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In response to the growing demand for innovative instructional strategies in STEM 
education, we examine the effectiveness of AI-supported Problem-Based Learning 
(PBL) in improving students’ engagement, intrinsic motivation, and academic 
achievement. Traditional pedagogies often fail to sustain learner interest and 
problem-solving skills, particularly in computing disciplines, which informed 
our focus on integrating artificial intelligence into PBL to address these gaps. 
We adopted a quasi-experimental design with a non-equivalent pretest–posttest 
control group structure, involving 87 s-year undergraduates enrolled in Computer 
Robotics Programming courses in Nigeria Universities. Participants were divided 
into two groups: the experimental group (n = 45, University of Nigeria) received 
AI-supported PBL instruction, while the control group (n = 42, Nnmadi Azikwe 
University) engaged in traditional PBL. We  ensured the reliability and validity 
of our instruments, with Cronbach’s alpha values exceeding 0.70, composite 
reliability > 0.70, and AVE > 0.50. Data were analyzed using one-way multivariate 
analysis of covariance (MANCOVA) to assess the combined and individual effects 
of instructional method, controlling for prior programming experience. Results 
revealed a significant multivariate effect of instructional method on the combined 
outcomes, Wilks’ Λ = 0.134, F(3, 82) = 176.93, p < 0.001, η2 = 0.866. Univariate 
analyses showed that AI-supported PBL significantly improved engagement 
(η2 = 0.694), motivation (η2 = 0.690), and achievement (η2 = 0.519) compared to 
traditional PBL. We conclude that integrating AI into active learning environments 
transforms cognitive and skills learning outcomes. We recommend that curriculum 
designers, educators and policymakers prioritize AI-enhanced pedagogies and 
invest in faculty training for sustainable STEM education. This approach promises 
to advance learner-centered instruction and equip graduates for the challenges 
of a technology-driven future.
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1 Introduction

The adoption of Artificial Intelligence (AI) is transforming Science, Technology, 
Engineering, and Mathematics (STEM) education, offering innovative opportunities for 
personalized, adaptive, and engaging learning experiences (Leon et al., 2025). Studies indicate 
that over 51% of students exposed to AI-driven learning environments show improved 
academic achievement compared to those taught using traditional methods (Pertiwi et al., 
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2024; Strielkowski et al., 2025), especially in developed regions like 
America and Europe. AI tools have been widely applied in 
personalizing instruction for disciplines such as chemistry and 
programming, particularly in developing countries (Iyamuremye 
et al., 2024; Omeh et al., 2025). These tools not only enhance academic 
outcomes but also increase learner interest and motivation. 
Consequently, scholars recommend integrating AI tools within 
effective pedagogical frameworks rather than using them in isolation 
to optimize learning (Pertiwi et al., 2024). Problem-Based Learning 
(PBL) offers such a pedagogical framework. As a student-centered 
approach, PBL engages learners in solving real-world, open-ended 
problems to foster critical thinking and creativity (Umakalu and 
Omeh, 2025). While traditional PBL has been shown to enhance 
collaboration, problem-solving, and conceptual understanding (Ito 
et  al., 2021; Kurniawan et  al., 2025), empirical evidence on the 
integration of AI with PBL in STEM education, especially in African 
contexts remains scarce. Notably, Kurniawan et al. (2025) reported a 
40% rise in class participation and conceptual understanding through 
PBL, recommending the adoption of emerging technologies such as 
AI to further enrich the learning experience.

AI, defined as the development of systems capable of performing 
tasks requiring human intelligence, such as pattern recognition, 
decision-making, and language processing has expanded rapidly 
across education (Zhu et  al., 2023). In STEM, AI promotes 
personalized learning, adaptive feedback, and intelligent tutoring, 
fostering creative thinking and cross-disciplinary problem-solving 
(Xu and Ouyang, 2022; Omeh, 2025). These capabilities are 
particularly relevant in Computer Robotics Programming (CRP), a 
multidisciplinary field integrating programming, control systems, and 
sensor technologies to design intelligent robotic systems (Lozano-
Perez, 2005). However, in developing countries like Nigeria, the 
teaching of CRP faces challenges such as limited access to modern 
labs, robotics kits, and internet connectivity, coupled with a shortage 
of instructors with both technical and pedagogical expertise (Bati 
et al., 2014; Omeh et al., 2025). Consequently, instruction often relies 
on lecture-based methods that do not adequately foster creativity, 
practical skills, or problem-solving (Eteng et al., 2022).

