization methods such as

electrospray ionization (ESI) or matrix-assisted laser desorption

ionization (MALDI) to enhance the sensitivity and detection

efficiency of the analytes introduced into the mass spectrometer.

In complex lipid analysis, liquid chromatography-mass

spectrometry (LC-MS) is widely employed due to its high accuracy,

sensitivity and resolution, making it a primary technique for studying

complex lipid mixtures. Gas chromatography-mass spectrometry

(GC-MS) exhibits excellent separation capabilities, particularly for
Frontiers in Endocrinology 05
volatile compounds. Shotgun lipidomics enables high-throughput

analysis through direct infusion without the need for complex

separation steps, allowing for rapid generation of large-scale, high-

quality data, demonstrating substantial potential for various

applications (37).

During MS analysis, ionized lipid compounds are analyzed

based on their mass-to-charge ratio (m/z). Quadrupole mass

analyzers serve as mass filters, allowing only ions within specific

m/z ranges to pass through, while time-of-flight (TOF), orbitrap,

and Fourier-transform ion cyclotron resonance (FT-ICR) analyzers

can acquire high-resolution spectra in a single scan. TOF analyzers

determine m/z by measuring the time ions take to travel through the

flight tube, while orbitrap analyzers detect image currents from

trapped ions and generate spectra via Fourier transform. These

high-resolution analyzers offer significant advantages for the

analysis of complex samples. Tandem MS (MS/MS), which

involves multiple mass analyzers, further enhances lipid molecule

identification and structural elucidation. Nuclear Magnetic

Resonance technology, due to its non-destructive testing

advantages and efficient extraction capabilities for molecular

structural information, remains an indispensable and powerful

tool in lipidomics research. The selection of an appropriate

analytical method based on the lipid type is essential for

achieving effective detection and precise characterization.
2.3.4 Data processing and raw data analysis
Following lipidomic profiling to obtain qualitative and

quantitative data, rigorous data processing and analysis become

imperative for discerning biologically relevant lipid species and

characterizing their potential functional roles (38). The expanding

adoption of mass spectrometry-based lipidomics in biomedical

investigations has introduced growing complexities in data

management and storage. This necessitates the implementation of

sophisticated bioinformatics tools and computational platforms to

effectively manage these challenges (39). Lipid databases serve as

fundamental infrastructures for structural organization and data

storage, functioning both as essential foundations for analytical

workflows and as key knowledge bases in lipid research. Notably,

LIPID MAPS and SwissLipids have emerged as the most widely

employed resources. LIPID MAPS consolidates multiple specialized

databases dedicated to lipid classification and structural

organization (40), encompassing >59,000 lipid species with

detailed annotations of molecular structures, metabolic pathways,

and disease associations. These comprehensive features establish it

as a critical resource for lipid identification and quantification,

while facilitating data storage, retrieval, interpretation, and

exploration (41, 42).

L ip idomics analyses rout ine ly generate extens ive

multidimensional datasets, highlighting the critical need for

appropriate software platforms to facilitate lipid identification,

quantification, bioinformatics analysis, and data visualization

(43). Several specialized computational tools have been developed

for this purpose, including MZmine, Lipostar 2, MS-DIAL, and
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https://doi.org/10.3389/fendo.2025.1546512
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hou et al. 10.3389/fendo.2025.1546512
XCMS, which serve as essential platforms for comprehensive

lipidomic data processing and interpretation. The incorporation

of artificial intelligence (AI) approaches, particularly machine

learning and deep learning algorithms, has significantly

transformed lipidomics data analysis by enabling automated

pattern recognition and feature extraction. Advances in

lipidomics, particularly next-generation LC-MS/MS technologies,

have significantly improved the sensitivity and accuracy of lipid

analysis. The LipidSuite web server further streamlines lipidomics

research by offering integrated tools for data processing, differential

analysis, and functional interpretation (44). These developments,

combined with AI-driven analytics, are accelerating biomarker

discovery and enabling precision medicine applications in early

diagnosis and targeted therapies. Ongoing innovations continue to

deepen our understanding of lipid roles in disease and advance

personalized treatment approaches.
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3 The strategic role of lipidomics in
the diagnosis and treatment of
gynecological diseases

