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In recent years, the rapid development of artificial intelligence technologies has
been transforming the nature of engineering education and reshaping the skill
sets expected from students. In this context, techno-mathematical literacy (TmL)
stands out as a critical competence that enables engineering candidates to use both
technology and mathematical thinking in an integrated manner. This study was
conducted to examine the effect of artificial intelligence applications performed by
engineering candidates on the development of their techno-mathematical literacy
and to determine their self-efficacy levels regarding these applications. The study
was designed with a quasi-experimental single group pre-test-post-test model
from quantitative research approaches. The study group consists of 156 students,
selected by simple random sampling method, studying in different programs at
the engineering faculty of a state university. The data were collected with the
Techno-Mathematical Literacy Scale (TMLS) and the Artificial Intelligence Self-
Efficacy Scale (AILS). The data obtained from the pre-test and post-test applications
were analysed with descriptive statistics, paired sample t-test, independent sample
t-test, and ANOVA through SPSS 27 software. Also, the effect size was calculated.
At the end of the six-week implementation process, it was found that artificial
intelligence applications significantly increased the techno-mathematical literacy
levels and artificial intelligence self-efficacy perceptions of engineering candidates.
In addition, there was no significant difference in techno-mathematical literacy
level and perception of artificial intelligence self-efficacy in terms of gender, but
significant differences were found according to the department variable.

KEYWORDS

artificial intelligence applications, techno-mathematical literacy, self-efficacy,
engineering education, 21st century skills

1 Introduction

The global digital transformation is reshaping the traditional definitions of knowledge and
skills in engineering education. Today’s engineers are expected not only to have theoretical
knowledge but also to be able to use technology effectively, integrate mathematical thinking
with digital tools, and generate innovative solutions to complex problems. In this context, the
focus of engineering education is increasingly shifting towards interdisciplinary skills, data-
driven decision-making processes and artificial intelligence-supported learning experiences.
In order for students to be successful in their future professional roles, it has become a critical
requirement that they both blend technology with their mathematical literacy and adapt to
rapidly developing artificial intelligence applications. Recent studies also emphasise that
incorporating digital tools into engineering education enriches learning and fosters student
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engagement (Su et al., 2025), and that Al-supported approaches
require rethinking instructional strategies to prepare students for
future professional demands (Honig et al., 2025).

Techno-mathematical literacy (TmL) is defined as a set of
competencies that involves the integration of mathematical thinking
processes with digital technologies, technical tools, and engineering
applications (Hoyles et al., 2010). This approach shows that the
knowledge and skills expected from engineering graduates are not only
limited to theoretical mathematics, but also include digital tools, data
analytics, technical communication, and applied problem solving. TmL
has also been closely linked with Al-related competencies, as recent
frameworks suggest that techno-mathematical and Al literacy should
be developed in parallel to equip students with holistic problem-
solving capacities (Annapureddy et al., 2024; Barnard College, 2024).

In literature, studies examining which TmL components
engineering professionals most need in their professional life provide
important findings. For example, van der Wal et al. (2017) identified
data literacy, software-based problem solving, error intuition, number
sense, technical creativity, and technical drawing as the prominent
TmL components in the daily practices of engineers. These skills
represent the points where mathematics meets technology, especially
in the design and analysis phases of engineering projects. Moreover,
Chen et al. (2025) proposed a generative AI competence framework
for engineering curricula, highlighting that future engineers must
master both TmL skills and AI competencies in a structured manner.

Research conducted in an educational context shows that the
development of TmL in engineering students supports not only
mathematics achievement but also professional self-efficacy and
problem-solving skills. van der Wal et al. (2019) emphasised that open
data analysis, technical reporting, and software-based modelling
activities make significant contributions to the development of TmL
in engineering students. Similarly, Bakker et al. (2011) states that
engineering students gain deeper understanding of mathematical
concepts in technology-supported environments while working with
real-life problems. Walter (2024) further argued that AI literacy,
prompt engineering, and critical thinking are indispensable for
creating inclusive and future-ready learning environments,
complementing TmL-oriented pedagogies.

