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A high-precision fault diagnosis
method for photovoltaic arrays
considering the effect of missing
data

Di Liu*, Xiaojuan Zhu and Changyu Du

Beijing Fibrlink Communications Co., LTD., Beijing, China

With the increasing penetration of photovoltaic (PV) systems into power grids, the
accurate diagnosis of PV array health has become critical for ensuring the stable
operation of power systems. To address the problem of missing data collected
from PV arrays and reduced diagnostic accuracy when compound faults occur,
we propose a high-precision fault diagnosis model for PV arrays based on Tucker
decomposition-sparrow search algorithm (SSA)-Informer-MSCNet. First, a tensor
Tucker decomposition-based method is proposed to complete the missing data.
Then, an informer network is employed to fully extract the global features. Next,
an MSCNet model is proposed to extract multi-scale key features. The SSA is then
used to optimize the model's global parameters. We use the fault dataset to
realize the missing data completion and fault diagnosis tests of PV arrays. The
results show that the complementary algorithm thus designed has some
accuracy. The proposed fault diagnostic model is able to achieve 98.73% and
97.46% accuracy in case of single and compound faults in PV arrays, respectively,
and maintains 96.12% accuracy at 30 dB noise.

power system, Tucker decomposition, missing data, informer, fault diagnosis

1 Introduction

With the acceleration of global energy transition, photovoltaic (PV) power generation is
a core component of clean renewable energy. Its installed capacity has shown explosive
growth (Agoua et al., 2018; Parenti et al., 2024). However, PV systems are exposed long-
term to complex outdoor environments (e.g., high temperature, sand, dust, and rain). The
frequent occurrence of problems such as aging of PV equipment, module failure, and
inverter failure can lead to large losses in system power generation (Ahadi et al., 2016a;
Ahadi et al., 2016b; Peng et al., 2024). This seriously affects the reliability and economy of
energy supply.

With the rapid development of artificial intelligence technology, deep learning is widely
being used in PV fault diagnosis (Emanuele et al., 2021; Ren et al., 2025). In response to the
above problems, a series of studies have been launched into PV fault diagnosis. Saravanan
et al. (2025) proposed the Binary Greylag Goose Optimization (BGGO) methodology for
diagnosing six shadows and other single faults in 9 x 9 panel PV arrays. Wang et al. (2019)
proposed a fault diagnosis algorithm based on support vector machine (SVM) to achieve
short circuit, open circuit, and shadowing fault detection in PV arrays by researching the
I-V characteristic curves of faulty PV arrays. Guo et al. (2025) proposed a neural network
model incorporating multi-channel one-dimensional convolution to capture multi-scale
information to improve feature representation; they then used LSTM, AdaBoost, and
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logistic regression methods to construct a stacked model to
categorize a single fault type of PV arrays. Gong et al. (2024)
proposed a multi-source information fusion network (MSIFN)
and then used the multi-strategy fusion whale optimization
algorithm (MSFWOA) to optimize the global parameters with
good diagnostic results in three types of noise experiments at
15 dB, 25 dB, and 30 dB. Lu et al. (2019) transformed the time
series currents and voltages of PV arrays into two-dimensional
electrical time series diagrams to visualize the characteristics of
the time series data; they then proposed a convolutional neural
network structure incorporating multiple convolutional layers and
multiple pooling layers for PV array fault diagnosis. Xi et al. (2021)
proposed a sparse representation of the Fisher discriminant
dictionary learning (FDDL) method to diagnose PV array faults,
interline faults, open-circuit faults, and partially shaded faults. Liu
et al. (2019) proposed a primitive clustering method based on
expansion and erosion theory to diagnose PV array faults by
using an unsupervised learning method which does not need to
pre-determine the number of clusters and has high adaptability and
effectiveness under multi-dimensional meteorological data input. Lu
etal. (2021) proposed a dual-channel convolutional neural network
and designed a novel feature selection structure to improve the
accuracy of PV fault diagnosis.

