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Adaptive learning systems (ALSs), powered by artificial intelligence (Al), represent
a transformative approach to biotechnological and pharmaceutical education that
addresses the critical limitations of traditional standardized pedagogy. This review
highlights empirical evidence demonstrating how ALS dynamically personalizes
learning through knowledge state modeling (KSM) and the synergistic integration
of knowledge level (KL) and knowledge structure (KS) dimensions. This framework
enables mastery-based progression in sequential domains (e.g., genetic engineering
and pharmacodynamics), ensuring foundational competency before advancement.
In addition, key applications of adaptive learning (AL) in the field of biological
and pharmaceutical education are also detailed, including scaffolding complex
foundational sciences (e.g., real-time misconception detection in Clustered
Regularly Interspaced Short Palindromic Repeats—CRISPR-associated protein
9 [CRISPR-Cas9]), enhancing technical skills via Al-driven virtual labs simulating
industry workflows (e.g., High-Performance Liquid Chromatography [HPLC] and
bioreactors), and navigating regulatory compliance through contextual simulations.
The documented benefits include significant cost reduction, accelerated skill
acquisition, and strengthened industry alignment. Nevertheless, challenges persist in
terms of technical fragmentation, algorithmic bias, and equitable resource access.
Finally, it is suggested that future research priorities should involve developing
integrated architectures with blockchain-secured micro-credentials, human-Al
synergy frameworks for ethical oversight, and equity-driven deployment via federated
edge learning. The strategic implementation of ALS promises to cultivate a globally
competitive, interdisciplinary workforce for next-generation biopharmaceutical
innovation while establishing rigorous, regulatory-grade training.

KEYWORDS

adaptive learning systems, knowledge state modeling, competency-based learning, Al
in pharmaceutical education, biopharmaceutical training, interdisciplinary education

1 Introduction

AT has profoundly accelerated global development across multiple domains and has
served as a catalyst for innovation and efficiency. In environmental protection, Al aids
climate modeling and resource management, enabling smarter strategies to combat
ecological challenges (Chutcheva et al., 2022; Al-Sharafi et al., 2023). Healthcare has also
seen revolutionary advancements through Al-powered diagnostics and personalized
treatment plans (Alowais et al., 2023), exemplified by systems such as IBM Watson
Oncology (Zou et al., 2020; Park et al., 2023), which improves cancer care accuracy.
Education benefits from adaptive learning (AL) platforms that tailor content to individual
student needs, thus democratizing access to quality education (Knopp et al., 2023).
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Al has
biotechnology and pharmaceutical industries, and the current

Importantly, also profoundly revolutionized the
applications of AI in pharmacy practice have further emphasized
its role in improving workflow efficiency and patient outcomes
(Jessica et al., 2025). While AI has been extensively utilized in
medical disciplines such as diagnostics and treatment protocols
since the 1970s, its adoption in pharmacy remains limited,
primarily focusing on operational tasks (e.g., stock management)
rather than direct patient care. Nevertheless, recent technological
innovations have precipitated a significant shift in research focus
toward integrating artificial intelligence into pivotal aspects of
pharmacy practice, particularly in refining clinical decision-
making for pharmacist interventions (Alowais et al., 2023)(Jamrat
etal., 2023), optimizing medication adherence through intelligent
monitoring systems, and advancing precision medicine frameworks
for tailored therapeutic strategies (Figure 1). Moreover, the
inevitability of AI in medicine and the need to prepare future
physicians to critically engage with AT tools have been highlighted
(Ngo et al., 2022). These emerging demands call for a strategic
restructuring of tertiary education systems to nurture multifaceted
talent capable of synthesizing expertise from diverse
academic domains.

The appropriate integration of Al into educational ecosystems
represents a paradigm shift in addressing the systemic limitations
inherent to traditional pedagogical frameworks (Costa et al., 2025;
Wang and Zhang, 2025). Historically constrained by mass
standardization constraints, personalized instruction barriers, and
inequitable resource distribution, modern education systems have
undergone a transformative evolution through strategic Al
adoption. Drawing parallels with pharmaceutical applications,
where machine learning optimizes drug-related problem detection
(Corny et al., 2020) and clinical decision support (Levivien et al.,
2022), educational technologies employ similar computational
architectures to achieve precise interventions (Lu et al., 2023; Singh
etal., 2025). The integration of three core AI modalities—adaptive
machine learning (Peng and Fu, 2022), natural language processing
(Yang, 2022), and multimodal computer vision systems (Gao et al.,
2025)—enables sophisticated predictive analytics and intelligent
systems within contemporary educational ecosystems. Adaptive
machine learning algorithms could personalize learning pathways
by analyzing individual performance and errors and dynamically
adjusting content difficulty (Balestra et al., 2021). This process is
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similar to pharmaceutical prioritization models. Meanwhile,
advanced natural language processing (NLP) engines are capable
of providing real-time diagnostics of comprehension and writing,
identifying knowledge gaps, and supporting metacognitive growth.
Multimodal vision systems, leveraging techniques from medical
imaging, could be used to track behavior and micro-expressions to
quantify engagement and affect, enabling timely interventions
(Oren et al., 2020). These technological convergences facilitate
data-driven personalization at scale, mirroring Al successes in
domains such as medication adherence monitoring, where
intelligent tutoring systems autonomously refine instructional
strategies based on real-time learner interactions and
competency benchmarks.

During the past few years, AL has shown great potential in
reshaping education, particularly in the dynamic and demanding
fields of biotechnology and pharmaceutical science. Its application
in biotech/pharmaceutical education addresses critical challenges
and unlocks unprecedented opportunities for effective, efficient,
and engaging learning. Based on these findings, this review
examines the AI-powered ALS for biopharmaceutical education. It
draws on a curated selection of publications from major databases
such as PubMed, Web of Science, and IEEE Xplore, focusing on key
terms including “adaptive learning” “AI in education,”
“biopharmaceutical education,” and “knowledge state modeling.”
The selection prioritizes recent and high-impact studies (primarily
from 2010 to 2025) that illustrate the core concepts, applications,
and challenges in the field. In particular, this review details how
ALS uses KSM and integrates knowledge level/structure to enable
mastery-based progression, scaffold complex sciences, and enhance
technical/regulatory training, which is believed to be capable of
accelerating competency development while addressing challenges

such as technical fragmentation and equity.

2 Key methodologies utilized in
adaptive learning

AL represents a paradigm shift from static, one-size-fits-all
instruction to dynamic, data-driven personalization, leveraging Al
to optimize learning efficacy. Its application in high-stakes fields
education underscores its

such as biopharmaceutical

transformative potential.

Drug (Re)discovery

o Drug target elucidation
o Computational drug repurposing

e Compound screening and identification Ifl>

enzyme activity profiling

FIGURE 1
Al applications spanning the drug development continuum

Preclinical Development

e Prediction of drug characteristics
(e.g., toxicity, bioavailability)

Drug Treatment Optimization

e Pharmacokinetic (PK) modeling and
AUC (area under the curve) prediction
e Pharmacogenomics-guided

Clinical Development

[> o Al-driven participant selection
e Automated patient follow-up monitoring
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Real-World Application

® Mining real-world evidence (RWE)
for safety/efficacy analysis
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2.1 Review methodology

This review was conducted following a structured approach to
ensure a comprehensive and representative analysis of the current
landscape of Al-powered ALS in biopharmaceutical education. A
literature search was performed across major academic databases,
including PubMed, Web of Science, IEEE Xplore, and Scopus, to
capture interdisciplinary perspectives from the life sciences, education
technology, and computational fields.

The search strategy employed key terms and their combinations, such
as “adaptive learning,” “Al in education;” “biopharmaceutical education,”
“knowledge state modeling, “intelligent tutoring systems, and
“competency-based education” The primary inclusion criteria were peer-
reviewed articles, conference proceedings, and seminal reviews published
between 2010 and 2025. We also prioritized studies that presented
empirical evidence, conceptual frameworks, or clear applications of ALS
in biomedical or pharmaceutical contexts. The exclusion criteria included
articles not available in English, those lacking a direct focus on education
or Al methodology, and publications without a clear description of the
adaptive learning mechanism.

