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Adaptive learning systems (ALSs), powered by artificial intelligence (AI), represent 
a transformative approach to biotechnological and pharmaceutical education that 
addresses the critical limitations of traditional standardized pedagogy. This review 
highlights empirical evidence demonstrating how ALS dynamically personalizes 
learning through knowledge state modeling (KSM) and the synergistic integration 
of knowledge level (KL) and knowledge structure (KS) dimensions. This framework 
enables mastery-based progression in sequential domains (e.g., genetic engineering 
and pharmacodynamics), ensuring foundational competency before advancement. 
In addition, key applications of adaptive learning (AL) in the field of biological 
and pharmaceutical education are also detailed, including scaffolding complex 
foundational sciences (e.g., real-time misconception detection in Clustered 
Regularly Interspaced Short Palindromic Repeats—CRISPR-associated protein 
9 [CRISPR-Cas9]), enhancing technical skills via AI-driven virtual labs simulating 
industry workflows (e.g., High-Performance Liquid Chromatography [HPLC] and 
bioreactors), and navigating regulatory compliance through contextual simulations. 
The documented benefits include significant cost reduction, accelerated skill 
acquisition, and strengthened industry alignment. Nevertheless, challenges persist in 
terms of technical fragmentation, algorithmic bias, and equitable resource access. 
Finally, it is suggested that future research priorities should involve developing 
integrated architectures with blockchain-secured micro-credentials, human-AI 
synergy frameworks for ethical oversight, and equity-driven deployment via federated 
edge learning. The strategic implementation of ALS promises to cultivate a globally 
competitive, interdisciplinary workforce for next-generation biopharmaceutical 
innovation while establishing rigorous, regulatory-grade training.
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1 Introduction

AI has profoundly accelerated global development across multiple domains and has 
served as a catalyst for innovation and efficiency. In environmental protection, AI aids 
climate modeling and resource management, enabling smarter strategies to combat 
ecological challenges (Chutcheva et al., 2022; Al-Sharafi et al., 2023). Healthcare has also 
seen revolutionary advancements through AI-powered diagnostics and personalized 
treatment plans (Alowais et  al., 2023), exemplified by systems such as IBM Watson 
Oncology (Zou et  al., 2020; Park et  al., 2023), which improves cancer care accuracy. 
Education benefits from adaptive learning (AL) platforms that tailor content to individual 
student needs, thus democratizing access to quality education (Knopp et  al., 2023). 
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Importantly, AI has also profoundly revolutionized the 
biotechnology and pharmaceutical industries, and the current 
applications of AI in pharmacy practice have further emphasized 
its role in improving workflow efficiency and patient outcomes 
(Jessica et  al., 2025). While AI has been extensively utilized in 
medical disciplines such as diagnostics and treatment protocols 
since the 1970s, its adoption in pharmacy remains limited, 
primarily focusing on operational tasks (e.g., stock management) 
rather than direct patient care. Nevertheless, recent technological 
innovations have precipitated a significant shift in research focus 
toward integrating artificial intelligence into pivotal aspects of 
pharmacy practice, particularly in refining clinical decision-
making for pharmacist interventions (Alowais et al., 2023)(Jamrat 
et al., 2023), optimizing medication adherence through intelligent 
monitoring systems, and advancing precision medicine frameworks 
for tailored therapeutic strategies (Figure  1). Moreover, the 
inevitability of AI in medicine and the need to prepare future 
physicians to critically engage with AI tools have been highlighted 
(Ngo et al., 2022). These emerging demands call for a strategic 
restructuring of tertiary education systems to nurture multifaceted 
talent capable of synthesizing expertise from diverse 
academic domains.

The appropriate integration of AI into educational ecosystems 
represents a paradigm shift in addressing the systemic limitations 
inherent to traditional pedagogical frameworks (Costa et al., 2025; 
Wang and Zhang, 2025). Historically constrained by mass 
standardization constraints, personalized instruction barriers, and 
inequitable resource distribution, modern education systems have 
undergone a transformative evolution through strategic AI 
adoption. Drawing parallels with pharmaceutical applications, 
where machine learning optimizes drug-related problem detection 
(Corny et al., 2020) and clinical decision support (Levivien et al., 
2022), educational technologies employ similar computational 
architectures to achieve precise interventions (Lu et al., 2023; Singh 
et al., 2025). The integration of three core AI modalities—adaptive 
machine learning (Peng and Fu, 2022), natural language processing 
(Yang, 2022), and multimodal computer vision systems (Gao et al., 
2025)—enables sophisticated predictive analytics and intelligent 
systems within contemporary educational ecosystems. Adaptive 
machine learning algorithms could personalize learning pathways 
by analyzing individual performance and errors and dynamically 
adjusting content difficulty (Balestra et al., 2021). This process is 

similar to pharmaceutical prioritization models. Meanwhile, 
advanced natural language processing (NLP) engines are capable 
of providing real-time diagnostics of comprehension and writing, 
identifying knowledge gaps, and supporting metacognitive growth. 
Multimodal vision systems, leveraging techniques from medical 
imaging, could be used to track behavior and micro-expressions to 
quantify engagement and affect, enabling timely interventions 
(Oren et  al., 2020). These technological convergences facilitate 
data-driven personalization at scale, mirroring AI successes in 
domains such as medication adherence monitoring, where 
intelligent tutoring systems autonomously refine instructional 
strategies based on real-time learner interactions and 
competency benchmarks.

During the past few years, AL has shown great potential in 
reshaping education, particularly in the dynamic and demanding 
fields of biotechnology and pharmaceutical science. Its application 
in biotech/pharmaceutical education addresses critical challenges 
and unlocks unprecedented opportunities for effective, efficient, 
and engaging learning. Based on these findings, this review 
examines the AI-powered ALS for biopharmaceutical education. It 
draws on a curated selection of publications from major databases 
such as PubMed, Web of Science, and IEEE Xplore, focusing on key 
terms including “adaptive learning,” “AI in education,” 
“biopharmaceutical education,” and “knowledge state modeling.” 
The selection prioritizes recent and high-impact studies (primarily 
from 2010 to 2025) that illustrate the core concepts, applications, 
and challenges in the field. In particular, this review details how 
ALS uses KSM and integrates knowledge level/structure to enable 
mastery-based progression, scaffold complex sciences, and enhance 
technical/regulatory training, which is believed to be capable of 
accelerating competency development while addressing challenges 
such as technical fragmentation and equity.

2 Key methodologies utilized in 
adaptive learning

AL represents a paradigm shift from static, one-size-fits-all 
instruction to dynamic, data-driven personalization, leveraging AI 
to optimize learning efficacy. Its application in high-stakes fields 
such as biopharmaceutical education underscores its 
transformative potential.

FIGURE 1

AI applications spanning the drug development continuum.

https://doi.org/10.3389/feduc.2025.1679222
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wang et al.� 10.3389/feduc.2025.1679222

Frontiers in Education 03 frontiersin.org

2.1 Review methodology

This review was conducted following a structured approach to 
ensure a comprehensive and representative analysis of the current 
landscape of AI-powered ALS in biopharmaceutical education. A 
literature search was performed across major academic databases, 
including PubMed, Web of Science, IEEE Xplore, and Scopus, to 
capture interdisciplinary perspectives from the life sciences, education 
technology, and computational fields.