However, PV equipment operation can result in missing data
due to factors such as blocked communication, environmental
factors, and poor inverter quality. Existing fault diagnosis
methods based on PV operation data do not account for the
above problem of missing data in actual working conditions. The
long-term operation of PV equipment can lead to wear and tear in
multiple areas. Multiple damages from extreme weather (strong
winds/rainstorms/lightning strikes) can also cause PV failures. In
addition, when multiple small faults are not dealt with in time, they
can easily develop into compound faults.

All of the above studies diagnose for a single fault type of PV.
However, there has been no research into fault detection for PV
equipment composite faults. Therefore, a PV equipment fault
diagnosis method based on the Tucker decomposition-SSA-
Informer-MSCNet model is proposed to accurately identify
multiple composite faults in PV arrays. This will promote the
development of smart grids and the construction of digital grids.

2 PV array failure analysis and causes of
missing data

2.1 Causes of missing data collected from
PV equipment

Typically, PV power plants monitor real-time voltage, current,
and power along with environmental data such as temperature and
irradiance. For fault detection, performance evaluation, or
maintenance, this study establishes a practical PV simulation
platform to collect operational data. The hardware components
include PV panels, resistance boxes, temperature sensors, and
electricity meters.

The PV data acquisition platform established here operates as a
remote data collection system. During PV system testing and
analysis, simulated datasets that are collected may experience
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data gaps due to a number of reasons. (1) Equipment failure or
configuration errors: malfunctions in electricity meters or sensors
may prevent data collection during specific periods. (2) Trigger
desynchronization: between

asynchronous  triggering

multiple devices (e.g., light sources and acquisition systems) may

signals

cause data misalignment or loss. (3) Irradiation instability:
fluctuations in natural sunlight or unstable output from artificial
light sources may interrupt measurements or trigger anomalies. (4)
Temperature drift: significant component temperature changes
during prolonged measurements can distort data. Without real-
time temperature compensation, data within specific ranges may
become invalid or distorted. (5) Component defects: hidden cracks,
poor soldering, or cell failures may cause open circuits or short
circuits within specific voltage/current ranges, interrupting data
collection. (6) Data transmission errors: signal interference,
communication blockages, or poor connections in wired/wireless
transmission systems may cause data loss. (7) Operational errors:
incorrect device calibration (leading to distorted low-current data),
loose wiring, or poor probe contact may cause measurement
interruptions.

‘When missing data occurs due to the above factors, repeating the
measurement or repairing the equipment will waste time and resources
Therefore, it is necessary to fill in the missing data of PV arrays.

2.2 PV array fault cause analysis and
simulation

Long-term PV operation induces array failures such as short
circuits, aging, shading, and cell degradation due to equipment wear
and environmental stressors. Undetected minor faults propagate
into multiple simultaneous failures through insufficient detection
sensitivity and delayed intervention. These compound faults
critically compromise power system stability. We simulated PV
array failures using actual equipment. Figure 1 shows a schematic
diagram of the measurement principle.

Currently, the characteristics and causes of PV faults are widely
agreed (Liu and Wu, 2025). (1) Aging faults are mainly due to the
wear and tear of PV arrays caused by long operation time, which can
be realized here by changing the resistance value. (2) Short circuit is
the phenomenon of shorting at different points in the PV string,
which can be realized by controlling the shunt resistance. (3)
Localized shading refers to the fact that some modules are not
able to receive sunlight due to shading by external objects, which
leads to uneven output current of PV modules and reduces the
overall power generation efficiency. This can be studied by
controlling the input irradiance. (4) Open-circuit faults are
caused by false soldering, desoldering, or breakage, which can be
realized by controlling the respective branching structure. When two
or more faults occur, they evolve into compound faults.

The data collected on PV operating voltage, current, power, and
irradiance and temperature were obtained from an actual simulation
platform consisting of eight PV modules connected in series and
parallel. The model includes two series units, each comprising four
PV modules connected in series. Thus, the total array configuration
is 4 series x 2 parallel. Through fault simulation, operational data for
various typical faults in the PV array were obtained and annotated
under standard operating conditions.
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FIGURE 1

PV fault simulation structure.