The analytical framework was centered on synthesizing evidence
around core themes, which include the foundational mechanisms of
ALS (e.g., knowledge state modeling), architectural components,
specific applications in biotech and pharma education, documented
advantages, and prevailing challenges. The selected publications were
systematically categorized and analyzed to identify emerging trends,
technological convergence, and critical research gaps, which were
used to form the basis for the structured discussion and future
directions presented in this review.

2.2 Foundational mechanisms of AL

This section outlines the core principles and operational
mechanics of ALS. It begins by explaining the basic closed-loop
architecture of AL, followed by a description of its key iterative cycles.
Central to this discussion is the role of KSM in inferring learner
proficiency and the synergistic integration of knowledge level (KL)
and knowledge structure (KS) to enable personalized and
pedagogically coherent learning pathways. It is believed to be essential
to understand these foundational mechanisms for appreciating how
AL systems deliver tailored educational experiences.

2.2.1 Basic principles

ALS leverages Al, machine learning (ML), and data analytics
(Table 1) to personalize educational experiences by dynamically
adjusting content, pace, and instructional strategies based on individual
learner needs (Alawneh et al., 2024; Naseer et al., 2024; Tan et al., 2025).
ALS operates as a closed-loop system, which is usually comprised of
three core components (Figure 2): the learner, learner model, and
educator (Tan et al., 2025). The learner interacts with dynamically
generated content, receiving personalized instruction and real-time
feedback while simultaneously producing behavioral data (e.g.,
responses and engagement metrics) that fuel system adaptation. These
data will be further processed by the learner model, the Al engine of
ALS, which utilizes an adaptation model (powered by algorithms such
as Bayesian knowledge tracing (Xu et al., 2023) or reinforcement
learning (RL) (Ma et al., 2025)) to interpret learner states, predict needs,
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TABLE 1 Key Al technologies applied in the process of ALS.

Technology ‘ Role in ALS

Knowledge tracing (BKT), risk
Machine learning
prediction, and clustering learners

Domain model ontologies and
Knowledge representation
competency graphs

Data mining and learning analytics Extracts patterns for analytics reports

Implements pedagogical logic in
Rule-based systems and decision engines
adaptation

Analyzes open-ended responses or
Natural language processing
generates feedback

and make real-time pedagogical decisions about content sequencing,
difficulty adjustment, and feedback delivery. Concurrently, the learner
model generates learner analytics reports and transforms raw data into
actionable insights about knowledge gaps, progress, and engagement.
Finally, the educator utilized these reports to refine the teaching
strategies and iteratively improve the system. This involves authoring
educational content and defining the domain model, a structured
knowledge ontology specifying concepts, skill prerequisites, and learning
objectives, which critically informs decision-making from the adaptation
model. Thus, ALS creates a continuous feedback loop, and this includes
learner interactions that drive Al personalization, educator interventions
that optimize content and domain structure, and system refinements
that enhance future learning through increasingly precise adaptation.

2.2.2 Iterative operational cycle of ALS

Typically, these systems operate through five iterative cycles: data
collection, learner profiling, content delivery, performance evaluation,
and system optimization. (1) For data collection, multisource data
collection incorporates direct assessments [quiz scores (Dorri et al.,
2025)], engagement metrics [clickstream patterns (Rizwan et al., 2025)],
and contextual inference (Dubey et al., 2025). Advanced implementations
can incorporate environmental sensor data. Various open-source tools
facilitate this process, such as Bboss-Datatran (a high-performance ETL
tool for multisource synchronization and custom processing)' and
DataPipeline (an enterprise platform for real-time heterogeneous data
integration).? (2) Learner profiling is the process by which ML techniques
[supervised/unsupervised learning (Huang et al., 2024)] construct models
classifying learners by competency, pacing, or preferences. (3) In the
phase of content delivery, Al-curated resources (e.g., targeted practice
modules and adaptive quizzes) are deployed via rule-based or neural
network-driven logic (Ali et al., 2025). (4) During the state of performance
evaluation, learning outcomes are compared against predefined
benchmarks to refine future interventions. This mirrors Al applications
in medicine, such as the Human Dx project,’ an open-source platform
aggregating global clinical reasoning data to develop dynamic diagnostic
tools through continuous metric analysis. (5) Finally, for system
optimization, iterative feedback mechanisms continuously refine the
algorithmic models and enhance predictive accuracy via adaptive
learning processes.

1 https://github.com/bbossgroups/bboss
2 https://www.datapipeline.com/
3 https://www.humandx.org/
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Learner component
Represents the end-user (student)
i interacting with the adaptive
____________ learning system
[ Interacts and studies with adaptive instruction]
Delivers personalized feedback,
learning experience
[ Provides learner data for analysis J
Learner mode componentl
The core Al engine of the ALP.
It processes learner data to create and maintain a
computational representation of the individual learner's
i knowledge, skills, preferences, and potential learning needs
:1.What content/activity to present next.
Adaptation Model .When and how to present it.
ALS .What specific feedback to provide.
T Y .4 When to offer remediation or enrichment
 1.Knowledge/skill mastery levels. 1\ Crtrmrororororomsmsmomsssssesossinoonne e
i 2.Learning progress and pace.
3.Identified misconceptions or persistent dlfﬁcultles [Provides Learner Analytics Reports J
i 4.Engagement metrics. 1
5.Predicted performance or risk levels. U
"""""""""""""""""""""""""""""""" (Implied)
Learner State Representation
Educator component
Represents the end-user (student)
interacting with the adaptive
_____________ learning system ..
[Authors educational contentJ
U/ : 1.A taxonomy or ontology of concepts and skills.
2.Prerequisite relationships between concepts/skills.
Domain Model| <---: 3.Learning objectives.
4.Metadata associating content items with specific concepts/skills/objectives.
i LIdentify systemic issues.
Refines teaching strategy 2.Evz.11uate the effe'ctiveness of specific content or sequences.
with report insights - 3.Adjust the domain model .
4 g i 4. Modify or create new content to address gaps.
i 5.Inform classroom interventions or grouping strategies.
.8 Continuously improve the overall pedagogical approach within the ALP.
FIGURE 2
Component architecture of an Al-driven adaptive learning platform.

2.3 Key component of AL

This section focuses on KSM as the central mechanism for
assessing learner proficiency and details the critical integration
of KL and KS. This synergy enables the creation of personalized

and logically sequenced learning paths that form the basis
effective AL.

Frontiers in Education

2.3.1 Knowledge state modeling

KSM constitutes a foundational mechanism within AL systems
(Kou et al., 2023; Alatrash et al., 2024), which serves to infer and
maintain a dynamic, latent representation of the evolving mastery
across specific knowledge components (KCs) or concepts (e.g.,
CRISPR/Cas9 mechanisms, affinity chromatography techniques). The
key principle underpinning KSM is that the true understanding of a

of an
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learner is a hidden state that continuously evolves through learning
interactions and is subject to uncertainty, which necessitates
probabilistic inference from observable evidence such as quiz
responses, simulation outcomes, and problem-solving attempts. This
state is inherently multidimensional and captures probabilistic
estimates of proficiency levels (e.g., unfamiliar to master) for
numerous interconnected KCs. Methodologically, KSM usually
employs diverse computational techniques, and its evolution of KSM
usually spans from traditional to modern deep learning methods.
Traditional approaches include Bayesian knowledge tracing (BKT)
(Sun et al,, 2022), performance factor analysis (PFA), and item
response theory (IRT). For more complex sequential data, deep
knowledge tracing (DKT) (Ma et al., 2024; Zhang et al., 2025), which
leverages recurrent neural networks (RNNs) or long short-term
memory networks (LSTMs) to represent the knowledge state as a
dense vector for predicting future performance, has become
prominent. Subsequent enhancements to DKT integrate mechanisms
such as attention and prerequisite structures using graph neural
networks (GNNGs) or transformers. Separately, factor models such as
knowledge tracing machines (KTM) approach the problem through a
collaborative filtering lens.