The search strategy employed key terms and their combinations, such 
as “adaptive learning,” “AI in education,” “biopharmaceutical education,” 
“knowledge state modeling,” “intelligent tutoring systems,” and 
“competency-based education.” The primary inclusion criteria were peer-
reviewed articles, conference proceedings, and seminal reviews published 
between 2010 and 2025. We  also prioritized studies that presented 
empirical evidence, conceptual frameworks, or clear applications of ALS 
in biomedical or pharmaceutical contexts. The exclusion criteria included 
articles not available in English, those lacking a direct focus on education 
or AI methodology, and publications without a clear description of the 
adaptive learning mechanism.

The analytical framework was centered on synthesizing evidence 
around core themes, which include the foundational mechanisms of 
ALS (e.g., knowledge state modeling), architectural components, 
specific applications in biotech and pharma education, documented 
advantages, and prevailing challenges. The selected publications were 
systematically categorized and analyzed to identify emerging trends, 
technological convergence, and critical research gaps, which were 
used to form the basis for the structured discussion and future 
directions presented in this review.

2.2 Foundational mechanisms of AL

This section outlines the core principles and operational 
mechanics of ALS. It begins by explaining the basic closed-loop 
architecture of AL, followed by a description of its key iterative cycles. 
Central to this discussion is the role of KSM in inferring learner 
proficiency and the synergistic integration of knowledge level (KL) 
and knowledge structure (KS) to enable personalized and 
pedagogically coherent learning pathways. It is believed to be essential 
to understand these foundational mechanisms for appreciating how 
AL systems deliver tailored educational experiences.

2.2.1 Basic principles
ALS leverages AI, machine learning (ML), and data analytics 

(Table  1) to personalize educational experiences by dynamically 
adjusting content, pace, and instructional strategies based on individual 
learner needs (Alawneh et al., 2024; Naseer et al., 2024; Tan et al., 2025). 
ALS operates as a closed-loop system, which is usually comprised of 
three core components (Figure  2): the learner, learner model, and 
educator (Tan et  al., 2025). The learner interacts with dynamically 
generated content, receiving personalized instruction and real-time 
feedback while simultaneously producing behavioral data (e.g., 
responses and engagement metrics) that fuel system adaptation. These 
data will be further processed by the learner model, the AI engine of 
ALS, which utilizes an adaptation model (powered by algorithms such 
as Bayesian knowledge tracing (Xu et  al., 2023) or reinforcement 
learning (RL) (Ma et al., 2025)) to interpret learner states, predict needs, 

and make real-time pedagogical decisions about content sequencing, 
difficulty adjustment, and feedback delivery. Concurrently, the learner 
model generates learner analytics reports and transforms raw data into 
actionable insights about knowledge gaps, progress, and engagement. 
Finally, the educator utilized these reports to refine the teaching 
strategies and iteratively improve the system. This involves authoring 
educational content and defining the domain model, a structured 
knowledge ontology specifying concepts, skill prerequisites, and learning 
objectives, which critically informs decision-making from the adaptation 
model. Thus, ALS creates a continuous feedback loop, and this includes 
learner interactions that drive AI personalization, educator interventions 
that optimize content and domain structure, and system refinements 
that enhance future learning through increasingly precise adaptation.

2.2.2 Iterative operational cycle of ALS
Typically, these systems operate through five iterative cycles: data 

collection, learner profiling, content delivery, performance evaluation, 
and system optimization. (1) For data collection, multisource data 
collection incorporates direct assessments [quiz scores (Dorri et  al., 
2025)], engagement metrics [clickstream patterns (Rizwan et al., 2025)], 
and contextual inference (Dubey et al., 2025). Advanced implementations 
can incorporate environmental sensor data. Various open-source tools 
facilitate this process, such as Bboss-Datatran (a high-performance ETL 
tool for multisource synchronization and custom processing)1 and 
DataPipeline (an enterprise platform for real-time heterogeneous data 
integration).2 (2) Learner profiling is the process by which ML techniques 
[supervised/unsupervised learning (Huang et al., 2024)] construct models 
classifying learners by competency, pacing, or preferences. (3) In the 
phase of content delivery, AI-curated resources (e.g., targeted practice 
modules and adaptive quizzes) are deployed via rule-based or neural 
network-driven logic (Ali et al., 2025). (4) During the state of performance 
evaluation, learning outcomes are compared against predefined 
benchmarks to refine future interventions. This mirrors AI applications 
in medicine, such as the Human Dx project,3 an open-source platform 
aggregating global clinical reasoning data to develop dynamic diagnostic 
tools through continuous metric analysis. (5) Finally, for system 
optimization, iterative feedback mechanisms continuously refine the 
algorithmic models and enhance predictive accuracy via adaptive 
learning processes.

1  https://github.com/bbossgroups/bboss

2  https://www.datapipeline.com/

3  https://www.humandx.org/

TABLE 1  Key AI technologies applied in the process of ALS.

Technology Role in ALS

Machine learning
Knowledge tracing (BKT), risk 

prediction, and clustering learners

Knowledge representation
Domain model ontologies and 

competency graphs

Data mining and learning analytics Extracts patterns for analytics reports

Rule-based systems and decision engines
Implements pedagogical logic in 

adaptation

Natural language processing
Analyzes open-ended responses or 

generates feedback

https://doi.org/10.3389/feduc.2025.1679222
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2.3 Key component of AL

This section focuses on KSM as the central mechanism for 
assessing learner proficiency and details the critical integration 
of KL and KS. This synergy enables the creation of personalized 
and logically sequenced learning paths that form the basis of an 
effective AL.

2.3.1 Knowledge state modeling
KSM constitutes a foundational mechanism within AL systems 

(Kou et al., 2023; Alatrash et al., 2024), which serves to infer and 
maintain a dynamic, latent representation of the evolving mastery 
across specific knowledge components (KCs) or concepts (e.g., 
CRISPR/Cas9 mechanisms, affinity chromatography techniques). The 
key principle underpinning KSM is that the true understanding of a 

FIGURE 2

Component architecture of an AI-driven adaptive learning platform.
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learner is a hidden state that continuously evolves through learning 
interactions and is subject to uncertainty, which necessitates 
probabilistic inference from observable evidence such as quiz 
responses, simulation outcomes, and problem-solving attempts. This 
state is inherently multidimensional and captures probabilistic 
estimates of proficiency levels (e.g., unfamiliar to master) for 
numerous interconnected KCs. Methodologically, KSM usually 
employs diverse computational techniques, and its evolution of KSM 
usually spans from traditional to modern deep learning methods. 
Traditional approaches include Bayesian knowledge tracing (BKT) 
(Sun et  al., 2022), performance factor analysis (PFA), and item 
response theory (IRT). For more complex sequential data, deep 
knowledge tracing (DKT) (Ma et al., 2024; Zhang et al., 2025), which 
leverages recurrent neural networks (RNNs) or long short-term 
memory networks (LSTMs) to represent the knowledge state as a 
dense vector for predicting future performance, has become 
prominent. Subsequent enhancements to DKT integrate mechanisms 
such as attention and prerequisite structures using graph neural 
networks (GNNs) or transformers. Separately, factor models such as 
knowledge tracing machines (KTM) approach the problem through a 
collaborative filtering lens.

The inferred knowledge state further facilitates AL personalization 
through five key mechanisms. First, personalized content sequencing 
selects optimal KCs based on prerequisite status, delivers items 
targeting the zone of proximal development (ZPD), and triggers 
remediation for decaying knowledge. Second, dynamic scaffolding 
provides targeted hints and adaptive explanations to address 
struggling KCs while identifying potential misconceptions. Third, 
mastery-based progression and pacing utilize probabilistic thresholds 
to determine concept mastery and enable individualized learning 
speeds. In addition, predictive intervention forecasts learner 
performance and identifies at-risk students through a prerequisite gap 
analysis. Finally, personalized learning path generation dynamically 
constructs customized curriculum sequences. Nevertheless, significant 
challenges persist, such as the cold-start problem, limited 
interpretability of complex models (particularly deep-learning-based 
KSM), dependencies on high-quality interaction data with accurate 
KC mapping, difficulties in modeling, forgetting, simulating 
knowledge transfer, and scalability constraints. Despite these 
limitations, KSM remains the fundamental mechanism enabling AL 
systems to adapt instruction effectively, thereby optimizing learning 
efficiency and outcomes for individual learners.