Some recent empirical studies also reinforce the importance of
TmL in the context of engineering education. For example, as revealed
by Kent et al. (2007) that TmL skills of engineering students in their
professional learning processes are directly related to labour market
expectations. There are also design studies that reveal educational
strategies implemented by engineering students that contribute to the
acquisition of TmL components. In van der Wal et al. (2019), an
innovative mathematics course for engineering students, is designed
to successfully communicate inquiry-based teaching approaches that
support TmL learning. The comprehensive review in Pepin et al.
(2021) shows that innovative practices in mathematics teaching (e.g.,
the use of digital resources) may be central to the future of engineering
education. Furthermore, recent studies in countries such as Germany
and the Netherlands show that the ability of engineering students to
use mathematical representations on digital platforms, interpret
numerical data, and translate them into engineering decisions is
becoming increasingly critical (Weigand et al., 2024). In this context,
TmL can be defined not only as an auxiliary skill, but also as a basic
competence directly required in the practice of the engineering
profession. Therefore, integrating TmL into the curriculum in
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engineering education has become a strategic imperative in terms of
preparing students for the professional world. At the same time,
Schleiss and Johri (2024) stressed that Al integration in engineering
education should be designed according to role-based competencies
(e.g., user, implementer, developer), which resonates with the idea of
tailoring TmL instruction to disciplinary needs.

Artificial intelligence (AI) is seen as a fundamental tool that
transforms students’ professional skills, problem solving capacities and
learning experiences in the context of engineering education. Al self-
efficacy, awareness, and literacy dimensions stand out as critical
variables in the processes of engineering students’ adaptation to
technology (Woo et al., 2024; Fan et al., 2025; Siddharth et al., 2025).
Woo et al. (2024) showed that a short-term intervention focused on
“prompt engineering” increased Al self-efficacy and knowledge levels
in a study conducted with engineering students. Fan et al. (2025)
reported that the use of generative Al by engineering students in China
improved learning efficiency and creativity, but its effect on academic
achievement was limited. In the context of Al literacy, the “AI Literacy”
course developed by Siddharth et al. (2025) increased not only the
technical skills of the students but also their awareness of the social and
sustainability dimensions of AI. These recent interventions, together
with emerging frameworks (Barnard College, 2024; Annapureddy et al.,
2024; Chen et al., 2025), confirm that Al literacy should be considered
alongside TmL as a foundational competence in engineering education.

Engineering education is a field, rapidly shaped by technological
developments and digital transformation, which necessitates the
development of students’ capacity to integrate mathematical and
technological skills. In this context, techno-mathematical literacy (TmL)
stands out as a critical skill that expresses the ability of prospective
engineers to analyse data, think algorithmically, use technology
effectively and associate mathematics with engineering problems.
Although existing studies reveal that techno-mathematical literacy
supports engineering students professional competencies and
transforms the learning experiences of artificial intelligence applications,
studies that address these two areas together are quite limited. In
particular, empirical findings examining the interaction between Al
self-efficacy and TmL skills are needed. At this point, determining
educational strategies that will support engineering students in adapting
to digital transformation, will both contribute to academic literature and
have important practical implications. This study aims to fill this gap by
examining the effects of artificial intelligence applications on students’
TmL skills and Al self-efficacy in the context of engineering education.
For this purpose, the study focuses on the following research questions:

RQI: How do artificial intelligence applications affect prospective
engineers techno-mathematical literacy levels and AI self-
efficacy perceptions?

RQ2: Do the changes in engineering candidates’ techno-
mathematical literacy levels and artificial intelligence self- efficacy
perceptions differ significantly according to gender and

department variables?

2 Research method

This study was conducted in a single-group, quasi-experimental
pretest-post-test design, one of the quantitative research methods.
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This design allows the examination of the effect of the experimental
procedure by comparing the pre- and post-application measurements
of the participants (Gravetter and Forzano, 2018). The main reason
why this design was preferred in the study is that it can directly reveal
the effect of artificial intelligence applications on students’ techno-
mathematical literacy and self-efficacy in using artificial intelligence.
In addition, the difficulty of forming a comparative control group due
to the diversity of students selected from different departments made
the use of this design appropriate. Although this design provides a
strong framework for determining the effects of the intervention, it
has limitations in terms of external validity due to the absence of a
control group.