3 Diagnosis of PV faulty arrays based on
Tucker decomposition-SSA-informer-
MSCNET models

3.1 Tucker decomposition and structure
tensor based missing data recovery method
for PV array acquisitions

PV data such as power (P), voltage (V), current (I), irradiance
intensity, and timestamps represent typical high-dimensional data.
Tensors, as computational tools capable of handling high-
dimensional data, possess an inherent spatial structure. We use a
Hankel tensor that can effectively improve data recovery accuracy
(Yang et al., 2025). Taking the PV power data as an example, the
MDT technique is used to construct the Hankel tensor.

We first designed a folding transformation operator as shown in
Equation 1:

fold iy RTI-mD) _, prx(L-t+]) W

—where 7 is the delay window size, L is the vector length of PV data
collection, and fold represents the fold operator.

data
transformation (also known as “Hankification”) to obtain the

Photovoltaic acquisition requires standard delay

Hank form matrix, as shown in Equation 2:

X1 X2 © XL-r41
Xy X3 © X142
HT (V) = fOId(r,L—Hl) ((SX) = . € RTX(L?HI)
Xy Xyt XL
(2)

—where x is the input PV data sequence, and § € {0, 1}*""* js 4
repetition matrix that satisfies (Equation 3)
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vec (H, (v)) = 6x (3)

Then, the matrices are subjected to stacking operation to change
into Hankel tensors.

The Hankel tensor filling model based on Tucker decomposition
is established as shown in Equation 4:

. 1
min S IPa x (Hr (4) - Hr (GxaUx Vs V)i

A
+5 (UG + 1A + VI + V1) 4)

—where Pq, is the index of the non-missing data consisting of 0 and
1, Hr(X) is the original tensor, H7 (Gx1UX,Vx3)) is the
reconstruction tensor, A is the regularization coefficient, G is the
core tensor, and U, V., Y are the factor matrices.

The alternating least squares method is used to solve the
problem. Denoting the objective function as f, the partial
derivatives for the core tensor G are given as Equation 5:

d
% = —Po (H1 (X) = Hr (GxiUx Vs V)< <V % V" +AG
(5)

The partial derivation of the factor matrix U/ is given as
Equation 6:

% = —Po(H7 (X) - Hr(UGYV e V) ) (Ve V)G + U  (6)
Similarly, the factor matrices V and ) have the same form.
Alternate solving is performed.
After obtaining the final solved Hankel, the complete data are
output after passing through the delayed inverse transformation, as
shown in Equation 7:
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Informer structure diagram.
HI(X') = unfold pp 1) (X) x {S'} (7) The use of the Informer network can better capture the global

—where S' = (§7S)7'ST is the Moore-Penrose pseudo-inverse
transformation, and un fold ;1—,.1) is the inverse operation.

3.2 Feature extraction method based on
Informer-MSCNET

The Informer network outperforms the Transformer network in
long time-series feature extraction. The model also uses an
encoder—-decoder architecture, where the encoder converts the
input information into dense vectors of fixed dimensions and
extracts features from the elements in order to generate a
mapping of the features (Zhou et al., 2021). The Informer model
mainly consists of an input representation, an encoder, and a
decoder, the structure of which is shown in Figure 2.

The core of the Informer model consists of a probabilistic sparse
self-attention mechanism and distillation.

The main effect of the probabilistic sparse self-attention
mechanism is to make key focus only on the first n queries with
high relevance, as shown in Equation 8:

Prob = softmaX(Q—\/KHT )V (8)

—where softmax (-) stands for the normalization operation, V stands
for the value matrix, K* stands for the transpose of the key matrix,
and d is the input dimension. Q is a sparse matrix containing only
the first n queries.
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information in the long-term operation data of PV equipment. This
will enable the extraction of global features.

Current PV fault diagnosis methods exhibit limited noise
robustness due to inadequate multi-scale feature extraction
capabilities. This study proposes MSCNet to simultaneously
achieve granular local channel feature extraction and adaptive
multiscale feature fusion.

First, based on the given input feature F, global max pooling and
global average pooling operations are performed, as shown in
Equation 9:

F,4 = AvgPool (F) ©)
Fpax = MaxPool (F)

In the formula, AvgPool (-) represents average pooling
calculation, and MaxPool (-) represents maximum pooling
calculation.