To address these challenges, this study proposes integrating AI 
technology within a PBL framework for teaching CRP, leveraging AI’s 
ability to provide real-time feedback, adaptive scaffolding, and 
personalized learning analytics. Such integration is grounded in Self-
Determination Theory (Deci and Ryan, 1987), which posits that 
learning environments that support autonomy, competence, and 
relatedness enhance intrinsic motivation. AI-supported PBL can fulfill 
these psychological needs by offering structured guidance while 
promoting learner autonomy. Additionally, the study draws on 
Schneiderman’s (2000) engagement theory, emphasizing active 
participation and meaningful interaction with peers and technology 
as key to sustained engagement. Despite promising evidence, research 
findings on AI adoption remain inconsistent. Some studies report 
significant improvements in knowledge and skills acquisition through 
AI integration (Pillai and Sivathanu, 2020), while others highlight 
minimal or no impact (Adewale et al., 2024). This lack of consensus 
underscores the need for empirical investigations in under-researched 
contexts like Africa, focusing on how AI-supported PBL influences 
engagement, intrinsic motivation, and academic achievement in 
CRP. Thus, this study aims to examine the effect of integrating AI 
technology with PBL on student outcomes, controlling for prior 

programming experience, which often influences confidence and task 
performance (Bowman et al., 2019; Harding et al., 2024). By addressing 
these gaps, the study seeks to provide actionable insights for designing 
equitable and motivating learning environments in STEM education.

1.1 Research questions

What is the effect of instructional method (AI-supported PBL vs. 
traditional PBL) on students’ engagement in computer robotics 
programming after controlling for prior programming experience?

What is the effect of instructional method on students’ intrinsic 
motivation after controlling for prior programming experience?

What is the effect of instructional method on students’ academic 
achievement after controlling for prior programming experience?

2 Related literature review and 
theoretical framework

2.1 Evolution of teaching computer 
robotics programming (CRP)

The teaching of Computer Robotics Programming (CRP) has 
evolved significantly over the last few decades, reflecting its 
interdisciplinary nature and growing complexity. Robotics education 
combines programming, control systems, and sensor technologies, 
requiring both theoretical understanding and practical application 
(Krishnamoorthy and Kapila, 2016). Traditional lecture-based 
methods have historically dominated robotics education, particularly 
in developing countries, where limited infrastructure and resource 
constraints often necessitate conventional instructional models 
(Corral et  al., 2016; Zhang et  al., 2024). While lectures provide a 
foundational understanding of concepts such as algorithms, sensors, 
and actuators, they are often insufficient for fostering critical skills like 
problem-solving, collaboration, and innovation (Thomas and Bauer, 
2020). Hands-on experiences using platforms like LEGO Mindstorms 
and Arduino have been widely recognized for enhancing technical 
proficiency and practical application in robotics programming 
(Thomas and Bauer, 2020). However, such benefits are amplified when 
coupled with active learning approaches, particularly Problem-Based 
Learning (PBL), which emphasizes real-world problem-solving and 
learner autonomy (Jonassen and Carr, 2020; Chen and Chung, 2024).

2.2 Problem-based learning (PBL) and 
emerging technologies

PBL fosters iterative learning cycles, critical thinking, and collaborative 
problem-solving, positioning students as active participants rather than 
passive recipients of knowledge (Jonassen and Carr, 2020). In recent years, 
educational research has highlighted the importance of integrating 
emerging technologies, such as AI, virtual simulation environments, 
gamification, and mixed reality, into PBL environments to enhance 
student engagement and achievement (Marín et al., 2018; Srimadhaven 
et al., 2020). Virtual simulation platforms like ROS and Webots have 
become central in robotics programming, providing scalable, risk-free 
environments for experimentation (Ahn and Jeong, 2025; Washington 
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and Sealy, 2024). Moreover, the integration of AI-driven tools offers 
adaptive feedback and real-time analytics, which help bridge gaps in 
learners’ prior knowledge and maintain engagement in complex tasks 
(Yilmaz and Yilmaz, 2023; Chavez-Valenzuela et al., 2025). AI not only 
supports personalized learning pathways but also fosters collaborative 
practices, enabling peer-to-peer programming and shared responsibility 
for problem-solving. Despite these advancements, limited empirical 
studies exist on AI-supported PBL in CRP within African higher 
education contexts, underscoring the need for the present study.

2.3 Engagement in robotics programming

Engagement comprising behavioral, cognitive, and emotional 
dimensions, which is critical to learning outcomes, influencing 
persistence, creativity, and task performance (Bakır-Yalçın and Usluel, 
2024). Prior research suggests that engagement in CRP is often shaped 
by prior programming experience, as students with prior exposure 
exhibit higher confidence and smoother task navigation (Bowman 
et al., 2019; Harding et al., 2024). Conversely, novice learners may 
struggle with syntax and logic, diverting attention from robotics-
specific problem-solving (Woodrow et al., 2024). Studies recommend 
controlling for prior knowledge through stratified grouping or 
statistical adjustment using pre-test scores to ensure fair measurement 
of engagement (MacNeil et  al., 2023; Nie et  al., 2024). Adaptive 
feedback systems integrated within AI-supported environments can 
help sustain engagement by tailoring task complexity and providing 
timely scaffolding (Yilmaz and Yilmaz, 2023; Omeh et al., 2025). PBL 
further enhances engagement through peer collaboration, enabling 
novices to learn from experienced peers while experts consolidate 
knowledge by teaching. Thus, we hypothesize that:

H1: There is no significant difference in engagement between 
students in AI-supported PBL and those in traditional PBL, 
controlling for prior programming experience.