The inferred knowledge state further facilitates AL personalization
through five key mechanisms. First, personalized content sequencing
selects optimal KCs based on prerequisite status, delivers items
targeting the zone of proximal development (ZPD), and triggers
remediation for decaying knowledge. Second, dynamic scaffolding
provides targeted hints and adaptive explanations to address
struggling KCs while identifying potential misconceptions. Third,
mastery-based progression and pacing utilize probabilistic thresholds
to determine concept mastery and enable individualized learning
speeds. In addition, predictive intervention forecasts learner
performance and identifies at-risk students through a prerequisite gap
analysis. Finally, personalized learning path generation dynamically
constructs customized curriculum sequences. Nevertheless, significant
challenges persist, such as the cold-start problem, limited
interpretability of complex models (particularly deep-learning-based
KSM), dependencies on high-quality interaction data with accurate
KC mapping, difficulties in modeling, forgetting, simulating
knowledge transfer, and scalability constraints. Despite these
limitations, KSM remains the fundamental mechanism enabling AL
systems to adapt instruction effectively, thereby optimizing learning
efficiency and outcomes for individual learners.

2.3.2 Synergistic integration of cognitive
dimensions in AL

The efficacy of advanced AL systems fundamentally hinges on
the synergistic integration of two indispensable and complementary
cognitive dimensions: knowledge level and knowledge structure.
The knowledge level dimension dynamically quantifies the current
proficiency of a learner in specific KCs, which can be modeled as
latent variables such as the probability of mastery [e.g., P(mastery of pcr
primer desigm) = 0.85] using techniques such as Bayesian knowledge
tracing or item response theory. This continuous assessment
enables personalized interventions by identifying the learner’s zone
of ZPD, which allows for the delivery of content precisely tailored
to their current readiness. Conversely, the knowledge structure
dimension encodes the semantic prerequisite relationships and
conceptual dependencies within the domain ontology (e.g.,
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kinetics” as a
This
implemented through explicit prerequisite graphs or implicitly

mastery of “enzyme prerequisite  for

“pharmacodynamics”). structure is computationally
implemented through embeddings in Q-matrices. Therefore, it
could provide a pedagogically valid roadmap that governs the
logical sequencing and progression of learning content. It should
be noted that neglecting either cognitive dimension can induce
significant inefliciencies within adaptive learning systems. For
instance, an isolated focus on knowledge level might risk
recommending KCs that fall technically within the learner’s
estimated zone of ZPD, yet lack necessary prerequisites. This
mismatch, exemplified by suggesting complex pharmacodynamic
modeling without foundational mastery of enzyme kinetics, could
result in cognitive overload and learner frustration. Conversely,
over-reliance on knowledge structure forces unnecessary review of
(e.g.,
fundamentals), which might lead to redundancy, disengagement,

already mastered KCs revisiting enzyme kinetics
and inefficient use of learning time. Therefore, AL systems must
employ sophisticated KSM to concurrently evaluate real-time
proficiency (KL) and conceptual dependencies (KS). KSM is able
to integrate dynamic probabilistic estimates of KC mastery with
static or inferred ontological constraints and then generate a
comprehensive view of the learner’s state. This integrated model
empowers the system to dynamically select the next best
instructional action, whether introducing new KCs, providing
practice, or offering remediation, which is both appropriately
challenging (leveraging the ZPD via KL) and logically sequenced
(respecting prerequisite dependencies via KS). The obtained result
is the generation of cognitively optimal and efficient learning
trajectories, which could maximize learning effectiveness by
adapting to both what the learner knows and how that knowledge
is conceptually organized.

The concept of “mastery-based progression” is a direct application
of the synergistic integration of the knowledge level and knowledge
structure. It is capable of mandating that learners advance to subsequent
KCs only upon empirically demonstrating their competency in
prerequisite KCs. This progression mechanism is intrinsically governed
by the KSM framework, which is capable of generating real-time
proficiency metrics (KL) with ontological dependencies (KS). Within
sequential domains, such as genetic engineering (e.g., from PCR
amplification to recombinant vector construction) or GMP compliance
(e.g., from equipment calibration to aseptic technique validation), the
system enforces strict prerequisite verification through adaptive
assessments modeled through IRT or BKT. Failure thresholds (e.g.,
mastery probability <0.8) could trigger targeted remediation, while
success unlocks ZPD-aligned advanced content. By structurally
prohibiting progression without validated mastery, this approach
mitigates cascading deficits that would otherwise arise from unresolved
foundational gaps, such as attempting plasmid transfection without DNA
ligase proficiency or performing sterility testing without understanding
cleanroom protocols. Consequently, it ensures pedagogical integrity and
reduces cognitive load in inherently hierarchical domains.

2.4 Core architectural framework

AL systems operate through a tightly integrated architecture

comprising four functionally distinct yet interdependent
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computational models, as systematically outlined in Table 2. This
framework dynamically orchestrates the personalization process by
continuously exchanging data across models, thereby actualizing the
synergistic integration of the knowledge level and knowledge structure
dimensions previously established. Each model plays a critical role in
the adaptive cycle.

2.4.1 The learner model (cognitive state engine)
The functions of the learner model are to continuously
estimate and update the learner’s knowledge state across all KCs
using probabilistic frameworks (e.g., BKT and deep knowledge
tracing). Crucially, it could produce real-time proficiency metrics
[KL, e.g.,
dependencies (KS, sourced from the domain model) through

mastery probability Pgc ] with ontological

KSM and generate a multidimensional proficiency profile.

2.4.2 The domain model (structural ontology)

The role of the domain model is to encode the subject matter’s
semantic architecture as a computational ontology, which
explicitly defines KC interdependencies (e.g., from “enzyme
kinetics” to “pharmacodynamics” prerequisites) and KC metadata
(e.g., complexity, type). Typically, this is implemented as a
prerequisite for graphs or Q-matrices. Therefore, this model
could enforce pedagogically valid learning pathways and enable
mastery-based progression logic (e.g., blocking plasmid
transfection in genetic engineering without DNA ligase mastery).

2.4.3 Instructional model (pedagogical agent)

The instructional model is used to translate the state of the learner
model and the constraints of the domain model into pedagogical
actions using rule-based systems or reinforcement learning policies.
It dynamically selects interventions aligned with ZPD principles,
where it will remediate below-threshold KCs (e.g., mastery_prob
<0.8), advance to subsequent KCs upon mastery validation, or adjust
content granularity. Based on these, these strategies collectively enable
four critical instructional functionalities: prerequisite-compliant
content sequencing (governed by domain ontologies), adaptive
scaffold
performance-contingent feedback specificity, and dynamic challenge

selection (contextual hints/procedural workflows),

calibration through difficulty scaling.

2.4.4 Interface model (experience mediator)

The interface model is capable of mediating learner-system
interactions and collecting granular behavioral data (response
latency and error patterns) while rendering personalized content.
It transforms interactions (e.g., drag-and-drop plasmid construction
simulations and GMP checklist completions) into evidence for

TABLE 2 Core components of an adaptive learning system.

Model Primary input

Learner model Interaction data (Interface)

10.3389/feduc.2025.1679222

learner model updates and adapts presentations based on cognitive
load heuristics (e.g., segmenting complex pharmacodynamic
models for struggling learners).

This synergistic data flow fundamentally underpins system
efficacy. The interaction data captured by the interface model updates
the learner model. The updated parameters of the learner model,
integrated with the domain model rules, then inform the adaptation
decisions generated by the instructional model. These decisions are
executed through the interface model, and the resulting performance
data could complete the loop by triggering learner model
recalibration. As detailed in Table 2, this cohesive architecture enables
AL systems to deliver cognitively optimized and efficient learning
trajectories, thereby transforming static content into dynamically
personalized educational experiences.

2.5 The implementation workflow

The implementation of the adaptive learning system follows a
structured three-phase workflow (Figure 3).

Phase 1: system setup and knowledge mapping.

This initial stage involves structuring the educational domain into
granular knowledge nodes (e.g., plasmid design, fermentation control)
with explicit prerequisite links (e.g., from “Cloning” to “Transfection”).
The learning resources are then tagged and sequenced according to
these nodes. Finally, computational models are selected to align with
learning objectives, such as RNNs for tracking knowledge progression
in dynamic topics or reinforcement learning (RL) for optimizing
complex skill pathways such as bioprocess scale-up.

Phase 2 real-time adaptation engine.

