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Analysis of high school students’
mental models of angles

Joaquin M. Veith'*, Eric Machisi?, Malte S. Ubben?,
Fabian Hennig! and Philipp Bitzenbauer!

HInstitute of Physics Education, University of Leipzig, Leipzig, Germany, 2Department of Mathematics,
Fujairah Boys High School, Fujairah, United Arab Emirates

Angles are a foundational concept in mathematics with wide applications in
science and engineering, yet students often struggle with understanding the
mathematical concepts behind them. Existing research has focused largely
on misconceptions, leaving the cognitive structures behind these difficulties
underexplored. To this end, we leveraged the “Fidelities Model of Conceptual
Development” (short: FG-FF framework) to explore students cognitions of
angles. The FG-FF framework, originally developed in physics education,
distinguishes two cognitive dimensions in learner's mental models. Firstly, a
Gestalt, which refers to its visual structure and appearance, and secondly
a Functionality, which encompasses how well a model captures conceptual
dynamics. The degrees in which both cognitive dimensions are related to
reality—Fidelity of Gestalt (FG) and Functional Fidelity (FF)—enable a distinct
typification of learners with respect to their mental models. While promising
in science education, this framework has seen limited use in mathematics to
date. To explore the explanatory power of this framework with regards to mental
models in mathematics education, we conducted a cross-sectional survey with
N = 403 high school students, using a newly developed instrument tailored
to assess FG and FF in the context of mental models of angles. Confirmatory
factor analysis confirmed a strong two-factor model (CFI = 0.96, RMSEA
= 0.03, SRMR = 0.05) with solid reliability (wpr = 0.78, wpg = 0.66),
validating the framework’s relevance for mathematics education. The findings
further suggest that effective teaching of geometry should intentionally guide
students from visually grounded, Gestalt-oriented representations toward more
abstract, functionally coherent understandings of mathematical concepts. By
focusing on this progression, educators can design learning sequences that
better connect perceptual intuition with formal reasoning, fostering deeper
conceptual understanding of angles and related geometric ideas.

KEYWORDS
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1 Introduction

The concept of angles is fundamental in mathematics and science and has critical
applications in engineering, architecture, and computer graphics (Roseno et al., 2015). In
physics, angles are essential to describe projectile motion, calculate forces, and analyze wave
behavior (cf. Abdel-Malek and Siam, 2024). Engineers rely on angular measurements when
designing structures, machines, and electrical circuits (cf. Wang et al., 2024). In computer
graphics, angles are utilized to render three-dimensional objects, manipulate images, and
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create realistic animations (cf. Lu et al., 2020). Architects use angles
to design buildings, optimize spatial arrangements, and ensure
structural integrity (cf. Ma et al, 2022). Without a clear and
accurate mental model of the angle concept, students may struggle
to grasp these fundamental principles and their applications, which
can limit their opportunities to pursue careers in the fields of
science, technology, engineering, and mathematics.

Despite its importance, research consistently shows that
students across age groups and educational contexts face persistent
difficulties in understanding angles (Sari et al., 2021). Existing
research has focused mainly on documenting and reporting
the diverse range of misconceptions students exhibit when
learning about angles, with comparatively less emphasis on
elucidating the underlying mental processes that contribute to
these misconceptions (Amoah and Assem, 2018). This disparity has
led to the development of less effective pedagogical interventions,
as educators often lack a comprehensive understanding of the
specific cognitive challenges students face (Biitiiner and Filiz, 2017).
Addressing this gap in the literature is crucial for designing effective
instructional strategies that promote a deeper and more accurate
understanding of angles.

This study aims to investigate the cognitive structures
that influence high school students’ understanding of angles,
a fundamental concept in geometry. While prior research has
primarily focused on identifying students’ misconceptions, this
study takes a different approach by examining the mental models
students use through the theoretical framework of Functional
Fidelity (FF) and Fidelity of Gestalt (FG)—ideas that have
predominantly been applied in physics and science education but
are rarely utilized in mathematics. By using FF and FG, this
study moves beyond cataloging misconceptions to analyze the
cognitive structures that shape how students reason about angles.
Unlike prior work that focuses on observable errors, this approach
examines the underlying patterns and inconsistencies in students’
mental models (cf. Sadijah and Malang, 2022). Addressing this gap
is essential, as a deeper understanding of these reasoning processes
can directly inform the design of interventions that target the roots
of conceptual difficulty rather than its symptoms.

2 Research background

2.1 The angle concept: a brief overview

In education, angles often remain undefined from a

mathematical standpoint. Instead, educators use various
approaches that try to capture intuitive ideas, e.g. by describing
angles as an amount of turning between two lines, the union
of two rays, or the interior region between the intersection of
two lines (Keiser, 2004; Richardson and Koyunkaya, 2017).
However, (Veith and Bitzenbauer, 2021) have described how
these intuitive approaches can lead to misconceptions, especially
with regards to the differentiation between angles and their
measure. From a mathematical standpoint, the definition of
angles becomes rather trivial: Given three points A, B and C,
then the ordered pair ([AB, [AC) is called angle between the two
rays [AB and [AC. The rays [AB and [AC are called sides (or

legs) and A the vertex of the angle. A very important implication
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of this definition is that angles can not be visualized directly as
they are not figures. Instead, they are an abstract tuple of two
mathematical objects, and visually representing them via both
rays is similar to visualizing the mapping rule of a function
R — R using its graph: While the objects themselves are not
part of the plane in the sense that they consist of points, one
can think of them as being represented by geometric figures for
illustrative purposes.

Although this definition of angles may appear simple, it
presents complex learning challenges in mathematics and physics
education, often becoming a stumbling block for students at
various levels (Biittiner and Filiz, 2017). This complexity arises
from its dual nature, reflected in both static and dynamic
interpretations, which can lead to misconceptions that hinder
a comprehensive understanding (Johnson et al, 2021). To
effectively help students develop a strong grasp of angles,
educators must explore these different perspectives and examine
common misconceptions.