2.4 Intrinsic motivation in AI-supported 
learning

Intrinsic motivation—the internal drive to learn for interest and 
enjoyment rather than external rewards—is a key determinant of 
persistence and academic success in STEM education (Kotera et al., 
2023). Robotics programming environments that emphasize autonomy, 
competence, and relatedness foster intrinsic motivation (Gressmann 
et al., 2019; Anselme and Hidi, 2024). Research shows that integrating 
AI technologies, such as real-time hints and adaptive feedback, can 
enhance learners’ sense of mastery and autonomy, thereby sustaining 
motivation (Lin and Muenks, 2025; Tozzo et  al., 2025). However, 
concerns exist regarding overreliance on AI systems, which may reduce 
self-reliance and autonomy if not carefully managed (Kotera et al., 
2023). The present study addresses this by embedding AI within a 
student-centered PBL structure, ensuring technology acts as a scaffold 
rather than a substitute for human facilitation. Thus, we hypothesize that:

H2: There is no significant difference in intrinsic motivation 
between students in AI-supported PBL and those in traditional 
PBL, controlling for prior programming experience.

2.5 Academic achievement in robotics 
programming

Academic achievement in CRP encompasses content mastery, 
problem-solving ability, and application of programming skills (Omeh 
et al., 2025). Empirical evidence indicates that PBL significantly enhances 
these outcomes compared to lecture-based methods by promoting active 
learning and knowledge transfer (Orhan, 2025; Chen and Yang, 2019). 
AI integration further amplifies these benefits through personalized 
scaffolding, real-time analytics, and adaptive prompts, reducing cognitive 
load and enhancing skill acquisition (Torres and Inga, 2025; Yilmaz and 
Yilmaz, 2023). Nevertheless, some studies report mixed results regarding 
AI’s impact on academic performance, citing infrastructure limitations 
and poor pedagogical alignment as contributing factors (Adewale et al., 
2024). Effective implementation, therefore, requires balancing 
technological support with human facilitation, a principle incorporated 
into the present study design. Thus, we hypothesize that:

H3: There is no significant difference in academic achievement 
between students in AI-supported PBL and those in traditional 
PBL, controlling for prior programming experience.

2.6 Theoretical framework

This study is grounded in Self-Determination Theory (Deci and 
Ryan, 1987) and Engagement Theory (Schneiderman, 2000). Self-
Determination Theory posits that intrinsic motivation is fostered 
when learning environments support three core psychological needs: 
autonomy, competence, and relatedness. In the context of PBL, 
students are given the freedom to explore open-ended problems 
(autonomy), develop technical and collaborative skills (competence), 
and engage meaningfully with peers and mentors (relatedness). These 
conditions are essential for nurturing intrinsic motivation. However, 
while SDT provides a strong foundation for understanding motivation, 
it offers limited insight into the mechanisms of student engagement 
particularly in dynamic, technology-enhanced learning environments. 
To address this gap, Engagement Theory offers a complementary 
perspective by emphasizing purposeful, collaborative, and technology-
mediated activities. It suggests that meaningful engagement arises 
when learners are involved in tasks that are authentic, socially 
interactive, and supported by digital tools. Within the AI-supported 
PBL framework, this theory becomes especially relevant. The proposed 
intervention Artificial Intelligence Meets PBL operationalizes the 
principles of both theories by: Structuring learning around problem-
driven tasks that promote autonomy and relevance. Integrating 
adaptive AI feedback, which supports competence through 
personalized guidance and scaffolding. Facilitating peer collaboration, 
enhancing relatedness and social engagement.