3.1 Differences in lipidomic analysis in
gynecological diseases

Lipidomics enables comprehensive characterization of lipid

profiles through qualitative and quantitative analyses, providing

insights into lipid composition, signaling pathways, and their

functional associations with disease states (45). This approach

facilitates the investigation of disease pathogenesis, supporting early

diagnosis and the development of targeted therapies. In the field of

gynecology, lipidomics has been successfully applied to study ovarian

cancer, cervical cancer, and endometriosis. These investigations have
FIGURE 3

Lipidomics analysis process.
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enhanced our understanding of how lipid metabolism dysregulation

contributes to disease mechanisms while identifying potential

biomarkers and therapeutic targets. In this section, we systematically

review lipidomic alterations observed across major gynecological

disorders. Figure 4 summarizes the key gynecological diseases

associated with lipid metabolism abnormalities.

3.1.1 Ovarian cancer
Ovarian cancer, a prevalent gynecological malignancy with

frequently poor prognosis due to late detection, demonstrates

significant lipid dysregulation that critically influences cancer cell

survival, proliferation, and invasion. Multiple lipid classes including

lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs),

ceramides (Cers), and TGs contribute to oncogenic processes in

ovarian cancer development (46), with PLs and sphingophospholipids

also implicated as key players in carcinogenesis (47). Comparative

lipidomic analyses reveal consistent decreases in most lipid classes

(including cholesteryl esters [CEs], sphingomyelins [SMs], LPCs,

and PCs) across all disease stages when compared to healthy

to healthy controls (47–49), contrasting with elevated FA levels -

particularly monounsaturated FAs associated with upregulated

desaturases (50, 51). Notably, SMs levels have shown a positive

correlation with ovarian cancer risk in postmenopausal women (52),

while Cers and short-chain sphingolipids attract research interest

for their apoptotic roles (53). Both targeted and untargeted approaches

consistently report elevated Cers, FAs, and longer-chain triacylglycerol

(TAGs) in patients (54), with UHPLC-MS/MS studies specifically

documenting decreased LPC/PC alongside increased TGs levels

(55). These lipid alterations functionally contribute to cancer

progression, as demonstrated by Pitman’s work linking Cers, SMs,
Frontiers in Endocrinology 07
and sphingosine-1-phosphate(S1P) to proliferation, migration,

angiogenesis and metastasis (48). Collectively, these findings establish

glycerophospholipid metabolism as the central dysregulated pathway

in ovarian cancer (46, 56), offering promising avenues for early

diagnostics. The distinct lipidomic signature of ovarian cancer

underscores the profound interconnection between lipid metabolism

and disease pathogenesis.

3.1.2 Cervical cancer and cervical intraepithelial
neoplasia

Cervical cancer, a prevalent malignancy in women, frequently

arises from CIN, with high-risk human papillomavirus (HPV)

infection playing a pivotal role in its pathogenesis. Emerging

evidence highlights the significance of lipid metabolism dysregulation

in cervical carcinogenesis (57). Disease-specific lipid alterations

primarily involve glycerophospholipids, including PCs and PEs,

which are associated with apoptosis inhibition, impaired cellular

metabolism, and enhanced proliferation. Notably, low-grade

squamous intraepithelial lesions (LSIL) exhibit elevated PCs and

LPCs levels, whereas high-grade squamous intraepithelial lesions

(HSIL) demonstrate reduced lysophosphatidylethanolamine (LPEs),

PCs, and PEs content. Comparative lipidomic profiling of CIN2/3 and

cervical cancer patients via UPLC-QTOF MS revealed significant

differences in 31 lipid species, including PC, PE, diacylglycerols

(DAGs), and FAs, relative to healthy controls and CIN1 patients

(58). Cervical cancer tissues exhibited markedly lower PC and PE

levels, elevated monounsaturated fatty acids (MUFAs), and persistent

lipid metabolism dysregulation. Complementary untargeted histologic

analysis using UHPLC-QTOF/MS further confirmed that lipid

metabolic shifts critically influence carcinogenesis at the high-grade
FIGURE 4

Gynecological diseases with lipid metabolism abnormalities.
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CIN stage (59). Specifically, significant reductions in PEs, LPEs, PCs,

and LPCs levels were observed in cervical cancer, offering novel insights

into lipid dysregulation and potential diagnostic or therapeutic targets.

