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With the widespread application of lithium-ion batteries in electric vehicles and
energy storage systems, health monitoring and remaining useful life prediction
have become critical components of battery management systems. To address
the challenges posed by the high nonlinearity and long-term dependency in
battery degradation modeling, this paper proposes a deep hybrid architecture
that integrates Long Short-Term Memory networks with Transformer
mechanisms, aiming to improve the accuracy and robustness of RUL
prediction. Firstly, time-series samples are constructed from raw battery data,
and physically consistent temperature-derived features—including average
temperature, temperature range, and temperature fluctuation—are
engineered. Data preprocessing is performed using standardization and Yeo-
Johnson transformation. The model employs LSTM modules to capture local
temporal patterns, while the Transformer modules extract global dependencies
through multi-head self-attention mechanisms. These complementary features
are fused to enable joint modeling of battery health states. The regression task is
optimized using the Mean Squared Error loss function and trained with the Adam
optimizer. Experimental results on the MIT battery dataset demonstrate the
proposed model achieves excellent performance in a 7-step multi-point
prediction task, with a Root Mean Square Error of 0.0085, Mean Absolute
Percentage Error of 0.0200, and a coefficient of determination of 0.9902.
Compared with alternative models such as MC-LSTM and XGBoost-LSTM, the
proposed model exhibits superior accuracy and stability. Residual analysis and
visualization further confirm the model’s unbiased and stable predictive
capability. This study shows that the LSTM-Transformer hybrid architecture
offers significant potential in modeling complex battery degradation processes
and enhancing RUL prediction accuracy, providing effective technical support for
the development of intelligent battery health management systems.
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1 Introduction

With the global transition toward cleaner energy and the rapid
advancement of electrification technologies, lithium-ion batteries have
emerged as essential energy storage components in electric vehicles,
renewable energy storage systems, and portable electronic devices
(Wang et al., 2023). Owing to their high energy density, long cycle
life, and low self-discharge rate, lithium-ion batteries have become
increasingly important. However, their performance inevitably
degrades over time due to repeated charge-discharge cycles, leading
to capacity fade and a shortened remaining useful life (RUL) (Wang
et al., 2021). Accurate prediction of battery state of health (SOH) and
RUL is crucial for optimizing batterymanagement, extending service life,
reducing maintenance costs, and ensuring system safety (Elmahallawy
et al., 2022; Yao et al., 2021). In particular, battery failure in electric
vehicles or large-scale energy storage systems can result in significant
safety hazards and economic losses, making the development of high-
accuracy RUL prediction methods a pressing research focus.

Precise RUL prediction plays a vital role in optimizing battery
management systems. First, it provides a scientific basis for battery
replacement andmaintenance decisions, thereby lowering operational
costs (Tong et al., 2021). Second, it enables early identification of
potential failures, thus enhancing system safety (Yang et al., 2023).
Moreover, accurate RUL estimates support battery recycling and
second-life applications, contributing to sustainable resource
utilization. Nevertheless, several challenges hinder effective RUL
prediction. The degradation process is influenced by multiple
factors such as temperature, charge/discharge rates, and usage
scenarios, exhibiting high nonlinearity and complexity (Sharma
and Bora, 2022). Real-world operational data often contain noise
and missing values, increasing the difficulty of modeling (Li et al.,
2023). Furthermore, long-term prediction requires models that can
simultaneously capture short-term fluctuations and long-term trends,
which is difficult for single-model architectures to achieve.

Traditional RUL prediction approaches can be categorized into
physics-based and data-drivenmethods. Physics-basedmodels rely on
the electrochemical mechanisms of batteries (Liu et al., 2022), using
complex mathematical formulations to describe the degradation
process. However, these methods require detailed knowledge of
material properties and operating conditions, involve high
computational complexity, and often lack generalizability across
different battery types. In contrast, data-driven approaches have
gained popularity by learning patterns directly from operational
data (Ji et al., 2024). With advances in sensor technology and data
acquisition capabilities, these methods can effectively model battery
behavior using features such as voltage, current, and temperature,
showing improved adaptability and predictive accuracy.

