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Modern higher education institutions (HEIs) face significant challenges in
identifying, students who are at risk of low academic performance, at an early
stage, while maintaining educational quality, and improving graduation rates.
Predicting student success and dropout is crucial for institutional decision-
making, as it helps formulate effective strategies, allocate resources efficiently,
and improve student support. This study explores machine learning (ML)
models for predicting student success, focusing on predicting first-semester
CGPA (Cumulative Grade Point Average) and identifying at-risk students. It
aims to compare various classifiers and regression models, identify the most
effective techniques, and provide explainable insights into the decision-making
process using Explainable AI (XAI). The results suggest that Logistic Regression
outperforms other models in predicting at-risk students with high precision and
recall, offering a reliable tool for early interventions.
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1 Introduction

In the current competitive academic world, the image of an academic institution relies
on the success of its students in academics and on time graduation. As such, the governing
and regulating bodies of every institution do their utmost to make sure that the trends
of student performance are monitored to maintain stable academic development and
institutional excellence. The growing focus on university rankings and success rates among
students has provided a powerful push to determine at-risk or potential dropout students
during the first stage of their academic achievements as the reputation of the institution,
its financial support, and trustworthiness of stakeholders are all interconnected with the
performance of the student (Kukkar et al., 2024).

As education continues to become digitalized, massive volumes of data about the
students (including attendance records and grades, as well as the participation in online
learning platforms) can be easily accessed. Such an information avalanche combined with
the fast progress in machine learning has rendered machine learning (ML) an essential
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instrument in scholarly analytics. Comparing to traditional
methods, ML models can process and analyze large volumes of data
to reveal hidden patterns, assess trends of academic performance,
and make predictions useful to take action, and more precisely.
The cumulative grade point averages (CGPA) of students can be
estimated using such models, those at risk of academic failure can
be identified, and the academic or behavioral features that may
influence the success or failure of students (Kukkar et al., 2023a).

Nevertheless, although the ML-based models have been
very successful at prediction, they are not very interpretable
due to their black-box nature, which questions the issue
of transparency and accountability in decisions. This is
especially important in the educational environment, where
the institutional level policies and interventions directly
influence the academic courses of students. To solve this
difficulty, eXplainable Artificial Intelligence (XAI) methods
have appeared as effective solutions to overcome this bottleneck
between performance predictability and interpretability. SHapley
Additive exPlanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) are XAI techniques that allow
the stakeholders to interpret the effects that separate features
have on the predictions made by the model, the importance of
variables in a relative sense, and the critical factors behind the
decision process in an intuitive and interpretable way (Kalita et al.,
2025a).

This is beneficial to both learners and institutional
administrators since dropping out students are identified at a
very early stage. By identifying it early, personalized mentoring,
additional academic services, and motivational programs are
implemented in time, which leads to better retention and
performance scores (Kukkar et al., 2023b). In addition, the
interpretability that is offered by XAI can indicate important
performance ranges, important subject relationships, and
transition points at which the academic performance of students
changes between success and risk. As an illustration, it can be seen
that the performance in Subject1 and Subject2, or the percentage
of X and the percentage of XII is a good predictor of academic
performance in general and hence interventions in certain groups
of students can be directed by XAI.

Here, the combination of ML and XAI offers a twofold benefit,
such as predictive accuracy and explainable interpretability, which
will enable higher education institutions (HEIs) to make evidence-
based, explainable, and ethical decisions. These insights, besides
assisting the administrators and teachers in developing effective
strategies to support academic efforts, can also enable the students
to be self-reflective with regard to their learning patterns in order
to enhance their performance.

The current research, thus, seeks to forecast and explain
the performance of students in academic courses based on
different ML models that have been augmented with XAI
clarification. It is aimed at the determination of the major
academic signs, the forecast of students who are likely to leave
school or achieve poor performance, and the visualization
of influence determinants in the form of understandable
diagrams. It includes predictive modeling and explainable
analytics to create a transparent, data-driven framework,
which is responsive to the previous literature as it presents

normalized and explainable academic performance trends which
are actionable by teachers, policy-makers, and both students
and teachers.

1.1 Related work

Modern HEIs face challenges related to identifying
students with low academic achievement in the early stages
of education (Jović et al., 2017), providing high-quality education
(Gaftandzhieva et al., 2022), delaying graduation (Jović et al., 2017),
developing strategies to increase student success (Ahmed, 2024).
Student success and a high percentage of timely graduates are
important indicators for measuring the quality of the educational
process and contribute to achieving a high rank in the university
rankings, which is often a determining factor when prospective
students choose HEI. Some researchers define student performance
as grade point average (GPA) or final grades, while others consider
a student’s academic performance as an opportunity to achieve
a long-term goal, such as graduation or potential for successful
implementation in the labor market (Jović et al., 2017).

Predicting student success is beneficial to various stakeholder
groups. Because high academic performance improves a
university’s ranking and increases students’ opportunities
for successful professional development, a highly interested
group is the HEI governing body. Predicting student success
allows governing bodies to obtain valuable information about
students’ potential outcomes (Al Shibli et al., 2022) and to
formulate solutions to improve students’ academic performance
(Gaftandzhieva et al., 2022), to develop effective plans and
strategies for student support (Ahmed, 2024; Ofori et al., 2020;
Bujang et al., 2021a) and to allocate resources optimally (Ahmed,
2024), which will lead to an increase in the percentage of graduates.
Early prediction of student performance helps teachers identify
low-achieving students before the final exam based on current
scores and actions taken (Ofori et al., 2020; Paddalwar et al.,
2022; Masangu et al., 2021; Gaftandzhieva et al., 2022; Al Shibli
et al., 2022; Ujkani et al., 2024), and take measures to improve
student performance. Such predictions provide timely insights
to teachers and encourage them to intervene and take measures
that reduce the percentage of low-performing students and
improve their performance. Predictions based on the Learning
Management System (LMS) data allow teachers to identify
which learning resources or activities impact the final grade
(Gaftandzhieva et al., 2022). Such measures can include providing
additional resources and support to students who are not achieving
well and updating teaching materials. Predicting grades is also
beneficial for students, as it gives meaningful feedback (Ofori
et al., 2020) and helps them make plans to achieve their goals
(Gaftandzhieva et al., 2022). Predicting success is a difficult
task, the solution of which must consider the various factors
that influence success (Nachouki et al., 2023). By understanding
the factors which affect student performance, HEI leaders can
develop strategies to improve learning outcomes (Airlangga,
2024). Identifying the factors that influence success allows
teachers to take measures that will improve students’ academic

Frontiers in Education 02 frontiersin.org

https://doi.org/10.3389/feduc.2025.1698505
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Paul et al. 10.3389/feduc.2025.1698505

achievements and increase the effectiveness of their teaching.
Important factors for increasing success include institutional
support, supervisory practices, self-management skills, student
attendance and class participation (Nguyen and Nguyen, 2023),
and socio-economic and demographic factors (Airlangga, 2024).
The proposed models for predicting success are used in building
systems for predicting students at risk and dropout rates,
early warning, and personalized recommendation systems to
improve the student learning experience (Alamri and Alharbi,
2021).