3 Methodology

3.1 Participants, and design

Our sample comprised 87 s-year students of computing Education 
that offers Computer Robotics programming in Nigeria universities 
university of Nigeria, with n = 45 students while Nnamdi Azikwe 
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University Akwa with n = 43 students. The study population is made 
up of 38 males (43.7%) and 49 females (56.3%), indicating a slightly 
higher representation of females. In terms of age distribution, most 
participants were within the 18–20 years age group (48.3%), followed 
by 21–23 years (32.2%) and 24 years and above (19.5%), suggesting 
that the majority were traditional-age undergraduates. Regarding 
prior programming experience, 34 students (39.1%) reported previous 
exposure to programming, while 53 students (60.9%) had no prior 
experience, underscoring the diversity in baseline skills. Additionally, 
63 students (72.4%) indicated adequate access to digital devices, 
whereas 24 students (27.6%) had limited access, reflecting some level 
of digital inequality among the participants. Furthermore, we adopted 
a quasi-experimental design with a non-equivalent pretest–post-test 
control group structure to examine our objectives. This design was 
appropriate for examining the effect of AI-supported Problem-Based 
Learning (PBL) on students’ engagement, intrinsic motivation, and 
academic achievement in a computer robotics programming course. 
It allowed us to compare learning outcomes between two groups an 
experimental group exposed to AI-enhanced instruction and a control 
group taught using traditional PBL while statistically controlling for 
prior programming experience as a covariate.

3.2 System design of AI-supported PBL 
learning environment

The AI-Supported Problem-Based Learning Environment (APLE) 
(See Figure  1) was conceptualized and implemented to facilitate 
active, personalized, and adaptive learning experiences for students 
enrolled in computer robotics programming. The system was designed 
to combine intelligent tutoring capabilities with the pedagogical 
principles of PBL, ensuring students could access real-time support 
while engaging in structured problem-solving tasks.

3.2.1 System architecture
The APLE was developed using a modular architecture based on 

the frontend-backend separation model to ensure scalability, 
maintainability, and smooth integration of AI components.

3.2.1.1 Frontend development
The user interface was developed using Flutter, an open-source UI 

toolkit renowned for its ability to deliver cross-platform applications. 
This choice enabled a consistent user experience across desktop and 
mobile devices, although this version primarily deployed as a 
desktop application.

3.2.1.2 Backend development
The backend was implemented with Firebase, which provided 

a secure and scalable environment for authentication, real-time 
data synchronization, and API management. Cloud Firestore, a 
NoSQL database solution within Firebase, was employed to 
store user profiles, session data, lesson progress, and 
engagement logs.

3.2.1.3 AI integration
To enable intelligent interaction, OpenAI’s API was integrated as 

the conversational agent responsible for real-time problem-solving 
assistance. This feature allowed students to query ChatGPT for 
explanations, coding guidance, and debugging support, simulating an 
on-demand virtual tutor.

3.2.2 Core functionalities

3.2.2.1 Interactive learning pane (left section)
The left pane of the interface (see Figure  1) serves as the AI 

interaction window, where students input queries and receive context-
sensitive responses. This component supports code generation, 

FIGURE 1

Interface of the AI-supported PBL learning environment (APLE).
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concept clarification, and personalized hints for robotics programming 
challenges, promoting active engagement.

3.2.2.2 Lesson navigation panel (right section)
The right pane contains a structured lesson navigation module, 

organized into weekly topics such as Introduction to Computer 
Robotics and Compiler Construction I. Each lesson includes 
instructional materials, practice exercises, and reflective questions 
aligned with the course objectives.

3.2.2.3 Problem-based tasks with ai support
Students engage in open-ended robotics programming problems, 

leveraging the AI assistant for guidance without receiving direct 
solutions, thereby maintaining the constructivist nature of PBL. This 
design encourages critical thinking while minimizing 
cognitive overload.

3.2.2.4 Performance analytics and adaptive feedback
Engagement data (e.g., frequency of interaction, task completion) 

and assessment scores are logged in Firestore. These metrics enable 
instructors to track student progress and inform adaptive 
recommendations for further learning.

3.2.3 Design rationale
The system design aligns with Self-Determination Theory (Deci 

and Ryan, 1987) and Engagement Theory (Schneiderman, 2000) by 
promoting autonomy (through self-directed problem-solving), 
competence (via AI-enabled feedback), and relatedness (through 
collaborative PBL structures). By integrating AI into PBL, APLE 
addresses limitations of traditional lecture-based instruction—such as 
lack of immediate feedback and limited personalization—identified in 
prior studies (Krishnamoorthy and Kapila, 2016; Omeh et al., 2025). 
While the current implementation is desktop-based, future iterations 
will prioritize mobile deployment to increase accessibility, particularly 
in resource-limited environments.

3.3 Measures

To ensure accurate measurement of the key constructs—
engagement, intrinsic motivation, and academic achievement, 
we  employed adapted, validated, and reliability-tested 
instruments. Students’ engagement in computer robotics 
programming was assessed using a 20-item engagement 
questionnaire adapted from the University Student Report 
(National Survey of Student Engagement, 2001) and tailored to 
reflect robotics programming contexts within PBL environments. 
The instrument measured behavioral, emotional and cognitive 
engagement through items related to persistence, collaboration, 
and active learning tasks. Responses were collected on a five-point 
Likert scale ranging from 1 = Never, 2 = Rarely, 3 = sometime, 
4 = often to, 5 = Very So Often. A sample item includes: “How 
often do you collaborate with peers to solve robotics programming 
challenges?” This adaptation ensured cognitive engagement with 
authentic problem-solving experiences.