2.3.2 Synergistic integration of cognitive 
dimensions in AL

The efficacy of advanced AL systems fundamentally hinges on 
the synergistic integration of two indispensable and complementary 
cognitive dimensions: knowledge level and knowledge structure. 
The knowledge level dimension dynamically quantifies the current 
proficiency of a learner in specific KCs, which can be modeled as 
latent variables such as the probability of mastery [e.g., P(mastery of ‘PCR 

primer design’) = 0.85] using techniques such as Bayesian knowledge 
tracing or item response theory. This continuous assessment 
enables personalized interventions by identifying the learner’s zone 
of ZPD, which allows for the delivery of content precisely tailored 
to their current readiness. Conversely, the knowledge structure 
dimension encodes the semantic prerequisite relationships and 
conceptual dependencies within the domain ontology (e.g., 

mastery of “enzyme kinetics” as a prerequisite for 
“pharmacodynamics”). This structure is computationally 
implemented through explicit prerequisite graphs or implicitly 
implemented through embeddings in Q-matrices. Therefore, it 
could provide a pedagogically valid roadmap that governs the 
logical sequencing and progression of learning content. It should 
be noted that neglecting either cognitive dimension can induce 
significant inefficiencies within adaptive learning systems. For 
instance, an isolated focus on knowledge level might risk 
recommending KCs that fall technically within the learner’s 
estimated zone of ZPD, yet lack necessary prerequisites. This 
mismatch, exemplified by suggesting complex pharmacodynamic 
modeling without foundational mastery of enzyme kinetics, could 
result in cognitive overload and learner frustration. Conversely, 
over-reliance on knowledge structure forces unnecessary review of 
already mastered KCs (e.g., revisiting enzyme kinetics 
fundamentals), which might lead to redundancy, disengagement, 
and inefficient use of learning time. Therefore, AL systems must 
employ sophisticated KSM to concurrently evaluate real-time 
proficiency (KL) and conceptual dependencies (KS). KSM is able 
to integrate dynamic probabilistic estimates of KC mastery with 
static or inferred ontological constraints and then generate a 
comprehensive view of the learner’s state. This integrated model 
empowers the system to dynamically select the next best 
instructional action, whether introducing new KCs, providing 
practice, or offering remediation, which is both appropriately 
challenging (leveraging the ZPD via KL) and logically sequenced 
(respecting prerequisite dependencies via KS). The obtained result 
is the generation of cognitively optimal and efficient learning 
trajectories, which could maximize learning effectiveness by 
adapting to both what the learner knows and how that knowledge 
is conceptually organized.

The concept of “mastery-based progression” is a direct application 
of the synergistic integration of the knowledge level and knowledge 
structure. It is capable of mandating that learners advance to subsequent 
KCs only upon empirically demonstrating their competency in 
prerequisite KCs. This progression mechanism is intrinsically governed 
by the KSM framework, which is capable of generating real-time 
proficiency metrics (KL) with ontological dependencies (KS). Within 
sequential domains, such as genetic engineering (e.g., from PCR 
amplification to recombinant vector construction) or GMP compliance 
(e.g., from equipment calibration to aseptic technique validation), the 
system enforces strict prerequisite verification through adaptive 
assessments modeled through IRT or BKT. Failure thresholds (e.g., 
mastery probability <0.8) could trigger targeted remediation, while 
success unlocks ZPD-aligned advanced content. By structurally 
prohibiting progression without validated mastery, this approach 
mitigates cascading deficits that would otherwise arise from unresolved 
foundational gaps, such as attempting plasmid transfection without DNA 
ligase proficiency or performing sterility testing without understanding 
cleanroom protocols. Consequently, it ensures pedagogical integrity and 
reduces cognitive load in inherently hierarchical domains.

2.4 Core architectural framework

AL systems operate through a tightly integrated architecture 
comprising four functionally distinct yet interdependent 
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computational models, as systematically outlined in Table  2. This 
framework dynamically orchestrates the personalization process by 
continuously exchanging data across models, thereby actualizing the 
synergistic integration of the knowledge level and knowledge structure 
dimensions previously established. Each model plays a critical role in 
the adaptive cycle.

2.4.1 The learner model (cognitive state engine)
The functions of the learner model are to continuously 

estimate and update the learner’s knowledge state across all KCs 
using probabilistic frameworks (e.g., BKT and deep knowledge 
tracing). Crucially, it could produce real-time proficiency metrics 
[KL, e.g., mastery probability P(KC_x)] with ontological 
dependencies (KS, sourced from the domain model) through 
KSM and generate a multidimensional proficiency profile.

2.4.2 The domain model (structural ontology)
The role of the domain model is to encode the subject matter’s 

semantic architecture as a computational ontology, which 
explicitly defines KC interdependencies (e.g., from “enzyme 
kinetics” to “pharmacodynamics” prerequisites) and KC metadata 
(e.g., complexity, type). Typically, this is implemented as a 
prerequisite for graphs or Q-matrices. Therefore, this model 
could enforce pedagogically valid learning pathways and enable 
mastery-based progression logic (e.g., blocking plasmid 
transfection in genetic engineering without DNA ligase mastery).

2.4.3 Instructional model (pedagogical agent)
The instructional model is used to translate the state of the learner 

model and the constraints of the domain model into pedagogical 
actions using rule-based systems or reinforcement learning policies. 
It dynamically selects interventions aligned with ZPD principles, 
where it will remediate below-threshold KCs (e.g., mastery_prob 
<0.8), advance to subsequent KCs upon mastery validation, or adjust 
content granularity. Based on these, these strategies collectively enable 
four critical instructional functionalities: prerequisite-compliant 
content sequencing (governed by domain ontologies), adaptive 
scaffold selection (contextual hints/procedural workflows), 
performance-contingent feedback specificity, and dynamic challenge 
calibration through difficulty scaling.

2.4.4 Interface model (experience mediator)
The interface model is capable of mediating learner-system 

interactions and collecting granular behavioral data (response 
latency and error patterns) while rendering personalized content. 
It transforms interactions (e.g., drag-and-drop plasmid construction 
simulations and GMP checklist completions) into evidence for 

learner model updates and adapts presentations based on cognitive 
load heuristics (e.g., segmenting complex pharmacodynamic 
models for struggling learners).

This synergistic data flow fundamentally underpins system 
efficacy. The interaction data captured by the interface model updates 
the learner model. The updated parameters of the learner model, 
integrated with the domain model rules, then inform the adaptation 
decisions generated by the instructional model. These decisions are 
executed through the interface model, and the resulting performance 
data could complete the loop by triggering learner model 
recalibration. As detailed in Table 2, this cohesive architecture enables 
AL systems to deliver cognitively optimized and efficient learning 
trajectories, thereby transforming static content into dynamically 
personalized educational experiences.

2.5 The implementation workflow

The implementation of the adaptive learning system follows a 
structured three-phase workflow (Figure 3).