Due to the many benefits for stakeholders, in recent years,
predicting student grades has been of increasing interest to HEIs
(Gaftandzhieva et al., 2022). As a result of the digital transformation
processes, HEIs accumulate large amounts of data which facilitate
the implementation of tools for predicting student success. HEIs
management is aware of the potential of the collected data
for improving the quality of education, student retention and
success rate, which leads to an increase in interest in the use
of data-driven approaches. Machine learning algorithms (such
as Logistic regression - LR, Support Vector Machines - SVM,
Random Forest - RF, Perceptron classification - PC, Linear
Discriminant Analysis - LDA, Gradient boosting - GB, Naive
Bayes - NB, Neural network - NN, Decision Trees - DT, K-
nearest neighbor - kNN, Stacking Regressor - SR, XGBoost,
LightGBM) stand out as a powerful technique for predicting
the student’s academic performance (Nguyen and Nguyen, 2023),
which provides insights into how different factors interact to
influence learning outcomes (Airlangga, 2024). It is important to
note that to achieve high reliability and accuracy of predictions,
prediction must be performed on a sufficiently large data set using
different machine learning algorithms and multiple parameters
must be investigated. The algorithm’s efficiency is assessed through
performance evaluation metrics encompassing accuracy, precision,
recall, F-measure, Mean Absolute Error, Root Mean Squared
Error, R-squared, Mean Squared Log Error and Mean Absolute
Percentage, and cross-validation techniques are used for validation.
A frequently used approach to overcome an unbalanced data
set with multiple classifications and avoid model re-fitting is the
application of the Synthetic Minority Oversampling Technique
- SMOTE and FS (Bujang et al., 2021b; Gaftandzhieva et al.,
2022; Arévalo Cordovilla and Peña Carrera, 2024). Based on the
analyzed studies (see Table 1), it can be concluded that most
models focus on predicting student performance based on a
limited set of characteristics, without considering mechanisms
for improving student learning outcomes. RF has shown strong
predictive performance in most of the studies analyzed, but its
complexity and reduced interpretability may pose challenges in
its practical application in educational settings. On the other
hand, according to some researchers (Arévalo Cordovilla and
Peña Carrera, 2024), the simplicity and efficiency of LR may
facilitate the timely identification of students at risk, allowing the
implementation of personalized interventions that can improve
academic performance and retention rates. Although adequate,
NN and SVM outperform simpler models in a few studies,
suggesting that increased model complexity does not necessarily
lead to better predictive accuracy. Table 1 presents the number
of students in the dataset, the attributes analyzed, the algorithms

used, the best-accuracy scores, the results, and the limitations of
the studies reviewed.

HEIs leaders and teachers need decision-making support to
consistently influence the learning process and keep students
motivated, engaged, and successful (Tiukhova et al., 2024). Machine
learning algorithms, when applied to large datasets, demonstrate
the ability to accurately evaluate the risk of academic failure
among students. When it comes to educational data mining, high
accuracy is not the only critical factor for the success of such
models. It is crucial that stakeholders trust the model and that
the reasons for these predictions are explainable (Alsubhi et al.,
2023; Alamri and Alharbi, 2021). However, the complexity of these
algorithms often encapsulates their decision-making processes
within a “black box,” making it difficult to elucidate the specific
reasoning underlying their predictions (Ujkani et al., 2024). In
recent years, eXplainable Artificial Intelligence (XAI) has emerged
as a popular approach to interpreting and explaining the reasons
for the decisions of machine learning algorithms (Hoq et al.,
2023). XAI utilizes approaches that enhance the clarity of AI
models, allowing stakeholders to understand the reasoning behind
a model’s predictions, rather than merely its accuracy (Ujkani et al.,
2024). This allows all stakeholder groups (students, faculty, and
administrators) to understand the factors behind the predicted
results and tailor their interventions to specific problems. The
use of explainable models is also useful for AI system designers,
as it allows them to ensure the quality of the trained model
if they can actually “look” inside it and verify the correctness
of the inferred models (Alamri and Alharbi, 2021). Using XAI
to interpret predictions of student achievement is a relatively
new but rapidly developing area of research. Tiukhova et al.
(2024) propose an approach to apply XAI to study the stability
of models for predicting student success. The researchers use
traditional techniques, such as concept bias and performance
bias, to examine the stability of models for predicting student
success over time, the Shapley Additive explanations in a new way
to explore the stability of the importance rankings of extracted
features generated for these models, and produce new insights that
arise from stable features across cohorts, allowing the educator to
provide instructional advice. The results contribute to education
research in general and expand the field of Learning Analytics
by increasing the interpretability and explainability of prediction
algorithms and ensuring their applicability in a changing context.
Özkurt (2024) emphasizes the need for rigorous scrutiny in
outlining the determinants of student achievement, advocating
for continued research to inform evidence-based educational
policies. He proposes an approach to explaining the predictions
of machine learning algorithms by applying the SHAP and LIME
methodologies, shedding light on the complex mechanisms driving
the predicted outcomes. The promising results may contribute
to designing data-driven decision-making processes and more
effectively planned interventions to improve student success. Hoq
et al. (2023) developed an explainable ordered ensemble model
to predict student final grades based on assignment information
and explain the predictions made by the model using the XAI
SHapley (SHAP) algorithm. Explanations of the model’s decisions
are presented at two levels – individual for each student and
at the course level. This explanation can help students and
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TABLE 1 Findings and knowledge gap of different studies related to educational datasets.

Reference Dataset
size

Attributes
analyzed

ML
algorithms

Best
model

Findings Limitations XAI
used

Masangu et al., 2021 480 Engagement in
LMS, Midterm
Grades,
Demographics

SVM, DT, PC,
LR, RF

SVM – 70.8 % Absences affect
academic
performance; midterm
grades have limited
effect

Small dataset;
single
institution

No

Nguyen and Nguyen,
2023

7 837 Demographic &
Academic data

RF, DT, GB,
kNN, NN

RF – 98.2 % GPA, college, major,
gender influence
grades

Single
institution

No

Ahmed, 2024 32 005 Gender, Region,
Entrance Result,
Credits etc.

SVM, DT,
kNN, NB

SVM – 96 % Innovative clustering
technique;
comparative analysis

Parameter
sensitivity;
single
institution

No

Gaftandzhieva et al.,
2022

105 LMS Engagement,
Attendance

DT, SVM, NB,
kNN, LR, RF

RF – 99.5 % LMS engagement &
attendance impact
final grade

Small dataset No

Bujang et al., 2021b 489/1 282 Academic History,
Grades & GPA

DT, RF, SVM,
LR, kNN

DT/kNN ≈
99.6 %

Early-warning system
for at-risk students

Unbalanced
dataset;
limited scope

No

Nachouki et al., 2023 650 Course Category,
Attendance, GPA
etc.

RF RF – 90.3 % GPA and school type
as key predictors

One
algorithm;
small sample

No

Yagci, 2022 1 854 Midterm & Faculty
Data

RF, NN, SVM,
LR, NB, kNN

RF – 74.6 % Framework for HEI
training analysis

Few features No

Jović et al., 2017 1 696 GPA, Attendance,
Failed Attempts etc.

SVM, LR,
LDA, kNN,

DT, NB

SVM – 88.5 % Project grades impact
final score

Limited course
range

No

Badal and Sungkur, 2023 1 074 Student Profile,
LMS Data

RF, LR, kNN,
NB, DT, SVM,

DL

RF – 85 % Web app to identify
at-risk students

External
factors not
assessed

No

Airlangga, 2024 — Socio-Economic &
Academic Factors

SVM, LR, SR,
RF, GB, XGB,

LGBM

SVM – 86.8 % Simpler models
perform competitively

Feature
clustering not
used

No

Paramita and Tjahjono,
2021

32 593 Demographics,
LMS Engagement

NB, RF, kNN,
SVM, NN

kNN – 99.8 % Hybrid algorithms
improve classification

Missing values No

Arévalo Cordovilla and
Peña Carrera, 2024

591 LMS & External
Factors

LR, RF, SVM,
NN

NN – 99.9 % Early assessment &
LMS participation
crucial

Single
institution

No

Tiukhova et al., 2024 — LMS Features &
Performance Bias

RF, SVM, NN
+ SHAP

RF – Stable
Features

Studied feature
stability via XAI

None SHAP
Used

Hoq et al., 2023 — Assignment
Information

Ordered
Ensemble

Model

Ensemble –
XAI based

Explained predictions
at individual and
course level

None SHAP
used

Jang et al., 2022 — Course
Performance Data

ML + XAI ML – XAI
based

Personalized learning
support via
explainability

Two courses
only

LIME
used

Alamri and Alharbi,
2021

— e-Learning
Analytics

ML
Frameworks

— Highlighted gap in
explainable models

No standard
XAI metrics

XAI
reviewed

Ujkani et al., 2024 32 593 Demographics,
LMS Activities

DL + SHAP DL – 94 % Identified key factors
via explainability

Single dataset SHAP
used

Proposed Paper 33 627 Academic &
Demographic
Features

LR, GB, RF, DL LR – 98.43 % Explains feature
importance and critical
points using SHAP and
LIME; high
cross-university
validation accuracy