Academic achievement was measured using the Computer 
Robotics Programming Achievement Test (CRPAT), which 
consisted of 50 multiple-choice questions covering fundamental and 

applied robotics concepts. Each question had four alternatives 
(A–D), with one correct answer scored as two points, giving a 
maximum possible score of 100 marks. The test was constructed 
following Bloom’s taxonomy, addressing knowledge, comprehension, 
and application skills. Sample items include: “What is the primary 
purpose of a robot’s control system in robotics programming?” and 
“How can a robot use ultrasonic sensors to detect obstacles and 
adjust its path accordingly?” The CRPAT was reviewed by three 
experts in computer science education to ensure content validity. In 
addition to the test, continuous assessment tasks were evaluated 
using a 30-point rubric derived from a laboratory manual that 
required students to complete real-world robotics 
programming exercises.

Intrinsic motivation was evaluated using a nine-item scale adapted 
from Pintrich et  al. (1993), contextualized to reflect robotics 
programming activities. The instrument assessed students’ interest, 
enjoyment, and perceived competence in problem-solving within the 
AI-supported and traditional PBL environments. Responses were 
rated on a five-point Likert scale from 1 = Strongly Disagree to 
5 = Strongly Agree. Sample items include: “I experience pleasure when 
I discover new things in robotics programming” and “I often feel 
excited when exploring interesting robotics topics.” This scale 
provided insight into learners’ internal drive to engage in robotics 
programming tasks.

To establish validity and reliability, all instruments were subjected 
to expert review and pilot testing. Reliability analysis using Cronbach’s 
alpha indicated high internal consistency, with coefficients of 0.875 for 
engagement, 0.804 for intrinsic motivation, and 0.790 for the 
CRPAT. Composite reliability values exceeded 0.70, and Average 
Variance Extracted (AVE) values were above 0.50 for all constructs, 
confirming convergent validity. Discriminant validity was also verified 
using the Fornell-Larcker criterion, ensuring that each construct 
was distinct.

3.4 Data collection procedure

We implemented a structured and phased approach to collect data 
for this study, ensuring systematic execution from pre-intervention 
through post-intervention.

Phase 1: Pre-Test Administration (Week 1)
At the beginning of the semester, we  administered a baseline 

assessment to both groups using Google Forms. This included:
Engagement Scale (20 items, 5-point Likert scale)
Intrinsic Motivation Scale (9 items, 4-point Likert scale)
Academic Achievement Test (50 multiple-choice questions, 2 

marks each)
Demographic Section, which captured gender, age group, prior 

programming experience, and access to digital devices.
The purpose of the pre-test was twofold: (a) to establish baseline 

scores for comparison with post-test data, and (b) to use these as 
covariates in the subsequent statistical analysis, ensuring accurate 
measurement of treatment effects.

Phase 2: Intervention (Weeks 2–15)
The instructional intervention spanned 14 weeks, with two 2-h 

contact sessions weekly (total of 64 contact hours). Participants were 
divided into two groups:

Experimental Group: AI-Supported PBL
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Students in this group experienced PBL enhanced with AI tools, 
integrated into every learning activity:

Weeks 2–4:
Orientation and AI Familiarization: Students were introduced to 

the AI learning platform and robotics programming basics.
Activity Example: Using an AI-driven coding simulator that 

provided real-time syntax and logic feedback for simple 
code exercises.

Weeks 5–8:
AI-Supported Group Problem-Solving: Students tackled 

intermediate-level robotics tasks with AI-based adaptive hints.
Activity Example: “Develop a line-following robot,” where the AI 

dashboard analyzed each team’s progress and suggested performance-
improving strategies.

Weeks 9–12:
Complex Robotics Projects: Students worked on advanced, real-

world problems, receiving AI-generated predictive analytics about 
potential errors and recommended practice exercises.

Weeks 13–15:
Capstone Project: Collaborative design and testing of robotic 

systems. AI-assisted peer assessment was introduced, where the 
system scored submissions based on preloaded rubrics and flagged 
anomalies for instructor review.

Control Group: Traditional PBL.
The control group engaged in identical robotics programming 

problems and tasks without AI support. All feedback and guidance 
were provided by the instructor and peers, replicating conventional 
PBL practices.

Phase 3: Post-Test Administration (Week 16).
At the end of the intervention, we  administered the same 

engagement and intrinsic motivation scales along with a parallel form 
of the achievement test via Google Forms. This allowed us to measure 
changes attributable to the instructional method while maintaining 
test validity and reliability.