Then, after nonlinear mapping through the fully connected
layer, the final output is obtained through a gating mechanism,
as shown in Equation 10:

F' = sigmoid( MLP(F 44 ) + MLP (Fyz,)) (10)

In the formula, sigmoid (-) represents the activation
function, and MLP () represents multilayer linear layer
computation.

Meanwhile, another branch first expands the number of
channels and solves the gradient vanishing problem through the
convolution layer, normalization layer, and ReLU activation
function, as shown in Equation 11:
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FIGURE 3
General model architecture diagram.

F, = ReLU (BN (Conv (F))) (11)

In the formula, ReLU(-) represents the activation function, BN(-)
the normalization layer, and Conv (-) the convolution operation.

Then, we used the MSDC module to extract multiscale features,
as shown in Equation 12:

Fyy = ReLU (BN (DWCyyq (F,)))
Fyp = ReLU (BN (DW Cs3 (F)))
Fu3 = ReLU (BN (DW Csys (F.)))

(12)

In the formula, DWC(-) stands for depthwise separable convolution.

Since depthwise separable convolutions ignore the relationships
between channels, a channel shuffling operation is performed, as
shown in Equation 13:

F, = ChannelShuf fle (F,; + F,» + F.3) (13)

In the formula, channelshuffle (-) refers to channel
recombination operation, and F,;, F,, and F,; are the outputs
after deep separable convolution.

Finally, we merged the two branches and obtained the final
result through the fully connected layer, as shown in Equation 14:

Out = MLP(F' + F") (14)

In the formula, Out is the final output.
MSCNet can capture the relationships between features in
different channels of PV data. By recalibrating the weights of
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the
information

feature channels, model can more effectively fuse

multichannel and improve overall feature
representation capabilities. In our study, MSCNet is embedded
after the convolutional pooling layer of the Informer encoder for
feature enhancement. The MSCNet module enhances important
features and suppresses irrelevant or redundant features by
adaptively adjusting the weights of each channel feature in the
PV data. This mechanism enhances the model’s sensitivity to key
features of PV array fault signals, thereby improving the accuracy of
PV fault diagnosis in noisy environments.

The final global model of the Informer-MSCNet network is

shown in Figure 3.

3.3 Global parameter optimization based on
the sparrow optimization algorithm

The SSA algorithm is a mathematical model built by simulating
the foraging and anti-predatory behavior of sparrows (Xue and
Shen, 2020). Its core idea is that sparrows are divided into two
groups: discoverers and joiners. The discoverers mainly find food
and lead other sparrows. The joiners follow the discoverers to get
food. In addition, the algorithm is designed with vigilantes, which
are mainly responsible for monitoring the surroundings and alerting
when danger is detected.

The steps of the algorithm are as follows:
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TABLE 1 Fault types and labeling.

10.3389/felec.2025.1656864

Label Classification Explicit description
Normal Trouble-free Normal operation
S1 Single-type fault Open-circuit fault
S2 Line short-circuit fault
S3 Abnormal aging
S4 Partial shadows
Ml Composite fault PV string open circuit + module short-circuit
M2 PV module short-circuit and aging
M3 PV module open circuit and aging
M4 PV module short circuit and partial shadow masking

1. initialize the population and related parameters and calculate
the fitness value of the initial population;
2. update the finder position, as shown in Equation 15:

o - itermax

t
X,.,]» exp<

X, +Q-L

> if R, <ST
X5t = (15)

if R, >ST

—where R, is the warning value, and ST is the safety value.
When R,<ST, it means it is safe. When R,>=S8T, it indicates that
there is some safety risk and it is necessary to move to a
safe area.