Future
validation
planned across
multiple HEIs

SHAP +
LIME
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teachers understand the model’s predictions and make them
reliable. The proposed model can help explain students’ problem-
solving behavior, allowing for effective intervention and adaptive
support for students. Ujkani et al. (2024) offer practical insights
for educators, policymakers and administrators for enhancing the
quality and effectiveness of online learning. They use machine
learning and deep learning techniques to predict student success
and the SHAP technique to predict student grades, identify at-risk
students, and key factors contributing to success or failure. The
dataset includes data on 32,593 students - demographic data, course
enrollments, assessment results, and LMS activities. In contrast
to traditional statistical approaches, which investigate associations
among variables. The proposed approach employs advanced deep
learning techniques to uncover patterns and insights, providing
a deeper analysis of the factors that affect student success and
facilitating targeted interventions to promote their achievement.
The results indicate that student engagement and adherence to
registration deadlines are key factors influencing performance. The
personalized models deliver an accuracy of up to 94% in the
designated tasks, outperforming conventional approaches.

In Alsubhi et al. (2023), Alsubhi et al. use machine learning
algorithms to predict the characteristics that contribute to a
student’s performance. They examine the efficacy of WB and BB
categorization models in predicting academic grades and propose
a CORELS model that outperforms them. In BB classification
models, a decision (or grade) is often predicted with a limited
explanation of why that decision was made, whereas, in WB
classification models, the decisions made are fully interpreted by
stakeholders. The results show that these BB models perform
similarly in accuracy and recall whether the classifiers were
trying to predict an A or an F grade. The findings provide
important information about the most reliable models for
predicting grades within a certain range, which could provide
insights for HEIs seeking to improve their grading systems—
e.g. the usefulness of RF in predicting a C grade and SVM
for a D grade. These distinctions offer useful information for
institutions seeking to improve their prediction accuracy for
certain grades. The results can be directly applied to improve
grading prediction systems in similar educational situations, using
actual educational data as the basis for analysis. In Jang et al.
(2022), the authors present an innovative approach to forecasting
student performance using machine learning and XAI techniques.
Using XAI, a method is proposed to provide information to
teachers to help interpret the classification results and visually
present information that can help each student. The proposed
method can support personalized learning by expounding the
classification results of at-risk students using the XAI technique.
A drawback of the study is that the experiments were conducted
with data from two courses in the same subject area. Alamri
and Alharbi (2021) examine research gaps in the field of
explainable models for student performance, highlighting a lack
of studies that incorporate state-of-the-art explainable methods
and utilize rich predictors, such as e-learning analytics, to forecast
student performance. They also point out that no standardized
metrics have been adopted to evaluate model explainability,
making it challenging to compare the explainability levels of
different models.

The point of observation highlights a research gap of critical
importance to the existing literature of educational data-mining
from the Table 1. Although earlier studies have mostly focused
on predictive accuracy, they do not always address the question
as to why models derive their conclusions, which restricts their
applicability in the practical academic decision-making process.
The use of eXplainable Artificial Intelligence (XAI) methods like
SHAP and LIME offers insight into the model reasoning and
enables educators, administrators, and policymakers to understand
the importance of features, detect bias and make data-driven
interventions with confidence. The proposed study will address
this gap since it will consider XAI in high-accuracy models,
so the predictions are not just accurate but understandable.
Such integration will enable institutions of higher learning to
make predictive analytics a non-black-box process and turn it
into an action-oriented, credible, and ethically feasible decision-
support mechanism.

1.2 Research objectives

ML models can help analyzing the educational data of
the students. Therefore, exploring various aspects of academic
performance can provide crucial knowledge about at-risk of failure
students. Additionally, an efficient ML model can be selected to
distinguish at-risk of dropout students’ group from “not at risk”
students. Moreover, XAI may provide important insights such
as feature importance behind best ML model’s decision making,
feature specific critical points, sharp transitional points of academic
performance and so on. In brief, the four research objectives of this
study are as follows:

• Objective 1: To predict the first semester CGPA using
regression so that the students at risk may be provided more
attention and extra classes to cope up.

• Objective 2: To predict the at-risk students using classification
so that the teachers and policy makers can stop the possible
dropout of these students.

• Objective 3: To find the best classifiers among different
classifiers to predict the at-risk students that may be applied
to other similar datasets of different Universities.

• Objective 4: To explain the results using SHAPASH to
demonstrate the important features so that the stakeholders
come to know how the results are achieved related to XAI.

2 Data mining techniques

2.1 Random forest

In 2001, Breiman introduced random forests (Breiman, 2001),
which enhance the bagging algorithm by adding an additional level
of randomness. Like bagging, random forests generate each tree
using a different bootstrap sample of the data, but the key difference
lies in the way the trees are built. Standard trees use the best
predictor to split each node, while random forests randomly select
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a subset of predictors for each node and choose the best split within
that subset. Though this approach might seem counterintuitive,
it has shown to be highly effective, outpacing other classifiers,
including discriminant analysis, support vector machines, and
neural networks, and is robust to overfitting.

The random forests algorithm is as follows (Liaw and Wiener,
2002):

• Generate ntree bootstrap samples from the original dataset.
• Grow an unpruned decision tree for each bootstrap sample,

ensuring that at every node, a random selection of mtry
predictors is considered for the split, rather than using
all predictors.

• For new data prediction, combine the outputs of the ntree
trees, applying majority voting for classification tasks and
averaging for regression.

The following method can be used to estimate the error rate
based on the training data:

• For each bootstrap iteration, use the tree trained on the
bootstrap sample to predict the data excluded from the sample,
known as the “out-of-bag” (OOB) data.

• Aggregate the OOB predictions, considering that each data
point is out-of-bag approximately 36% of the time, and
compute the error rate, known as the OOB estimate of
error rate.

2.2 Naive Bayes

Naive Bayes is a widely used probabilistic algorithm in machine
learning, primarily for classification tasks (Duda and Hart, 1973).
It utilizes Bayes’ theorem to estimate the probability that a given
instance belongs to a specific class, based on its observed features.
A key characteristic of Naive Bayes is its “naive” assumption
of conditional independence, which means that it assumes each
feature is independent of the others given the class label (Friedman
et al., 1997). Despite this simplifying assumption, Naive Bayes often
performs well in real-world applications and provides strong results
even when the independence assumption is not perfectly accurate.

The advantages of Naive Bayes (Meiriza et al., 2020) include
its simplicity in terms of understanding and design, making it
an accessible algorithm for many users. Additionally, it is a fast
algorithm for generating class predictions when compared to
other classification algorithms and can be efficiently trained on
small datasets.

2.3 Decision tree (DT)

DT-based supervised learning is a technique that can be
viewed as a hierarchical process, where a data domain (node)
is recursively divided into subdomains to maximize information
gain. The goal of this process is to enhance classification
accuracy by creating subdomains that are more straightforward
to classify. The optimization algorithm aims to identify the best

split that maximizes information gain, reflecting the ease of
classification within the resulting subdomains. The main objective
of supervised learning using decision trees is to classify data
accurately (Suthaharan, 2016). DTs are used for various tasks,
including variable selection, predictive modeling, and handling
missing values (Song and Ying, 2015).

A DT consists of nodes and branches. Nodes are categorized
into root nodes (representing the entire dataset), internal nodes
(representing decision points), and leaf nodes (representing final
outcomes). Branches define the paths between nodes and can be
expressed as “if-then” rules.