Phase 1: system setup and knowledge mapping.
This initial stage involves structuring the educational domain into 

granular knowledge nodes (e.g., plasmid design, fermentation control) 
with explicit prerequisite links (e.g., from “Cloning” to “Transfection”). 
The learning resources are then tagged and sequenced according to 
these nodes. Finally, computational models are selected to align with 
learning objectives, such as RNNs for tracking knowledge progression 
in dynamic topics or reinforcement learning (RL) for optimizing 
complex skill pathways such as bioprocess scale-up.

Phase 2 real-time adaptation engine.
During this operational phase, learner interactions (e.g., response 

accuracy and time-on-task) are continuously captured to infer and 
update individual knowledge states using probabilistic models. Using 
these inferences, the system dynamically personalizes instructions by 
adjusting the content complexity, modulating the task difficulty, and 
enforcing prerequisite learning sequences. Concurrently, targeted 
feedback is provided based on error analysis (e.g., correcting 
miscalculations in primer Tm due to omitted Mg2+ concentration).

Phase 3 system refinement.
The final phase focuses on continuous improvement through 

analytics and model retraining. Instructor dashboards highlight 
cohort-wide and individual risk patterns (e.g., widespread difficulty 
with downstream purification), enabling timely interventions. The 
core algorithms are iteratively refined with new data to maintain 
relevance, particularly when integrating emerging content (e.g., 
mRNA vaccine modules), thereby sustaining an adaptive and 
responsive learning environment.

TABLE 2  Core components of an adaptive learning system.

Model Primary input Core function Output to

Learner model Interaction data (Interface) Estimate knowledge state via KSM Instructional model

Domain model Curricular expertise Encode KC relationships & constraints Learner/instructional models

Instructional model Learner state + Domain rules
Generate pedagogical actions per ZPD/

sequencing rules
Interface model

Interface model Instructional prescriptions
Present content & capture behavioral 

evidence
Learner model
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2.6 Applications of AL in curriculum design 
and pedagogy

This section examines how ALS transforms educational practices. 
It analyzes the key application domains in educational research, 
presents a concrete implementation example for medical education, 
and concludes with strategic recommendations for teaching reform. 
This is believed to be capable of offering a comprehensive view of ALS 
integration in modern curricula.

2.6.1 Potential applications of ALS in educational 
research

In educational research, ALS demonstrates the transformative 
potential for optimizing traditional pedagogical models through 
several strategies (Table  3). (1) Dynamic personalization of 
learning pathways creates individualized trajectories for students 
(Mejeh and Rehm, 2024). ALS is able to leverage AI-driven 
analytics to assess individual learner profiles (knowledge levels, 
cognitive styles, and engagement patterns) and generate tailored 
curricula. This replaces static “one-size-fits-all” approaches with 
adaptive content sequencing, ensuring optimal challenge levels and 
minimizing knowledge gaps. (2) Real-time feedback loops and 
interventions detect struggling learners early (Naseer and Khawaja, 
2025), which is similar to AI-driven prescription-checking systems 
in pharmacy practice. By continuously monitoring learner 

performance (e.g., quiz responses and interaction frequency), ALS 
can provide immediate corrective feedback and automatically 
adjust instructional strategies. This contrasts with the delayed 
feedback in conventional models, enhancing metacognitive 
awareness and retention. (3) ALS also enables data-driven 
instructional optimization by aggregating granular learning 
analytics (e.g., time-on-task and error patterns). These insights 
facilitate evidence-based refinements of both the system 
architecture and pedagogical practices. Educators gain actionable 
insights to modify content delivery and address cohort-level 
deficiencies. (4) Ethical-AI frameworks maintain educational 
governance. ALS integrates human oversight to preserve educators’ 
authority over critical decisions (curricula/interventions). This 
ethical safeguard confines AI to its assistive roles, thereby 
preventing autonomous overreaching. (5) Competency-based 
progression embodies educational paradigms aligned with the 
Accreditation Council for Graduate Medical Education (ACGME) 
core competencies, particularly practice-based learning and 
improvement. By prioritizing skill mastery over time-based 
benchmarks, it ensures learners achieve predefined proficiency 
levels before advancing—a principle validated in competency-
based medical education (CBME) frameworks. (6) Hybrid 
instructional models, exemplified by immersive technologies such 
as VR surgery simulators in residency training (Mariani et  al., 
2021), synthesize adaptive digital modules with traditional didactic 

FIGURE 3

The tri-phase adaptive learning framework for biopharmaceutical training.

https://doi.org/10.3389/feduc.2025.1679222
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wang et al.� 10.3389/feduc.2025.1679222

Frontiers in Education 08 frontiersin.org

methods. Such integration enhances procedural skill development 
through risk-free, repeatable simulations, which have been 
successfully implemented in Canadian neurosurgery programs 
(Ryu et al., 2017). The hybrid model also incorporates AI-driven 
adaptive learning systems, which tailor content delivery based on 
individual performance metrics, as seen in competency frameworks 
for healthcare AI integration. (7) As for AI literacy development, 
modern medical education frameworks systematically cultivate the 
capacity of learners to critically evaluate AI tools (Paranjape et al., 
2019). This involves staged training in the development of 
fundamental AI principles (e.g., algorithm bias detection), ethical 
implications of clinical AI deployment, and hands-on 
experimentation with diagnostic support systems. As outlined in 
the scaffolded AI literacy framework (LaFlamme, 2025), 
progression occurs through four tiers, from basic understanding 
to advanced evaluation, which ensures that clinicians can 

responsibly leverage AI while maintaining human oversight in 
decision-making.

These enhancements collectively address the longstanding 
limitations of standardized education models while preserving 
essential human-centric pedagogical values.

2.6.2 Example workflow of ALS in medical 
education reform

Figure 4 explores the integration of AI literacy skills within a 
third-year clinical diagnostics curriculum. This comprehensive 
framework for neurology education (e.g., ALS diagnosis) operates 
across four integrated phases. Phase 1 (Pre-class) involves faculty-AI 
collaboration to build dynamic knowledge graphs linking symptoms 
to pathophysiology and treatments, while AI personalizes pre-class 
tasks using student performance data. Phase 2 (In-class) deploys 
adaptive virtual patient simulations, where AI adjusts case 

TABLE 3  Potential applications of ALS in educational research.

Application domain Core mechanism Educational impact Contrast with 
traditional models

Implementation 
examples

1. Dynamic personalization

AI-driven analytics assess 

learner profiles (knowledge 

levels, cognitive styles, and 

engagement patterns)

• Generates individualized 

learning trajectories

• Ensures optimal challenge 

levels

• Minimizes knowledge gaps

Replaces static “one-size-fits-

all” curricula

Adaptive content sequencing based 

on real-time diagnostics

2. Real-time intervention

Continuous monitoring of 

performance metrics (quiz 

responses, interaction 

frequency)

• Early detection of struggling 

learners

• Enhanced metacognitive 

awareness

• Improved knowledge 

retention

Eliminates delayed feedback 

cycles

AI-driven prescription checking is 

analogous to pharmacy systems

3. Instructional optimization

Aggregation of granular 

learning analytics (time-on-

task, error patterns)

• Evidence-based refinement of 

pedagogy

• Identification of cohort-level 

deficiencies

• Actionable educator insights

Transcends subjective 

teaching adjustments

Analytics dashboards informing 

content delivery modifications

4. Ethical-AI governance
Embedded human oversight 

mechanisms

• Preserves educator authority 

on curriculum/ intervention

• Prevents autonomous AI 

overreach

Confines AI to assistive roles
Framework requiring educator 

approval for critical decisions

5. Competency-based 

progression

Mastery verification prior to 

advancement

• Aligns with ACGME core 

competencies (e.g., practice-

based learning)