At its core, the concept of an angle encompasses both
geometric and kinematic properties, resulting in distinct definitions
and interpretations that students must reconcile to develop a
clear and accurate mental model of the concept. The static
definition, rooted in Euclidean geometry, describes an angle
as the intersection of two rays sharing a common endpoint,
much like the opening of a pair of scissors (Susanto, 2020).
While this static view is intuitive for visualizing angles in
geometric figures, it does not account for the dynamic element
of rotation and directional change. The dynamic definition of
an angle characterizes it as a measure of rotation, indicating
the amount of turn needed to align one ray with another
within the same plane (Biitiiner and Filiz, 2017). This perspective
emphasizes angles as transformations, focusing on changes in
orientation and direction. The distinct differences between these
static and dynamic viewpoints can pose a significant challenge
for students, as they must reconcile two seemingly different
interpretations of the same concept. Additionally, the concept of
an angle extends beyond the static and dynamic perspectives to
include alternative characterizations, such as sector angles and the
inclination between half-lines (Mitchelmore and White, 2000). The
variety of definitions highlights the complexity of the concept of
angles and emphasizes the need for educators to address these
different perspectives in their teaching explicitly. Because of this
complexity and the dual nature of angles, students often encounter
misconceptions that hinder their understanding and application of
this fundamental concept.

Research has identified a range of student misconceptions
about angles, primarily arising from the difficulties in reconciling
static and dynamic definitions of angles. For educators, recognizing
the complex nature of angles and the common misconceptions that
students hold is essential for promoting a deeper, more nuanced
understanding. Henderson and Taimina (2005) further emphasize
this complexity by arguing that no single formal definition can
adequately capture the richness of our experiences with angles.
Their perspective highlights the subjective and intuitive elements
of angle perception, indicating that a thorough understanding
requires more than simply memorizing formal definitions. In the
next section, we will review existing studies on how students think
when learning about angles.
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2.2 Students’ mental models in
conceptualizing angles

Students’ conceptions about angles have been widely studied,
revealing persistent misconceptions across age groups and contexts.
Biber et al. (2013) investigated the errors and misunderstandings
of eighth-grade students in a Turkish middle school using a
mixed-methods approach. Through four open-ended questions,
the researchers found that students frequently relied on the physical
appearance of geometric figures rather than their mathematical
properties. A notable misconception involved applying properties
valid in specific geometric situations to inappropriate contexts.
Many students also struggled to understand parallelism in relation
to angles.

These findings align with broader research suggesting that
students often struggle to grasp the abstract nature of angle
concepts. For example, Clements and Sarama (2020) highlighted
that children commonly confuse the size of angles with their visual
representation, leading to incorrect classifications of acute and
obtuse angles. Similarly, Battista (1999) observed that students had
difficulty recognizing angle congruence, especially when the angles
appeared differently oriented or positioned.

In another qualitative study, Ozen Unal and Urun (2021)
examined sixth-grade students misconceptions about angles
in a public school in western Turkey. Using 17 open-ended
questions and content analysis, the researchers found that
students struggled with defining angles, comparing angle
measures, and understanding adjacent, complementary, and
supplementary angles.

Interestingly, misconceptions were also prevalent among high-
achieving students. Biitiiner and Filiz (2017), in a mixed-methods
study of 233 sixth graders in Trabzon, Turkey, found that even
top-performing students misidentified straight and right angles
when presented in unfamiliar orientations. They attributed this to
potentially misleading representations in textbooks. This highlights
the importance of not assuming conceptual understanding based
solely on performance and underscores the need for diagnostic
assessments and metacognitive reflection in instruction.

These patterns of inaccurate reasoning about angles are not
new. Earlier research (Gal, 2011; Gal and Linchevski, 2010; Keiser,
2004; Lehrer et al, 1988; Woodward, 1978) has consistently
shown that angle concepts pose cognitive challenges. Common
misconceptions include beliefs that angle size depends on the
length of its arms (Bustang et al, 2013; Munier and Merle,
2009), the arcs size (Devichi and Munier, 2013), or the area
enclosed between the arms (Clausen-May, 2008; Kim and Lee, 2014;
Wilson and Adams, 1992). These findings underscore the need
for instructional approaches that address and rectify these deeply
ingrained misconceptions.

Recent educational research has shifted its focus from
investigating students’ misconceptions to examining the mental
models or internal representations that influence how learners
understand and process mathematical concepts (Al-Mutawah et al.,
2019). These models are particularly important in geometry, where
visual-spatial understanding plays a crucial role (Pinilla, 2024).
However, little research has been conducted on the structure of
students’ mental models on specific aspects of geometry. This is an
area that still requires further investigation, and the present study
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aims to fill this research gap. The following section outlines the
theoretical framework that underpins this study.

2.3 Fidelity of gestalt and functional fidelity

The term mental model, which has been widely used in
the science education literature (e.g. Ke et al, 2005; Pedrera
et al, 2025; Gogus, 2013; Coll, 2006), can be traced back to
CraiK’s original notion of an internal representation of something
external (Nersessian, 1993). In educational contexts, the term
is often used to describe student misconceptions, conceptions,
preconceptions, or internal representations of phenomena.

However, in mathematics education, mental model is not always
the preferred term, though it does appear (Gogus, 2013; Greca
and Moreira, 2002). In German-speaking contexts, for example, the
concept is commonly referred to as Grundvorstellung (translated as
“foundational idea”), although it is frequently rendered as mental
model in English-language publications (Vom Hofe and Blum,
2016). We have chosen to use the term mental model in this work
to align both with the established translation of Grundvorstellung
and with its widespread use across science education disciplines to
describe and analyze learners’ conceptual knowledge.

Furthermore, the term mental model aligns with the
terminology used in the Fidelities Model of Conceptual Development
(short: FG-FF framework), which underpins the present research
questions. The FG-FF framework was initially proposed by Ubben
(2020) and further elaborated by Bitzenbauer and Ubben (2025). It
introduces several key ideas:

1. A mental model consists of two components: a Gestalt, which
refers to its (often visual) structure, appearance, or more
generally its surface-level representation; and a Functionality,
which encompasses the set of behaviors, processes, or dynamics
the model is intended to represent. For example, the Gestalt of
an angle might be the visual pattern of two rays extending from a
common point, while its Functionality is the relational measure
between those rays.

2. A mental model’s Gestalt and Functionality relate independently
to the phenomenon they represent, each with its own degree
of fidelity. This means that a learner might perceive the
Gestalt of a model—its structure or appearance—as visually
similar to the actual entity, even if the model fails to
reflect the way the entity behaves or functions. Conversely,
a model might accurately represent functional relationships
(Functionality) while appearing quite dissimilar to the real-
world phenomenon. Fidelity of Gestalt (FG) thus refers to
how closely the model resembles the represented object in
appearance, while Functional Fidelity (FF) refers to how well it
captures the object’s dynamic or conceptual characteristics. The
FG and FF hypothesis emphasizes that these two dimensions
can vary independently and should both be considered when
analyzing how students construct and use mental models in
educational settings.