The construction of a decision tree involves three main steps
(Song and Ying, 2015):

• Splitting: The dataset is divided into subsets using relevant
input variables to create nodes with higher purity, which
is a stronger relationship between input features and the
target variable.

• Stopping: To prevent overfitting, the model’s complexity is
controlled by applying stopping rules, like restricting the
number of records per leaf, setting a minimum number of
records before splitting, or limiting the tree depth.

• Pruning: After the tree is grown, pruning removes nodes
that do not significantly contribute to improving the model’s
precision, reducing overfitting.

2.4 K-nearest neighbor

K-NN algorithm is a non-parametric classification method, also
known as instance-based or lazy learning. It assigns a class label to
a data sample based on the majority class of its nearest neighbors.
This method has been proven effective in various applications,
including predicting student performance in big data environments
(Nagesh et al., 2017). K-NN works by predicting the label of a
test data point using the majority class of its k nearest neighbors
in the feature space. However, there are two key challenges in
K-NN classification: choosing the appropriate similarity measure
and deciding the optimal value of k (Zhang et al., 2017). One of
the main benefits of K-NN is its capability to handle big datasets
that may not fit in memory, addressing scalability issues common
to many other data mining methods. K-NN uses Euclidean
distance to measure similarities, making it simple to implement
without prior knowledge of data distribution. Additionally, K-NN
provides faster and more accurate classifications, making it an
efficient choice for generating recommendations (Adeniyi et al.,
2016).

2.5 Artificial neural networks (ANN)

ANN is a machine learning model inspired by the human
brain’s network of neurons which consist of interconnected
artificial neurons, each represented by a node, with links between
them that carry signals prompting the activation of other neurons.
ANNs are trained on historical data to learn patterns and
make predictions. ANNs are structured in layers: the input
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layer receives signals, which pass through hidden layers before
reaching the output layer. The network contains numerous
neural units and connections, with signals represented by real
numbers between 0 and 1. Each neuron has a threshold function
that determines whether signals will propagate based on their
strength. In the training phase, the network updates its connection
weights through back-propagation, continuously comparing its
predictions to the actual outputs (Okewu et al., 2021). Neural
networks are particularly effective in extracting meaningful insights
from complex data by identifying trends and detecting risky
patterns. Their ability to discover hidden interactions among
various predictors makes them especially useful in applications
like Educational Data Mining. This capability allows ANNs to
find complex relationships within educational data, contributing to
the understanding and improvement of educational systems (Gray
et al., 2014).

2.6 Gradient boosting

Gradient Boosting Machines (GBMs) work by gradually adding
new models that refine the accuracy of predictions. Each new
model is trained to correct the errors made by the previous models,
gradually improving the general performance of the model. The
main idea behind this is to build new base-learners that closely
follow the negative gradient of the loss function of the entire
ensemble, allowing each new model to correct the errors of the
previous ones and improve overall performance. While the loss
function can be chosen arbitrarily, using squared-error loss results
in consecutive error-fitting. Researchers have the flexibility to
choose or create a custom loss function for specific tasks that makes
GBMs efficient to various data-driven problems. This flexibility,
joined with the ease of boosting algorithms, makes GBMs simple to
implement and experiment. GBMs have showed significant success
in practical applications and various machine learning challenges
(Natekin and Knoll, 2013).

Boosting algorithms work by combining weak learners—
models that perform slightly better than random guessing—into a
strong learner through an iterative process. Gradient boosting, a
type of boosting algorithm, is specifically designed for regression
tasks (Bentéjac et al., 2021).

2.7 Deep learning

Traditional machine learning methods required manual feature
extraction from raw data, requiring domain expertise. Whereas,
deep learning uses representation learning to automatically
discover features from raw data through multiple layers of
transformations. Each layer gradually learns more abstract
representations. Due to its minimal reliance on manual work and
its ability to scale with increased computation and data, deep
learning is expected to continue advancing, with new algorithms
and architectures accelerating its progress (LeCun et al., 2015). In a
standard NN, units are connected and produce activations based
on inputs and connections, with learning focused on adjusting
weights to produce the desired output. Deep learning addresses

the challenge of credit assignment by working across multiple
stages in the network, where each stage changes the activations
in a non-linear way to improve performance (Schmidhuber,
2015).

2.8 Multilayer perceptron (MLP)

A Multilayer Perceptron (MLP) is a type of ANN designed
to simulate the way the human brain processes information.
The key feature of ANNs, including MLPs, is their ability to
learn and generalize from past experiences, making them effective
for modeling complex, non-linear relationships without needing
previous assumptions.

The MLP consists of three main components:

• Input Layer: The layer that receives the input data
(independent variables).

• Hidden Layers: Layers between the input and output layers
where the data is processed through neurons.

• Output Layer: The layer that produces the final output
(dependent variables).

The MLP works through a process of forward and
backward propagation:

• Step 1: Initially, random weights are assigned to the
connections between neurons.

• Step 2: The input data is passed through the network,
with each neuron in the hidden layers using an activation
function (typically the sigmoid or logistic function) to produce
output values.

• Step 3: The error (difference between predicted and actual
outputs) is calculated and propagated backward, adjusting the
weights and biases to minimize this error.

• Step 4: The process is repeated—forward propagation
followed by backpropagation—until the overall error
is minimized.

Through this iterative process, the MLP learns to adjust
its weights and biases, improving its ability to make accurate
predictions. This training process, known as backpropagation, is
central to the MLP’s ability to learn from data (Depren et al., 2017).

2.9 Logistic regression

Logistic regression is a statistical method used to model
binary outcomes (e.g., yes/no, success/failure). Unlike linear
regression, which predicts continuous outcomes, logistic regression
predicts the probability of an event occurring by using a logit
transformation to ensure that the predicted values are bounded
between 0 and 1. This transformation is essential because
the outcome in logistic regression represents the probability
of an event, which cannot exceed these bounds (Stoltzfus,
2011).

The equation for logistic regression is:
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logit(
(
p
) = ln

(
p

1−p

)
= β0 + β1X1 + . . . + βkXk

Where

• p is the probability of the outcome occurring (e.g., success).
• X1, X2, , . . . , Xk are the independent variables
• β1, β2, , . . . , βk are the coefficients estimated by the model.

The transformation of the logit function ensures that the
predicted probabilities remain between 0 and 1, making it suitable
for binary outcomes.

3 Experimental methodology

The methodology of this study which is presented in Figure 1a
begins with dataset preparation, which involves generating or
acquiring raw data from various sources, followed by preprocessing
steps such as cleaning, handling missing values, normalization,
and encoding. After preprocessing, class labels or target values
are assigned to the dataset. Once prepared, the dataset is loaded
into the system for model training and testing. The next phase
focuses on addressing specific objectives by training and testing a
regression or classification model. This involves splitting the dataset
into training and testing subsets, ensuring a fair evaluation of model
performance. The performance of the model is assessed using
relevant evaluation metrics, such as accuracy, precision, recall, and
F1-score for classification tasks, or RMSE and squared correlation
for regression tasks. Subsequently, a comparative analysis is
conducted to gain insights by comparing different models or
configurations. Finally, based on the performance results, the most
suitable regression or classification model is selected to achieve the
best outcomes for the research objectives. This systematic approach
ensures a reliable and reproducible process for model development
and evaluation.