• Ensures predefined 

proficiency attainment

Shifts focus from time-based 

to skill-based benchmarks

Validation through Competency-

Based Medical Education (CBME) 

frameworks

6. Hybrid instructional 

models

Synthesis of adaptive digital 

modules with didactic 

methods

• Enhances procedural skill 

development

• Enables risk-free repetitive 

practice

Integrates immersive 

technologies with 

conventional teaching

• VR surgery simulators in residency 

training

• Canadian neurosurgery programs’ 

implementation

• Healthcare AI competency 

frameworks

7. AI literacy development
Scaffolded training curriculum 

(4-tier progression)

• Critical evaluation of clinical 

AI tools

• Responsible deployment with 

human oversight

Systematically cultivates 

missing technical 

competencies

• Algorithmic bias detection training

• Ethical analysis of clinical AI

• Hands-on diagnostic system 

experimentation
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complexity in real time and provides tiered scaffolding for high 
performers. Phase 3 (Post-class) uses AI-generated quizzes targeting 
individual weaknesses, integrates ethics training on algorithmic bias, 
identifies at-risk students via error analysis, and enables faculty to 
refine teaching based on analytics. Phase 4 (Longitudinal) ensures 
continuous evolution through cross-institutional resource sharing 
and system updates with real-world data. Key outcomes include 
improved student diagnostic accuracy and critical AI evaluation 
skills alongside institutional cost reductions via shared 
AI ecosystems.

2.6.3 Strategic recommendations for teaching 
reform

As shown in Table 4, strategic teaching reform requires a dual-
pronged transformation, including evolving teacher training and 
implementing outcome-driven evaluation. Faculty members must 
be equipped to curate AI-generated case studies (e.g., optimizing 
mRNA vaccine stability) and anchor ALS feedback within core 
scientific principles. Parallel to this, adopting “AI co-teaching” 
frameworks will refocus educators on higher-order mentoring, 
such as critically evaluating drug formulation strategies proposed 

by ALS. Concurrently, assessment should transition from static 
exams to ALS-facilitated adaptive simulations of real-world 
scenarios, such as managing time-pressured bioprocess 
contamination events. Finally, learning analytics should track 
longitudinal competence development and correlate adaptive 
engagement with professional outcomes, including 
residency performance.

2.7 Specific applications in biotech and 
pharmaceutical education

As shown in Figure  5, adaptive learning could significantly 
streamline biopharmaceutical education through domain-specific 
strategies, including molecular biology scaffolding that enables 
complex concept mastery, reinforcement learning that optimizes 
precision dosing protocols, and hybrid AI biotech models that 
enhance bioprocessing efficiency. All of these are capable of collectively 
accelerating competency development across drug discovery-to-
manufacturing pipelines. These critical functions are detailed in the 
subsequent sections.

FIGURE 4

Proposed integration of AI literacy skills within a third-year clinical diagnostics curriculum.

TABLE 4  Implementation priorities for ALS integration.

Domain Short-term actions Long-term vision

Curriculum design Map ALS modules to ACPE competency standards Industry-codeveloped adaptive micro-credentials

Faculty roles Train educators as “AI interpreters” for ALS outputs Shift to learning experience designers

Assessment Embed ALS-driven analytics in longitudinal competence tracking Real-time adaptive OSCEs with AI proctoring

Infrastructure Hybrid cloud solutions for computational loads Federated learning networks across institutions
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2.7.1 Mastering complex foundational sciences
ALS demonstrates significant efficacy in the scaffolding mastery 

of core biotechnology and pharmaceutical sciences through precision 
diagnostics and dynamic scaffolding.

In the fields of molecular biology and genetics, ALS deploys 
knowledge tracing algorithms to detect misconceptions in real time, 
such as misinterpretations of CRISPR-Cas9 off-target effects (Luo 
et al., 2024) or transcriptional regulation dynamics (Josephs-Spaulding 
et al., 2024). Upon identifying conceptual gaps, the system activates 
multimodal interventions. For instance, annotated 3D animations 
elucidate plasmid vector assembly, interactive simulations guide gene 
knockout experimental design, and automated prerequisite reviews 

reinforce central dogma principles. In this way, it could reduce 
cognitive load and enable efficient navigation of complex topics.

In biochemistry and pharmacology education, ALS implements 
competency-based progression architectures, wherein mastery of 
foundational concepts controls advancement. For example, in a study, 
an RL framework integrated with PK-PD modeling was developed to 
personalize erdafitinib dosing for metastatic urothelial carcinoma (De 
Carlo et al., 2024). Each patient had a dedicated Q-learning agent 
trained on their digital twin (PK-PD model) to optimize adaptive 
dosing rules, aiming to maintain serum phosphate levels within the 
therapeutic range while minimizing toxicity. The results showed that 
the RL approach outperformed the FDA-approved protocol; it 

FIGURE 5

Precision-to-mastery framework: adaptive scaffolding of complex biopharmaceutical sciences.
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increased the percentage of patients within the target phosphate range 
from 56.7 to 68.1% at the end of treatment and eliminated severe 
hyperphosphatemia events. This method enables tailored initial doses 
and dynamic adjustments, thereby enhancing efficacy and safety. This 
demonstrates the potential of RL for precision dosing in oncology, 
leveraging digital twins to individualize therapy beyond population-
based protocols and improving outcomes for drugs with narrow 
therapeutic windows.

In cell culture and bioprocessing training, it could leverage AI 
algorithms to analyze real-time data (e.g., metabolites and growth 
rates) and dynamically adjust culture conditions (e.g., nutrient feed, 
pH, and temperature)(Qian et al., 2025; Ranpura et al., 2025). This 
enables personalized process optimization for specific cell lines or 
products, improving titer yields (e.g., up to 20%) and critical quality 
attributes, such as glycosylation patterns. Hybrid models combining 
mechanistic knowledge with machine learning further enhance 
predictive accuracy and reduce experimental costs. Overall, adaptive 
learning accelerates bioprocess development, ensures consistency, and 
supports Industry 4.0 goals in biomanufacturing.

2.7.2 Enhancing laboratory and technical skill 
development

ALS revolutionizes experimental training through intelligent 
simulation scaffolding and precision skill remediation, effectively 
bridging the theory-practice gap in biotechnology education. Virtual 
laboratories integrated with industry-standard platforms (e.g., 
Bio-Rad ELISA workflows, Agilent HPLC systems, and Sartorius 
bioreactors) deploy dynamic complexity modulation driven by real-
time performance analytics. For instance, adaptive learning was 
proposed to be capable of enhancing laboratory and technical skill 
development through dynamic knowledge graphs that integrate 
resources across organizations (Bai et al., 2024). Autonomous agents 
execute workflows, enabling real-time collaborative optimization (e.g., 
linking labs in Cambridge and Singapore for pharmaceutical reaction 
optimization). This approach automates design-make-test-analyze 
cycles, records data provenance for reproducibility, and dynamically 
adjusts experiments based on performance. It accelerates discovery 
(e.g., generating a Pareto front in 3 days) and supports scalable, high-
throughput experimentation while overcoming geographical and 
technical barriers.