2.1 Participants

The research group consists of 156 engineering students studying
different programmes in the engineering faculty of a state university.
The participants, who were selected by the simple random sampling
method, consisted of 28% female (n = 44) and 72% male (n = 112)
students. The students are studying in the departments of Computer
Engineering (30%, n = 47), Electrical and Electronics Engineering
(25%, n =39), Mechanical Engineering (28%, n=44) and Civil
n=26). This
representativeness of the study by reflecting the gender and

Engineering (17%, distribution increases the
departmental differences seen in engineering faculties in Turkey.
However, as all participants were drawn from a single university, the
representativeness of the findings is limited, and caution should
be exercised when generalizing the results to broader populations. The
students’ level of experience in technology and artificial intelligence
varies, and this diversity provides an important advantage in terms of
the objectives of the research. To provide further clarity, the sampling
frame consisted of undergraduate students enrolled in compulsory
courses across these four departments. Recruitment was conducted
through in-class announcements, and students who volunteered were
included in the pool. Initially, 168 students were eligible to participate,
of whom 160 provided consent. After excluding incomplete responses,
data from 156 students were retained for the final analysis (168 eligible
— 160 consented — 156 completed). Participation was entirely
voluntary; students were given detailed information about the purpose
and process of the research; and their informed consent was obtained.
In addition, the necessary permissions were obtained from the
relevant Ethics Committee of the university for the conduct of
the study.

2.2 Data collection tools

Artificial Intelligence Self-Efficacy Scale (AISES) developed by
Wang and Chuang (2023) was used to determine the participants’
self-efficacy perceptions about artificial intelligence. The scale
consists of a total of 22 items and is graded on a 5-point Likert scale.
The Cronbach’s alpha reliability coefficient of the scale has been
reported as above 0.90 and has been found valid in different
samples. In this study, the scale was adapted into Turkish and
sufficient reliability values were obtained as a result of preliminary
tests. In this study, Cronbach’s alpha reliability coefficient was found
to be 0.81. The adaptation process was carried out through
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translation and back-translation by bilingual experts, followed by
expert panel review for content validity. Confirmatory factor
analysis (CFA) indicated good fit indices (CFI = 0.95, TLI = 0.94,
RMSEA = 0.052, SRMR =0.047), with item loadings ranging
between 0.62 and 0.83 (p < 0.001). Reliability analysis also included
McDonalds @ (0.88), confirming the internal consistency of
the scale.

The Techno-mathematical Literacy Scale (TMLS), developed
by Demir and Tortop (2025), was used to measure the TML sKkills
of the participants. The scale consists of a total of 12 items and is
graded on a 5-point Likert scale. The scale includes items reflecting
the basic dimensions of TmL such as basic mathematical
competence, technology-supported mathematics learning, data
literacy and numerical reasoning, digital mathematical
communication, and collaboration. The content validity of the
scale was ensured by expert opinions, and its construct validity was
tested by exploratory and confirmatory factor analyses. Cronbach’s
alpha coeflicient of the scale was reported as 0.85. In this study, the
Cronbach alpha reliability coefficient of the scale was found to
be 0.78, CFA results confirmed the construct validity with
satisfactory fit indices (CFI = 0.96, TLI = 0.95, RMSEA = 0.049,
SRMR = 0.045), and item loadings ranged from 0.58 to 0.81
(p < 0.001). Internal consistency was confirmed with Cronbach’s

a =0.91 and McDonald’s @ = 0.90.

2.3 Process and data analysis

The research was conducted over a six-week implementation
process. A total of 156 students participated in weekly sessions lasting
approximately three hours.

Week 1: An orientation session was held to inform participants
about the purpose, functioning, and ethical principles of the study.
The Al tools to be used were introduced, including ChatGPT (v4.0)
and Google Gemini (1.5). Students were provided with the Artificial
Intelligence Applications User Guide, which contained sample
prompts and task guidelines.