3. Updating of accessionist positions, as shown in Equation 16:

t _ oyt

qurst Xij
Q - exp 72’ if i> n/2
X = ! (16)

X;“ + |ij - X;,“ - A" . L otherwise

—where X, is the position of the optimal explorer in the
sparrow population, X,,,; is the current global worst
position, and n is the population size. A is a 1xd matrix
with random amplitude 1 or —1 for each element, where A*
is defined as Equation 17:

At = AT(AAT) (17)
4. In case of danger, there is a need to update the location, in a

timely manner, of the sparrows that are aware of the danger, as
shown in Equation 18:

t t t
Kiest + B 'Xi,j = Xpest

if fi>f,
X:;l = 'X(__Xt . (18)
Xt 4 K- i,j wors
i,j

(= fuyve) I

—where X is the current global optimal position, f is a
parameter whose main function is to control the step size and
obeys a normal distribution with mean 0 and variance 1, K is a
random number in [-1,1], fis the fitness Value,fg and f,, are the
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current optimal and worst fitness values, respectively, and ¢ is a
constant to avoid the denominator being 0.

5. Determine whether the stop condition is satisfied; if so, output
the optimal sparrow position; otherwise, continue to update
the finder position.

4 Experimental analysis

We conducted a simulation experiment to collect real PV data
in a city in northern China. The simulation system comprised real
PV modules, a resistor box, an electricity meter, temperature
sensors, an irradiance meter, and other equipment. Data were
collected at 15-min intervals, resulting in a final dataset
containing 4320 x 5 sampling points. Furthermore, the
ambient temperature in the dataset ranged from 25.47 °C to
34.69 °C, and the irradiance ranged from 527.25 W/m’ to
765.14 W/m?. This was based on the simulation under
different environmental conditions and operating states and to
establish the PV array simulation fault data set. Then, based on
pytorchl.8 framework, a python3.10 program is written.

For convenience of presentation, all fault types and labels used in
this paper are shown in Table 1.

4.1 PV array acquisition data missing fill
experiment

The simulated data were subjected to missing simulation,
and two common scenarios—random missing and continuous
missing of current data—were set up. Cubic spline interpolation,
KNN (Song et al,, 2025), SVM (Chao et al., 2021), and low-rank
matrix filling (Miao and Kou, 2022) were selected as comparison
methods. RSE was adopted as the evaluation index of different
methods. The formulas are as shown in Equation 19:

[0 - Xal,

RSE =
[ Xl

x 100% (19)
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where X is the original complete tensor, X’ is the post-completion
complete tensor, and ||-||r denotes the F-paradigm.

In randomized missing recovery experiments, a single
random missing datum is arbitrarily selected. We set the
proportion of missing data in steps of 5% and step from 5%
to 50% for 50 sets of experiments. The experimental results are
shown in Figure 4.

It can be seen that using this method has good results for the
current missing data filling collected from PV arrays. Specifically
analyzed, in the case of 50% random missing rate, the RSE is 3.51%
using our method. This method is 3.74%, 2.77%, and 1.28% lower
than KNN, low-rank matrix padding, and SVM, respectively, which
shows the good results of the proposed algorithm.

Since we use an actual remote measurement system, continuous
data loss occurs when problems such as remote device
communication failures, unstable connections, and sensor failures
occur. We considered data filling experiments with current data loss
rates of 5%, 10%, 15%, 20%, 25%, and 30%. The comparison results
are as follows.

As analyzed from this figure, the RSE of the proposed
algorithm in this study is 5.27% with 30% continuous missing
ratio. The KNN, low-rank matrix, and SVM-based algorithms are
9.93%, 10.28%, and 7.98%, respectively. Moreover, the RSE of this
study’s algorithm is lower than that of the comparison
algorithms, regardless of any percentage where the continuous
missing rate is set.

4.2 Photovoltaic array single-fault
comparison experiment

This study simulates four single types of fault: short-circuit,
aging, open circuit, and localized shadow; these are prone to occur in
PV arrays under real working conditions. CNN (Xie et al., 2022),
SVM (Koloko et al., 2022), TCN (Yating et al., 2021), Transformer
(Khalil et al., 2024), and Informer (Ma et al., 2025) are selected for
comparison tests. Classification accuracy, check accuracy, and recall
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TABLE 2 Confusion matrix.

Forecast category

Reference True positive (TP) False negative (FN)

False positive (FP) True negative (TN)

are used as the evaluation indexes of single fault diagnosis accuracy.
As shown in Equations 20-22.