3.5 Instructional parity

To address potential experimenter bias and ensure instructional 
consistency, we engaged the existing computer robotics programming 
lecturers at the University of Nigeria, Nsukka (UNN) and Nnamdi 
Azikiwe University, Awka (UNIZIK) to deliver the intervention (see 
Figure 2). This decision allowed for ecological validity while leveraging 
institutional structures. The geographic distance between the two 
universities minimized the risk of treatment diffusion. Two weeks 
before implementation, the principal investigator conducted a 
standardized two-day training for all instructors, focusing on research 
protocols, ethical compliance, and instructional delivery. All 
instructors received a unified, pre-developed lesson plan, facilitation 
scripts, and identical problem-based learning (PBL) materials. The 
control group used conventional PBL, while the experimental group 
integrated the AI-Supported PBL Environment (APLE), ensuring that 
the only instructional difference was the presence of the AI agent 
(ChatGPT). Instructors in the experimental group were trained on the 
APLE interface but instructed not to provide extra scaffolding beyond 
the standard plan. This approach reduced variability and supported 
fidelity. Observations and checklists were used to monitor 
implementation across sites. While this design ensured parity, 

we acknowledge that the absence of random assignment and the use 
of different instructors could introduce bias.

3.6 Data analysis procedure

We conducted a Multivariate Analysis of Covariance 
(MANCOVA) to assess the effectiveness of two instructional methods 
on students’ engagement, intrinsic motivation, and academic 
achievement, while controlling for prior programming experience. 
Prior to the main analysis, we confirmed that all necessary statistical 
assumptions, including normality, homogeneity of variance, equality 
of covariance matrices, and linearity, were met. To ensure instrument 
validity and reliability, we found that Cronbach’s alpha and Composite 
values supported construct reliability, while Average Variance 
Extracted (AVE) scores exceeded 0.50, confirming convergent validity. 
Discriminant validity was established using the Fornell-Larcker 
criterion, as the square roots of the AVEs for each construct were 
greater than their inter-construct correlations. We then proceeded 

FIGURE 2

Instructional flow chat.
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with the MANCOVA, reporting Wilks’ Lambda and partial eta 
squared (η2) to evaluate the multivariate effects and effect sizes. 
Following this, univariate tests were conducted to analyze the distinct 
impact of each instructional method on the dependent variables. 
Estimated marginal means and Bonferroni-adjusted pairwise 
comparisons were used to identify specific group differences.

4 Results

4.1 Preliminary analysis

Before proceeding with the main analysis, we conducted a series of 
preliminary checks to ensure that the assumptions underpinning 
Multivariate Analysis of Covariance (MANCOVA) were met. These 
diagnostic tests were essential for validating the integrity and robustness 
of our findings regarding the effect of instructional method on student 
outcomes. First, we assessed the normality of our dependent variables 
such as engagement, intrinsic motivation, and academic achievement by 
examining skewness and kurtosis values. The distribution of each 
variable approximated normality, with skewness and kurtosis values 
falling within the acceptable ±2 range (Byrne, 2010; Hair et al., 2010). 
This gave us confidence that the assumption of univariate normality was 
satisfied. We also examined the linearity of relationships between our 
covariate prior programming experience and each dependent variable. 
Scatterplots revealed that the relationships were reasonably linear, 
indicating that the linearity assumption for MANCOVA was met. Next, 
we tested the homogeneity of variance–covariance matrices using Box’s 
M test. Table 1 yielded a non-significant result, Box’s M = 2.11, F(6, 
51656.13) = 0.338, p = 0.917, confirming that the covariance matrices for 
the dependent variables were equal across the instructional groups. This 
indicated that the multivariate homogeneity of variance–covariance 
assumption was upheld.

To determine whether the assumption of homogeneity of regression 
slopes held, we assessed the interaction between instructional method 
and the covariate (prior programming experience) for each dependent 
variable. The non-significant interaction effects suggested that the 
regression slopes were homogeneous across groups, satisfying this 
critical assumption. We further examined Levene’s Test of Equality of 
Error Variances to assess the homoscedasticity of each dependent 
variable. Table 2 revealed that engagement, motivation, and achievement 
produced non-significant Levene’s test results (p > 0.05), confirming that 
the assumption of equal variances was not violated. Finally, we evaluated 
multicollinearity by inspecting the intercorrelations among the 
dependent variables. The correlations ranged from moderate to strong 
but did not exceed problematic thresholds of 0.85. This assured us that 
the dependent variables shared some variance while still retaining 

distinct constructs, justifying their inclusion in a multivariate analysis. 
Taken together, the results of these preliminary tests provided us with a 
sound basis to proceed with the MANCOVA as all assumptions were 
sufficiently met.