During this operational phase, learner interactions (e.g., response
accuracy and time-on-task) are continuously captured to infer and
update individual knowledge states using probabilistic models. Using
these inferences, the system dynamically personalizes instructions by
adjusting the content complexity, modulating the task difficulty, and
enforcing prerequisite learning sequences. Concurrently, targeted
feedback is provided based on error analysis (e.g., correcting
miscalculations in primer Tm due to omitted Mg** concentration).

Phase 3 system refinement.

The final phase focuses on continuous improvement through
analytics and model retraining. Instructor dashboards highlight
cohort-wide and individual risk patterns (e.g., widespread difficulty
with downstream purification), enabling timely interventions. The
core algorithms are iteratively refined with new data to maintain
relevance, particularly when integrating emerging content (e.g.,
mRNA vaccine modules), thereby sustaining an adaptive and
responsive learning environment.

Core function Output to

Estimate knowledge state via KSM Instructional model

Domain model Curricular expertise

Encode KC relationships & constraints Learner/instructional models

Instructional model Learner state + Domain rules

Generate pedagogical actions per ZPD/
Interface model
sequencing rules

Interface model Instructional prescriptions

Present content & capture behavioral
Learner model
evidence
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(Phase 2: Real-Time Adaptation Engine)

Step 4: Data Capture & State Inference:
(1) Collect interaction data: (e.g., response accuracy, time spent,
hesitation patterns);
(2) Update the knowledge state: (e.g., predicting mastery of
"Western Blotting" at 80% confidence)

Step 5: Adaptive Response Generation:
for struggling learners);
submissions) ;

(3) Recommend pathways: Enforce prerequisites (e.g.,complete
"Aseptic Technique" module before bioreactor sim)

(1) Adjust content: (e.g., Simplify explanations or add animations

(2) Modify difficulty: Advanced case study (e.g., biosimilar FDA

Step 6: Feedback & Remediation:
Targeted feedback:Your primer Tm error stems

FIGURE 3
The tri-phase adaptive learning framework for biopharmaceutical training.

Phase 1: System Setup & Knowledge Mapping

Step 1: Domain Decomposition
(e.g., plasmid design, fermentation control)

Step 2: Content Tagging & Sequencing
(e.g., from "Cloning" to "Transfection")

Step 3: Algorithm Selection:
(1) Knowledge tracing: (e.g., drug discovery trends);
(2) Path optimization: (e.g., bioprocess scale-up)

Phase 3: System Refinement

Step 7: Analytics & Interven
(1) Instructor dashboards:(e.g., 60% struggle
with downstream purification concepts)
(2) Enable just-in-time interver

Step 8: Step 8: Model Retraining
(1) Continuous algorithm refine
(e.g., fine-tuning knowledge graphs when mRNA
vaccine modules are added);
(2) Content Tagging & Sequencing
(e.g., from "Cloning" to "Transfection");
(3) Algorithm Selection:
(a) Knowledge tracing: (e.g., drug discovery trends);
(b) Path optimization: (e.g., bioprocess scale-up)

2.6 Applications of AL in curriculum design
and pedagogy

This section examines how ALS transforms educational practices.
It analyzes the key application domains in educational research,
presents a concrete implementation example for medical education,
and concludes with strategic recommendations for teaching reform.
This is believed to be capable of offering a comprehensive view of ALS
integration in modern curricula.

2.6.1 Potential applications of ALS in educational
research

In educational research, ALS demonstrates the transformative
potential for optimizing traditional pedagogical models through
several strategies (Table 3). (1) Dynamic personalization of
learning pathways creates individualized trajectories for students
(Mejeh and Rehm, 2024). ALS is able to leverage Al-driven
analytics to assess individual learner profiles (knowledge levels,
cognitive styles, and engagement patterns) and generate tailored
curricula. This replaces static “one-size-fits-all” approaches with
adaptive content sequencing, ensuring optimal challenge levels and
minimizing knowledge gaps. (2) Real-time feedback loops and
interventions detect struggling learners early (Naseer and Khawaja,
2025), which is similar to AI-driven prescription-checking systems
in pharmacy practice. By continuously monitoring learner
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performance (e.g., quiz responses and interaction frequency), ALS
can provide immediate corrective feedback and automatically
adjust instructional strategies. This contrasts with the delayed
feedback in conventional models, enhancing metacognitive
awareness and retention. (3) ALS also enables data-driven
instructional optimization by aggregating granular learning
analytics (e.g., time-on-task and error patterns). These insights
facilitate evidence-based refinements of both the system
architecture and pedagogical practices. Educators gain actionable
insights to modify content delivery and address cohort-level
deficiencies. (4) Ethical-Al frameworks maintain educational
governance. ALS integrates human oversight to preserve educators’
authority over critical decisions (curricula/interventions). This
ethical safeguard confines Al to its assistive roles, thereby
preventing autonomous overreaching. (5) Competency-based
progression embodies educational paradigms aligned with the
Accreditation Council for Graduate Medical Education (ACGME)
core competencies, particularly practice-based learning and
improvement. By prioritizing skill mastery over time-based
benchmarks, it ensures learners achieve predefined proficiency
levels before advancing—a principle validated in competency-
based medical education (CBME) frameworks. (6) Hybrid
instructional models, exemplified by immersive technologies such
as VR surgery simulators in residency training (Mariani et al.,
2021), synthesize adaptive digital modules with traditional didactic
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TABLE 3 Potential applications of ALS in educational research.

Core mechanism

Application domain

Educational impact

Contrast with

10.3389/feduc.2025.1679222

Implementation

Al-driven analytics assess

learner profiles (knowledge
1. Dynamic personalization
levels, cognitive styles, and

engagement patterns)

« Generates individualized
learning trajectories

« Ensures optimal challenge
levels

« Minimizes knowledge gaps

traditional models

Replaces static “one-size-fits-

all” curricula

examples

Adaptive content sequencing based

on real-time diagnostics

Continuous monitoring of
o . performance metrics (quiz
2. Real-time intervention ) .
responses, interaction

frequency)

« Early detection of struggling
learners

« Enhanced metacognitive
awareness

« Improved knowledge

retention

Eliminates delayed feedback

cycles

Al-driven prescription checking is

analogous to pharmacy systems

Aggregation of granular
3. Instructional optimization learning analytics (time-on-

task, error patterns)

« Evidence-based refinement of
pedagogy

« Identification of cohort-level
deficiencies

« Actionable educator insights

Transcends subjective

teaching adjustments

Analytics dashboards informing

content delivery modifications

Embedded human oversight
4. Ethical-Al governance
mechanisms

« Preserves educator authority
on curriculum/ intervention
« Prevents autonomous Al

overreach

Confines Al to assistive roles

Framework requiring educator

approval for critical decisions

5. Competency-based Mastery verification prior to

progression advancement

« Aligns with ACGME core
competencies (e.g., practice-
based learning)

« Ensures predefined

proficiency attainment

Shifts focus from time-based

to skill-based benchmarks

Validation through Competency-
Based Medical Education (CBME)

frameworks

Synthesis of adaptive digital
6. Hybrid instructional
modules with didactic
models
methods

« Enhances procedural skill
development
« Enables risk-free repetitive

practice

Integrates immersive
technologies with

conventional teaching

« VR surgery simulators in residency
training

« Canadian neurosurgery programs’
implementation

« Healthcare AT competency

frameworks

Scaffolded training curriculum
7. Al literacy development
(4-tier progression)

« Critical evaluation of clinical
Al tools
« Responsible deployment with

human oversight

Systematically cultivates
missing technical

competencies

« Algorithmic bias detection training
« Ethical analysis of clinical AI
« Hands-on diagnostic system

experimentation

methods. Such integration enhances procedural skill development
through risk-free, repeatable simulations, which have been
successfully implemented in Canadian neurosurgery programs
(Ryu et al., 2017). The hybrid model also incorporates AI-driven
adaptive learning systems, which tailor content delivery based on
individual performance metrics, as seen in competency frameworks
for healthcare Al integration. (7) As for Al literacy development,
modern medical education frameworks systematically cultivate the
capacity of learners to critically evaluate Al tools (Paranjape et al.,
2019). This involves staged training in the development of
fundamental AI principles (e.g., algorithm bias detection), ethical
of clinical AI
experimentation with diagnostic support systems. As outlined in
the scaffolded AI literacy framework (LaFlamme, 2025),
progression occurs through four tiers, from basic understanding

implications deployment, and hands-on

to advanced evaluation, which ensures that clinicians can
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responsibly leverage AI while maintaining human oversight in
decision-making.