Data-driven RUL prediction techniques generally fall into three
categories: statistical models (Crawford et al., 2021), machine
learning methods (Zhang L. et al., 2022), and deep learning
models (Zhang D. et al., 2022). Statistical approaches, such as
Kalman filtering and particle filtering, model battery degradation
probabilistically. For example, Nunes et al. (2023) proposed an
online RUL estimation method for second-life lithium-ion
batteries based on an unscented Kalman filter and degradation
curve modeling, validated on six different second-life battery
datasets. Despite some success—achieving a worst-case mean
absolute percentage error (MAPE) of 5.279% and an R2 score of

0.726—statistical models often struggle with nonlinear or complex
degradation behaviors. Machine learning approaches such as
support vector machines, random forests, and XGBoost have
demonstrated promising results in RUL prediction through hand-
crafted features. Jafari and Byun (2022) introduced a hybrid RUL
prediction method based on particle filtering and Kalman filtering,
where XGBoost was used as the observation model due to its strong
nonlinear fitting capabilities. Despite high predictive accuracy based
on full-cycle test data, such methods are heavily dependent on the
quality of feature engineering and may suffer from overfitting or
inefficiency when applied to high-dimensional time-series data.

The emergence of deep learning has opened new avenues for RUL
prediction. Long Short-Term Memory (LSTM) networks, known for
their capability in modeling temporal dependencies, have been widely
adopted for battery degradation modeling. LSTM networks utilize
gating mechanisms to effectively capture long-term dependencies,
making them well-suited for modeling the nonlinear degradation
process of batteries. Reza et al. (2024) proposed an improved method
combining LSTM with the Gravitational Search Algorithm (GSA),
using data cleaning to remove noise, replacing anomalies with highly
correlated data, and applying normalization. GSA was employed to
optimize the LSTM hyperparameters to address key challenges in
battery life prediction. However, LSTM models may still face
limitations such as vanishing gradients and computational
inefficiencies when dealing with long sequences. Recently,
Transformer models have demonstrated excellent performance in
natural language processing and time-series analysis tasks due to their
strong capability in extracting global features (Chen et al., 2022; Han
et al., 2023). The Transformer architecture processes sequences in
parallel through multi-head attention mechanisms, effectively
capturing long-range dependencies. Nevertheless, its application in
battery RUL prediction remains relatively unexplored.

Given the above challenges, accurate RUL prediction remains
difficult due to the following key factors,

1. The degradation process is highly nonlinear and influenced by
external factors such as temperature, cycling rate, and
usage scenarios;

2. Real-world data are often noisy and incomplete, complicating
the modeling process;

3. Long-term prediction tasks require models to simultaneously
capture short-term variations and long-term trends, which is
difficult for single models to handle effectively.

To address these challenges, this study develops a hybrid deep
learning model that captures both local temporal dependencies and
global contextual features. As illustrated in Figure 1, we propose a novel
LSTM-Transformer hybrid model based on the MIT battery dataset to
enhance prediction accuracy and robustness. The LSTM module
extracts local temporal dynamics from time-series inputs, while the
Transformer module, with its attention mechanism, captures global
feature dependencies. The integration of both allows the model to
effectively represent complex degradation patterns.

The main contributions of this work are as follows,

1. A novel hybrid deep learning architecture combining local
temporal modeling and global attention mechanisms is
proposed for lithium-ion battery RUL prediction.
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2. Temperature-based features are engineered based on battery
physical mechanisms to enhance input feature expressiveness.

3. The proposed model is validated on the MIT battery dataset,
demonstrating superior prediction accuracy and robustness
compared to existing methods, with strong potential for real-
world applications.

The remainder of this paper is organized as follows: Section 2
introduces the data preprocessing and feature engineering methods;
Section 3 details the architecture and training process of the LSTM-
Transformer hybrid model; Section 4 presents experimental results
and performance evaluation; Section 5 concludes the paper with a
summary of findings and future work directions. Through this
research, we aim to provide an efficient and accurate solution for
lithium-ion battery RUL prediction, offering theoretical and
technical support for optimized battery management systems.

2 Data preprocessing and feature
engineering

Accurate prediction of the remaining useful life of lithium-ion
batteries critically depends on high-quality data preprocessing and
feature engineering. To construct a time-series modeling–ready
prediction dataset, this study systematically performs data
cleaning, temperature feature extraction, normalization, target
variable transformation, and sample construction based on a
sliding window. By incrementally sliding a fixed-length window
over the time-series data to extract local segments, representative
features or sequential samples are generated. This approach
facilitates the capture of local temporal dependencies and
dynamic variations (Lin et al., 2024), thereby ensuring that the
input data fed into the model possesses strong representativeness
and consistency.