Applying the FG and FF hypothesis allows us not only to
examine the content of learners’ mental models (as is common
in existing research), but also to investigate how learners relate
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these models to real-world phenomena and to instructional
representations such as graphs, diagrams, and videos. It also
helps identify which dimension—Gestalt or Functionality—needs
to be addressed more directly in order to promote deeper
conceptual understanding.

This approach is supported by findings from research originally
conducted in quantum physics education (Ubben and Heusler,
2021; Ubben and Bitzenbauer, 2022; Bitzenbauer and Ubben, 2025),
which show that FG and FF are mostly independent dimensions:
learners can hold models that appear visually accurate but fail
to function correctly, and vice versa. Furthermore, experts tend
to exhibit high Functional Fidelity even when their Gestalts are
abstract and less visually concrete.

In mathematics education, these dimensions correspond to
familiar challenges related to representation and abstraction. Visual
tools (such as diagrams, figures, or manipulatives) can enhance
concrete understanding (Glenberg et al., 2004) but may obscure
underlying relationships if used uncritically (Brown et al., 2009).
Conversely, symbolic reasoning and formal notation promote
functional understanding (Kaminski et al., 2009; Uttal et al., 2009),
yet may fail to connect with learners’ intuitive or real-world
experiences, leading to meaningless processing of symbols (Nathan,
2012). Studies often suggest that learners typically move from
concrete, visually faithful representations toward more abstract,
functionally rich models (for a more in-depth review of this we
refer the reader to Fyfe et al., 2014). They also show, however, that
concrete examples often may limit the mathematical abstraction
process (Uttal et al., 1997; Goldstone and Sakamoto, 2003; Sloutsky
et al., 2005), which was one of the problems which initially led to
the FG-FF framework, only that it was in the contexts of physics
education (Bitzenbauer and Ubben, 2025).

The FG-FF framework contributes to the ongoing discussion
by offering a structured way to model the shift in understanding
through distinct types of mental model understanding. These
types emerge from different combinations of Functional Fidelity
(FF) and Fidelity of Gestalt (FG), which, as previous studies
have shown, represent largely independent dimensions of learners’
mental representations (Ubben and Heusler, 2021; Bitzenbauer
and Ubben, 2025). Related to this, Ubben (2020) and Ubben and
Bitzenbauer (2022) proposed four archetypal ways to interpret
a mental model, each characterizing a unique way in which
learners relate their internal models to the phenomena they aim
to represent:

1. Type I—Undeveloped understanding (low FG, Low FF): at
this stage, the mental model neither visually resembles the
phenomenon nor captures its underlying functionality. Such
models are superficial and primarily declarative, reproducing
isolated facts or processes without deeper conceptual insight.
In mathematics education, this might mean that learners can
rearrange symbols and formulae, but can not apply them to real
world problems (cf. Nathan, 2012).

2. Type II—Architectural understanding (high FG, low FF): here,
the learner constructs a model that appears visually accurate and
well-organized, but lacks a grasp of the functional relationships
involved. The emphasis is on surface appearance rather than
deeper meaning or mechanism. In mathematics education, it
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has been reported that familiar concrete objects (high FG) can
facilitate learning (cf. Petersen and McNeil, 2013).

3. Type III—Dual (replica) understanding (high FG, high FF): in
this case, the mental model both resembles the phenomenon and
correctly represents its functional aspects. It offers a coherent
and concrete representation that bridges visual and dynamic
elements. However, such models often remain tied to specific
contexts, limiting the learner’s ability to transfer or generalize the
conceptual understanding. This phenomenon has been readily
reported in the mathematics education literature as well (cf.
Brown et al., 2009; Uttal et al., 1997; Goldstone and Sakamoto,
2003; Sloutsky et al., 2005).

4. Type IV—Functional understanding (low FG, high FF): at this
level, learners are no longer dependent on visual similarity.
Instead, they focus on the core functions and dynamics of
the concept. These models are typically abstract, yet reflect
deep, transferable understanding that can be applied flexibly to
new situations. This is arguably the abstract understanding of
mental models as well that is often desired as the more expert
understanding (cf. Kaminski et al., 2009; Uttal et al., 2009).

A visual overview of this categorization is presented in Figure 1.
Ubben (2020) and Bitzenbauer and Ubben (2025) argue that
learning processes typically follow a developmental trajectory
from Type I to Type IV. Initially, the learner may not see the
model as meaningfully connected to reality (Type I). As visual
familiarity increases (raising FG), the learner may achieve Type II.
Through interaction with the model—either mentally or through
real-world engagement—Functional Fidelity can increase, leading
to Type III, where the model resembles and behaves like the
phenomenon. Research with learners aged 14 and older suggests
that Type III understanding is commonly reached and corresponds
to frameworks like diSessas “knowledge in pieces;” (DiSessa,
2018) where isolated “knowledge isles” allow for prediction

frontiersin.org


https://doi.org/10.3389/feduc.2025.1679857
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Veith et al.

and explanation within familiar contexts, but hinder transfer
and abstraction.

Importantly, reducing Gestalt fidelity at later stages allows for
abstraction and the transfer of functional ideas beyond the original
learning context. This enables learners to apply mathematical
concepts in new scenarios or use them to model previously
unencountered problems. Studies in quantum physics education
have shown that Types IIT and IV are the most frequently achieved
forms of understanding at the secondary and post-secondary
level. Notably, in one study, all participating experts (professors)
demonstrated a Type IV understanding. These findings are
reinforced by evidence that conceptual (i.e., abstract) knowledge
correlates positively with FF and negatively with FG.

3 Research rationale

This data from science education raise the question of
whether the FG-FF framework can be similarly applied within
mathematics education. Initial exploratory studies suggest that
students’ mental models in mathematics may also vary along
the dimensions of Gestalt and Functional Fidelity (Veith et al,
2022a,b), but a systematic empirical investigation—comparable to
those conducted in physics education—has yet to be undertaken.