These enhancements collectively address the longstanding
limitations of standardized education models while preserving
essential human-centric pedagogical values.

2.6.2 Example workflow of ALS in medical
education reform

Figure 4 explores the integration of Al literacy skills within a
third-year clinical diagnostics curriculum. This comprehensive
framework for neurology education (e.g., ALS diagnosis) operates
across four integrated phases. Phase 1 (Pre-class) involves faculty-AI
collaboration to build dynamic knowledge graphs linking symptoms
to pathophysiology and treatments, while AI personalizes pre-class
tasks using student performance data. Phase 2 (In-class) deploys
adaptive virtual patient simulations, where AI adjusts case
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Phase 1: Pre-Class Preparation

Competency Mapping & Knowledge Graph Construction

Phase 3: Post-Class Assessment & Iteration

C y-Based E

{ Action H
iFaculty and Al engineers collaborate to build a dynamic knowledge graph covering core topics

Action
ALS generates adaptive quizzes focusing on weak areas

Tools
Al platforms like the used "AT+Knowledge Graph" system

Output
Structured modules linking symptoms to pathophysiology, diagnostic criteria,
and treatment protocols.

Personalized Learning Path Design

Action ;
ALS analyzes students' prior performance to generate individualized pre-class tasks.

Ethics Integration
Includes case studies on algorithmic bias in training datasets

Predictive Intervention
; Action
IIdentifies at-risk students via error pattern analysisand assigns remedial VR simulations

Faculty-ALS Collaboration
Action
Instructors review ALS-generated analytics to refine teaching strategies.

i Example
i A student weak in neuroanatomy receives targeted modules on motor neuron pathways,
i supplemented by 3D interactive models.

Example
A professor notices 40% of students misdiagnose early ALS symptoms and designs a
workshop on differential diagnosis.

Phase 2: In-Class Application

Interactive Case Simulations
Action
Students engage with Al-driven virtual patients

Workflow
(Step 1) Virtual patient presents with progressive muscle weakness.
(Step 2) ALS adjusts case complexity based on real-time responses
(e.g., prompting students to differentiate ALS from multiple sclerosis if errors arise).
(Step 3) Multimodal feedback includes video demonstrations of EMG interpretation.

Phase 4: Longitudinal Development

Cross-I 1 Resource Sharing
i Action :
i Leverage platforms like the Medical Al Teaching Alliance to share ALS-curated cases |

and best practices

Action

Continuous System Evolution
Update ALS with real-world data.

Real-Time Analytics & Scaffolding
Action
ALS monitors student interactions and provides adaptive support:
(1) For struggling students:Triggers scaffolded hints .

Key Outcomes

For Students:
X% improvement in diagnostic accuracy.

FIGURE 4

 (2)For advanced leamers:Unlocks advanced cases. Enh d ability to critically evaluate Al-generated diagnoses
o Tool Integration . For Institutions:
Uses Al-powered dashboards similar to the large model of severe disease deployed at XX% reduction in resource costs through shared Al ecosystem.
Zhejiang University

Proposed integration of Al literacy skills within a third-year clinical diagnostics curriculum.

TABLE 4 Implementation priorities for ALS integration.

Domain Short-term actions

Curriculum design Map ALS modules to ACPE competency standards

Long-term vision

Industry-codeveloped adaptive micro-credentials

Faculty roles Train educators as “Al interpreters” for ALS outputs Shift to learning experience designers
Assessment Embed ALS-driven analytics in longitudinal competence tracking Real-time adaptive OSCEs with AI proctoring
Infrastructure Hybrid cloud solutions for computational loads Federated learning networks across institutions

complexity in real time and provides tiered scaffolding for high
performers. Phase 3 (Post-class) uses Al-generated quizzes targeting
individual weaknesses, integrates ethics training on algorithmic bias,
identifies at-risk students via error analysis, and enables faculty to
refine teaching based on analytics. Phase 4 (Longitudinal) ensures
continuous evolution through cross-institutional resource sharing
and system updates with real-world data. Key outcomes include
improved student diagnostic accuracy and critical Al evaluation
skills shared
Al ecosystems.

alongside institutional cost reductions via

2.6.3 Strategic recommendations for teaching
reform

As shown in Table 4, strategic teaching reform requires a dual-
pronged transformation, including evolving teacher training and
implementing outcome-driven evaluation. Faculty members must
be equipped to curate Al-generated case studies (e.g., optimizing
mRNA vaccine stability) and anchor ALS feedback within core
scientific principles. Parallel to this, adopting “Al co-teaching”
frameworks will refocus educators on higher-order mentoring,
such as critically evaluating drug formulation strategies proposed
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by ALS. Concurrently, assessment should transition from static
exams to ALS-facilitated adaptive simulations of real-world
scenarios, such as managing time-pressured bioprocess
contamination events. Finally, learning analytics should track
longitudinal competence development and correlate adaptive
with

residency performance.

engagement professional ~ outcomes,  including

2.7 Specific applications in biotech and
pharmaceutical education

As shown in Figure 5, adaptive learning could significantly
streamline biopharmaceutical education through domain-specific
strategies, including molecular biology scaffolding that enables
complex concept mastery, reinforcement learning that optimizes
precision dosing protocols, and hybrid AI biotech models that
enhance bioprocessing efficiency. All of these are capable of collectively
accelerating competency development across drug discovery-to-
manufacturing pipelines. These critical functions are detailed in the
subsequent sections.
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Complex Foundational Science

2

LPrecision Diagnostic%

Molecular Biology
CRISPR-Cas9 off-target effects

Transcriptional regulation

P

Misconception Detection

Biochemistry

PK-PD modeling errors

Dosing miscalculations

WY

Dynamic Scaffolding

A

Multimodal Interventions

: Molecular Biology u o Pharmacology . Bioprocessing
: . ..+ - Reinforcement Learning (RL) dosing agents: | - Al-adjusted culture conditions
i - Annotated 3D plasmid animations: S ; el : ! : '
: : ; o - Digital twin optimization ¢+ (nutrients/pH/temperature) |
+ - Gene knockout simulations } ; : - ;i A :
: . v - Therapeutic range maintenance i - Hybrid mechanistic-ML models ;
: - Central dogma reviews o o . Lo :
S o mim o i i i mmmim1 e (5.5-7 mg/dL phosphate) i 1 - Glycosylation optimization

Bioprocessing
Metabolite misinterpretation

Growth rate analysis

Outcomes: Reduced cognitive load
Efficient concept navigation

Outcomes: 68.1% target attainment
Zero severe hyperphosphatemia

Outcomes: 20% yield increase
Improved CQAs

LF

P
f

Mastery of Foundational SciencesJ
k\

LAccelerated Biopharma Competen”g

FIGURE 5

Precision-to-mastery framework: adaptive scaffolding of complex biopharmaceutical sciences.

2.7.1 Mastering complex foundational sciences

ALS demonstrates significant efficacy in the scaffolding mastery
of core biotechnology and pharmaceutical sciences through precision
diagnostics and dynamic scaffolding.

In the fields of molecular biology and genetics, ALS deploys
knowledge tracing algorithms to detect misconceptions in real time,
such as misinterpretations of CRISPR-Cas9 oft-target effects (Luo
etal., 2024) or transcriptional regulation dynamics (Josephs-Spaulding
et al,, 2024). Upon identifying conceptual gaps, the system activates
multimodal interventions. For instance, annotated 3D animations
elucidate plasmid vector assembly, interactive simulations guide gene
knockout experimental design, and automated prerequisite reviews
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reinforce central dogma principles. In this way, it could reduce
cognitive load and enable efficient navigation of complex topics.