FIGURE 1
Schematic diagram of the LSTM-Transformer hybrid model architecture.
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The original dataset used in this work is the MIT Battery Dataset,
which includes operational data from multiple batteries under various
charging and discharging conditions. Key variables include voltage,
current, and temperature. Let the raw feature matrix be denoted as
x ∈ Rn×d, where n represents the number of samples and d indicates the
number of feature dimensions. The target variable is denoted as y ∈ Rn.

To explore the linear relationships between different features, we
construct a Pearson correlation-based heatmap, as illustrated in
Figure 2a. In this heatmap, red indicates strong positive correlations,
while blue denotes strong negative correlations. The heatmap reveals
significant correlations among several voltage-related, capacity-related,
and temperature-related features. Based on this analysis, redundant
features are removed to improve the generalization ability of the model
and to mitigate issues related to multicollinearity.

To comprehensively evaluate the structure of the feature space,
Principal Component Analysis was applied to the high-dimensional
feature data after redundancy removal, as shown in Figure 2b. The
first two principal components were visualized, with a color gradient
representing the corresponding battery RUL values. This
visualization enables the observation of degradation trends within
the feature space. The results indicate that samples with different
RUL levels exhibit clear clustering patterns in the two-dimensional
PCA space, demonstrating the discriminative capability of the
extracted features in characterizing battery degradation states.

Temperature, as a critical factor influencing lithium-ion battery
aging and performance degradation, plays a key role in modeling
degradation behavior. Analysis reveals that the raw temperature
features (T1-0 to T3-3) exhibit significant dynamic fluctuations
during battery operation and are highly correlated with changes
in the RUL curve.

To this end, three types of temperature-derived features are
designed: temperature mean, temperature range, and temperature
fluctuation. The temperature mean reflects the overall thermal load
level during battery operation. Elevated operating temperatures

accelerate electrolyte decomposition, solid electrolyte interphase
(SEI) layer growth, and structural degradation of electrode
materials, which are key contributors to capacity fade and
internal resistance increase. The temperature range measures the
amplitude of temperature variation within each time window,
indicating the degree of thermal stress fluctuation. Frequent and
intense thermal stress cycles may induce mechanical fatigue or even
cracking of electrode particles, exacerbating material degradation
and performance decline. Temperature fluctuation, quantified by
the standard deviation, characterizes the local instability of
temperature over time, typically associated with abnormal
conditions such as high-current charge/discharge events and
cooling system failures. These factors are prone to cause localized
hotspots and accelerate undesirable electrochemical side reactions,
ultimately shortening battery life.

For each temperature sensor group, the temperature mean is
defined as shown in Equation 1,

Tmean
i � 1

m
∑m−1

j�0
Ti,j (1)

In this context, Ti,j denotes the jth temperature channel within
the ith group, where m � 4 represents the number of channels in
each group. The corresponding temperature difference range is
defined as shown in Equation 2,

Trange
i � max

0≤ j<m
Ti,j − min

0≤ j<m
Ti,j (2)

The above two features respectively characterize the central
tendency and extreme dispersion of each temperature group,
which can reflect phenomena such as localized overheating or
abnormal heat dissipation. In addition, to capture the overall
fluctuation level of the thermal behavior, the standard deviation
across all temperature channels is calculated as shown in Equation 3
and used as an indicator of temperature volatility.

FIGURE 2
(a) Feature correlation heatmap based on Pearson coefficients. (b) Feature space distribution of battery life using Principal Component Analysis.
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σtemp �

������������
1
k
∑K
k�1

Tk − �T( )2√√
(3)

LetK � 12 denote the total number of temperature channels, Tk

represent the value of the kth temperature channel, and �T be the
mean temperature across all channels. These three temperature-
derived features not only enhance the semantic expressiveness of the
data but also provide physically consistent inputs aligned with the
underlying battery aging mechanisms. To eliminate dimensional
discrepancies among features and to improve training stability, as
shown in Equation 4, Z-score normalization is applied to the feature
matrix, ensuring that each feature has zero mean and unit variance
before being fed into the model.