The mathematical concept of the angle offers a particularly
suitable case for such an exploration. Angles are inherently
abstract constructs (see Section 2.1), yet they are typically
introduced through strongly visual instructional methods that
emphasize concrete representations, leading to several problems
(see Section 2.2). This tension between abstraction and visual
representation aligns closely with the distinctions captured by the
FG-FF hypothesis. As such, the angle concept serves as an ideal
testbed for examining how students’ mental models relate to both
the appearance and the functionality of mathematical ideas.

To address this gap, the present study is guided by the following
research questions:

1. How well does the FG-FF hypothesis align with students’
understanding of their mental models of angles?

2. Which types of model understanding, as defined by the FG-FF
framework, are prevalent among high school learners?

4 Methods
4.1 Study design and sample

We conducted a cross-sectional survey study to explore
students’ mental model of angles. The instrument was administered
digitally via LimeSurvey to N = 403 secondary school students
(Ny = 172 male, N, = 225 female, N3 = 6 did not
provide any information) from South Africa. The students did not
receive specific instruction in angles prior to test administration.
Data collection was conducted in May 2025. All participants
were on the verge between lower and upper secondary school,
i.e. ranging from Grades 9 and 10 to 11 and 12. All students
possessed foundational knowledge of angles, including the ability
to identify, classify and measure various types of angles, and
apply angle relationships in plane geometric figures such as
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triangles and parallel lines. Only fully completed responses were
further analyzed.

4.2 Instrument development

Since our theoretical framework has not yet been investigated
in the context of mathematics education, we had to develop the
items from scratch. To this end, we adopted items from prior
test instruments regarding angles (Unal and Urun, 2021) and
reworked them in terms of model understanding so that they
more accurately capture purely functional and gestalt aspects (cf.
Section 2.3). Gestalt aspects, i.e. visual or perceptual features,
were captured by phrasings referring to size, position or shape
(e.g. G5: “The area enclosed by the angle’s rays shows how
big the angle is”). Functional aspects, on the other hand,
were expressed through abstract, relational and measurement-
oriented formulations (e.g. F9: “The measure of an angle is
independent of the length of its rays”). In other words, while
Gestalt-oriented items often referenced the apparent size or
spatial configuration of an angle as a visual entity, Functional
items emphasized properties such as congruency (angles being
congruent rather than “identical”) and measurement (angles having
a measure rather than being a number). This linguistic and
conceptual differentiation was essential in guiding the development
process since prior research found that the distinction between
angles and their measures plays a crucial role in mathematics
education (Veith and Bitzenbauer, 2021). The instrument was
subsequently reviewed by (a) two experts in physics education
to ensure that the underlying mental models are captured in the
sense of the FF-FG framework and (b) two experts in mathematics
education for linguistic clarity and content validity before being
distributed to the participants. An overview of all items is provided
in Appendix Tables 5, 6.

4.3 Data analysis regarding RQ1

To evaluate whether the data align with the theoretical
structure proposed by the FG-FF framework, we performed a
confirmatory factor analysis (CFA), adhering to the approach
described by Bitzenbauer and Ubben (2025). CFA was chosen
because our primary goal was to verify this theoretical structure by
examining the relationships between observed variables and their
corresponding latent constructs, thereby

“allowing us to assess how well a hypothesized factor
structure ‘fits’ the observed data” (Russell, 2002, p.1638).

Initially, we assessed the assumption of multivariate normality
using Mardia’s test, available in the MVN package in R (cf. Jackson
et al., 2009). Since the test indicated a violation of normality,
we employed robust maximum likelihood estimation, utilizing
the Yuan-Bentler mean-adjusted estimator as implemented in the
lavaan package (Yuan and Bentler, 1998).
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The data analysis was conducted using R 4.4.2 and its packages
lavaan, MVN, semTools and semPlot.

4.3.1 Global model fit

We gauged the overall fit of the model using a combination
of established fit indices: the y>-test, the Comparative Fit Index
(CFI), the Root Mean Square Error of Approximation (RMSEA),
and the Standardized Root Mean Residual (SRMR). In line with the
guidelines by Schermelleh et al. (2003), we interpreted CFI values
>0.95, RMSEA values <0.05, and SRMR values <0.05 as indicative
of good model fit. To further evaluate model adequacy and
complexity, we compared alternative model specifications using the
Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). These indices reward model simplicity while
penalizing excessive parameterization, with lower scores denoting
preferable models (Vrieze, 2012). Whereas AIC emphasizes
predictive performance, BIC applies a more conservative penalty
for complexity, especially in large samples. Complementing these
comparisons, we also conducted Likelihood Ratio Tests (LRTs),
which offer a formal statistical method for assessing whether a
more complex, nested model significantly outperforms a simpler
one. Using both information criteria and LRTs enabled a more
thorough evaluation of competing models by integrating goodness-
of-fit with statistical rigor (Buzick, 2010; Chakrabarti and Ghosh,
2011).

4.3.2 Local model fit

To inspect local fit at the indicator level, we examined
standardized factor loadings (), corresponding measurement
error variances (1 — A?), and indicator reliabilities (A2). The
model did not permit cross-loadings. Following the guidelines
of Kline (1998), we removed any item with a loading below 0.30
from the final model. At the latent construct level, we assessed
reliability using McDonald’s w, which is suitable when loadings
vary across indicators, and reliability was deemed sufficient for
w values above 0.70 (cf. McDonald, 1999). We also calculated
the Average Extracted Variance (AEV) for each latent factor.
According to the Fornell-Larcker criterion, discriminant validity
is supported when the AEV of a factor exceeds the squared
correlations it shares with other factors (cf. Fornell and Larcker,
1981).

4.4 Data analysis regarding RQ2

Research Question 2 was investigated by analyzing basic
descriptive statistics for all indicators in a first step. These
include the distribution of responses, arithmetic means, standard
deviations (SD), and median values. Additionally, we leveraged the
results of the CFA to analyze students’ model thinking by situating
them within the type grid explained in Section 2.3. To this end, we
derived two composite metrics to represent the respective latent
constructs from the factor loadings (A): the FF-score for factor
FF and the FG-score for factor FG. These scores were calculated
as weighted averages of the observed indicators, with weights
corresponding to the standardized factor loadings, as follows:
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TABLE 1 Results of the confirmatory factor analysis on the model level
for both models under investigation.