Week 2: Students practiced with structured prompts focusing on
data analysis and algorithmic thinking. Example prompts included:
“Generate a step-by-step solution for an optimization problem in civil
engineering” and “Explain the mathematical model behind heat
transfer in everyday language”

Weeks 3-5: Students worked in groups of 4-5 members,
completing discipline-specific problem-solving tasks. Each week was
dedicated to a different TmL dimension:

Week 3: Data literacy and numerical reasoning (e.g., using Al to
analyze and interpret datasets related to energy consumption).

Week 4: Digital mathematical communication (e.g., generating
graphs, symbolic outputs, and step-by-step explanations of differential
equations with Al tools).

Week 5: Technology-supported problem solving (e.g., creating
algorithmic approaches for scheduling or structural analysis).

Week 6: Student groups presented their solutions and reflected on
the use of AI in supporting mathematical modeling and
problem solving.

Throughout the intervention, the instructor acted as a facilitator,
providing guidance on appropriate Al use, monitoring group work, and
giving formative feedback. The “Artificial Intelligence Applications User
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Guide” and sample prompts used during the intervention are provided
as Supplementary Material to support replication and transparency.

Pre-test and post-test applications were conducted to measure
changes in Al self-efficacy and TmL levels. The data obtained from these
measures were analyzed using SPSS 27 software. Descriptive statistics
(arithmetic mean, standard deviation, frequency, and percentage),
paired sample t-tests, independent sample t-tests, and one-way ANOVA
were applied. Statistical assumptions were checked prior to analyses: the
normality of the distributions (Shapiro-Wilk) and the homogeneity of
variances (Levene) were both satisfied. For multiple comparisons,
Tukey’s HSD test was employed. The significance level was accepted as
0.01, and effect sizes were interpreted using eta-square (n*) coefficients.
Effect sizes were reported together with 95% confidence intervals, and
paired Cohen’s d was calculated for pre—post comparisons. Subgroup
sample sizes are provided on the tables.

3 Results

In this section, the findings related to the problems posed in the
research questions (RQ1 and RQ2) are presented, and the analyses of
the TmL and AI self-efficacy levels of the prospective engineers are
reported in detail.

When Table 1 is analysed, a significant difference was found
between the pre-test (X = 39.48) and post-test (X = 42.61) scores

10.3389/feduc.2025.1695351

of TmL levels of engineering candidates (t = —3.764, p < 0.001).
The effect size was n* = 0.084, 95% CI [0.02, 0.15], corresponding
to a moderate effect. The paired Cohen’s d was 0.48, indicating a
medium effect. Similarly, a significant difference was found
between the pre-test (X = 84.92, SD = 7.72) and post-test scores (X
=92.62, SD = 6.16) of Al self-efficacy (t = —3.197, p = 0.001). The
effect size was > = 0.062, 95% CI [0.01, 0.12], corresponding to a
small-to-medium effect. The paired Cohen’s d was 0.41, supporting
the magnitude of this improvement. According to the results, an
increase was observed in the TmL skills and AI self-efficacy of
prospective engineers following the artificial
intelligence applications.

When the results of Table 2 are analysed, it is seen that the
mean pre-test TmL scores of male engineer candidates are higher
than those of female candidates according to the gender variable.
However, this difference is not statistically significant (t = —1.181,
p > 0.01). Similarly, when the post-test scores were analysed, it
was determined that the mean of males was higher than females,
but the difference was not significant (t = —1.491, p > 0.01).
These findings show that TmL scores do not differ depending on
gender; in other words, gender is not a determining variable.

When the results of Table 3 are analyzed, it is seen
that there is no statistically significant difference in the AI self-
efficacy levels of engineer candidates after the pre-test depending

on gender (t = —1.121, p = 0.264). Although the averages of male

TABLE 1 Paired T-test analysis of TmL and Al self-efficacy levels of engineer candidates pre-test-post-test results.

Subscales N X ss t P n2
TmL Pre-test 156 39.48 5.41 —3.764 0.000* 0.084 ‘
Post test 156 42.61 3.08 ‘
Al self-efficacy Pre-test 156 84.92 7.72 —3.197 0.001* 0.062 ‘
Post test 156 92.62 6.16 ‘
#p < 0.01.