The distinct lipidomic profiles of cervical cancer and precancerous

lesions emphasize the integral role of lipid metabolism dysregulation in

disease progression, presenting opportunities for early detection and

targeted intervention.

3.1.3 Endometrial cancer
Abnormal lipid metabolism is a key contributing factor in the

pathogenesis of endometrial cancer. Studies analyzing endometrial

cancer and healthy human serum using targeted lipidomics have

identified sphingolipid (SP) and glycerophospholipid (GP)

metabolism as the most significantly altered pathways (60). Most

GPs, GLs, and SPs levels were elevated in patients with endometrial

cancer. Furthermore, Cers levels were significantly elevated, whereas

FAs levels were reduced. Altadill et al. also observed that lipids, such

as PEs, PCs, PIs, phosphatidylserine (PSs), and phosphatidylglycerol,

are significantly upregulated in patients with endometrial cancer (61).

Conversely, several lipid species were found to be downregulated,

including TG (33:0), monoacylglycerol (24:0), hexacosanoic acid,

diacylglycerol (36:4), monoacylglycerol (24:1), monoacylglycerol

(22:0), sterol at C27H48O5, monoacylglycerol (22:4),TG(28:0)

adduct, monoacylglycerol (22:2), triglyceride (24:0), capric acid

(62). A previous systematic review summarized the signaling

pathways that regulate lipid metabolism in endometrial cancer,

mainly including mitogen-activated protein kinase, JAK kinases/

signal transducer and activators of transcription, NF-kB/Notch1,

and ERRa, which play a role in reprogramming lipid metabolism

(63). Elevated endometrial cancer levels are also important lipid-

related changes that affect several tumor-related processes such as cell

membrane structure, signaling, and cell proliferation. Collectively,

these findings highlight the crucial role of lipid metabolic

reprogramming in endometrial cancer pathogenesis, with specific

lipid species and pathways emerging as potential diagnostic markers.

3.1.4 Polycystic ovary syndrome
Approximately 70% of patients with PCOS have abnormal lipid

metabolism involving various metabolic pathways, such as FAs, GLs

and GPs metabolism (64). UHPLC-MS/MS analyses of follicular

fluid reveal significant alterations in 53 lipid species in PCOS,

including elevated TAGs, DAGs, PEs, and Hexosylceramide

alpha-hydroxy fatty acid-phytospingosine (HexCer-AP), alongside

reduced LPCs, PCs, and SMs compared to controls (65, 66).

Multiple lipidomic studies using RPLC/Q-TOF-MS and

SWATH™-MS consistently demonstrate increased GLs (TGs,

DAGs) and decreased PLs (PCs, LPCs, LPEs) in PCOS patients

(67–69). Notably, specific lipid species including LPC (16:0), LPC

(18:2), and LPE (22:5) show marked reductions, while 3-

hydroxynonanoyl carnitine and eicosapentaenoic acid are

significantly elevated (69). These consistent lipidomic alterations

across multiple studies demonstrate a distinct dyslipidemia pattern

in PCOS characterized by elevated GLs and reduced PLs, suggesting

profound disturbances in lipid homeostasis that may contribute to

the pathophysiology of this condition.
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3.1.5 Endometriosis
Endometriosis has features such as invasion, implantation, and

metastasis, which are similar to those of malignant tumors, making

early recognition and diagnosis important (70). Lipid metabolites

play an important role in endometriosis lesions (71). Chagovetset

et al. analyzed the tissues of in situ and ectopic endometrium from

90 patients with endometriosis using ESI/LC-MS (72). The results

showed that the levels of PLs, SMs, and PEs were downregulated in

the tissues of the ectopic endometrium, and the differences in lipids

were considerable. Quantification of lipid metabolites by UHPLC-

ESI-HRMS revealed that serum levels of PCs and PSs were

significantly reduced and Phosphatidic acid (PA) was elevated in

patients with endometriosis (73). Targeted analyses further

demonstrated elevated SMs and PCs levels are associated with

impaired apoptosis and dysregulated lipid-mediated signaling in

endometriosiss (74).Together, these studies demonstrate that

endometriosis is associated with characteristic disturbances in PLs

and SPs metabolism, with the observed lipid alterations potentially

contributing to both the establishment and maintenance of ectopic

lesions through effects on cellular survival pathways and local

inflammatory microenvironments.