xscaled � X − μ

σ
(4)

Let μ and σ denote the mean and standard deviation of each
feature column, respectively, and xscaled represent the normalized
feature matrix. This normalization ensures that all features follow an
approximately zero-mean and unit-variance distribution, which
facilitates faster convergence of gradient descent during model
training and enhances generalization performance. Meanwhile,
the Yeo-Johnson transformation (Bao-Hua et al., 2024) is applied
to the target variable for nonlinear processing. This parameterized
transformation adjusts the data distribution to approximate a
normal distribution, thereby enhancing the stability and accuracy
of subsequent model training.

The transformation is defined as shown in Equation 5,

ytrans �

y + 1( )λ − 1
λ

, y≥ 0, λ ≠ 0

ln y + 1( ), y≥ 0, λ � 0

− −y + 1( )2−λ − 1
2 − λ

, y< 0, λ ≠ 2

−ln −y + 1( ), y< 0, λ � 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Here, λ denotes the transformation parameter, which is
automatically estimated using the maximum likelihood method.
The transformed variable ytrans exhibits a more symmetric
distribution, which is beneficial for subsequent model
convergence and stable error control.

To accommodate the requirements of deep learning-based time
series modeling, the dataset is reconstructed into a sliding window
format. As illustrated in Figure 3, let the input window length be
win � 30 and the prediction horizon bewout � 7. For the normalized
feature matrix xscaled ∈ Rn×d and the transformed target variable
ytrans ∈ Rn, as shown in Equation 6, each training sample is
constructed from the following subsequences:

xt � Xscaled t: t + win[ ] ∈ Rwin×d

yt � ytrans t + win: t + win + wout[ ] ∈ Rwout
(6)

The total number of samples that can be constructed from the
dataset is given by Equation 7,

N � n − win − wout + 1 (7)

The final dataset was split into training and testing sets at a ratio
of 8:2, with the training set randomly shuffled to enhance sample
diversity and training robustness. The data preprocessing pipeline
significantly improved the semantic representation and structural
compatibility of the input data. The design of temperature-derived
features was closely aligned with the underlying battery physical
mechanisms. Standardization and nonlinear transformation
ensured numerical stability during model training, while the
sliding window data construction effectively captured the
dynamic evolution of battery degradation. Together, these steps
laid a solid foundation for subsequent battery life prediction
modeling based on the LSTM-Transformer architecture.

3 Model architecture and
training process

To achieve high-precision regression prediction of the
remaining useful life of lithium-ion batteries, this study designs a
deep neural network model that integrates Long Short-Term
Memory networks with the Transformer architecture. The model

FIGURE 3
Illustration of the sliding window input features.

FIGURE 4
Computational process of the LSTM neural network.
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leverages the strength of LSTM in capturing local temporal
dynamics in time series data and the powerful capability of
Transformer in modeling global dependencies, thereby enhancing
the ability to characterize the evolving performance trends of
batteries. Time series features are fed into two parallel subnetworks
for separate encoding, followed by feature-level fusion to ultimately
predict the battery life over multiple future time steps.

3.1 LSTM model

In lithium-ion battery life prediction, operational features such
as voltage, temperature, and current exhibit pronounced temporal
correlations. Single-step or short-range modeling approaches often
fail to capture the complex evolutionary processes. The Long Short-
Term Memory network employs gating mechanisms to propagate
information along the temporal dimension, enabling the model to
capture nonlinear dynamic changes with long-term dependencies.
Figure 4 illustrates the neural network architecture of the LSTM.

The fundamental computational process of the LSTM is as
follows. The forget gate determines whether to retain the cell
state from the previous time step ct−1 at the current time step,
and its formulation is given by Equation 8,

ft � σ Wf · ht−1, xt[ ] + bf( ) (8)

Here, [ht−1, xt] represents the concatenation of the previous
hidden state ht−1 and the current input features xt; Wf and bf
denote learnable parameters; σ(·) is the sigmoid activation function,
whose output ranges from 0 to 1, indicating the retention
proportion.