The detailed methodology depicted in Figure 1b is structured
to address four specific objectives using a systematic machine-
learning approach. For 1st research objective, the process begins
with dataset selection and attribute extraction, followed by splitting
the dataset into 75% training and 25% testing subsets. Then, a
regression model is applied to predict CGPA, and performance is
evaluated using metrics such as RMSE, AE and squared correlation
to identify at-risk students. Besides, 2nd research objective focuses
on classifying at-risk and not-at-risk students by applying a
classifier after selecting relevant attributes. The dataset is split
using 5-fold cross-validation to ensure robustness, and the model’s
performance is analyzed using a confusion matrix. In addition,
3rd research objective aims to determine the best classifier by
continuing with the same attribute selection and cross-validation
process. Various classifiers are tested, and their performance is
evaluated using metrics like accuracy, precision, recall, and F1-
score to identify the most effective model. Finally, 4th research
objective integrates XAI using SHAPASH, an open-source Python
library built on top of SHAP (SHapley Additive exPlanations)
to enhance model transparency and describe interpretation of
important insights about academic performance. After selecting
the best classifier, the dataset is split into training and testing sets,
and SHAPASH is applied to generate summary and dependency
plots (Kalita et al., 2025b), providing insights into feature

importance and model decisions. This methodology ensures
accurate predictions, robust classification, and enhanced model
interpretability, facilitating better decision-making and providing
useful information about academic performance of students to the
institutional authorities.

3.1 Dataset description

The dataset belongs to the students of the affiliated colleges
under Dibrugarh University, Assam, India. Table 2 describes the 39
attributes in the dataset. There are 33,627 records in the dataset.
The dataset comprised of students’ data who got admitted in the
year 2023. Besides, Figures 2a, b present histogram plots of some
selective attributes of the dataset showing the data distribution.

3.2 Evaluation metrics

There are many evaluation metrics used for regression and
classification purposes and some of the formulas are listed below.

Absolute Error (AE) = 1
n

n∑
i=1

(
ŷi − yi

)2 (1)

Root Mean Squared Error − (RMSE) =
√√√√ 1

n

n∑
i=1

(
ŷi − yi

)2 (2)

Correlation (R) =
∑n

i=1(ŷi − yi) (yi − y)√∑n
i=1(ŷi − yi)2∑n

i=1(yi − y)2
(3)

Squared Correlation (R2) =
(∑n

i=1(ŷi − yi) (yi − y)
)2

∑n
i=1(ŷi − yi)2∑n

i=1(yi − y)2 (4)

Accuracy = TP + TN
TP + TN + FP + FN

(5)

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

F1 Score = 2∗
Recall∗precision

Recall + precision
(8)

Kappa de Cohen (κ) = P0 − Pe

1 − Pe
(9)

Here, yi is the actual value, ŷi is the predicted value, y
is the mean of the actual values. Again, TP, FP, TN, FN
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TABLE 2 Attributes in dataset.

Attribute name Attribute
type

Description

DEGREE_1st_SEM_At_Risk Categorical Students with lower and failed grades after 1st Semester of BA, BSc and BCom Examinations

PROGRAMME_NAME Categorical Name of the Programme

ENROLLMENT_NO Integer Enrollment Number of the student provided by Samarth eGov Suite

X PERCENTAGE Double Percentage of Class X

MAJOR_SUBJECT Categorical Major subject of the student at degree level

MINOR_SUBJECT Categorical Minor subject of the student at degree level

College_NAME Categorical Name of the College

CATEGORY Categorical Caste of the Student

RELIGION Categorical Religion of the Student

GENDER Categorical Gender of the Student

AGE DATETIME Age of the Student

X DIVISION Categorical Division at Class X

XII STREAM Categorical Stream at Class XII

XII MAXIMUM MARKS Integer XII maximum marks

XII MARKS OBTAINED Integer XII obtained marks

XII PERCENTAGE Double XII percentage

XII DIVISION Categorical XII Division

XII SUB 1 Categorical Subject 1 of Class XII

XII SUB 2 Categorical Subject 2 of Class XII

XII SUB 3 Categorical Subject 3 of Class XII

XII SUB 4 Categorical Subject 4 of Class XII

XII SUB 5 Categorical Subject 5 of Class XII

XII SUB 6 Categorical Subject 6 of Class XII

XII MAX MARK 1 Integer Maximum Marks in Subject 1 of Class XII

XII MAX MARK 2 Integer Maximum Marks in Subject 2 of Class XII

XII MAX MARK 3 Integer Maximum Marks in Subject 3 of Class XII

XII MAX MARK 4 Integer Maximum Marks in Subject 4 of Class XII

XII MAX MARK 5 Integer Maximum Marks in Subject 5 of Class XII

XII MAX MARK 6 Integer Maximum Marks in Subject 6 of Class XII

XII OBTAINED MARK 1 Integer Marks obtained in Subject 1 of Class XII

XII OBTAINED MARK 2 Integer Marks obtained in Subject 2 of Class XII

XII OBTAINED MARK 3 Integer Marks obtained in Subject 3 of Class XII

XII OBTAINED MARK 4 Integer Marks obtained in Subject 4 of Class XII

XII OBTAINED MARK 5 Integer Marks obtained in Subject 5 of Class XII

XII OBTAINED MARK 6 Integer Marks obtained in Subject 6 of Class XII

DEGREE1_GRAND_TOT_MRKS Integer Total marks in 1st Semester Degree Examination

DEGREE1_TOT_CREDIT_POINTS Integer Total credit points in 1st Semester Degree Examination

DEGREE_1st_SEM_RESULT Categorical Result in 1st Semester Degree Examination

DEGREE1_CGPA Double CGPA in 1st Semester Degree Examination
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FIGURE 1

(a) Dataset preparation and block diagram of 1st, 2nd and 3rd research objective. (b). Research objectives (in details).

denote True Positive, False Positive, True Negative and False
Negative respectively. Besides, Po is the observed proportionate
agreement, and Pe is the expected proportionate agreement.

Equations 1–4 are used in Table 3 for regression evaluation purpose
and Equations 5–9 are used in Tables 4, 5 for classification
performance evaluation.
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FIGURE 2

(a). Histogram plots of selective attributes. (b). Histogram plots of selective attributes.

TABLE 3 Prediction result of the first semester CGPA using regression
techniques.

Evaluation
metrics

Linear
regression

Polynomial
regression

Generalized
linear
model

Root mean squared
error

1.545 3.0 × 1010 1.547

Absolute error 1.245 2.71 × 1010 1.250

Relative error 14.32% 4.62×1011% 14.71%

Correlation 0.856 0 0.855

Squared correlation 0.733 0 0.732

Kendall tau 0.809 −0.064 0.811

Spearman rho 0.913 −0.086 0.911

4 Results & discussion

This section presents results of Machine Learning (ML) models
analysis following the four research objectives of this study with
the sole purpose of exploring and gaining valuable insights about
students’ academic performance. The SHAPASH framework is used
to investigate interpretability of the best ML classification model

and thereby, gain insights about the importance of different features
on ML prediction.

4.1 Objective 1 - Predicting the first
semester CGPA using regression
techniques

The first objective of this study is to predict first-semester
CGPAs using regression techniques in order to identify at-risk
of dropout students. Three regression models–Linear Regression,
Polynomial Regression, and Generalized Linear Model (GLM)
are evaluated based on various performance evaluation metrics.
Table 3 presents results of the applied regression techniques on
the dataset and the results show that, Linear Regression and
GLM have demonstrated comparably significant performance, with
Root Mean Squared Error (RMSE) values of 1.545 and 1.547
respectively, and Absolute Error (AE) values of 1.245 and 1.250.
Both models have achieved similar Relative Error (RE) rates of
14.32% and 14.71%, which indicates strong predictive accuracy. On
the contrary, Polynomial Regression has exhibited drastically poor
performance, with RMSE and AE values exceeding 3.0 × 1010 and
an RE of over 4.6 × 1011, reflecting extreme overfitting and model
instability. Correlation and squared correlation metrics further
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TABLE 4 Confusion matrices of several classification techniques.