3.1.6 Other gynecological diseases
Lipid levels in pregnant women with hypothyroidism differ

significantly from those in healthy pregnant women and are

associated with adverse pregnancy outcomes. Studies using

untargeted LC-MS found that PCs and PEs levels were elevated,

whereas SMs was downregulated in pregnant women with

hypothyroidism compared to normal pregnant women (75),

which could be a potential therapeutic target. In addition,

lipidomic analysis revealed an increase in lipid species in

postmenopausal women compared to premenopausal women,

and elevated levels of PCs, PEs, Cers, LPCs, LPEs, and FAs were

also observed (76–78), providing new understanding for the study

of metabolic profiles associated with menopause.
3.2 Diagnostic and treatment value of
lipidomics in gynecological diseases

3.2.1 Potential as a diagnostic marker
Lipidomics has emerged as a powerful approach for elucidating

the pathogenesis of gynecological diseases through comprehensive

qualitative and quantitative analysis of lipid profiles. These

investigations provide critical insights for disease diagnosis and

therapeutic development. As summarized in Figure 5 and Table 1,

numerous lipids show potential as diagnostic biomarkers across

various gynecological conditions.

In cervical carcinogenesis, dysregulated lipid metabolism has

been implicated in the progression from cervical intraepithelial

neoplasia to invasive carcinoma. Rapid shotgun lipidomics of

cervical tissue transformation stages revealed significant

alterations in PCs, LPCs, PEs, LPEs, and SMs compared to

adjacent normal tissue. ESI-MS-based analysis identified 23

signature lipids strongly correlated (more than 90%) with cervical
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TABLE 1 Lipid biomarkers and analytical strategies for gynecological diseases.

Gynecological diseases Lipids biomarkers
Analytical
strategy

MS References

Ovarian cancer

lysoPC a C16:1, PC aa C32:2, PC aa C34:4,
and PC aa C 36:6

targeted UHPLC-MS (79)

C16-Cer, C18:1-Cer, and C18-Cer targeted UHPLC/MS/MS (82)

LPA, PPE, LPC (14:0, 12:0) with CA125 targeted ESI/LC - MS (49)

Cer(d18:1/16:0), PC-O(36:2), PE (16:0p_18:1)
and (O-acyl)-1-hydroxy FA (18:2_24:6)

untargeted UPLC-MS (80)

lysophosphatidylglycerol (20:5) untargeted UPLC/MS (83)

Cervical cancer and cervical intraepithelial
neoplasia

PC 14:0/18:2, PE 15:1e/22:6, and PE 16:1e/
18:2

untargeted UHPLC/Q-TOF-MS (59)

Cer CE (29:1), sphinganine (d18:0) and a Cer
could not be firmly characterized

untargeted HLPC/Q-TOF-MS (94)

prostaglandins, PLs, SFs, Tetranor-PGFM and
hydroperoxide lipid

untargeted ESI/Q-Orbitrap MS (95)

LPC O-16:0, PE P-16:0/20:4, and
sphingomyelins SM d16:0/18:1, SM d22:0/

20:3, SM d18:0/16:0
untargeted ESI-QTOF MS (96)

Endometrial cancer

6-keto-PGF1a, PA (37:4), LysoPC (20:1) and
PS (36:0)

untargeted UPLC-Q-TOF/MS (97)

acylcarnitine C16: phosphatidylcholine PCae
C40:1, proline: tyrosine, PCaa C42:0 and

PCae C44:5
targeted ESI-MS (98)

(Continued)
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transformation grade, forming a diagnostic model with 88%

sensitivity and 71% specificity (57). Further validation through

UHPLC/Q-TOF-MS untargeted analysis demonstrated that

specific phospholipid combinations (PC 14:0/18:2, PE 15:1e/22:6,

and PE 16:1e/18:2) could effectively discriminate between early-

stage cervical cancer, squamous intraepithelial lesions, and healthy

controls (59).