The input gate controls how much of the current input
information is written into the cell state, consisting of Equations
9, 10,

it � σ Wi · ht−1, xt[ ] + bi( )Ct (9)
~ct � tanh Wc · ht−1, xt[ ] + bc( ) (10)

Here, it denotes the input gate weights, ~ct represents the
candidate cell state, and the hyperbolic tangent function tanh(·)
ensures that the output range is within [−1,1], thereby enhancing the
model’s nonlinear fitting capability.

The cell state is updated by combining the weights of the forget
gate and the input gate to revise the memory from the previous time
step, as shown in Equation 11,

ct � ft ⊙ ct−1 + it ⊙ ~ct (11)

In this equation, ⊙ denotes element-wise multiplication, and the
final current cell state ct is obtained, enabling long-range retention of
critical historical information.

The output gate determines the amount of information output
as the current hidden state, expressed as shown in Equations 12, 13,

ot � σ Wo · ht−1, xt[ ] + bo( ) (12)
ht � ot ⊙ tanh ct( ) (13)

Here, ht represents the hidden state at the current time step,
serving as the response to the current sequential input and
facilitating information flow to subsequent layers. Through the

aforementioned gating mechanisms, the LSTM can effectively
learn the stage-wise patterns and long-term dependencies in time
series data, enabling accurate modeling of the performance
evolution process in prediction tasks.

3.2 Transformer model

Although LSTM performs well in sequence modeling, it suffers
from gradient decay and low training efficiency when handling long-
term dependencies. To address these issues, the Transformer
architecture is introduced, which establishes direct connections
between any positions within the sequence through a multi-head
self-attention mechanism, thereby enhancing the model’s ability to
capture global dynamics. The core computation in the Transformer
is the scaled dot-product attention, defined as shown in Equation 14,

Attention Q,K, V( ) � softmax
QKT��
dk

√( )V (14)

Here, Q, K, and V represent the Query, Key, and Value matrices,
respectively, and

��
dk

√
is a scaling factor used to prevent numerical

instability. Attention weights are obtained via a softmax operation,
enabling a weighted fusion of information across all time steps.

Since the Transformer lacks an explicit sequential structure,
positional encoding is introduced to preserve temporal order. The
fixed sinusoidal positional encoding scheme is employed as shown
in Equation 15,

PE pos, 2i( ) � sin
pos

100002i/dmodel
( )

PE pos, 2i + 1( ) � cos
pos

100002i/dmodel
( ) (15)

Here, pos denotes the position index of the current time step, i
represents the dimension index, and dmodel is the embedding
dimension. This encoding scheme enables the model to perceive
the sequential order, thereby allowing it to capture temporal patterns
such as periodicity and trends during modeling.

In the proposed model, the Transformer consists of two stacked
encoder layers, each comprising a multi-head attention sublayer and
a feed-forward neural network. The output is a sequence-level global
feature representation, which is subsequently aggregated via average
pooling to obtain a fixed-length vector hTrans.

3.3 Feature fusion and prediction output

Considering the complementary strengths of LSTM and
Transformer in modeling different aspects of sequential data, a
feature-level fusion strategy is employed. The hidden
representations generated by each sub-network are concatenated
to form a unified feature vector for downstream prediction. The
fusion process is formulated as shown in Equation 16,

hfusion � Concat hLSTM, hTrans( ) (16)

Where hLSTM ∈ R64 denotes the final hidden state output from
the LSTM branch, and hTrans ∈ R64 represents the global feature
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vector obtained by average pooling from the Transformer module.
These two components are concatenated to form a 128-dimensional
fused vector. This fused representation is then passed through fully
connected layers to perform multi-step regression prediction, as
defined by Equation 17,

Ŷ � Wouthfusion + bout (17)

Where Ŷ∈ R7 denotes the predicted remaining useful life
percentages for the next seven time steps, Wout and bout are the
parameters of the linear projection. This structure enables the model
to perform multi-step forecasting of long-term degradation trends,
thereby supporting early warning and precise management of
battery life. To achieve multi-step prediction of battery remaining
useful life, a parallel forecasting strategy is adopted. Given a fixed-
length historical input window, the model performs a single forward
pass to directly output the target value sequence over the entire
prediction horizon. This approach effectively avoids error
accumulation during the prediction process and improves both
prediction stability and computational efficiency.