Criterion Cutoff- One-factor Two-factor
value model model
x2 — 661.94 204.92
df — 189 161
p — 0.00 0.00
CFI >0.95 0.59 0.96
SRMR <0.05 0.10 0.05
RMSEA <0.05 0.09 0.03
AIC — 24,041 22,633
BIC — 24,075 22,829
11 . 9 oy
FF-score = %)L;LFI and FG-score = Z:j:;i)\;\(}]
=1 j=1"j

This approach ensures that indicators with higher loadings—
i.e, those more strongly associated with the latent factor—
contribute more heavily to the corresponding composite score.

Lastly, we grouped the students into either lower secondary
(10th grade and lower) and upper secondary (11th grade and
above) to check whether the cohorts differ in terms of these scores.
Since the prerequisite of normality for these scores was violated,
we refrained from conducting t-tests. Instead, we compared
their scores using the non-parametric Mann-Whitney-U Test. We
present the results of the Mann-Whitney U-test in the format
[U(N1,N2) = U,p; r] where U denotes the test statistic, N; and
N, indicate the sample sizes of the two groups being compared,
p represents the associated p-value and r is the effect size (cf.
Nachar, 2003). Statistical significance is interpreted such that p-
values below 0.01 indicate a significant effect, while values below
0.001 are considered highly significant. To assess the strength
of significant effects, we additionally report the effect size using
the rank-biserial correlation coefficient r. Following the guidelines
proposed by Kerby (2014), we interpret 0.2 < r < 0.4 as
medium-sized effects and r > 0.4 as large effects.

5 Results
5.1 Results regarding RQ1

5.1.1 Results regarding global model fit

Table 1 presents a comprehensive overview of the two tested
models and their associated fit indices. As model constraints are
relaxed from the two-factor to the one-factor model, there is
a corresponding decline in the CFI, illustrating that model fit
deteriorates with reduced structure. This is paralleled by increasing
values for the SRMR and the RMSEA, further supporting the
trend. Furthermore, the two-factor model yields the lower x 2 value
and is able to meet all the conventional fit criteria listed in the
second column, in contrast to the one-factor model. Moreover,
a likelihood ratio test (conducted via lavtestLRT from the lavaan
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TABLE 2 Results of the confirmatory factor analysis for the two-factor model including item estimates (i.e. factor loadings, standard error and error
variance) as well as reliability calculations (i.e., indicator reliability, factor reliability, and average extracted variance).

Indicator Factor loading (SE) Error variance Indicator reliability Factor reliability » AEV
FF F1 0.424 (0.062) 0.820 0.180 0.78 0.26

F2 0.503 (0.062) 0.747 0.253

F3 0.579 (0.058) 0.665 0.335

F4 0.341 (0.058) 0.884 0.116

F5 0.604 (0.059) 0.635 0.365

F6 0.613 (0.055) 0.624 0.376

F7 0.461 (0.056) 0.787 0213

F8 0.416 (0.066) 0.827 0.173

F9 0.640 (0.054) 0.590 0.410

F10 0.485 (0.061) 0.765 0.235

F11 0.509 (0.071) 0.741 0.259
FG Gl 0.436 (0.066) 0.810 0.190 0.66 020

G2 0.389 (0.079) 0.849 0.151

G3 0.402 (0.069) 0.838 0.162

G4 0.485 (0.071) 0.765 0.235

G5 0.406 (0.069) 0.835 0.165

G6 0.432 (0.066) 0.813 0.187

G7 0.533 (0.077) 0.716 0.284

G8 0.448 (0.063) 0.799 0.201

G9 0.472 (0.066) 0.777 0223

package) shows that the two-factor model is statistically highly
significant superior to the one-factor model, with p < 0.001.
With a CFI of 0.95, SRMR of 0.05, and RMSEA of 0.03, it satisfies
the standard benchmarks for good fit discussed in Section 4.3.
Lastly, the Akaike (AIC) and Bayesian (BIC) information criteria
values also suggest a better balance between fit and parsimony.
In summary, the two-factor model outperforms the one-factor
model in each criterion, substantiating the hypothesized two-factor
structure from the theoretical framework guiding this study. Based
on these considerations, we focus on reporting the local fit statistics
of the two-factor model in the next section.

5.1.2 Results regarding local model fit

The local fit indices, including item-level estimates and
reliability scores, are summarized in Table 2. To identify the
model and ensure comparability, latent variables were standardized
by fixing their variances to 1, allowing all item loadings to
be estimated freely (Bitzenbauer and Ubben, 2025). All items
display satisfactory loadings above the commonly used threshold
of 0.30 and range from 0.341 (F4) to 0.640 (F9). At the factor
level, the reliability estimate is strong in the case of the FF
0.78) and satisfactory in the case of the FG
factor (wpg = 0.66) considering the shorter scale length. The
associated path diagram for this model is depicted in Figure 2.
Additionally, the inter-factor correlation is only 0.16 and thus

factor (wpp =
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its square is succeeded by the AEV value of either factor. Thus,
discriminant validity according to the Fornell-Larcker criterion
can be assumed for our model (Fornell and Larcker, 1981). Taken
together, the CFA findings are robust and support a nuanced two-
dimensional structure underlying mathematics students’ mental
model of angles.

5.2 Results regarding RQ2

The second research question was investigated by looking
at the students’ responses to the items. An overview for each
item in terms of descriptive statistics is provided in Table 3.
For the indicators of FF, mean values range from 3.77 (F7) to
4.29 (F1), with standard deviations between 0.83 (F1 )and 1.00
(F10). Medians are consistently 4 across all items. Agreement
percentages (+) for these items vary between 68.9% (F4) and
88.6% (F1), while disagreement rates (—) range from 4.4% (F1)
to 12.4% (F8). The proportion of undecided responses (o) falls
between 6.2% (F9) and 20.6% (F4). Regarding the indicators
of FG, mean values span from 2.28 (G6) to 3.26 (G2), with
standard deviations ranging from 1.09 (G7) to 1.44 (G9). In
contrast to FF, median values vary between 2 and 4. Agreement
levels (+) lie between 22.8% (G6) and 52.1% (G2, G3), while
disagreement rates (—) vary from 30.0% (G7) to 62.6% (G6).
Undecided responses (o) show a broader range, from 12.7%
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FIGURE 2

Path diagram of the two-factor model. Decimal numbers on the single-sided arrows indicate factor loadings, while numbers on the double-sided
arrows indicate error variances of the respective item. The correlation between both factors is 0.16.

(G1, G3) to 31.8% (G8). Overall a clear trend is observable,
with indicators for FF receiving more agreement in general and
responses for FG indicators spreading across a larger range. To
shed more light on the significance of these findings, the data
will subsequently be divided into two cohorts with regard to the
participants’ age.