In ovarian cancer biology, lipid metabolism plays a crucial role,

with emerging lipidomic signatures showing significant diagnostic

potential. UHPLC-MS analyses have identified several novel lipid

biomarkers, including lysophosphatidylcholines (LysoPC) a C16:1,

PC aa C32:2, PC aa C34:4, and PC aa C36:6, which demonstrate

clinical utility for ovarian cancer detection (79). Comprehensive serum

lipid profiling of 153 samples via UHPLC-MS identified a diagnostic

panel comprising Cer (d18:1/16:0), PC-O(36:2), PE (16:0p/18:1), and

(O-acyl)-1-hydroxy FA (18:2/24:6) with high classification accuracy

(80). Notably, the combination of CA125 with dysregulated

phospholipids (particularly LPCs and PCs) significantly improves

diagnostic sensitivity for early-stage disease (81). SPs metabolism

appears particularly relevant, with Cers serving as both structural

membrane components and signaling molecules. Elevated levels of

specific Cers species (C16-Cer, C18:1-Cer, and C18-Cer) in ovarian

cancer patients highlight their potential as mechanistic biomarkers in

disease pathogenesis (82, 83).

SMs and PCs demonstrate significant associations with

endometriosis pathogenesis. ESI-MS analysis identified a

diagnostic model incorporating hydroxyl sphingomyelin SM

(OH) C16:1, phosphatidylcholine PC aa C36:2, and ether

phospholipid PC ae C34:2, which achieved 90.0% sensitivity and

84.3% specificity for detecting ovarian endometriosis (74).

Complementary findings from UPLC-MS-based untargeted

lipidomics of endometrial fluid revealed distinct metabolic

perturbations, including decreased DAGs and TAGs alongside

elevated lysophosphatidylinositols (LPIs) and acylcarnitines in

endometriosis patients (84). While the predictive model from this

study showed perfect specificity (100%), its sensitivity remained

moderate (58.3%), suggesting potential utility in rule-in diagnostic

scenarios. Further validating these findings, ESI-MS analysis of
Frontiers in Endocrinology 10
peritoneal fluid demonstrated that lipid ratio-based biomarkers

(C0/PC ae C36:0 and PC aa C30:0/PC ae C32:2) could

discriminate ovarian-type endometriosis with 82.8% sensitivity

and 94.4% specificity (85). These collective results underscore the

diagnostic potential of lipidomic profiling for endometriosis

detection, particularly through minimally invasive approaches.

Recent lipidomics studies have identified several lipid species as

potential biomarkers for PCOS. PI) (18:0/20:3)-H and PE (18:1p/

22:6)-H were proposed as diagnostic candidates, with a biomarker

panel achieving an area under the curve (AUC) of 0.815 in the test set,

demonstrating 74% accuracy, 88% specificity, and 70% sensitivity

(86). In another study, multi-dimensional mass spectrometry-based

shotgun lipidomics (MDMS-SL) revealed Cer species Cer

(OH_N16:0/N18:0) and Cer (N22:0) as novel predictive lipid

markers for PCOS (87). LC-MS based studies in pregnant women

with hypothyroidism revealed that elevated levels of PCs, LPCs, and

PEs were significantly associated with adverse pregnancy outcomes,

including preterm labor, low birth weight, and preterm rupture of

membranes, suggesting their potential as prognostic biomarkers for

maternal-fetal health (85). With the increasing understanding of

lipids and progress in lipidomic detection methods, analytical

methods, and databases, lipidomics is poised to play an

increasingly important role in integrated multi-omics analyses. This

integration holds great promise for enhancing molecular network

mining in gynecological diseases and advancing their prediction,

diagnosis, and personalized treatment strategies.

3.2.2 Potential for treatment and prognosis
Lipidomics has uncovered fundamental alterations in lipid

metabolism that provide novel targets for the diagnosis and

treatment of gynecologic malignancies. In ovarian cancer,

bioactive lipids such as Cers, sphingosine, and S1P critically

regulate tumor angiogenesis and metastatic progression, offering

promising avenues for both biomarker development and targeted

therapy (48). Cer, in particular, functions as a pro-apoptotic

mediator that enhances chemosensitivity in ovarian cancer cells

(88), while lysophosphatidic acid (LPA), elevated in epithelial

ovarian cancer ascites as demonstrated by LC-MS, promotes
TABLE 1 Continued

Gynecological diseases Lipids biomarkers
Analytical
strategy

MS References

Endometriosis

hydroxyl sphingomyelin SMOH C16:1,
phosphatidylcholine PC aa C36:2, and ether

PLs PCae C34:2
targeted ESI-MS/MS (74)