In biochemistry and pharmacology education, ALS implements
competency-based progression architectures, wherein mastery of
foundational concepts controls advancement. For example, in a study,
an RL framework integrated with PK-PD modeling was developed to
personalize erdafitinib dosing for metastatic urothelial carcinoma (De
Carlo et al., 2024). Each patient had a dedicated Q-learning agent
trained on their digital twin (PK-PD model) to optimize adaptive
dosing rules, aiming to maintain serum phosphate levels within the
therapeutic range while minimizing toxicity. The results showed that
the RL approach outperformed the FDA-approved protocol; it
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increased the percentage of patients within the target phosphate range
from 56.7 to 68.1% at the end of treatment and eliminated severe
hyperphosphatemia events. This method enables tailored initial doses
and dynamic adjustments, thereby enhancing efficacy and safety. This
demonstrates the potential of RL for precision dosing in oncology,
leveraging digital twins to individualize therapy beyond population-
based protocols and improving outcomes for drugs with narrow
therapeutic windows.

In cell culture and bioprocessing training, it could leverage Al
algorithms to analyze real-time data (e.g., metabolites and growth
rates) and dynamically adjust culture conditions (e.g., nutrient feed,
pH, and temperature)(Qian et al., 2025; Ranpura et al., 2025). This
enables personalized process optimization for specific cell lines or
products, improving titer yields (e.g., up to 20%) and critical quality
attributes, such as glycosylation patterns. Hybrid models combining
mechanistic knowledge with machine learning further enhance
predictive accuracy and reduce experimental costs. Overall, adaptive
learning accelerates bioprocess development, ensures consistency, and
supports Industry 4.0 goals in biomanufacturing.

2.7.2 Enhancing laboratory and technical skill
development

ALS revolutionizes experimental training through intelligent
simulation scaffolding and precision skill remediation, effectively
bridging the theory-practice gap in biotechnology education. Virtual
laboratories integrated with industry-standard platforms (e.g.,
Bio-Rad ELISA workflows, Agilent HPLC systems, and Sartorius
bioreactors) deploy dynamic complexity modulation driven by real-
time performance analytics. For instance, adaptive learning was
proposed to be capable of enhancing laboratory and technical skill
development through dynamic knowledge graphs that integrate
resources across organizations (Bai et al., 2024). Autonomous agents
execute workflows, enabling real-time collaborative optimization (e.g.,
linking labs in Cambridge and Singapore for pharmaceutical reaction
optimization). This approach automates design-make-test-analyze
cycles, records data provenance for reproducibility, and dynamically
adjusts experiments based on performance. It accelerates discovery
(e.g., generating a Pareto front in 3 days) and supports scalable, high-
throughput experimentation while overcoming geographical and
technical barriers.

ALS utilizes Al to personalize skill development in biopharma and
dynamically tailor training content (e.g., complex techniques,
regulatory compliance, and computational biology) to individual
knowledge gaps and learning pace. Recently, AIxFuse was developed,
which integrates pharmacophore combinations and molecular
docking via collaborative RL and AL (Chen et al., 2024). It contains
two key steps: two self-play MCTS agents capable of optimizing
pharmacophore fusion and an AL-trained critic used for evaluating
dual-target binding. It generated molecules satisfying dual-target
structural constraints, achieving 32.3% higher success rates than those
of state-of-the-art methods (e.g., GSK3f/JNK3 and RORyt/DHODH).
This is believed to be capable of accelerating therapies for complex
diseases by overcoming structural constraints in a multitarget design.
Similarly, AMVL was designed by integrating chemical-induced
transcriptional profiles (CTPs), knowledge graph embeddings, and
large language model (LLM) representations (Yan et al., 2025). This
process is mainly achieved through multiview learning, matrix
factorization, and ensemble

optimization. It outperformed
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state-of-the-art methods in predicting drug-disease associations
across benchmark datasets, with 7 of the top 10 predictions validated
by the post-2011 literature. This framework provides a robust and
scalable solution for accelerating drug repurposing by unifying
multisource data and enhancing translational medicine research.
Therefore, it is essential to integrate these strategies into modern
higher education curricula and training programs to accelerate the
development of the biopharmaceutical industry.

2.7.3 Navigating regulatory affairs and quality
systems

ALS fundamentally reconfigures compliance training through
contextually embedded simulation architectures and failure-driven
remediation protocols, directly addressing escalating global regulatory
demands in biopharmaceutical development. The American Society
of Mechanical Engineers (ASME) and Verification and Validation 40
(V&V 40) were proposed for risk-based model credibility assessment
and the FDAs AI/ML lifecycle management framework to verify,
validate, and manage computational models (including statistical,
mechanistic, and ML) in biopharmaceutical manufacturing (Bideault
et al, 2021). Using curated hypothetical examples, this study
demonstrates the utility of these frameworks for ensuring model
credibility and argues for standardized approaches to facilitate
adoption and alignment with existing good practices. Specifically, for
adaptive learning models, the FDA framework provides critical value
by enabling structured lifecycle management. It allows models to
safely learn from new data post-deployment within GxP environments
through pre-approved change protocols, rigorous monitoring, and
controlled retraining/adaptation, thereby maintaining credibility as
the conditions evolve.

In a recent study, three novel machine learning models (APMLR,
AIOM, and IAMRF) were developed for predicting critical nephrology
laboratory results (eGFR, creatinine, and urea)(Pawus et al., 2025).
These models leverage adaptive learning to personalize predictions
based on individual patient profiles and dynamically adjust them to
temporal data and unique characteristics. APMLR achieved 96.97%
accuracy using linear SVR, whereas gradient boosting yielded ~95%
accuracy for AIOM/IAMRE. This highlights that AL could provide key
value by enabling continuous patient-specific refinement, handling
non-stationary clinical data, and improving long-term monitoring
accuracy for personalized renal care.

2.74 Competency-based assessment and
certification

AL serves as a key enabler for competency-based pharmacy
education (CBPE) by personalizing educational pathways, allowing
students to progress at their own pace, and dynamically adjusting
content to address individual strengths and weaknesses. Therefore,
this finding supports the shift from time-bound to competency-
focused outcomes.

In one study, entrustable professional activities (EPAs) were
integrated into a competency-based clinical assessment tool for a
Family Nurse Practitioner (FNP) program (Anthamatten and Pitts,
2024). This system defines four performance levels (Novice to
Proficient) linked to preceptor support needs. In addition, it requires
students to document EPA performance frequency during clinical
experience to track competency development toward practice
readiness. In this system, AL holds a significant value by analyzing
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individual student EPA performance data to automatically identify
specific competency gaps. Then, it dynamically delivers personalized
simulations or learning modules targeting those weaknesses, thereby
enabling efficient remediation and optimized progression toward
clinical competence.

In addition, an adaptive learning implementation framework
(ALIF) was developed (Mirata and Bergamin, 2023), which identifies
empirical relationships between determinants (e.g., technological
barriers and leadership commitment), implementation strategies (e.g.,
institutional investment and stakeholder training), and outcomes (e.g.,
stakeholder acceptability and scaled implementation) in higher
education. Derived from a Delphi study across Swiss and
South African universities, ALIF emphasizes organizational readiness
and stakeholder acceptance as critical for successful deployment.
Within this framework, adaptive learning serves as the core
technological innovation requiring systemic institutional support,
pedagogical redesign, and contextual adaptation to overcome
implementation barriers and achieve personalized, scalable education.

2.7.5 Continuous professional development
(CPD)

Recently, a 3-year longitudinal personal-professional development
(LPPD) program was developed for biomedical students to cultivate
adaptive competencies such as self-awareness, resilience, and lifelong
learning through coached group sessions and individual consultations
(van Ede et al., 2023). Adaptive learning serves as the core pedagogical
framework, which is capable of enabling personalized feedback, self-
directed goal setting, and iterative skill refinement in response to real-
world challenges, ultimately fostering professional identity formation
amid uncertainty. Similarly, the Master Adaptive Clinician Educator
(MACE) framework was introduced, which extends the master
adaptive learner (MAL) model to clinician-educators (Snydman et al.,
2025). This emphasizes continuous self-directed growth, innovation
in teaching, and adaptation to evolving educational needs. Adaptive
learning underpins the MACE model by enabling educators to
iteratively plan, implement, assess, and adjust teaching strategies using
metacognitive reflection and feedback, thus fostering expertise in
curriculum  design, and

mentorship, leadership  beyond

traditional approaches.