The type grid is presented in Figure 3, illustrating the
classification of learners’ mental models of angles according
to the metrics FF- and FG-score (cf. Table 3). The dual and
functional types make up the majority of the sample, with
49.38% belonging to the functional type and 46.40% belonging
to the dual type. Only a small share of students are situated
within the low functionality types: 2.98% of students have an
undeveloped mental model and 1.24% can be associated with
the architectural type. The differentiation between lower and
upper secondary school with regards to these types is presented
in Figure 4. The visualization suggests that the older students
(red nodes) dominate in terms of functional thinking and also
exhibit a lower FG-score. This visual discrepancy is further
reflected by the results of the Mann-Whitney-U-tests: While for
the FG-score, the younger cohort exhibits higher values on a

highly significant statistical level [Upss 1490 = 12,123, p <
0.001; r = 0.32], the exact opposite is true for the FF-score
[U@ss, 1400 = 10,532, p < 0.001; r = 0.41]. Descriptive

statistics for the respective groups are reported alongside the
test statistics in Table 4 and visualized in terms of boxplots
in Figures 5, 6.
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6 Discussion

6.1 Discussion regarding RQ1

The results of the confirmatory factor analysis strongly support
the hypothesized two-factor structure distinguishing between
Functional Fidelity (FF) and Fidelity of Gestalt (FG). As shown in
Table 1, the two-factor model meets all conventional cut-oft criteria
for good model fit, including a Comparative Fit Index (CFI) of 0.96,
a Standardized Root Mean Square Residual (SRMR) of 0.05, and
a Root Mean Square Error of Approximation (RMSEA) of 0.03.
These values indicate an excellent fit of the model to the data.
In contrast, the one-factor model falls substantially short of these
standards, with a low CFI (0.59), elevated SRMR (0.10), and an
RMSEA of 0.09—values that are commonly interpreted as signs of
poor fit. Furthermore, information-theoretic measures such as the
Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) also favor the two-factor model, indicating a more
optimal balance between model complexity and explanatory power.

These findings confirm that FF and FG are best understood
as empirically distinct constructs, validating the theoretical
assumption underlying the FG-FF hypothesis. The poorer
performance of the one-factor model suggests that collapsing both
constructs into a single latent dimension obscures meaningful
distinctions in how learners conceptualize the visual vs. functional
aspects of the target concept (in our case: angles). This distinction is
consistent with research in mathematics education indicating that
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TABLE 3 Descriptive statistics including mean, standard deviation and median.

Indicator Mean+SD Mean SD Mdn + o -
F1 11 —ei5 4.29 0.83 4.00 88.6 6.9 4.4
F2 11 —ei5 3.99 0.97 4.00 81.4 9.7 8.9
F3 11 —ei5 4.07 0.86 4.00 83.7 10.4 59
F4 11 —e—I5 378 0.94 4.00 68.9 20.6 10.4
F5 11 —ed5 4.10 0.87 4.00 81.4 13.4 52
F6 11 —ei5 3.97 0.93 4.00 80.4 11.7 8.0
F7 11 —o—|5 3.77 0.97 4.00 70.9 17.4 11.7
F8 11 —e—i5 3.82 1.00 4.00 77.7 11.9 124
F9 11 —ed5 4.05 0.93 4.00 85.1 6.2 8.7
F10 11 —ei5 3.89 1.00 4.00 74.0 14.6 11.4
Fl1 11 —ed5 4.14 0.94 4.00 83.6 7.9 8.4
FF-score 1l |5 3.99 0.55 4.06 — — —
G1 11 —e— 15 3.13 1.28 3.00 49.4 12.7 38.0
G2 11 —e—15 3.26 1.25 4.00 52.1 14.6 332
G3 11 —e— 15 3.10 1.33 4.00 52.1 12.7 352
G4 11 —e— 15 3.23 1.33 4.00 50.9 17.4 31.8
G5 11 —e— |5 2.89 111 3.00 33.2 28.5 382
G6 1—e— 15 2.28 1.31 2.00 22.8 14.6 62.6
G7 11 —e— |5 3.10 1.09 3.00 39.9 30.0 30.0
G8 1 —e— |5 2.86 1.13 3.00 29.2 31.8 39.0
G9 11 —e— 15 3.06 1.44 3.00 44.4 13.4 422
FG-score 11 - 15 2.99 0.69 3.00 — — —

Additionally, the table shows the percentage of student’s agreements (+, rating: 4 = rather agree, 5 = agree) and disagreements (—, rating: 2 = rather disagree, 1 = disagree) for all items, as
well as the percentage of undecided votes (o, rating: 3 = undecided). Descriptives statistics for the metrics FF- and FG-score are provided in the last row, respectively.

perceptual and conceptual reasoning often emerge along separate
developmental trajectories (e.g., Battista, 1999; Biber et al., 2013;
Clements and Sarama, 2020). Similar two-dimensional frameworks
have been proposed in studies on geometrical reasoning and
functional interpretation (Portnoy et al, 2006), which further
supports the validity of distinguishing between form-based and
function-based mental representations.

The local model fit indices presented in Table2 further
reinforce this conclusion. All items show satisfactory factor
loadings above the 0.30 threshold, ranging from 0.341 (F4) to
0.640 (F9), indicating that each item contributes meaningfully to
its respective latent construct. The reliability estimates for the
0.78 and wpg =
strong and acceptable respectively, especially in light of the fewer

two factors—wpr = 0.66—are considered
items loading on the FG factor. Moreover, the low inter-factor
correlation (r = 0.16) suggests that FF and FG capture largely
independent dimensions of students’ mental models. Since the
squared correlation between the factors is lower than the Average
Extracted Variance (AEV) for either factor, discriminant validity is
also supported according to the Fornell-Larcker criterion (Fornell
and Larcker, 1981).

In summary, answering RQ1, the model testing confirms the
theoretical distinction between Functional Fidelity and Fidelity of
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Gestalt. The empirical fit of the two-factor model, both globally
and locally, provides robust support for applying the FG-FF
framework in the analysis of students’ mental models. These
results justify the continued use of this dual-construct structure
in subsequent analyses and interpretations throughout this study.
They also extend prior work by operationalizing this distinction
quantitatively, rather than inferring it solely from task-based
performance as in earlier studies (Devichi and Munier, 2013). A
clearer synthesis of FG and FF within existing models of conceptual
change in geometry (e.g. Gennen (2023)) may further strengthen
the theoretical grounding.