ALS utilizes AI to personalize skill development in biopharma and 
dynamically tailor training content (e.g., complex techniques, 
regulatory compliance, and computational biology) to individual 
knowledge gaps and learning pace. Recently, AIxFuse was developed, 
which integrates pharmacophore combinations and molecular 
docking via collaborative RL and AL (Chen et al., 2024). It contains 
two key steps: two self-play MCTS agents capable of optimizing 
pharmacophore fusion and an AL-trained critic used for evaluating 
dual-target binding. It generated molecules satisfying dual-target 
structural constraints, achieving 32.3% higher success rates than those 
of state-of-the-art methods (e.g., GSK3β/JNK3 and RORγt/DHODH). 
This is believed to be capable of accelerating therapies for complex 
diseases by overcoming structural constraints in a multitarget design. 
Similarly, AMVL was designed by integrating chemical-induced 
transcriptional profiles (CTPs), knowledge graph embeddings, and 
large language model (LLM) representations (Yan et al., 2025). This 
process is mainly achieved through multiview learning, matrix 
factorization, and ensemble optimization. It outperformed 

state-of-the-art methods in predicting drug-disease associations 
across benchmark datasets, with 7 of the top 10 predictions validated 
by the post-2011 literature. This framework provides a robust and 
scalable solution for accelerating drug repurposing by unifying 
multisource data and enhancing translational medicine research. 
Therefore, it is essential to integrate these strategies into modern 
higher education curricula and training programs to accelerate the 
development of the biopharmaceutical industry.

2.7.3 Navigating regulatory affairs and quality 
systems

ALS fundamentally reconfigures compliance training through 
contextually embedded simulation architectures and failure-driven 
remediation protocols, directly addressing escalating global regulatory 
demands in biopharmaceutical development. The American Society 
of Mechanical Engineers (ASME) and Verification and Validation 40 
(V&V 40) were proposed for risk-based model credibility assessment 
and the FDA’s AI/ML lifecycle management framework to verify, 
validate, and manage computational models (including statistical, 
mechanistic, and ML) in biopharmaceutical manufacturing (Bideault 
et  al., 2021). Using curated hypothetical examples, this study 
demonstrates the utility of these frameworks for ensuring model 
credibility and argues for standardized approaches to facilitate 
adoption and alignment with existing good practices. Specifically, for 
adaptive learning models, the FDA framework provides critical value 
by enabling structured lifecycle management. It allows models to 
safely learn from new data post-deployment within GxP environments 
through pre-approved change protocols, rigorous monitoring, and 
controlled retraining/adaptation, thereby maintaining credibility as 
the conditions evolve.

In a recent study, three novel machine learning models (APMLR, 
AIOM, and IAMRF) were developed for predicting critical nephrology 
laboratory results (eGFR, creatinine, and urea)(Pawus et al., 2025). 
These models leverage adaptive learning to personalize predictions 
based on individual patient profiles and dynamically adjust them to 
temporal data and unique characteristics. APMLR achieved 96.97% 
accuracy using linear SVR, whereas gradient boosting yielded ~95% 
accuracy for AIOM/IAMRF. This highlights that AL could provide key 
value by enabling continuous patient-specific refinement, handling 
non-stationary clinical data, and improving long-term monitoring 
accuracy for personalized renal care.

2.7.4 Competency-based assessment and 
certification

AL serves as a key enabler for competency-based pharmacy 
education (CBPE) by personalizing educational pathways, allowing 
students to progress at their own pace, and dynamically adjusting 
content to address individual strengths and weaknesses. Therefore, 
this finding supports the shift from time-bound to competency-
focused outcomes.

In one study, entrustable professional activities (EPAs) were 
integrated into a competency-based clinical assessment tool for a 
Family Nurse Practitioner (FNP) program (Anthamatten and Pitts, 
2024). This system defines four performance levels (Novice to 
Proficient) linked to preceptor support needs. In addition, it requires 
students to document EPA performance frequency during clinical 
experience to track competency development toward practice 
readiness. In this system, AL holds a significant value by analyzing 
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individual student EPA performance data to automatically identify 
specific competency gaps. Then, it dynamically delivers personalized 
simulations or learning modules targeting those weaknesses, thereby 
enabling efficient remediation and optimized progression toward 
clinical competence.

In addition, an adaptive learning implementation framework 
(ALIF) was developed (Mirata and Bergamin, 2023), which identifies 
empirical relationships between determinants (e.g., technological 
barriers and leadership commitment), implementation strategies (e.g., 
institutional investment and stakeholder training), and outcomes (e.g., 
stakeholder acceptability and scaled implementation) in higher 
education. Derived from a Delphi study across Swiss and 
South African universities, ALIF emphasizes organizational readiness 
and stakeholder acceptance as critical for successful deployment. 
Within this framework, adaptive learning serves as the core 
technological innovation requiring systemic institutional support, 
pedagogical redesign, and contextual adaptation to overcome 
implementation barriers and achieve personalized, scalable education.

2.7.5 Continuous professional development 
(CPD)

Recently, a 3-year longitudinal personal-professional development 
(LPPD) program was developed for biomedical students to cultivate 
adaptive competencies such as self-awareness, resilience, and lifelong 
learning through coached group sessions and individual consultations 
(van Ede et al., 2023). Adaptive learning serves as the core pedagogical 
framework, which is capable of enabling personalized feedback, self-
directed goal setting, and iterative skill refinement in response to real-
world challenges, ultimately fostering professional identity formation 
amid uncertainty. Similarly, the Master Adaptive Clinician Educator 
(MACE) framework was introduced, which extends the master 
adaptive learner (MAL) model to clinician-educators (Snydman et al., 
2025). This emphasizes continuous self-directed growth, innovation 
in teaching, and adaptation to evolving educational needs. Adaptive 
learning underpins the MACE model by enabling educators to 
iteratively plan, implement, assess, and adjust teaching strategies using 
metacognitive reflection and feedback, thus fostering expertise in 
curriculum design, mentorship, and leadership beyond 
traditional approaches.

3 Advantages, challenges, and future 
directions

The integration of ALS into biopharmaceutical education 
represents a paradigm shift from standardized instruction to 
personalized competency-driven training. By leveraging AI 
algorithms, AL tailors content delivery based on individual learner 
profiles, real-time performance, and contextual demands. This 
analysis synthesizes empirical insights and identifies critical pathways 
for innovation.

3.1 Key advantages of AL in 
biopharmaceutical education

This section highlights the principal benefits of ALS in 
biopharmaceutical education and details its transformative impacts 

through three key dimensions: personalized competency 
development that addresses individual learning gaps, realistic 
simulation of industry workflows that bridges theory and practice, 
and scalable integration of academic training with 
industry requirements.

3.1.1 Personalized competency development
AL systems are capable of diagnosing gaps in core competencies 

(e.g., AI literacy, drug analysis, and clinical reasoning) and delivering 
customized modules. For instance, ChatGPT-assisted multiadvisor 
systems enable students to tackle complex cases (e.g., therapeutic drug 
monitoring and gene testing) with scaffolded guidance, significantly 
improving clinical decision-making skills. Student-centric data 
revealed that AL could bridge disparities between undergraduates 
(prioritizing foundational knowledge) and postgraduates 
(emphasizing project-based learning) by aligning training with diverse 
career trajectories.

3.1.2 Simulation of real-world workflows
AL transforms simulations into intelligent training ecosystems by 

dynamically adjusting scenarios based on individual performance, 
enabling risk-free mastery of complex workflows (e.g., drug analysis 
or bioprocessing) while bridging skill gaps between theory and 
practice. Its core value lies in accelerating competency development 
through personalized context-sensitive repetition, which can prepare 
learners for real-world challenges with precision and efficiency. For 
example, drug analysis software (e.g., virtual HPLC-MS simulators) 
could provide risk-free environments for mastering instrumentation, 
data interpretation, and GLP compliance. These platforms reduce 
reagent costs by 30–40% while enabling iterative skill refinement. In 
the “HVS model” (horizontal cross-discipline fusion, vertical full-
cycle coverage, sentimental value internalization), it integrates AL 
with virtual labs (e.g., GLP safety evaluation simulations), which 
enables students to navigate drug R&D pipelines from synthesis 
to pharmacovigilance.