4.2 Assessment of construct reliability and 
validity

Also, we evaluated the reliability and validity of our measurement 
instruments for engagement, motivation, and achievement in the 
context of AI-supported problem-based. Table 3 indicated that all 
constructs demonstrated strong internal consistency, exceeding the 
recommended threshold of 0.70 (Hair et  al., 2010). Composite 
reliability (CR) values also supported this, ranging from 0.865 to 
0.905, confirming that the constructs consistently captured their 
respective latent variables. Furthermore, all constructs demonstrated 
adequate convergent validity, as the average variance extracted (AVE) 
values exceeded the 0.50 benchmark suggesting that more than 50% 
of the variance in observed variables was explained by their underlying 
constructs (Fornell and Larcker, 1981).

Discriminant validity was also assessed using the Fornell–Larcker 
criterion, and Table 4 showed that the square root of the AVE for each 
construct was greater than its correlations with other constructs. This 
pattern was consistent across all constructs, indicating that they were 
empirically distinct and not overlapping in meaning. Overall, these 
results provide strong evidence for the psychometric adequacy of our 
instruments, justifying their use in the MANCOVA analysis and 
supporting the credibility of our findings on the effectiveness of 
AI-supported PBL in enhancing students’ engagement, motivation, 
and achievement.

4.3 Multivariate analysis

To address our research hypotheses, we  conducted a one-way 
Multivariate Analysis of Covariance (MANCOVA), which allowed us 
to assess the combined and individual effects of the instructional 
method on the three outcome variables, while adjusting for the 
covariate. The multivariate results revealed a statistically significant 
effect of instructional method on the combined dependent variables. 
As shown in Table 5, Wilks’ Lambda was 0.134, F(3, 82) = 176.93, 
p < 0.001, with a partial eta squared (η2) of 0.866. This indicates that 
the instructional method accounted for approximately 86.6% of the 
variance in the combination of engagement, intrinsic motivation, and 
achievement. Based on this strong effect size, we rejected the main null 
hypothesis and concluded that the mode of instruction had a significant 
joint effect on students’ learning outcomes. Conversely, Table 5 shows 
that prior programming experience did not yield a statistically 
significant multivariate effect, Wilks’ Lambda = 0.993, F(3, 82) = 0.205, 
p = 0.893, η2 = 0.007. This suggests that students’ previous exposure to 
programming did not substantially affect the combined outcome 
measures, reinforcing the dominant role of instructional method.

Assessing individual outcomes through the between-subjects 
effects, we found that instructional method had a statistically significant 
effect on each dependent variable. For engagement, Table 6 showed F(1, 
84) = 190.20, p < 0.001, η2 = 0.694, indicating that students in the 
AI-supported PBL group were significantly more engaged than those 

TABLE 1  Box’s test of equality covariance matrices.

Covariance matrices Value

Box’s M 2.111

F 0.338

df1 6

df2 51656.133

Sig. 0.917
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taught through traditional PBL. In terms of intrinsic motivation, the 
result was also significant, F(1, 84) = 186.80, p < 0.001, η2 = 0.690, 
confirming that students exposed to the AI-supported instructional 
method reported notably higher levels of motivation. For academic 
achievement, a significant effect was observed as well, F(1, 84) = 90.59, 
p < 0.001, η2 = 0.519, highlighting the advantage of AI-supported PBL 
in enhancing students’ academic performance. These results support our 
hypotheses (H1–H3) and demonstrate that the instructional method 
had a strong and consistent effect across all three learning outcomes.

To further reinforce these results, our estimated marginal means 
revealed that students in the AI-supported PBL condition scored 
higher across all outcomes. Specifically, they scored an average of 
75.24 on engagement compared to 49.95 in the traditional PBL group; 
24.50 on intrinsic motivation compared to 14.29; and 65.78 on 
academic achievement compared to 47.74 (see Table 7). These mean 
differences, adjusted for prior programming experience, affirm the 
positive effect of integrating AI tools into PBL pedagogy.

Lastly, the pairwise comparisons substantiated these group 
differences, with statistically significant mean differences observed for 
each outcome: 25.29 for engagement, 10.21 for motivation, and 18.04 
for achievement, all with p < 0.001 (see Table  8). The confidence 
intervals for these differences did not include zero, which confirms the 
robustness of the observed effects.