DAG, TAG, LPI, acylcarnitine untargeted UPLC-MS (84)

C0/PC ae C36:0 and PC aa C30:0/PC ae
C32:2

targeted ESI-MS/MS (85)

cardiolipin CL 16:0_18:0_22:5_22:6 and
plasmenylethanolamine PE P-16:0/18:1

untargeted HPLC-MS (99)

PCOS
PI (18:0/20:3)-H and PE (18:1p/22:6)-H untargeted

UHPLC-Q-Exactive
Orbitrap MS

(86)

Cer (OH_N16:0/N18:0) and Cer (N22:0) untargeted MDMS-SL (87)
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malignant behavior and chemoresistance (89). Therapeutic

targeting of LPA-producing autotaxin may further improve

outcomes by overcoming immunotherapy resistance (90).

In endometrial cancer, lipidomic profiling enables preoperative

risk stratification to guide surgical management, while metabolic

interventions such as stearoyl-CoA desaturase 1 (SCD1) inhibition

suppress tumor growth (88). Additionally, statins, known

modulators of lipid metabolism, have demonstrated adjuvant

therapeutic potential by improving prognosis and reducing

mortality in EC patients. Similarly, in cervical cancer, fatty acid

supplementation has been shown to enhance radiotherapy efficacy

(91). Beyond oncology, lipid-targeted strategies show broad

applicability in gynecologic diseases, including the use of

adipokines for managing PCOS-associated metabolic dysfunction

(93) and advanced liposomal drug delivery systems to optimize

therapeutic efficacy while minimizing toxicity (89).

The integration of lipidomics with multi-omics approaches is

revolutionizing our understanding of gynecologic diseases,

revealing not only disease-specific lipid signatures but also

actionable therapeutic vulnerabilities (92, 93). Lipidomics

provides a framework for precision medicine, enabling risk

stratification, biomarker-driven diagnostics, and mechanism-

based therapies. As lipid-centric therapies advance, their synergy

with conventional and immunotherapies will be critical in shaping

next-generation management strategies for gynecologic disorders.
4 Conclusion

In this comprehensive review, we have delineated the strategic

significance of lipidomics in the diagnostic and therapeutic

landscape of gynecological diseases, with a particular emphasis on

its role in ovarian, cervical, and endometrial pathologies. The

aberrations in lipid metabolism are not only a common

pathological hallmark of these diseases but also intricately linked

to disease progression. Advances in high-resolution mass

spectrometry have propelled lipidomics forward, enabling detailed

structural elucidation of lipids, identification of novel lipid species,

and quantification of lipid abundance, thereby unlocking new

avenues for the discovery of biomarkers and therapeutic targets in

gynecological diseases.

Despite the substantial potential demonstrated by lipidomics in

gynecological research, challenges remain in the realms of data

standardization, clinical translation, and complex data analysis.

Heterogeneity in sample preparation and variability in

preprocessing can lead to inconsistent outcomes, while the

sophisticated nature of data analysis necessitates specialized

bioinformatics support, limiting its broader clinical application.

Future studies should prioritize the optimization of sample

processing workflows and analytical protocols to enhance

precision and reproducibility of lipidomic research.

As innovations in material science, analytical instrumentation,

and artificial intelligence continue to evolve, lipidomic analysis is

expected to become increasingly precise, high-throughput, and

clinically applicable. Lipidomics is poised to play a central role in
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the era of precision medicine by enabling mechanistic insights into

disease pathogenesis and supporting the development of

individualized therapeutic strategies. Beyond treatment,

lipidomics also holds significant promise for disease prevention

and early diagnosis, offering a window of opportunity for timely

intervention. With the ongoing integration of lipidomics into multi-

omics frameworks, a more comprehensive understanding of

gynecological diseases is emerging. This systems-level approach

will empower clinicians and researchers alike to identify novel

biomarkers, refine risk stratification, and design mechanism-based

therapies, ultimately advancing the standard of care and improving

patient outcomes in gynecological medicine.
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