Classifier names Classifier’s
prediction

True YES True NO Class precision Class recall

Decision tree with gain ratio (DT-GR) Predicted YES 16,454 159 99.04 95.25

Predicted NO 821 16,193 95.17 99.03

DT-GI Predicted YES 16,801 235 98.62 97.26

Predicted NO 474 16,117 97.14 98.56

Decision tree with information gain (DT-IG) Predicted YES 16,786 231 98.64 97.17

Predicted NO 489 16,121 97.06 98.59

DT-Acc Predicted YES 15,752 417 97.42 91.18

Predicted NO 1,523 15,935 91.28 97.45

RI-IG Predicted YES 15,680 358 97.77 90.77

Predicted NO 1,595 15,994 90.93 97.81

3-Nearest neighbor (3-NN) Predicted YES 1,5199 1,209 92.63 87.98

Predicted NO 2,076 15,143 87.94 92.61

4-Nearest neighbor (4-NN) Predicted YES 15,225 1,149 92.98 88.13

Predicted NO 2,050 15,203 88.12 92.97

5-Nearest neighbor (5-NN) Predicted YES 15,172 968 94 87.83

Predicted NO 2,103 15,384 87.97 97.08

7-Nearest neighbor (7-NN) Predicted YES 15,149 930 94.22 87.69

Predicted NO 2,126 15,422 87.88 94.31

Logistic regression Predicted YES 16,905 157 99.08 97.86

Predicted NO 370 16,195 97.77 99.04

Naive Bayes Predicted YES 14,848 3,674 80.16 85.95

Predicted NO 2,427 12,678 83.93 77.53

Deep learning Predicted YES 16,798 193 98.86 97.24

Predicted NO 477 16,159 97.13 98.82

Perceptron Predicted YES 16,584 47 99.72 96

Predicted NO 691 16,305 95.93 99.71

Neural networks (NN) Predicted YES 16,863 342 98.01 97.62

Predicted NO 412 16,010 97.49 97.91

RF-GI Predicted YES 16,125 218 98.67 93.34

Predicted NO 1,150 16,134 93.35 98.67

RF-IG Predicted YES 15,949 174 98.92 92.32

Predicted NO 1,326 16,178 92.42 98.94

RF-Acc Predicted YES 15,777 527 96.77 91.33

Predicted NO 1,498 15,825 91.35 96.73

Gradient boost Predicted YES 16,821 218 98.72 97.37

Predicted NO 454 16,134 97.26 98.67

have affirmed the superiority of Linear Regression and GLM, with
correlation coefficients of 0.856 and 0.855, and Squared Correlation
(R2) values of 0.733 and 0.732, respectively. This proves their ability
to predict students’ CGPA to a satisfactory degree of accuracy.
On the contrary, Polynomial Regression showed no meaningful
correlation (R = 0, R2 = 0).

Additionally, rank-based metrics such as Kendall Tau and
Spearman Rho have further validated the performance of Linear
Regression and GLM, with Kendall Tau values of 0.809 and 0.811,
and Spearman Rho values of 0.913 and 0.911 respectively. This
indicates consistent relationship between predicted and actual
values. Polynomial Regression have failed in these metrics as
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TABLE 5 Prediction performances of classification techniques of at-risk
(dropout) students.

Classifier Accuracy
(%)

Kappa F1-score
(%)

DT-GR 97.09 0.942 97.02

DT-GI 97.89 0.958 97.75

DT-IG 97.86 0.957 97.77

DT-Acc 94.23 0.885 94.10

RI-IG 94.19 0.884 94.09

3-NN 90.23 0.805 90.2

4-NN 90.49 0.810 90.4

5-NN 90.87 0.818 90.7

7-NN 90.91 0.818 90.7

Logistic regression 98.43 0.969 98.4

Naive Bayes 81.86 0.636 82.8

Deep learning 98.01 0.960 98.0

Perceptron 97.81 0.956 97.7

NN 97.76 0.955 97.8

RF-GI 95.93 0.919 95.9

RF-IG 95.54 0.911 95.4

RF-Acc 93.98 0.880 93.8

Gradient boost 98.0 0.960 98.0

well. Negative scores highlight its failure in prediction accuracy
and reflecting its inadequacy to provide useful insights from the
dataset of this study. Overall, Linear Regression has emerged as
the best-performing model due to its simplicity, interpretability,
and slightly lower error rates compared to GLM. In brief, insights
from Linear Regression can assist in finding actionable insights
into the key factors of individual student performance, identifying
at-risk students, and thereby, crafting a way of timely academic
interventions and counseling to enhance institutional performance.

4.2 Objective 2 - Predicting the at-risk
students (dropout) using classification
techniques

The second objective of this study is to predict the risk of
failure of the students using several classification techniques. The
confusion matrix analysis of various machine learning algorithms
provides valuable insights into their performance for predicting
at-risk students, which can aid the teachers and authorities in
addressing potential dropouts. The evaluation metrics such as class
precision and recall can assist in detecting each algorithm’s ability
to correctly classify students as “at-risk” or “not at risk” class.

Table 4 presents confusion matrices of several classifiers and
among the models, Logistic Regression demonstrated the highest
prediction performance, achieving an outstanding precision of

99.08% and a recall of 97.86% for the at-risk class. Its strong
recall ensures that most at-risk students are identified, while its
high precision minimizes false positives, making it a highly reliable
model for early dropout intervention. Logistic regression has
detected 16,905 out of 17,275 at-risk students and 16,195 out of
16,352 students as “not at risk” of dropout correctly, whereas the
error due to misclassification is very less, that is about 370 at-risk
students are identified as “not at risk” and 157 “not at risk” students
are falsely detected as at-risk students. Similarly, Deep Learning
achieved a precision of 98.86% and a recall of 97.24%, showcasing
its high capability to classify at-risk students correctly by finding
patterns in the features data. It has accurately identified 16,798 out
of 17,275 at-risk students and 16,159 out of 16,352 “not at risk”
students. Besides, The Perceptron has also performed exceptionally
well with a precision of 99.72% and a recall of 96%, indicating
its ability to minimize misclassifications effectively. Again, Neural
Networks (NN) has also proved to be a reliable alternative model
with 98.01% precision and 97.62% recall performance for the at-risk
student’s prediction.

Among the four DT models, Decision Tree with Gini Index
(DT-GI) has truely marked highest amount of 16,801 at-risk
students and 16,117 “not at risk” students with 98.62% precision
and 97.26% recall performance for at-risk students identification,
whereas, Decision Tree with Accuracy (DT-Acc) has pinpointed
15,752 out of 17,275 at-risk students and 15,935 out of 16,352
“not at risk” students, thereby demonstrating the slightly lower
performance with 97.42% precision and 91.18% recall for at-
risk students classification. Meanwhile, Rule Induction with
Information Gain (RI-IG) resembles performance of Decision Tree
models closely with 97.77% precision, 90.77% recall for at-risk
students’ class and it has correctly spotted 15,680 at-risk and 15,994
“not at risk” students out of 33,627 total students.

Moreover, among three Random Forest Trees models, highest
number of 16,125 at-risk students are precisely discovered by
Random Forest Trees with Gini Index (RF-GI) and lowest number
of 15,777 at-risk students by Random Forest Trees with Accuracy
(RF-Acc). Similarly, Random Forest Trees with Information Gain
(RF-IG) has recognized highest of 16,178 “not at risk” and RF-Acc
has confirmed lowest of 15,825 “not at risk” students without error.
In addition, RF-GI, RF-IG and RF-Acc has obtained precision of
98.67, 98.92 and 96.77%, respectively and recall of 93.35, 92.42 and
91.35%, respectively for the at-risk class. However, Gradient Boost
has demonstrated top tier performance by correctly recognizing
16,821 at-risk students and 16,134 “not at risk” students out of
33,627 total students with 98.72% precision and 97.37% recall
performance for at-risk class. Besides, K-NN models has shown
moderate performance, with precision ranging from 92.63 to
94.22% and recall between 87.69 and 88.13%, indicating their
considerable misclassification and limited effectiveness compared
to the top-performing models.