1Y 1Y TP; + TN;
Acc=—Y Acc; = — 20
“« NZ1 “ N;TP,-+TN,-+FP,-+FN,- 20
TPi

p=——"'_ 21
TP,‘+FP,‘ ( )
R—— (22)

" TP, + FN;

where N is the total number of categories, ACC; represents the
classification accuracy of faults in category i, TP; and TN; denote the
number of samples correctly classified by the model as category i and
non-i, respectively, and FP; and FNi denote the number of samples
incorrectly classified as category i and non-i. The confusion matrix is
shown in Table 2.

In the case of the consecutively missing 30% of data, the
experimental results of fault detection accuracy after obtaining
the SVM method of complementation and after using our
method are shown in Tables 3 and 4.

It can be seen that the accuracy of data filling has an impact on
the accuracy of different fault detection algorithms. Among these,
the most influential is the CNN algorithm, which can improve the
ACC by 1.7%. When using the fault detection algorithm in this
study, the fault detection ACC is improved by 1.52%, the check
accuracy is improved by 1.4%, and the recall rate is improved by
1.24%. Therefore, it is able to demonstrate the impact of data filling
accuracy on PV array fault diagnosis.

We further analyzed the fault diagnosis accuracy of different
algorithms. The algorithm we propose is effective in several
evaluation indexes. The Informer model is effective in PV array
single-fault detection with ACC of 95.68%, while the model built
here has an ACC of 98.73%—an improvement of 3.05% compared to
the ACC of the Informer model. At the same time, the checking
accuracy percentage (precision) is 98.92% compared with Informer,
Transformer, TCN, SVM, CNN improvements of 2.62%, 3.82%,
6.83%, 10.32%, and 13.07%, respectively. The recall of the model we
propose is 98.61%, compared with Informer, Transformer, TCN,
SVM, and CNN at 2.86%, 3.2%, 6.88%, 9.44%, and 13.35%,
respectively. The effectiveness of our method in single PV fault
diagnosis is thus demonstrated.

4.3 Performance evaluation and analysis of
single-fault diagnosis models under the
influence of noise

In the actual operation of PV equipment, noise is an indispensable
component in real measurement data. In this study, 30 dB and 40 dB of
noise are added to simulate the real measurement environment for
comparison tests. The comparison algorithm selects the Informer and
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TABLE 3 Comparison of the effect of PV single-fault detection after using
SVM complementation.

Method ACC% Precision% Recall%
CNN 83.33 84.69 84.27
SVM 89.15 88.2 89.05
TCN 91.04 91.95 91.62

Transformer 94.53 94.12 94.41

Informer 94.57 95.06 95.24

Our method 97.21 97.54 97.87

TABLE 4 Comparison of photovoltaic single-fault detection effect after
complementation using the method of this study.

Method ACC% Precision% Recall%
CNN 85.03 85.87 85.26
SVM 89.43 88.62 89.17
TCN 91.67 92.11 91.73

Transformer 94.53 94.12 94.41

Informer 95.68 96.32 95.75

Our method 98.73 98.94 98.61

Transformer models that perform well in the single fault of PV array.
The relevant results are shown in Figures 6, 7.

As can be seen from Figure 5, our algorithm performs well in the
simulated real scenario, with an average recognition accuracy of
98.4%—2.8% and 5% higher than that
Transformer, respectively—further illustrating that our algorithm has

of Informer and

good ability to be applied in engineering.

The results of the associated fault classification when adding
40 dB of noise are shown in the heat map below.

From Figures 6, 7 it can be seen that in the face of 40 dB noise, the
proposed algorithm in this study only reduces the recognition accuracy
of localized shadow faults and aging faults of PV equipment by nearly
2% and 1%, respectively, compared with when 30 dB noise is applied.
For other types of faults, the recognition accuracy is basically unchanged.
Transformer and Informer are affected to different degrees. For specific
analysis, the accuracy of the Informer model in recognizing open circuit,
short circuit, and aging decreases by nearly 2%, 3%, and 6%, respectively,
compared with when 30 dB noise is applied, while the accuracy of the
Transformer model in recognizing normal operation, open circuit, short
circuit, and aging decreases by nearly 6%, 5%, 1%, and 5%, respectively,
compared with when 30 dB noise is applied. This demonstrates the good
robustness of our algorithm, and further shows that it has good
application in engineering.