6.2 Discussion regarding RQ2

Since the FG and FF scales exhibit only negligible correlation,
a type grid analogous to that proposed by Ubben and Heusler
(2021) could be generated, enabling the classification of students’
mental model archetypes. The results indicate that the majority
of participants in this study fell into either Type III (Dual
Understanding) or Type IV (Functional Understanding), which
aligns with previous findings (Ubben and Heusler, 2021).
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These results resonate with previous studies identifying common
misconceptions in angle understanding. Research by Biber et al.
(2013), Clements and Sarama (2020) and Battista (1999) among
others, has shown that many students rely heavily on visual
cues when reasoning about angles. However, unlike studies where
visual-dependence dominated across age groups (Biitiiner and
Filiz, 2017), the present findings suggest a stronger shift toward
functional reasoning in older cohorts.

Only a small fraction of learners exhibited a Type II
understanding (high FG, low FF), suggesting a focus on surface-
level visual features without a grasp of underlying functional
relationships for these few participants. Similarly, very few students
demonstrated Type I (Undeveloped Understanding), implying that
in the studied grade levels, students had either not formed any
meaningful conception of angles or had only developed abilities to
work with angles without meaningful understanding.

A comparison between students below grade 11 and those
in grade 11 or higher revealed statistically significant differences:
Functional Fidelity increased with age, while Gestalt Fidelity
decreased. This trend points toward a developmental shift from
visually grounded to more abstract, functional understandings
of angles—consistent with the findings of Ubben et al. (2023)
regarding expert cognition. However, as the present study

Frontiersin Education

employed a cross-sectional design, these differences should
be interpreted as cohort-level trends rather than individual
developmental trajectories. This pattern echoes research on
conceptual reorganization in geometry in adolescence (Weigand
et al., 2025), where the decline in context-dependent perception
is accompanied by increased reliance on invariant properties
of shapes.

These findings hold important implications for instructional
The
strategies that begin by fostering concrete intuition and then

design. observed progression supports pedagogical
transition toward encouraging abstract reasoning and structural
understanding, which indeed have been suggested previously
(cf. Volodin et al., 2025; Xie et al., 2024; Pulvermiiller, 2023;
Azmidar et al, 2017). Specifically, classroom interventions
might include contrasting examples that dissociate angle size
from visual length or orientation, the use of dynamic geometry
environments to emphasize rotational invariance, and guided
reflection prompts that help students articulate dual type reasoning
more fluently.

The rarity of Type II models suggests that visualizations are
not limiting development but rather that students of the examined
grades are generally able to proceed from visual input to more

functionally coherent mental models.
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higher (N> = 140).

Type grid of the FG-FF framework where blue nodes denote students of grade 10 or below (N; = 253) and red nodes denote students of grade 11 or

> FG
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TABLE 4 Results of the Mann—Whitney-U test, including descriptive statistics (i.e., sample size of the cohort, mean values, standard deviation (SD), and
standard error (SE)) as well as the test statistics U, p-values and respective effect-sizes.

Grade N Mean SD SE Test statistic p r
u
FE <10 253 3.89 0.61 0.04 12,123 < 0.001 032
>11 140 418 033 0.03
FG <10 253 3.16 0.70 0.04 10,532 < 0.001 0.41
>11 140 2.68 0.55 0.05

While few students in this study exhibited low-functionality
models, it remains an open question whether such types—
particularly Types I and II—are more prevalent among younger
students. For example, it has been found before that surface
level aspects/gestalt are extremely important for younger learners
(Petersen and McNeil, 2013). Future research should extend
this investigation to younger age groups to explore whether
these types are more commonly observed earlier in the learning
trajectory. Longitudinal designs would allow researchers to track
transitions between FG- and FF-dominant types, building on
similar developmental pathways proposed in angle conception
research (Simpson et al., 2024).
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7 Conclusion

This study advances current understanding of students’
conceptualizations of angles by applying the FG-FF framework
to uncover the cognitive structures underlying their reasoning.
Unlike prior research that has predominantly focused on
cataloging misconceptions (e.g., Battista, 1999; Biber et al., 2013;
Clements and Sarama, 2020), this work highlights that Gestalt-
based and functionally abstract reasoning represent empirically
distinguishable mental model types with clear implications for
learning (Ubben and Heusler, 2021). By demonstrating that these
dimensions are not merely descriptive but structurally separable,
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FIGURE 5

Boxplots of the variable FF-Score for both cohorts. Whiskers indicate
1.5 times the interquartile range. r is the biserial rank correlation and
the stars indicate the level of statistical significance (***p < 0.001).
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FIGURE 6

Boxplots of the variable FG-Score for both cohorts. Whiskers
indicate 1.5 times the interquartile range. r is the biserial rank
correlation and the stars indicate the level of statistical significance
(***p < 0.001).

the study contributes a novel lens for conceptual analysis in
mathematics education (Devichi and Munier, 2013).

The findings suggest that students do not move uniformly
from visual to abstract reasoning; instead, they exhibit patterned
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variations that can inform pedagogical intervention (Biitiiner and
Filiz, 2017). One of the key contributions of this research lies in
illustrating the potential for hybrid reasoning, where elements of
Gestalt and functional thinking coexist (Ubben et al., 2023). This
opens promising avenues for future work on how such models
develop and transition over time.

Nevertheless, the study offers an initial, rather than definitive,
validation of the FG-FF framework. Three directions for further
refinement emerge. First, additional psychometric work is needed
to strengthen the reliability of FG measurements and further
substantiate the structural distinctiveness of both constructs
(Ubben and Heusler, 2021). Second, extending research to younger
learners may clarify developmental trajectories and reveal when
functional abstraction begins to emerge (Petersen and McNeil,
2013). Third, integrating quantitative findings with qualitative data
(e.g., interviews, task-based reasoning, or classroom observations)
would deepen insight into how students mobilize these cognitive
dimensions in practice (Devichi and Munier, 2013).

A critical next step is moving beyond observational designs
to explore instructional impact. There is a pressing need for
experimental or design-based research that tests how targeted
teaching strategies can facilitate shifts from Gestalt-dominant
reasoning (Type II) toward more functionally grounded
understanding (Type IV) (Iberi, 2023). Such studies could
help identify specific classroom practices, representations, and
learning sequences that actively support cognitive transition rather
than assuming it will occur naturally (Weigand et al, 2025).
For teachers, actionable guidance derived from students’ mental
models—such as prompts that redirect attention from perceptual
features to invariant functional relations—would be particularly
beneficial (Clements and Sarama, 2020).