Conversely, Naive Bayes has performed poorly with high
misclassification rate compared to all other models, with a precision
of 80.16% and a recall of 85.95% for the “at-risk” class. This
indicates a highest rate of false positives and false negatives among
the models, making it less suitable for accurate predictions to obtain
objectives of this study. It has correctly recognized 14,848 out
of 17,275 at-risk and 12,678 out of 16,352 “not at risk” students
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only. In summary, the confusion matrices analysis highlights that
Logistic Regression has exhibited highest accurate prediction and
can be nominated for best model with further performance metrics
evaluation. Nevertheless, Deep Learning, Random Forest Trees,
Gradient Boost and Perceptron models have displayed notably high
performance and can be considered as second choice of alternate
candidate model. The best classifier model can greatly assist in
predicting at-risk students most effectively considering its robust
precision and recall values. It can ensure reliable identification of
students needing academic support, surveillance and motivation.
Therefore, this can pave a way to performance monitoring and
guidance of at-risk students and also to draft early intervention
strategies to educators and policymakers. Consequently, these
valuable insights can be utilized to reduce at-risk students (dropout
rates) and improve institutional academic performance.

4.3 Objective 3 - Finding the best
classifiers among different classifiers based
on prediction performance

The third objective of this study is to identify the best-
performing classifiers for predicting at-risk students most
effectively that may be applied to datasets from other universities.
Table 5 displays classification performance of several classifiers
based on different evaluation metrics such as accuracy, kappa and
F1-Score. Among the evaluated models, Logistic Regression has
emerged as the top-performing classifier with the highest accuracy
(98.43%), kappa (0.969), and F1-Score (98.4%). This indicates the
model’s superior ability to correctly classify at-risk students while
maintaining strong correlation with true labels. Close competitors
such as Deep Learning and Gradient Boost, both has achieved high
accuracy (98.01 and 98.0%, respectively) and F1-Scores (98.0% for
both), with kappa values of 0.960 each. These results highlight their
robustness and suitability for handling complex data relationships,
making them excellent alternatives to Logistic Regression. Besides,
the Perceptron model has also performed well, with accuracy,
kappa, and F1-Score values of 97.81, 0.956, and 97.7%, respectively,
showcasing its effectiveness as a simpler alternative for at-risk
students’ prediction. Furthermore, NN has accuracy of 97.76%,
kappa of 0.955 and F1-Score of 97.8%, which is close to the best
performing classifier model.

DT classifiers, particularly those using Gini Index and
Information Gain, achieved respectable results, with accuracies of
97.89 and 97.86%, and F1-Scores of 97.75 and 97.77%, respectively,
outperforming DT-Acc (94.23%) and RI-IG 94.19%. On the
other hand, K-NN models performed moderately, with accuracies
ranging between 90.23 and 90.91%, and F1-Scores around 90.2%-
90.7%, indicating moderate but limited effectiveness compared to
the top-performing models. Moreover, RI-IG has displayed similar
moderately high performance like DT classifiers with 94.19%
accuracy, kappa of 0.884 and 94.09% F1-Score.

The Random Forest with Gini Index (RF-GI) has outperformed
Random Forest with Information Gain (RF-IG) and Random
Forest with Accuracy (RF-Acc) and achieved the highest
performance across all metrics, with an accuracy of 95.93%,
Kappa of 0.919, and F1-score of 95.9%, which indicates a strong

overall classification capability and agreement. In comparison,
the Random Forest with Information Gain (RF-IG) demonstrated
slightly lower performance, achieving an accuracy of 95.54%,
kappa of 0.911, and F1-score of 95.4%, suggesting it is nearly
as effective. Lastly, the RF-Acc model has recorded the lowest
performance, with an accuracy of 93.98%, Kappa of 0.880, and F1-
score of 93.8%, indicating a noticeable decline in both classification
precision and agreement. In contrast, Naive Bayes exhibited the
poorest performance among all classifiers, with an accuracy of
81.86%, kappa of 0.636, and F1-Score of 82.8%. This probabilistic
model may perform poorly because of its strong independence
assumption, which is not well-suited for this dataset’s complexity
(Frank et al., 2000).

To summarize, these findings underscore the suitability of
Logistic Regression as the best prediction model, with Deep
Learning and Gradient Boost as close second choices, while Naive
Bayes was determined to be the least effective. Therefore, the
best classifier can be selected to find underlying patterns and
valuable insights in students’ academic performance data. Hence,
universities can confidently adopt the best model to predict at-
risk students, enabling early interventions, resource allocation,
and academic support programs. In summary, best classifier
model usage can pave a way to the educational authority to
efficiently monitor academic performance, early detect at-risk of
failure (dropout) students, as well as motivate students and track
performance progression resulting in better academic success and
reduced dropout rate.

4.4 Objective 4 - Explaining the results
using XAI (eXplainable AI) to demonstrate
the important features.

The fourth objective of this study is to interpret the results
of best ML model to gain various decision-making insights using
XAI. In addition, Logistic Regression classifier model has proven
to be the best performing model to be considered for academic
performance analysis. Therefore, SHAPASH framework is used to
interpret the decision making process of this ML model in order to
retrieve various insights such as feature importance and impact on
model prediction performance (Islam et al., 2024).

The SHAPASH summary plot in Figure 3 presents 27 input
features in a bar graph where features are ranked by sorting
from the most important features to the least significant features
(top to bottom) by evaluating their contribution to the decision
making of the prediction model of whether a student is at risk
of failer/dropout in their first semester. The features with highest
mean absolute contribution are the most influential and the
features with negligible contribution have no significant impact on
model decision making (Miranda et al., 2024).

According to the result, The DEGREE1_TOT_
CREDIT_POINTS is the most influential feature, with a mean
absolute contribution of approximately 0.69, indicating that it
significantly impacts the model’s decision-making. This suggests
that the total credit points earned by students are a critical
indicator of academic performance. The second most important
feature, DEGREE1_GRAND_TOT_MRKS, has a mean absolute
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FIGURE 3

Summary plot of all features using SHAPASH.

contribution of around 0.17, showing that a student’s overall marks
also play a pivotal role in identifying at-risk students. Again, XII
MARKS OBTAINED, has a mean absolute contribution of around
0.05, showing that a student’s overall marks also play an important
role in identifying at-risk students.

Additionally, XII_PERCENTAGE, with a contribution closer
to 0.04, highlights that high school performance (12th-grade
percentage) provides valuable but less substantial insights into
academic dropout risk. However, features like XII SUB 1, XII
MAXIMUM MARKS have a mean absolute contribution of around
0.005 each and XII OBTAINED MARK 1, XII OBTAINED MARK
4 and XII OBTAINED MARK 6 have a mean absolute contribution
of around 0.004 each. Despite of less contribution, these features are
also crucial factor as they participate in decision making process of
the model. Contribution of these features conveys that 12th grade
1st subject, 12th grade maximum marks, 12th grade obtained mark
in subject 1st , 4th and 6th are important key factors though they
have moderate correlation with students academic performance
and limited contributions to ML model’s prediction decision.

However, features at the bottom of the bar graph, such
as GENDER, X PERCENTAGE, MAJOR SUBJECT have very
negligible contribution that means they don’t have any notable
correlation with students’ academic performance. This reflects that
gender of the students do not have any correlation with at-risk
students’ academic performance which means there is no exact
pattern of male or female groups with at-risk or “not at risk”
academic performance. Again, achieved percentage in 10th grade
also has no meaningful correlation with decision making of at-risk
students performance detection.

Figure 4 displays DEGREE1_ GRAND_TOT_MRKS (total
marks earned) dependency plot and its influence on at-risk dropout
students’ prediction. In this graph plot, 2000 students’ instances are
plotted using SHAPASH where blue dots represent instances with

a low predicted probability for the positive class that means “not
at risk” class supportive and yellow dots represent instances with a
high predicted probability for the positive class which means at-risk
class supportive (Islam et al., 2024).

Students with lower marks than 200 are at a higher risk of
dropout, reflected by the consistent negative contribution and
the presence of yellow or orange points. Meanwhile, there is
a crucial transition zone that can be noticed where dropout
risk decreases as marks increase in between 200 and 300 marks
range. Again, students scoring above 300 marks consistently show
positive contribution and the presence of blue points, indicating a
lower probability of students’ dropout risk. In brief, the findings
clarify the importance of crossing the approximate 200-mark
threshold, as this significantly reduces students’ dropout risk, and
suggest prioritizing support for students with marks below this
threshold level.