3.4 Loss function and optimization strategy

The prediction of the remaining useful life of lithium-ion
batteries is essentially a regression task, where the target variable
is a continuous percentage value. Therefore, the mean squared error
(MSE) is adopted as the loss function for optimization. It is defined
as shown in Equation 18,

LMSE � 1
N

∑N
i�1

Ŷ
i( ) − Y i( )

����� �����2 (18)

The variable Ŷ
(i)

denotes the predicted RUL value of the ith

sample generated by the model, Y(i) represents the corresponding
ground truth label, andN is the total number of samples. As a widely
used regression loss function, MSE penalizes the squared prediction
error, effectively reducing the impact of large deviations and
improving the robustness of the model predictions.

During training, the Adam optimizer is employed for parameter
updates. This optimization algorithm integrates the advantages of
momentum and adaptive learning rate adjustment, offering fast
convergence and flexible parameter tuning. The initial learning rate
is set to 1 × 10−3, and the total number of training epochs is set to
200. Furthermore, mini-batch gradient descent with a batch size of
32 is used to enhance both the training stability and
computational efficiency.

4 Experimental results and
performance analysis

A comprehensive evaluation was conducted to assess the
predictive performance of the proposed LSTM-Transformer
hybrid model on the MIT battery dataset, demonstrating its
effectiveness and superiority in the task of remaining useful life
prediction for lithium-ion batteries. Model training and testing were
performed on the publicly available MIT battery degradation
dataset. After undergoing data preprocessing and temporal

windowing, the dataset was restructured into time series samples
with an input sequence length of 30 and an output prediction
horizon of 7 steps. The objective was to forecast the battery
capacity degradation trend over the next 7 cycles. During
training, the Adam optimizer was employed with an initial
learning rate set to 0.001, and an Early Stopping mechanism was
integrated to prevent overfitting. Architecturally, the LSTM layer
captures local temporal dynamics, while the Transformer module
exploits its global attention mechanism to model long-term
dependencies. The synergistic integration of both enhances the
model’s capacity to capture the complex degradation behaviors
of batteries.

4.1 Model training process

As shown in Figure 5, the loss curves of both the training and
testing sets over 200 epochs illustrate the model’s convergence
behavior. It can be observed that the loss values decrease steadily
with increasing training epochs, particularly during the initial
50 epochs where a rapid drop is evident—indicating efficient
convergence. At epoch 50, the training loss decreased to
0.0021 and the testing loss reached 0.0054. Although the training
loss continued to decrease afterward, the testing loss plateaued and
remained low, reflecting the model’s strong ability to avoid
overfitting. By the end of training at epoch 200, the training loss
converged to 0.0008, and the testing loss stabilized around 0.0038,
suggesting strong generalization on unseen data. These training
dynamics and test loss results demonstrate the model’s stability and
robust convergence characteristics.

4.2 Performance evaluation metrics for
model prediction

To comprehensively and objectively evaluate the performance of
the proposed model in battery life prediction tasks, three commonly
used regression evaluation metrics are employed: Root Mean Square

FIGURE 5
Training and testing loss curves over epochs.
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Error (RMSE), Mean Absolute Percentage Error (MAPE), and the
Coefficient of Determination (R2). These metrics assess the prediction
performance from three perspectives: absolute error, relative percentage
error, and the model’s ability to explain variance in the data.
Collectively, they offer a robust evaluation framework for assessing
the accuracy, stability, and generalization capability of data-driven
predictive models. These metrics are also widely adopted in current
state-of-the-art regression-based forecasting studies.

RMSE, which quantifies the standard deviation of the prediction
errors between the predicted and actual values, is defined as
Equation 19,

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(19)

where yi denotes the actual value of the ith sample, ŷi represents the
predicted value of the ith sample, and n is the total number of
samples. A lower RMSE indicates smaller deviations between
predicted and true values, reflecting higher model accuracy.

MAPE, or Mean Absolute Percentage Error, measures the
relative percentage deviation between predicted and actual values.
It is defined as Equation 20,

MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100% (20)

This metric intuitively reflects the percentage error of the
predicted values relative to the true values, making it suitable for
comparing prediction accuracy across different scales.

The coefficient of determination R2 is used to measure the
goodness of fit of the model and is defined as Equation 21,

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2 (21)

Here, �y denotes the mean of all true values. The coefficient of
determination R2 ranges from [0, 1], where values closer to
1 indicate a higher degree of model fit and greater
explained variance.