Finally, while angles provide a productive case due to their
dual visual-abstract nature, the FG-FF framework holds potential
beyond this context. Applying it to other mathematical domains—
such as symmetry, fractions, or functions—may reveal similar
structural dynamics and further test its explanatory scope across the
curriculum (Battista, 1999). Through continued refinement, cross-
topic application, and intervention-oriented research, the FG-FF
framework can evolve into a powerful tool for understanding and
improving conceptual development in both primary and secondary
mathematics education (Weigand et al., 2025).

8 Limitations and outlook

While the findings of this study offer valuable insights
into students’ mental models of angles through the lens of
the FG-FF hypothesis, several limitations should be noted and
recommendations for further research derived.

First, the study employs a cross-sectional design, which
allows for the observation of age-related trends but does not
permit conclusions about individual developmental trajectories.
Longitudinal research would be necessary to confirm whether
the observed patterns reflect actual learning progressions over
time. Our study does not establish cause-and-effect relationships.
Consequently, the validity of our findings pertains primarily to
the structural level, i.e. providing evidence that Fidelity of Gestalt
and Functional Fidelity represent empirically distinct dimensions
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of student cognition. Future research should leverage this empirical
substantiation by applying this framework, tracing how students’
mental models evolve over time, and by identifying critical
transition points between Gestalt-dominant and functionally
abstract reasoning.

Second, the study relies solely on self-report data collected
through Likert-scale items. While confirmatory factor analysis
supports the underlying structure, Likert-scale responses may not
fully capture the complexity of learners’ cognitive models or their
application in problem-solving contexts. Future studies may benefit
from combining quantitative approaches with qualitative data
sources, such as student interviews or think-aloud protocols, to gain
deeper insights into students’ reasoning processes.

Third, although the FG-FF framework assumes a conceptual
distinction between Gestalt and Functional Fidelity, the actual
boundary between visual and functional reasoning in students’
thinking may be more fluid than the model suggests. Hybrid forms
of reasoning that combine both aspects could exist but remain
undetected through the current measurement design.

Additionally, the FG factor showed lower internal consistency
compared to the FF factor. This may be due to the smaller
number of items, the broader variability in student interpretation
of visual prompts, or an inherent conceptual looseness of the
Gestalt dimension. Further refinement of FG items and piloting
with broader samples could improve measurement reliability.

The content focus of the study is also limited to the
mathematical concept of angles. While angles present a compelling
case due to their simultaneously visual and abstract nature, the
generalizability of the FG-FF framework to other mathematical or
scientific concepts remains an open question. Future research could
explore how this dual-dimensional framework applies to other
mathematical concepts whose abstract nature get circumvented
by visualization, such as functions or fractions. First attempts to
explore the explanatory power of this framework have been made
in the context of group theory (Veith et al., 2022a), where the study
of symmetry groups of geometric figures hinted at similar cognitive
dynamics: Students were asked to determine the symmetry group
of a given geometric figure, yet those who focused predominantly
on the Gestalt of the figure—interpreting it in terms of familiar
shapes such as triangles or rectangles—frequently failed to identify
the correct set of symmetries. This suggests that an overemphasis
on visual resemblance can inhibit recognition of the underlying
functional relationships.

In addition, the
dimensions and secondary variables needs to be investigated

relationship between both cognitive
more thoroughly. As elaborated in Section 2.3, a statistically
significant relationship between both constructs and conceptual
understanding has been found in physics (the degree of FG
being negatively correlated to conceptual understanding,
while the degree of FF was positively correlated), raising the
question whether this result can be extended into mathematics,
and whether evidence can be gathered for correlations with
other cognitive constructs, such as procedural or declarative
knowledge.

Moreover, the current sample includes only high school
students. The developmental dynamics of younger learners,

particularly those in prepubescent stages where abstraction abilities
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are still emerging, remain unexplored. It is plausible that
younger students exhibit a higher prevalence of undeveloped or
architectural mental models. Expanding the age range to include
primary or lower secondary students would allow for a more
comprehensive picture of how these mental model types evolve.

Finally, the study is observational and does not involve
any instructional intervention. As such, it does not provide
evidence on how specific teaching strategies might influence
transitions between mental model types. Future experimental
or design-based studies could explore how targeted instruction
fosters the shift from Gestalt-focused to functionally abstract
understanding.

In the end, while this study supports the validity of the FG-
FF hypothesis in the context of angle learning, further research is
needed to refine the framework, extend its application, and explore
its instructional implications more directly.
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A d H TABLE A2 Overview of all indicators for the factor FF and the
ppendix over .
corresponding item phrasings.

TABLE A1 Overview of all indicators for the factor FG and the Indicator Item

corresponding item phrasings.
F1 A right angle is an angle that always measures 90°.
Indicator Item F2 Complementary angles are two angles whose measures
add up to 90°.
Gl If there is no dot inside the arc of an angle, it is not a
right angle. F3 All interior angles of a square are congruent.
G2 An angle is a number between 0 and 360. F4 An angle is an ordered pair of half-lines sharing a
common endpoint, called the vertex.
G3 If two angles look the same, they must have the same
measure. F5 Two angles are congruent if they have the same
measure, regardless of their orientation.
G4 The size of an angle depends on how far apart the ends
of its lines are. F6 An angle bisector is a ray that divides an angle into two
adjacent angles of equal measure.
G5 The area enclosed by the angle’s rays shows how big the
angle is. F7 The measure of an angle is independent of the length of
its rays.
G6 Angle B has a larger measure than angle o because the
top ray of angle B is longer than the top ray of angle . F8 All interior angles of any regular polygon are
congruent.
Fo Any two right angles are congruent.
(e el F10 The notation ZXYZ refers specifically to the numerical
measure of the angle whose vertex is Y and whose sides
G7 Angle B is clearly smaller than angle a. pass through points X and Z.
F11 Perpendicular lines intersect to form four right angles,
each measuring 90°.
(0% B
G8 Angle 8 must have a larger measure than angle o

because the arc drawn inside it is bigger.

iy

G9 Angle o looks sharper than angle 3, so angle & must be
the smaller angle.

A L
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