TABLE 2 Independent samples t-test analysis of TmL pre-test-post-test scores of prospective engineers regarding gender variable.

Pre-test Gender X S.D t p n2

TmL Female (n = 44) 38.92 5.20 —1.181 0.248 *%
Male (n=112) 40.04 5.10

Post test Gender X S.D t p n2

TmL Female (n = 44) 41.98 5.40 —1.491 0.142 ok
Male (n = 112) 4324 5.30

P <0.01; ** Effect size was not calculated since there was no significant difference.

TABLE 3 Independent samples t-test analysis of engineer candidates’ Al self-efficacy pre-test-post-test scores regarding gender variable.

Pre-test Gender X S.D t p n2

Al self-efficacy Female (n = 44) 84.20 6.50 —1.121 0.264 wk
Male (n=112) 85.60 6.70

Post test Gender X S.D t p n2

Al self-efficacy Female (n = 44) 92.91 6.60 —0.832 0.412 wk
Male (n=112) 92.90 6.80

p <0.01; ** Since there was no significant difference, the effect size was not calculated.
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students are higher than those of female students, this
difference is not significant. There is no statistically significant
difference in the AI self-efficacy levels of engineer candidates
after the post-test based on gender (t = —0.832, p = 0.412). The
averages of female students are almost at the same level as
male students.

When Table 4 is analysed, it is seen that the pre-test TmL levels
of engineering candidates differ significantly according to the
departments (F = 9.162, p < 0.001, n* = 0.28, 95% CI [0.15, 0.40]).
While computer engineering students scored higher than the other
departments, the mean scores of electrical-electronics engineering
students were higher than those of mechanical and civil
engineering students. Similarly, significant differences depending
on the department variable continued in the post-test results
(F=11.31, p < 0.001, n? = 0.18, 95% CI [0.09, 0.27]). Computer
and electrical-electronics engineering students reached higher
TmL levels compared to mechanical and civil engineering students.
These effect sizes indicate a large effect at pre-test and a medium
effect  at
departmental differences.

post-test,  supporting the robustness of

10.3389/feduc.2025.1695351

When the results of Table 5 are analysed, it is seen that there
is a significant difference between the pre-test Al self-efficacy
levels of the engineer candidates depending on the department
they study (F = 7.974, p < 0.001, ° = 0.17, 95% CI [0.07, 0.26]).
According to Tukey’s test results, the mean Al self-efficacy scores
of computer engineering students were significantly higher than
those of mechanical and civil engineering students. In addition,
the mean scores of electrical-electronics engineering students
were higher than those of mechanical and civil engineering
students. In the post-test findings, significant differences
depending on the department variable are observed (F = 7.321,
p <0.001, n?>=0.16, 95% CI [0.06, 0.25]). In conclusion, when
TmL and AI self-efficacy levels were analysed, significant
differences were observed among the departments of the
engineering candidates. Similar to the effect on TmL levels, the
application was associated with increases in Al self-efficacy levels
in all departments, and it was determined that students in
computer and technology-oriented departments were in a more
advantageous position. These effect sizes indicate a medium effect
in both pre- and post-test comparisons, supporting the robustness

TABLE 4 ANOVA analysis of pre-test and post-test TmL scores of prospective engineers by department variable.

Pre-test Department X S.D F p n2
TmL Computer Engineering (n = 47) 43.01 4.20 9.162 ‘ 0.000 ‘ 0.28
Electrical and Electronics Engineering 40.25 4.54
(n=39)
Mechanical Engineering (n = 44) 36.72 4.82 ‘ ‘
Civil Engineering (n = 26) 38.04 4.70 ‘ ‘
Post test Department X S.D F p n2
TmL Computer Engineering (n = 47) 45.47 3.65 11.312 ‘ 0.000 ‘ 0.18
Electrical and Electronics Engineering 4391 4.92
(n=39)
Mechanical Engineering (n = 44) 40.01 5.01 ‘ ‘
Civil Engineering (n = 26) 42.69 3.60 ‘ ‘

TABLE 5 ANOVA analysis of prospective engineers’ Al self-efficacy pre-test and post-test scores regarding the department variable.