3.1.3 Scalable industry-academia integration
AL platforms could efficiently embed industry standards and real-

time data from biomanufacturing facilities. For example, courses on 
AI-Driven Drug Synthesis (Das, 2025) or Biopharma Digital Twins 
(Shahab et al., 2025) incorporate live production anomalies, which are 
capable of training learners to troubleshoot deviations in monoclonal 
antibody purification. Intellia Therapeutics and MIT co-developed the 
CRISPR equipment predictive maintenance course using real device 
logs (e.g., electroporator voltage fluctuations), with Boston/San 
Francisco campuses specializing in gene editing/AAV production 
equipment to serve regional bioclusters.

3.2 Critical challenges and limitations

Despite its promising advantages, the implementation of AL 
systems faces several significant barriers. This section discusses these 
critical challenges, including technical fragmentation and 
interoperability issues, algorithmic bias in educational pathways, 
faculty readiness gaps, computational resource constraints, and 
broader ethical concerns regarding equity, data privacy, and 
algorithmic transparency.
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3.2.1 Technical and pedagogical fragmentation
A major barrier to scalable ALS implementation is technical 

fragmentation, primarily because of a lack of interoperability. 
Isolated tools (e.g., standalone AI tutors, virtual labs, and generative 
AI chatbots) often operate outside core learning management 
systems (LMS), which might create data silos that prevent a unified 
view of learner progress. For example, it was found that 37% of 
student competency profiles were incomplete due to such 
disconnected data in the UCSF Pharmacy School, which hinders 
holistic competency tracking and complicates accreditation. 
Furthermore, this isolation amplifies the risk of generative AI 
hallucinations. Unanchored from authoritative databases (e.g., 
DrugBank, EMBL-EBI), tools such as ChatGPT may propagate 
dangerous inaccuracies in complex domains (e.g., misstating drug 
mechanisms), undermining educational integrity. Addressing these 
issues requires integrated architectures with two key components. 
The first is LTI 1.3-compliant LMS embedding to maintain data 
continuity, and the second is retrieval-augmented generation 
(RAG) frameworks to ground AI outputs in verified knowledge. 
Thereby, it could ensure both seamless data integration and 
content validity.

3.2.2 Algorithmic bias in personalized pathways
Another critical challenge in ALS implementation is algorithmic 

bias, which threatens educational equity. Bias can originate not only 
from unrepresentative training data but also from pedagogical designs 
that prioritize technical skill acquisition while overlooking essential 
non-cognitive competencies such as empathy, ethical reasoning, and 
communication. An ALS that optimizes solely for procedural mastery 
risks producing graduates who are technically proficient yet deficient 
in the humanistic skills vital for patient-centered care.

To mitigate these risks, proactive and continuous bias detection 
frameworks are essential. Techniques such as SHAP value-monitored 
demographic parity audits can quantify the influence of input features 
on model outcomes and identify disparate impacts on demographic 
subgroups. Furthermore, a holistic evaluation strategy should 
be adopted that incorporates multimodal metrics, for instance, using 
natural language processing to assess communication skills in 
simulated patient interactions. In addition, regular model retraining 
on ethically curated datasets is also capable of ensuring ongoing 
fairness. Ultimately, a vigilant approach to bias mitigation could 
be indispensable for developing ALS that is not only adaptive but also 
equitable and professionally holistic.

3.2.3 Faculty readiness and computational 
resource constraints

The effective implementation of ALS may also confront two 
interconnected barriers: faculty readiness and computational resource 
limitations. Educators must transition from traditional instructors to 
“AI interpreters,” who are capable of curating AI-generated content 
and critically evaluating algorithmic outputs. Without targeted 
upskilling through initiatives such as AI literacy bootcamps, faculty 
members might struggle to mediate ALS recommendations effectively, 
thus limiting their pedagogical value. Concurrently, high-fidelity 
simulations essential for biopharmaceutical training (e.g., CRISPR 
workflows or bioreactor operations) demand substantial 
computational resources, which might exclude many institutions, 
particularly in resource-limited settings.

To efficiently deal with these challenges, integrated strategies are 
also required. Faculty development must be coupled with technical 
solutions, such as edge-cloud hybrid systems and federated learning, 
which distribute computational loads across institutions while 
preserving data privacy. Blockchain-based resource consortia could 
further enable shared access to high-performance computing. This 
dual approach of empowering educators and optimizing infrastructure 
may be  necessary for equitable and scalable ALS adoption in 
biopharmaceutical education.

3.2.4 Equity and ethical risks
The implementation of ALS might exacerbate the existing 

educational inequities, particularly through infrastructural disparities 
that widen the urban–rural skill gap. Resource-limited institutions 
may face prohibitive challenges, including inadequate cloud 
infrastructure and disproportionately high computational costs 
relative to their budget. This digital divide is compounded by the 
substantial bandwidth requirements of advanced simulations, which 
systematically exclude approximately 83% of rural institutions from 
high-fidelity training in essential techniques, such as CRISPR 
workflows or bioreactor operations.

To bridge this divide, bandwidth-adaptive content delivery 
protocols can be  utilized to optimize resource allocation for 
constrained connectivity environments, whereas federated edge 
learning systems enable offline-capable simulations and privacy-
preserving model refinement on local devices. These approaches 
should also be  reinforced through public-private infrastructure 
partnerships, potentially incorporating sustainable solutions such as 
solar-powered hardware for operational resilience in remote areas. 
Collectively, these measures would help transform ALS into a more 
inclusive educational infrastructure and ensure equitable access to 
competency development across geographical and 
socioeconomic boundaries.

3.2.5 Data privacy, consent, and algorithmic 
transparency

Beyond the issues of algorithmic bias, the ethical deployment of 
ALS in biopharmaceutical education necessitates a rigorous 
framework for data governance, informed consent, and algorithmic 
transparency. The extensive data collection required for effective 
personalization (e.g., detailed interaction logs, performance 
metrics, and behavioral biometrics) raises significant privacy 
concerns. To address this, future ALS architectures must implement 
privacy-by-design principles and use techniques such as federated 
learning (where model training occurs locally on user devices 
without raw data leaving the institution) and differential privacy 
(which adds statistical noise to the aggregated data) to minimize 
privacy risks.

Furthermore, the current model of blanket consent obtained at 
course onset is inadequate, given the dynamic and often intrusive 
nature of ALS data collection. We therefore propose a shift toward 
granular, tiered consent models. Such frameworks empower learners 
by granting them control over how their data are used for 
personalization, analytics, and research, thereby actively 
fostering trust.

The lack of transparency in complex models could also 
undermine their accountability and educational integrity. To build 
trust and uphold educational standards, it is crucial to develop 

https://doi.org/10.3389/feduc.2025.1679222
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wang et al.� 10.3389/feduc.2025.1679222

Frontiers in Education 14 frontiersin.org

explainable AI (XAI) techniques. These systems can generate 
interpretable rationales, such as explaining to a student that their 
performance on specific prerequisite items necessitates a review of 
a “Pharmacokinetics” module. This capability is key to making AI’s 
pedagogical logic clear and actionable for learners. This 
transparency is crucial because it enables educators to trust the 
guidance from these systems and encourages students to accept 
feedback as legitimate. This fundamental shift transforms ALS 
from an opaque arbitrator into a comprehensible 
pedagogical partner.