4.3 Model performance analysis

The final evaluation results of the model’s predictive
performance are as follows: RMSE of 0.0085, MAPE of 0.0200,
and an R2 of 0.9902. These results demonstrate that the model
exhibits excellent capability in fitting accuracy, error control, and
capturing the variation trends of the target variable.

To more intuitively illustrate the model’s predictive
effectiveness, Figure 6a presents a scatter plot comparing the
predicted values with the true values. It can be observed that the
majority of scatter points are densely clustered around the reference
line, indicating a high consistency between the model’s predictions
and the actual battery life across different samples. This tightly
concentrated scatter distribution not only validates the high R2 value
but also indirectly suggests that the model does not suffer from
significant underfitting or overfitting, thereby demonstrating strong
generalization ability.

Figure 6b shows the comparison between the predicted and true
trajectories on the test set. By forecasting future states over
consecutive time steps, it is evident that the proposed LSTM-
Transformer hybrid model can effectively fit the target trend,
with predictions closely matching the real values and no notable
deviations. This result indicates that the model possesses reliable
short-term predictive capability, effectively adapting to the
nonlinear gradual degradation characteristics of the battery state
sequence, thus meeting the engineering requirements for remaining
useful life prediction.

FIGURE 6
(a) Scatter plot of predicted values versus true values. (b) Comparison of predicted and true trajectories during the training process.
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For further analysis of prediction errors, Figure 7a presents the
frequency distribution histogram of the model’s prediction
residuals, aiming to reveal whether there exist systematic biases
or outliers in the errors. As observed, the residuals roughly exhibit a
symmetric bell-shaped distribution, with most errors concentrated
near zero, indicating that the overall prediction errors are small and
unbiased. This statistical characteristic of the error distribution
suggests that the prediction deviations mainly arise from minor
perturbations inherent in the data rather than from systematic
errors caused by the model structure. Additionally, the absence
of long tails or skewness in the residual distribution further confirms
the stability and consistency of the model’s predictions.

Figure 7b depicts the temporal variation of prediction errors for
all samples in the test set during the prediction process. Overall, the
prediction errors fluctuate slightly without persistent systematic

bias, demonstrating that no significant underfitting or overfitting
occurred during training.

Tomore clearly present the comparative effects of the evaluation
metrics, Figure 8a visualizes the three core performance indicators
RMSE, MAPE, and R2 using a bar chart. It can be intuitively
observed that all metrics fall within excellent ranges: RMSE
approaches zero, MAPE is well below the commonly accepted
5% tolerance threshold for predictive models, and R2 significantly
exceeds the benchmark of 0.9 for strong model fit. This visualization
not only facilitates a comprehensive and balanced demonstration of
the model’s performance but also enables straightforward
comparison with traditional models, providing important
references for subsequent optimization studies.

In summary, both quantitative metrics and visual analyses
demonstrate that the proposed LSTM-Transformer hybrid model

FIGURE 7
(a) Histogram of model residual frequency distribution. (b) Temporal variation of prediction errors.

FIGURE 8
(a) Bar chart of evaluation metrics for the LSTM-Transformer model. (b) Comparison of RMSE performance among different models.

Frontiers in Electronics frontiersin.org09

Zhao et al. 10.3389/felec.2025.1654344

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2025.1654344


exhibits high accuracy, robustness, and interpretability in the battery
remaining useful life prediction task. The model achieves
satisfactory results not only in individual metric performance but
also in fitting overall degradation trends and controlling prediction
errors, providing strong empirical support for multimodal fusion
approaches targeting complex time-series forecasting problems.
Moreover, these outcomes lay a solid foundation for the model’s
future application in practical engineering scenarios.

To further validate the performance advantages of the proposed
LSTM-Transformer model in lithium-ion battery RUL prediction,
several representative benchmark models were selected for
comparative experiments, as shown in Figure 8b. Their
prediction accuracies on the same dataset, expressed by RMSE
values, are summarized in Table 1. The AUKF_GASVR model,
which integrates particle filtering with nonlinear regression, and the
deep learning-based MC-LSTM model achieved RMSEs of
0.0134 and 0.0168, respectively, yet both still suffered from
relatively large fitting errors.