Pre-test Department X S.D F fo) n2
Al self-efficacy Computer Engineering (n = 47) 87.32 3.65 7.974 ‘ 0.0000.17 ‘
Electrical and Electronics Engineering 85.99 4.82
(n=39)
Mechanical Engineering (n = 44) 8221 4.70
Civil Engineering (n = 26) 83.39 4.90
Post test Department X S.D F p n2
AT self-efficacy Computer Engineering (n = 47) 94.94 391 7.321 ‘ 0.000 0.16 ‘
Electrical and Electronics Engineering 94.06 5.69
(n=39)
Mechanical Engineering (n = 44) 90.58 4.41 ‘ ‘
Civil Engineering (n = 26) 90.53 4.48 ‘ ‘
Frontiers in Education 05 frontiersin.org


https://doi.org/10.3389/feduc.2025.1695351
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Beyazhancer and Demir

of departmental differences while also showing that discipline-
specific advantages persist.

4 Discussion

This study suggests that artificial intelligence (AI) applications
may support improvements in both TmL and Al self-efficacy levels of
engineering students. The findings indicate that Al-supported
learning environments can strengthen not only technological skills but
also the capacity to integrate mathematical thinking into the
engineering context. This result is in line with previous research
(Hoyles et al., 2010; van der Wal et al., 2017; van der Wal et al., 2019),
which revealed that TmL is a critical competence in engineering
education. Moreover, the findings in the area of Al self-efficacy are in
line with the results reported by Woo et al. (2024), Fan et al. (2025),
and Siddharth et al. (2025). In addition, Su et al. (2025) demonstrated
that incorporating digital tools into engineering curricula improves
student engagement and enriches teaching processes, which supports
our evidence that Al-based applications provide both cognitive and
motivational benefits. Honig et al. (2025) similarly underlined that
integrating generative Al tools in engineering pedagogy requires
rethinking instructional design, reinforcing the transformative
potential of AI-supported environments.

In the
engineering and electrical and electronics engineering students
showed higher levels of TmL and AI self-efficacy than other
departments, suggesting that the student population of technology-

interdepartmental difference analysis, computer

oriented disciplines is more familiar with digital tools and
representation skills. The studies defining the AI literacy framework
emphasise that such skills may be more developed especially in
disciplines that require technical/digital infrastructure (Long and
Magerko, 2020). This interpretation is also supported by Hibbert et al.
(2024), who proposed a four-stage AI literacy framework
(understanding, using, evaluating, and creating AI) that explains how
learners in technical fields can more rapidly progress through literacy
stages. In addition, the GenAl Competence Framework for
Engineering Curriculum Enhancement (Chen et al., 2025) provides
structured tiers of generative AI competencies and concrete strategies
to embed them across engineering programmes, complementing our
findings about discipline-based differences.

In the analysis based on the gender variable, no significant
difference was observed. This finding is in line with the study by Asio
and Sardina (2025) which shows that gender is not a determining
factor in Al literacy and Al self-efficacy gains. This suggests that
Al-supported teaching approaches have an inclusive nature and are
effective independent of demographic characteristics. Walter (2024)
also emphasised the role of Al literacy, prompt engineering, and
critical thinking as essential components of inclusive Al-supported
learning environments, which is consistent with our evidence that
demographic variables do not restrict these gains. Annapureddy et al.
(2024) likewise identified twelve generative Al literacy competencies
that highlight the multifaceted nature of Al-supported learning,
aligning with our interpretation that TmL and AI self-efficacy should
be addressed together.