5 Advantages, challenges, and future
directions

The integration of ALS into biopharmaceutical education
represents a paradigm shift from standardized instruction to
personalized competency-driven training. By leveraging Al
algorithms, AL tailors content delivery based on individual learner
profiles, real-time performance, and contextual demands. This
analysis synthesizes empirical insights and identifies critical pathways
for innovation.

3.1 Key advantages of AL in
biopharmaceutical education

This section highlights the principal benefits of ALS in
biopharmaceutical education and details its transformative impacts
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through three key dimensions: personalized competency
development that addresses individual learning gaps, realistic
simulation of industry workflows that bridges theory and practice,
scalable of academic training with

and integration

industry requirements.

3.1.1 Personalized competency development

AL systems are capable of diagnosing gaps in core competencies
(e.g., Al literacy, drug analysis, and clinical reasoning) and delivering
customized modules. For instance, ChatGPT-assisted multiadvisor
systems enable students to tackle complex cases (e.g., therapeutic drug
monitoring and gene testing) with scaffolded guidance, significantly
improving clinical decision-making skills. Student-centric data
revealed that AL could bridge disparities between undergraduates
knowledge)
(emphasizing project-based learning) by aligning training with diverse

(prioritizing  foundational and  postgraduates

career trajectories.

3.1.2 Simulation of real-world workflows

AL transforms simulations into intelligent training ecosystems by
dynamically adjusting scenarios based on individual performance,
enabling risk-free mastery of complex workflows (e.g., drug analysis
or bioprocessing) while bridging skill gaps between theory and
practice. Its core value lies in accelerating competency development
through personalized context-sensitive repetition, which can prepare
learners for real-world challenges with precision and efficiency. For
example, drug analysis software (e.g., virtual HPLC-MS simulators)
could provide risk-free environments for mastering instrumentation,
data interpretation, and GLP compliance. These platforms reduce
reagent costs by 30-40% while enabling iterative skill refinement. In
the “HVS model” (horizontal cross-discipline fusion, vertical full-
cycle coverage, sentimental value internalization), it integrates AL
with virtual labs (e.g., GLP safety evaluation simulations), which
enables students to navigate drug R&D pipelines from synthesis
to pharmacovigilance.

3.1.3 Scalable industry-academia integration

AL platforms could efficiently embed industry standards and real-
time data from biomanufacturing facilities. For example, courses on
AI-Driven Drug Synthesis (Das, 2025) or Biopharma Digital Twins
(Shahab et al., 2025) incorporate live production anomalies, which are
capable of training learners to troubleshoot deviations in monoclonal
antibody purification. Intellia Therapeutics and MIT co-developed the
CRISPR equipment predictive maintenance course using real device
logs (e.g., electroporator voltage fluctuations), with Boston/San
Francisco campuses specializing in gene editing/AAV production
equipment to serve regional bioclusters.

3.2 Critical challenges and limitations

Despite its promising advantages, the implementation of AL
systems faces several significant barriers. This section discusses these
critical challenges, including technical fragmentation and
interoperability issues, algorithmic bias in educational pathways,
faculty readiness gaps, computational resource constraints, and
broader ethical concerns regarding equity, data privacy, and

algorithmic transparency.
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3.2.1 Technical and pedagogical fragmentation

A major barrier to scalable ALS implementation is technical
fragmentation, primarily because of a lack of interoperability.
Isolated tools (e.g., standalone Al tutors, virtual labs, and generative
AT chatbots) often operate outside core learning management
systems (LMS), which might create data silos that prevent a unified
view of learner progress. For example, it was found that 37% of
student competency profiles were incomplete due to such
disconnected data in the UCSF Pharmacy School, which hinders
holistic competency tracking and complicates accreditation.
Furthermore, this isolation amplifies the risk of generative AI
hallucinations. Unanchored from authoritative databases (e.g.,
DrugBank, EMBL-EBI), tools such as ChatGPT may propagate
dangerous inaccuracies in complex domains (e.g., misstating drug
mechanisms), undermining educational integrity. Addressing these
issues requires integrated architectures with two key components.
The first is LTI 1.3-compliant LMS embedding to maintain data
continuity, and the second is retrieval-augmented generation
(RAG) frameworks to ground AI outputs in verified knowledge.
Thereby, it could ensure both seamless data integration and
content validity.

3.2.2 Algorithmic bias in personalized pathways

Another critical challenge in ALS implementation is algorithmic
bias, which threatens educational equity. Bias can originate not only
from unrepresentative training data but also from pedagogical designs
that prioritize technical skill acquisition while overlooking essential
non-cognitive competencies such as empathy, ethical reasoning, and
communication. An ALS that optimizes solely for procedural mastery
risks producing graduates who are technically proficient yet deficient
in the humanistic skills vital for patient-centered care.

To mitigate these risks, proactive and continuous bias detection
frameworks are essential. Techniques such as SHAP value-monitored
demographic parity audits can quantify the influence of input features
on model outcomes and identify disparate impacts on demographic
subgroups. Furthermore, a holistic evaluation strategy should
be adopted that incorporates multimodal metrics, for instance, using
natural language processing to assess communication skills in
simulated patient interactions. In addition, regular model retraining
on ethically curated datasets is also capable of ensuring ongoing
fairness. Ultimately, a vigilant approach to bias mitigation could
be indispensable for developing ALS that is not only adaptive but also
equitable and professionally holistic.

3.2.3 Faculty readiness and computational
resource constraints

The effective implementation of ALS may also confront two
interconnected barriers: faculty readiness and computational resource
limitations. Educators must transition from traditional instructors to
“Al interpreters,” who are capable of curating Al-generated content
and critically evaluating algorithmic outputs. Without targeted
upskilling through initiatives such as Al literacy bootcamps, faculty
members might struggle to mediate ALS recommendations effectively,
thus limiting their pedagogical value. Concurrently, high-fidelity
simulations essential for biopharmaceutical training (e.g., CRISPR
workflows or bioreactor operations) demand substantial
computational resources, which might exclude many institutions,

particularly in resource-limited settings.
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To efficiently deal with these challenges, integrated strategies are
also required. Faculty development must be coupled with technical
solutions, such as edge-cloud hybrid systems and federated learning,
which distribute computational loads across institutions while
preserving data privacy. Blockchain-based resource consortia could
further enable shared access to high-performance computing. This
dual approach of empowering educators and optimizing infrastructure
may be necessary for equitable and scalable ALS adoption in
biopharmaceutical education.

3.2.4 Equity and ethical risks

The implementation of ALS might exacerbate the existing
educational inequities, particularly through infrastructural disparities
that widen the urban-rural skill gap. Resource-limited institutions
may face prohibitive challenges, including inadequate cloud
infrastructure and disproportionately high computational costs
relative to their budget. This digital divide is compounded by the
substantial bandwidth requirements of advanced simulations, which
systematically exclude approximately 83% of rural institutions from
high-fidelity training in essential techniques, such as CRISPR
workflows or bioreactor operations.

To bridge this divide, bandwidth-adaptive content delivery
protocols can be utilized to optimize resource allocation for
constrained connectivity environments, whereas federated edge
learning systems enable offline-capable simulations and privacy-
preserving model refinement on local devices. These approaches
should also be reinforced through public-private infrastructure
partnerships, potentially incorporating sustainable solutions such as
solar-powered hardware for operational resilience in remote areas.
Collectively, these measures would help transform ALS into a more
inclusive educational infrastructure and ensure equitable access to
competency development and

across geographical

socioeconomic boundaries.

3.2.5 Data privacy, consent, and algorithmic
transparency

Beyond the issues of algorithmic bias, the ethical deployment of
ALS in biopharmaceutical education necessitates a rigorous
framework for data governance, informed consent, and algorithmic
transparency. The extensive data collection required for effective
personalization (e.g., detailed interaction logs, performance
metrics, and behavioral biometrics) raises significant privacy
concerns. To address this, future ALS architectures must implement
privacy-by-design principles and use techniques such as federated
learning (where model training occurs locally on user devices
without raw data leaving the institution) and differential privacy
(which adds statistical noise to the aggregated data) to minimize
privacy risks.