4.4 Performance evaluation and analysis of
composite fault diagnosis models under the
influence of noise

When a single fault is not removed in time, it evolves into a
compound fault. According to the model proposed here, several
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Completion effect of continuous missing data.

experiments were carried out based on the addition of four
composite fault types, and the experimental results were obtained as
shown in Figure 8.

It can be seen that the PV fault diagnosis model we propose still
has good recognition accuracy after adding the four new faults.
Specifically analyzed, both the average training and test set accuracy
still have good recognition accuracy for single-PV fault diagnosis
accuracy. In the case of composite faults, the average training set
accuracy of M1-fault-type recognition is 98.92%, the average test set
accuracy is 97.46%, and the average training and test set accuracy of
M2, M3, and M4 faults are close to each other. Therefore, the
algorithm proposed in this study still has high diagnostic accuracy
for PV arrays with compound faults.

We also simulated a real engineering scenario when a compound
fault occurs. A noise of 30 dB was added to the occurrence of the
compound fault. The experimental results we obtained are shown
in Figure 9.

It can be seen that the ACC of the algorithm proposed in this
paper is 96.12% with the addition of four composite faults and the
addition of 30 dB of noise effects. It improves 4.61%, 5.9%, 11.51%,
13.96%, and 17.88% compared to Informer, Transformer, TCN,
SVM, and CNN. The Recall algorithm proposed in this paper is
96.76% compared to the Informer, Transformer, TCN, SVM, CNN
improvements of 3.9%, 7.19%, 11.6%, 15.72%, and 19.45%,
respectively. This illustrates that our algorithm still shows
effective and robust results under the occurrence of compound
faults and the addition of 30 dB noise.

4.5 Ablation experiment

To validate the effectiveness of the proposed MSCNet, this
section conducts ablation experiments. These comprehensively
identify single and composite faults. The experimental results are
shown in Figure 10 (the left figure shows TCN-Informer-SSA, and
the right figure shows the proposed algorithm).
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FIGURE 8
Photovoltaic complex fault training set and test set accuracy.
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As shown in the experimental results figure, the use of MSCNet
significantly improves the detection accuracy of both single and
composite faults in photovoltaic arrays. Overall, the accuracy of the
algorithm proposed in this study for PV fault diagnosis exceeds 95%.
In contrast, the TCN-Informer-SSA algorithm achieves an accuracy
of over 95% only when identifying the health status of PV equipment
and $4 faults, while its accuracy falls below 90% when identifying
healthy PV equipment, S1 faults, and M2 faults. Specifically, when
an S1-type fault occurs, the identification accuracy of the algorithm
we propose is 0.99, while the TCN-Informer-SSA algorithm achieves
only 0.83, which is 16% lower than our algorithm. This further
validates the effectiveness of the MSCNet proposed here for multi-
scale feature extraction.

5 Conclusion

This study proposes a photovoltaic (PV) fault diagnosis model
based on Tucker decomposition-SSA-Informer-MSCNet. The
model can effectively identify single and composite faults in PV
arrays and withstand the influence of 30 dB and 40 dB noise. It has
important application value in engineering practice and also has
good diagnostic effects for composite faults. The specific conclusions
are as follows.

1. This study proposes the Tucker decomposition method to fill
missing data. It provides good data inputs to the subsequently
constructed model, which is important for improving fault
identification accuracy.

. The Informer-MSCNet model is proposed to fully extract data
features. By embedding MSCNet into the Informer network,
multiscale key features were extracted, greatly improving fault
diagnosis accuracy.

. For the problem of many parameters of the Informer-MSCNet
model, this study uses the sparrow search algorithm (SSA) to
optimize the global parameters, thus accelerating the
convergence of the model.
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impact of data simulation and using the model we propose for
PV array fault diagnosis experiments are shown to be effective
by our results.
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