3.3 Future research directions

To address the existing limitations and advance the field, this 
section outlines priority research avenues for enhancing AL in 
biopharmaceutical education. These include developing integrated AL 
architectures with blockchain-secured credentials, establishing 
human-AI synergy frameworks, implementing equity-driven 
deployment models, validating AL efficacy through rigorous trials, 
and expanding immersive technology applications.

3.3.1 Developing integrated AL architectures
Future research must advance beyond the current landscape of 

fragmented AL tools by developing a truly integrated architecture. 
Although the use of APIs for achieving technical interoperability is an 
established concept in computer science, its specific application to 
create unified and data-fluid ALS ecosystems within biopharmaceutical 
education remains a novel and critical pursuit. The proposed 
innovation involves architecting seamless data exchanges between 
core educational modules (e.g., virtual labs, AI tutoring systems, and 
dynamic knowledge maps) to enable cross-platform analytics and 
holistic skill trajectory mapping.

A key example of this integrated approach is the novel proposal of 
blockchain-secured microcredentialing systems. This extends beyond 
simple digital badges. It constitutes an innovation for providing 
tamper-proof and verifiable certifications for specialized 
pharmaceutical competencies (e.g., aseptic processing and 
pharmacogenomics analysis). The cryptographic immutability of 
blockchain would eliminate credential fraud while enabling seamless 
skill portability across industry-academia boundaries. This directly 
addresses significant economic losses from critical skill gaps by 
ensuring that workforce competencies are transparent, trusted, and 
rapidly recognized. Thereby, it would accelerate talent deployment and 
reduce onboarding burdens in the global biopharmaceutical sector.

3.3.2 Human-AI synergy frameworks
While task partitioning between human and artificial intelligence 

represents an established research domain, a novel “multiadvisor” 
system specifically designed for pharmacy education could 
be  introduced. This framework is designed to be  capable of 
strategically delegating computational tasks, including ADMET 
property prediction via molecular dynamics, to AI components. 
Conversely, context-dependent challenges, such as designing ethical 
trials for vulnerable populations and navigating regulatory 
ambiguities, are reserved for human mentors.

The innovation of this study lies in its detailed three-phase 
technical roadmap. This involves fine-tuning models such as Llama-3 

on ethics transcripts, integrating electronic lab notebooks, and 
ultimately deploying a “Regulatory Copilot” in clinical platforms. This 
structured approach, enhanced by BioBERT (Lee et al., 2020)-powered 
dialogue understanding, is able to transform AI from merely assistive 
tools into collaborative teammates that significantly accelerate data 
processing while maintaining crucial human oversight in complex 
decision-making processes.

3.3.3 Equity-driven AL deployment
Equity-driven adaptive learning deployment could bridge 

global biopharmaceutical education gaps through federated edge 
learning systems. It enables offline simulations on accessible 
devices that are capable of overcoming bandwidth constraints in 
resource-limited regions while ensuring data sovereignty through 
privacy-preserving architectures. Public-private infrastructure 
partnerships can amplify this approach by establishing shared 
computing resources for computationally intensive training. These 
partnerships could be further strengthened through solar-powered 
hardware and mesh networking capabilities, which ensure 
operational resilience in challenging environments. Culturally 
responsive design integrates localized knowledge systems and 
multilingual support governed by inclusive policy frameworks 
mandating gender equity and disability access. Collectively, these 
strategies would transform AL into a universally accessible 
infrastructure and enable remote learners to achieve parity with 
leading institutions through government-subsidized technologies. 
Moreover, it could systematically address connectivity barriers, 
economic limitations, and culturally relevant gaps in global 
pharmaceutical education.

3.3.4 Validation and standardization
Validation and standardization of AL in pharmaceutical education 

require robust efficacy benchmarking through controlled comparative 
trials to systematically address the prevalent methodological gaps in 
current studies. This entails evaluating competency outcomes across 
diverse instructional modalities while integrating longitudinal 
performance-tracking mechanisms. Global regulatory frameworks 
must establish comprehensive bias-auditing protocols that cover the 
verification of dataset representativeness and runtime fairness 
monitoring through quantifiable equity metrics. These protocols 
should be  reinforced by internationally harmonized certification 
standards aligned with pharmaceutical quality systems. This dual 
approach could elevate AL to clinically validated training tools and 
subject it to GMP-grade verification standards. It establishes rigorous 
performance thresholds, ensuring regulatory-grade safety and 
equitable outcomes across learning environments.

3.3.5 Expanding immersive technologies
The advancement of immersive technologies in pharmaceutical 

training has been revolutionized through two interconnected 
paradigms. On the one hand, augmented reality systems provide hands-
free sterile manufacturing guidance via integrated sensing and 
biomechanical monitoring, where empirical validation demonstrates a 
significant reduction in procedural errors and enhanced aseptic success 
rates in industrial settings. Meanwhile, adaptive bioreactor digital twins 
dynamically modulate instructions through real-time sensor networks, 
which trigger context-specific learning modules when the critical 
process parameters deviate. The convergence of these approaches 
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establishes a cross-reality validation framework demonstrating 
accelerated competency development and improved fault diagnosis 
capabilities. In addition, machine learning algorithms could further 
enable predictive contamination risk management. These systems now 
satisfy key regulatory requirements for process validation through 
integration with the industrial IoT infrastructure and effectively 
transform immersive tools into cognitive extensions that actively 
prevent contamination during production operations. Concurrently, 
they continuously develop engineering expertise while enabling the 
digital transformation of manufacturing documentation and substantial 
resource optimization via AI-driven process refinement.

4 Conclusion

This review demonstrates that AI-powered ALS constitutes a 
transformative lever for biopharmaceutical education, fundamentally 
shifting the paradigm from standardized time-based instruction to 
precision mastery-oriented training. By integrating probabilistic KSM 
with real-time analytics of knowledge level and knowledge structure, 
ALS ensures that learners achieve validated competency before 
advancing through inherently sequential domains such as genetic 
engineering or pharmacodynamics. This review presents empirical 
evidence from diverse applications, including molecular biology 
scaffolding, AI-driven virtual labs, regulatory affairs simulations, and 
competency-based microcredentialing. This body of evidence 
demonstrates tangible benefits such as shortened time-to-competence, 
significant cost reduction, and strengthened alignment with 
industry workflows.

Nevertheless, the path to widespread adoption is contingent on 
overcoming three critical and interconnected bottlenecks. The first is 
the technical fragmentation that isolates specialized tools from 
institutional learning-management ecosystems. The second is the 
algorithmic and infrastructural inequities that risk exacerbating 
urban–rural skill gaps. Finally, there is prevailing faculty 
unpreparedness for new and AI-augmented pedagogical roles. 
Addressing these challenges necessitates a coordinated research and 
policy agenda, which is prioritized as follows: First, the development 
of open and API-driven interoperability standards, which could 
be  fortified by blockchain-secured micro-credentials to ensure 
verifiable skill portability. Second, the implementation of equity-
driven deployment models that leverage federated edge learning and 
bandwidth-adaptive content delivery to guarantee inclusive access. 
Third, the execution of longitudinal validation trials, benchmarked 
against pharmaceutical-quality regulatory frameworks, to establish 
ALS as a rigorously validated and regulatory-grade 
training infrastructure.

By implementing this strategic roadmap, educational institutions 
and industry stakeholders can co-create a resilient and globally 
inclusive ecosystem. Such an ecosystem will not only accelerate the 
cultivation of a versatile, interdisciplinary biopharmaceutical 

workforce but also firmly establish ALS as a cornerstone of next-
generation training infrastructure. This is believed to be ready to meet 
the demands of the coming decade in drug discovery and 
biomanufacturing innovation.
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