With the introduction of attention mechanisms and ensemble
learning strategies, model performance further improved. For
instance, the Bi-LSTM-AM model, combining bidirectional
sequence modeling with attention mechanisms, reduced the
RMSE to 0.0106; the FBA-XGBoost-LSTM model, leveraging
feature enhancement and deep network integration, compressed
the error to 0.01003, demonstrating strong learning capability.
However, among all compared models, the proposed LSTM-
Transformer model achieved the best overall performance with
an optimal RMSE of 0.0085, indicating a significant
accuracy advantage.

These results fully demonstrate that the LSTM-Transformer
hybrid model effectively integrates LSTM’s strength in capturing
local temporal dynamics with Transformer’s ability to extract global
dependency features in time-series modeling. This synergy enables a
more comprehensive learning of the complex mechanisms
underlying battery life evolution, yielding higher accuracy and
robustness, making it a highly efficient modeling solution for
current RUL prediction tasks.

5 Conclusion

With the widespread adoption of electrification and intelligent
systems in transportation, energy storage, and industrial control,
health management and remaining useful life prediction of lithium-
ion batteries have become critical tasks to ensure system safety and
operational efficiency. Addressing key challenges such as the

difficulty of RUL prediction under nonlinear and complex
degradation mechanisms during battery operation, this work
constructs a hybrid deep learning model that integrates Long
Short-Term Memory networks with Transformer architecture
based on the publicly available MIT battery dataset. The model
aims to enhance prediction accuracy, stability, and generalization
capability.

This study centers on the theme of “high-dimensional sequence
modeling and deep fusion prediction.” First, in data preprocessing
and feature engineering, raw sensor data including battery
temperature and multi-channel voltages were systematically
processed. Feature dimensionality reduction, principal component
analysis, and physics-informed temperature-derived feature design
were conducted to construct interpretable input variables such as
temperature mean, temperature difference range, and temperature
fluctuation. Meanwhile, unified data normalization techniques,
including Z-score standardization and Yeo-Johnson
transformation, were applied to improve the model’s capability to
handle multi-scale and heterogeneous distributions. Furthermore, to
align with sequence prediction tasks, a sliding window method was
employed to reconstruct time series samples, effectively embedding
local temporal dynamics.

Second, at the model design level, this work proposes a fusion
modeling approach combining LSTM and Transformer structures.
The LSTM module leverages gating mechanisms to accurately
capture short-term fluctuations and long-term dependencies,
which is well-suited for modeling dynamic sequences exhibiting
continuity and staged features during battery degradation. The
Transformer module employs multi-head attention and positional
encoding to model global dependencies across the entire input
sequence, enhancing expressiveness under long-sequence
conditions. By concatenating and fusing the feature vectors from
both modules, a multimodal prediction model capable of
simultaneously capturing local temporal dynamics and global
structural variations was constructed.

In terms of training optimization and performance evaluation, a
training framework based on mean squared error loss and the
Adam optimizer was established, achieving stable convergence
after 200 iterations. Evaluation on the test set demonstrated that
the proposed LSTM-Transformer model attained an RMSE of
0.0085, MAPE of 0.0200, and R2 of 0.9902, significantly
outperforming conventional single deep learning models.
Residual distribution analysis and visualization of prediction
results further validated the model’s strong ability to capture
battery degradation trends, robust performance, and lack of
systematic bias, indicating substantial potential for engineering
applications.

However, the proposed method still faces certain limitations in
practical deployment, such as its reliance on high-quality sensor data
and insufficient transferability across different usage scenarios.
Future research will focus on enhancing the model’s adaptability
to multi-source data and exploring strategies that integrate online
learning with few-shot learning to improve its practicality and
robustness.

In summary, the proposed LSTM-Transformer fusion
prediction model exhibits high accuracy and stability in battery
RUL forecasting. It provides effective technical support for the
development of next-generation intelligent battery management

TABLE 1 Performance comparison of different models.

Model RMSE

AUKF_GASVR (Xue et al., 2020) 0.0134

MC-LSTM (Park et al., 2020) 0.0168

Bi-LSTM-AM (Wang et al., 2022) 0.0106

FBA-XGBoost-LSTM (Jin et al., 2025) 0.01003

LSTM-Transformer 0.0085
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systems, with promising prospects for practical engineering
deployment and broader adoption.
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