Figure 5 highlights the relationship between DEGREE1_TOT_
CREDIT_POINTS (total credit points earned by students)
dependency plot and their dropout risk. According to this
SHAPASH dependency plot, students with lower credit points
below 50 have a significantly higher dropout risk, as indicated by
positive contribution values and orange points. This group requires
immediate academic intervention, recovery support and guidance.
As credit points increase, the SHAP contribution values move
closer to zero, indicating reduced contributions to dropout risk.
A sharp transition from greater risk of dropout to lower can be
observed where credit points reaches around 100. For students
with credit points above 100, the SHAP contribution values become
negative, and the points turn blue, depicting a notable effect
where higher credit points are strongly associated with “not at
risk” students’ detection. Finally, this dependency plot analysis
underscores a critical threshold near 50 credit points, below
which students are particularly vulnerable to dropping out and a
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FIGURE 4

Dependence Plot of DEGREE1_GRAND_TOT_MRKS.

FIGURE 5

Dependence Plot of DEGREE1_TOT_CREDIT_POINT.

transition point of probability drop at 100 credit point favoring
at-risk students’ total reduction 100 to 200 credit points zone.

Finally, these results provide valuable insights such as
feature importance and contribution to ML model’s decision
making, impactful and negligible features by showcasing graphical

transparent view and providing stakeholders with clear insights
into how predictions are achieved, enabling targeted interventions
for at-risk students. It also extracts crucial feature specific
knowledge such as critical and sharp transitional total credit points
threshold (50 credit, 100 credit respectively), grand total marks
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range (below 200, around [200–300] and above 300) and at-
risk student performance correlation and so on. In summary,
insights found by XAI can greatly help stakeholders and authorities
to understand precise observations and feature patterns, and
make informed decisions by identifying key factors influencing
academic result, improving transparency, and enhancing trust in
the model’s predictions.

4.5 Comparative validation and
generalization scope

In order to confirm the applicability and strength of the
suggested findings, one will have to compare the formulated
models with those of the associated studies and design further
extensive validation with the dataset of other universities. Not
only does comparative analysis indicate the strengths of the
proposed framework, but also puts its performance in the global
academic context.

Table 6 provides a comparison of the findings of this work with
the other works on the topic of student performance prediction
done in the recent period. The table outlines the models used
in machine learning, the accuracy attained and the nature of the
datasets used, as to how the proposed framework works compared
to different learning settings.

The results relative to those of other models like CART, AHP,
and ANN have an excellent accuracy of 98.43 showing that the
proposed Logistic Regression model is superior to the other models
employed in earlier researches. The stability and versatility of the
framework in various learning paradigms is again validated by the
Gradient Boost (98.00%) and Random Forest (95.93%) models.

Nevertheless, the data used in this study is the resultant of
a one-university system, which can be potentially restrictive to
the application of outside generalization. The cross-institutional
validation (testing the model on datasets of other universities
throughout India and beyond) will thus become the next step in
the research. This validation will help assess the consistency of the
model parameters, ranking of feature importance and explanations
across institutions that use different grading systems, student
bodies and curriculum designs.

Moreover, by expanding the sample to multi-university
datasets, the future research will evaluate the model transferability
and its possible application as a generalized predictive early-
warning framework of academic risk. The wider validation will
make sure that the results will not be limited to local consistency,
but instead, taken to be scalable, data-driven decision-support
system to the higher education institutions all around the world.

4.6 Cross-university validation for
generalization

In order to assess the extrinsic validity of the developed
forecasting framework, the model was also tested on another
dataset, which was a secondary test in a European university
(Portugal) (https://www.kaggle.com/datasets/thedevastator/
higher-education-predictors-of-student-retention). This dataset

is comprised of 22 features which cover demographic, socio-
economic as well as educational factors including marital
status, parental credentials, tuition-fee credentials and approved
curricular units. The task was to find out whether the proposed
system is capable of preserving its predictive reliability when used
in a different institutional setting. The results are described in
Table 7.

The cross-university validation, however, establishes that the
suggested predictive framework can be used across different
institutional settings. Despite the socio-economic and curricular
structure of the Portugal dataset being significantly different to
the Dibrugarh dataset, both the Logistic Regression model and
the Deep Learning model were able to reach an accuracy of
over 93% which means that their transferability is high. The
minor decrease in performance (≈4–5%) is an anticipated domain
variation as opposed to overfitting, which confirms the strength
of the underlying feature outcome correlations. These findings
support the argument that the model represents a general pattern
of academic success that can be generalized to the higher-education
systems of the globe. Further studies will continue by validating in
more universities in Asia and Europe to further support the cross-
institutional scalability and create a cohesive AI-based framework
of academic risk-predictions.

4.7 Limitations and future work scopes

One of the limitations of this study is feature selection
techniques are not utilized as the data is collected from real world
situations. Another limitation is the absence of more demographic
and socioeconomic features in the dataset. Incorporation of such
features may impact the overall academic performance of the
students. The dataset explored only the 1st Semester Examination
results. The performance progression of other semester results may
be another research goal for future study. The model may be tested
for another University’s records for generalization of the findings.
The detection of students with consistent performance using
previous examination performance trends can be an interesting
working trajectory (Sarker et al., 2024). In future studies, efficient
feature engineering by educational data exploration techniques
can assist in better model performance. To gain better insights,
association rule mining can also be exploited. Some novel or
ensemble techniques may be examined in the dataset in comparison
to the traditional machine learning classifiers can be another
extension of the work.

5 Conclusion

The study has investigated students’ academic performance
using ML models and also discussed interpretation of the decision-
making process by the best ML model over the dataset features.
The first objective provides a suitable model (Linear Regression)
and some valuable insights about individual student’s performance
and probable risk of failure, various features contribution to at-risk
academic result. Thus, authorities can initiate timely monitoring
and extra classes to the struggling students to cope up resulting in
failure risk mitigation. In addition, the second objective provides
useful findings such as correctly detected at-risk and “not at risk”
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TABLE 6 Comparative analysis of prediction models across related studies.

References Model used Accuracy (%) Dataset description

Sethi et al., 2020 Neural Network (NN) 86.72 550 students from medical and engineering programs

Chang et al., 2023 Classification and Regression Tree (CART) 80.00 11,560 U.S. high school students

Ognjanovic et al.,
2016

Analytical Hierarchy Process (AHP) 77.52 Canadian research-intensive university (N = 1,061)

Anwar, 2021 Artificial Neural Network (ANN) 82.61 Padang State University, 294 students

Proposed Paper Logistic Regression (best classifier) Gradient Boost
(alternate model) Random Forest (ensemble comparison)

98.43
98.00
95.93

Dataset of 33,627 students from affiliated colleges under
Dibrugarh University, Assam, India

TABLE 7 Validation of proposed models on the Portugal dataset.

Classifier Accuracy (%) Kappa F1-score (%) Observation

Logistic regression 93.84 0.876 93.70 Maintained strong linear separability despite new socio-academic context

Gradient boost 92.45 0.858 92.30 Stable precision–recall; slight drop due to categorical heterogeneity

Random forest 91.72 0.842 91.60 Demonstrated robustness to diverse feature interactions

Deep learning 94.10 0.881 94.00 Highest generalization among non-linear models, confirming adaptability

category students with a high degree of accuracy. Therefore, the
teachers and policy makers can take counter measures to reduce the
possible at-risk students (dropout rate). Moreover, third objective
helps to select the best model (Logistic Regression) that can
be applied to other similar datasets of different Universities to
extract useful information such as at-risk or “not at risk” students
effectively. Lastly, the fourth objective delivers knowledge regarding
the internal decision making of the best model, feature importance
and impact on ML model and some very useful patterns like critical
points and sharp transitional range that affect at-risk students’
detection greatly.
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