These findings suggest that Al applications in engineering
education may provide not only short-term gains but also hold
long-term transformation potential. The study contributes to the
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literature by indicating that TmL and AI self-efficacy can develop
together. In particular, the fact that students in technology-
oriented disciplines reached higher levels indicates that
Al-supported teaching strategies could be adapted according to
disciplinary needs. This conclusion is consistent with Schleiss and
Johri (2024), who argued that AI integration in engineering
education should be adapted to role-based competencies (e.g., user,
implementer, developer), highlighting the need for discipline-
specific teaching designs. In addition, the fact that there is no
gender difference suggests that such applications offer an inclusive
learning environment and indicates that AI can be considered an
egalitarian learning tool in engineering education. By combining
techno-mathematical literacy with Al self-efficacy, this study
extends existing Al literacy and competence frameworks by
highlighting how cognitive confidence in AI use and domain-
specific mathematical competencies can mutually reinforce each
other in engineering education.

4.1 Theoretical implications

This study extends existing models by explicitly combining
techno-mathematical literacy (TmL) with AI self-efficacy, two
constructs that have usually been treated separately. While
discussions of Al literacy often emphasise skills such as using,
evaluating, and creating with AI, they rarely address the
mathematical reasoning competencies that are essential in
engineering. By linking TmL with AI self-efficacy, this study shows
that confidence in applying AI tools and competence in
mathematically informed reasoning are mutually reinforcing. This
integration contributes to theory by offering a more comprehensive
model for understanding how Al literacy can be operationalised in
engineering contexts.

4.2 Practical contributions

From a curricular perspective, the findings suggest that
engineering programmes should explicitly include learning activities
that target both TmL and AI self-efficacy. Examples may include
project-based modules where students use Al applications for data
analysis, mathematical modelling, and digital communication of
findings. Such integration would strengthen not only students’ ability
to engage with Al confidently but also their capacity to apply
mathematical reasoning within engineering practice. Embedding
these competencies into curricula can therefore help produce
engineers who are both mathematically literate and Al literate, ready
to respond to the technological and problem-solving challenges of the
21st century.

4.3 Limitations and future directions

Since the research was conducted in a single university, the
generalizability of the findings is limited. Although the sample size is
sufficient, the distribution among departments is unbalanced and this
may affect comparisons. The absence of a control group makes it
unclear whether the observed improvements are solely due to Al
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practices or to environmental factors. Self-report scales were used for
TmL and AI self-efficacy measures, which carry the risk of social
favorability bias or over-reporting. Triangulation with performance-
based measures or qualitative data is recommended for future studies.

In this study, a single-group pretest—posttest design was employed.
While this design allows for the observation of changes before and
after the intervention, the absence of a control group limits internal
validity. Potential alternative explanations, such as maturation,
repeated testing effects, instructor influence, or Hawthorne effects,
may have contributed to the observed differences. Therefore, the
findings should not be interpreted as direct causal effects of Al
applications but rather as trends observed following the intervention.
Future studies incorporating control or comparison groups, as well as
longitudinal ~ designs, are recommended to strengthen
causal inferences.

This study examined the short-term effects of Al-supported
interventions, but the extent to which gains could be sustained in the
long term was not assessed. Furthermore, the intervention was
designed for a specific group of Al-based interventions, different Al
tools or broader instructional designs may yield different results. In
the study, TmL and AI self-efficacy were considered as the primary
variables; however, other important constructs such as computational
thinking, digital problem solving, and collaborative skills
were excluded.

In future studies, the effects and retention of Al practices can
be examined more reliably by using experimental and control
group and longitudinal designs. Studies in different universities
and cultural contexts will increase the generalizability of the
findings. Furthermore, the inclusion of variables such as
mathematical reasoning, cognitive flexibility, and academic
resilience may provide a deeper understanding of the impact of AI
on learning processes. Research comparing various Al tools and
pedagogical strategies will reveal which applications are more

effective in specific disciplines.

5 Conclusion

This study showed that significant increases were observed in
engineering students TmL and AI self-efficacy levels following
artificial intelligence applications. The findings revealed that the
application was effective in all departments, but students studying in
computer and technology-oriented fields were in a more advantageous
position. In addition, no significant difference was found depending
on the gender variable, indicating that Al-supported learning
environments are inclusive. These applications, which were associated
with concurrent improvements in TmL and AI self-efficacy levels,
contributed to observed enhancements in students’ basic mathematical
competence, technology-supported mathematics learning, data
literacy, and digital mathematical communication skills needed in the
digital transformation era.
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