Furthermore, the current model of blanket consent obtained at
course onset is inadequate, given the dynamic and often intrusive
nature of ALS data collection. We therefore propose a shift toward
granular, tiered consent models. Such frameworks empower learners
by granting them control over how their data are used for
personalization, analytics, and research, thereby actively
fostering trust.

The lack of transparency in complex models could also
undermine their accountability and educational integrity. To build

trust and uphold educational standards, it is crucial to develop
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explainable AI (XAI) techniques. These systems can generate
interpretable rationales, such as explaining to a student that their
performance on specific prerequisite items necessitates a review of
a “Pharmacokinetics” module. This capability is key to making AT’s
pedagogical logic clear and actionable for learners. This
transparency is crucial because it enables educators to trust the
guidance from these systems and encourages students to accept
feedback as legitimate. This fundamental shift transforms ALS
from an opaque arbitrator into

a  comprehensible

pedagogical partner.

3.3 Future research directions

To address the existing limitations and advance the field, this
section outlines priority research avenues for enhancing AL in
biopharmaceutical education. These include developing integrated AL
architectures with blockchain-secured credentials, establishing
human-Al synergy frameworks, implementing equity-driven
deployment models, validating AL efficacy through rigorous trials,
and expanding immersive technology applications.

3.3.1 Developing integrated AL architectures

Future research must advance beyond the current landscape of
fragmented AL tools by developing a truly integrated architecture.
Although the use of APIs for achieving technical interoperability is an
established concept in computer science, its specific application to
create unified and data-fluid ALS ecosystems within biopharmaceutical
education remains a novel and critical pursuit. The proposed
innovation involves architecting seamless data exchanges between
core educational modules (e.g., virtual labs, AT tutoring systems, and
dynamic knowledge maps) to enable cross-platform analytics and
holistic skill trajectory mapping.

A key example of this integrated approach is the novel proposal of
blockchain-secured microcredentialing systems. This extends beyond
simple digital badges. It constitutes an innovation for providing

certifications  for

(e.g.
pharmacogenomics analysis). The cryptographic immutability of

tamper-proof and verifiable specialized

pharmaceutical competencies aseptic processing and
blockchain would eliminate credential fraud while enabling seamless
skill portability across industry-academia boundaries. This directly
addresses significant economic losses from critical skill gaps by
ensuring that workforce competencies are transparent, trusted, and
rapidly recognized. Thereby, it would accelerate talent deployment and

reduce onboarding burdens in the global biopharmaceutical sector.

3.3.2 Human-Al synergy frameworks

While task partitioning between human and artificial intelligence
represents an established research domain, a novel “multiadvisor”
system specifically designed for pharmacy education could
be introduced. This framework is designed to be capable of
strategically delegating computational tasks, including ADMET
property prediction via molecular dynamics, to AI components.
Conversely, context-dependent challenges, such as designing ethical
trials for vulnerable populations and navigating regulatory
ambiguities, are reserved for human mentors.

The innovation of this study lies in its detailed three-phase
technical roadmap. This involves fine-tuning models such as Llama-3
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on ethics transcripts, integrating electronic lab notebooks, and
ultimately deploying a “Regulatory Copilot” in clinical platforms. This
structured approach, enhanced by BioBERT (Lee et al., 2020)-powered
dialogue understanding, is able to transform Al from merely assistive
tools into collaborative teammates that significantly accelerate data
processing while maintaining crucial human oversight in complex
decision-making processes.

3.3.3 Equity-driven AL deployment

Equity-driven adaptive learning deployment could bridge
global biopharmaceutical education gaps through federated edge
learning systems. It enables offline simulations on accessible
devices that are capable of overcoming bandwidth constraints in
resource-limited regions while ensuring data sovereignty through
privacy-preserving architectures. Public-private infrastructure
partnerships can amplify this approach by establishing shared
computing resources for computationally intensive training. These
partnerships could be further strengthened through solar-powered
hardware and mesh networking capabilities, which ensure
operational resilience in challenging environments. Culturally
responsive design integrates localized knowledge systems and
multilingual support governed by inclusive policy frameworks
mandating gender equity and disability access. Collectively, these
strategies would transform AL into a universally accessible
infrastructure and enable remote learners to achieve parity with
leading institutions through government-subsidized technologies.
Moreover, it could systematically address connectivity barriers,
economic limitations, and culturally relevant gaps in global
pharmaceutical education.

3.3.4 Validation and standardization

Validation and standardization of AL in pharmaceutical education
require robust efficacy benchmarking through controlled comparative
trials to systematically address the prevalent methodological gaps in
current studies. This entails evaluating competency outcomes across
diverse instructional modalities while integrating longitudinal
performance-tracking mechanisms. Global regulatory frameworks
must establish comprehensive bias-auditing protocols that cover the
verification of dataset representativeness and runtime fairness
monitoring through quantifiable equity metrics. These protocols
should be reinforced by internationally harmonized certification
standards aligned with pharmaceutical quality systems. This dual
approach could elevate AL to clinically validated training tools and
subject it to GMP-grade verification standards. It establishes rigorous
performance thresholds, ensuring regulatory-grade safety and
equitable outcomes across learning environments.

3.3.5 Expanding immersive technologies

The advancement of immersive technologies in pharmaceutical
training has been revolutionized through two interconnected
paradigms. On the one hand, augmented reality systems provide hands-
free sterile manufacturing guidance via integrated sensing and
biomechanical monitoring, where empirical validation demonstrates a
significant reduction in procedural errors and enhanced aseptic success
rates in industrial settings. Meanwhile, adaptive bioreactor digital twins
dynamically modulate instructions through real-time sensor networks,
which trigger context-specific learning modules when the critical
process parameters deviate. The convergence of these approaches
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establishes a cross-reality validation framework demonstrating
accelerated competency development and improved fault diagnosis
capabilities. In addition, machine learning algorithms could further
enable predictive contamination risk management. These systems now
satisfy key regulatory requirements for process validation through
integration with the industrial IoT infrastructure and effectively
transform immersive tools into cognitive extensions that actively
prevent contamination during production operations. Concurrently,
they continuously develop engineering expertise while enabling the
digital transformation of manufacturing documentation and substantial
resource optimization via Al-driven process refinement.

4 Conclusion

This review demonstrates that Al-powered ALS constitutes a
transformative lever for biopharmaceutical education, fundamentally
shifting the paradigm from standardized time-based instruction to
precision mastery-oriented training. By integrating probabilistic KSM
with real-time analytics of knowledge level and knowledge structure,
ALS ensures that learners achieve validated competency before
advancing through inherently sequential domains such as genetic
engineering or pharmacodynamics. This review presents empirical
evidence from diverse applications, including molecular biology
scaffolding, Al-driven virtual labs, regulatory affairs simulations, and
competency-based microcredentialing. This body of evidence
demonstrates tangible benefits such as shortened time-to-competence,
significant cost reduction, and strengthened alignment with
industry workflows.

Nevertheless, the path to widespread adoption is contingent on
overcoming three critical and interconnected bottlenecks. The first is
the technical fragmentation that isolates specialized tools from
institutional learning-management ecosystems. The second is the
algorithmic and infrastructural inequities that risk exacerbating
urban-rural skill gaps. Finally, there is prevailing faculty
unpreparedness for new and Al-augmented pedagogical roles.
Addressing these challenges necessitates a coordinated research and
policy agenda, which is prioritized as follows: First, the development
of open and API-driven interoperability standards, which could
be fortified by blockchain-secured micro-credentials to ensure
verifiable skill portability. Second, the implementation of equity-
driven deployment models that leverage federated edge learning and
bandwidth-adaptive content delivery to guarantee inclusive access.
Third, the execution of longitudinal validation trials, benchmarked
against pharmaceutical-quality regulatory frameworks, to establish
ALS as a validated and
training infrastructure.

rigorously regulatory-grade

By implementing this strategic roadmap, educational institutions
and industry stakeholders can co-create a resilient and globally
inclusive ecosystem. Such an ecosystem will not only accelerate the
cultivation of a versatile, interdisciplinary biopharmaceutical
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