5 Discussion and implication

The purpose of this study was to evaluate the impact of 
AI-supported Problem-Based Learning (PBL) on students’ 

engagement, intrinsic motivation, and academic achievement in 
Computer Robotics Programming (CRP) compared to traditional 
PBL, while controlling for prior programming experience. Results 
demonstrated significant multivariate and univariate effects, favoring 
AI-supported PBL for all three outcomes. The results indicate that 
students exposed to AI-supported PBL reported significantly higher 
engagement than those in traditional PBL environments. This 
supports Schneiderman’s (2000) engagement theory, which highlights 
that meaningful interaction and adaptive support enhance active 
learning. The integration of AI offered personalized feedback, real-
time hints, and analytics that likely sustained students’ persistence in 
task completion and fostered collaborative interaction, consistent with 
findings by Kurniawan et al. (2025) and Ahn and Jeong (2025), who 
observed improved engagement when technology enhanced problem-
based learning contexts. Meanwhile, some scholars argue that heavy 
reliance on AI tools may diminish learner autonomy and create 
dependency, potentially reducing authentic engagement (Mehdaoui, 
2024). Students might focus on following AI prompts rather than 
engaging in deeper inquiry or collaborative dialogue. This concern is 
valid in contexts where AI replaces human facilitation rather than 
complementing it. In this study, AI served as an enhancement rather 
than a substitute for instructor guidance, offering adaptive scaffolding 
without restricting learner autonomy. Moreover, engagement gains 
observed here align with findings by Woodrow et al. (2024), which 
suggest that adaptive feedback closes engagement gaps for novices, 
allowing all students to contribute meaningfully in collaborative 
PBL environments.

Furthermore, students in AI-supported PBL reported significantly 
higher intrinsic motivation than those in traditional PBL, reinforcing 
Self-Determination Theory (Deci and Ryan, 1987), which emphasizes 
that fulfilling learners’ needs for competence and autonomy fosters 
intrinsic motivation. AI-driven feedback systems and predictive 
analytics provided students with a sense of progress and mastery, 
reducing frustration and promoting self-directed learning. These 
findings echo Lin and Muenks (2025) and Tozzo et al. (2025), who 
reported increased motivation through adaptive technologies in 
STEM settings. Critics argue that excessive AI support can undermine 
intrinsic motivation by reducing students’ sense of autonomy, as 
learners may attribute success to the system rather than their own 
efforts (Kotera et al., 2023). In addition, students accustomed to real-
time feedback may develop dependency, which could weaken 
motivation in non-AI-supported contexts. While such concerns are 
plausible, our intervention design balanced AI assistance with learner-
driven problem solving and peer collaboration, which preserved 
autonomy and encouraged active participation. This aligns with 
Yilmaz and Yilmaz (2023), who asserted that AI integration enhances 
motivation when combined with student-centered pedagogies like 
PBL, rather than implemented in isolation.

Our analysis also revealed a significant advantage for AI-supported 
PBL in improving academic achievement compared to traditional 
PBL. This is consistent with Chen and Yang (2019), who reported a 
12% higher post-test performance among students receiving adaptive 
feedback, and Omeh et  al. (2025), who highlighted AI’s role in 
facilitating knowledge transfer and complex problem solving in 
robotics programming. Personalized scaffolding and automated error 
detection likely reduced cognitive overload, enabling students to 
master challenging CRP concepts. However, some studies suggest that 
AI does not uniformly improve academic achievement, especially in 

TABLE 2  Levene test of equality of variance.

Dependent 
variable

F df1 df2 Sig.

Engagement_Posttest 0.205 1 85 0.652

Motivation_Posttest 0.301 1 85 0.584

Achievement_Posttest 1.467 1 85 0.229

TABLE 3  Construct reliability and validity.

Construct Cronbach’s 
Alpha

Composite 
Reliability 

(CR)

Average 
Variance 
Extracted 

(AVE)

Motivation 0.804 0.865 0.511

Engagement 0.875 0.905 0.543

Achievement 0.790 0.870 0.600

TABLE 4  Discriminant validity- Fornell–Larcker criterion.

Construct Motivation Engagement Achievement

Motivation 0.715

Engagement 0.622 0.737

Achievement 0.687 0.560 0.775

Revealed that all HTMT values were below the conservative 0.85 cut-off, with a few nearing 
but not exceeding this threshold. For instance, the HTMT values among motivation, 
engagement and achievement are shown in the table as bold. Overall, the HTMT analysis 
supports that discriminant validity is adequately established.
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TABLE 5  Multivariate test results.

Effect Value F Hypothesis df Error df Sig. Partial Eta 
Squared

Intercept

Pillai’s Trace 0.940 429.873ᵇ 3.000 82.000 0.000 0.940

Wilks’ Lambda 0.060 429.873ᵇ 3.000 82.000 0.000 0.940

Hotelling’s Trace 15.727 429.873ᵇ 3.000 82.000 0.000 0.940

Roy’s Largest Root 15.727 429.873ᵇ 3.000 82.000 0.000 0.940

Prior_Programming_Experience

Pillai’s Trace 0.007 0.205 3.000 82.000 0.893 0.007

Wilks’ Lambda 0.993 0.205 3.000 82.000 0.893 0.007

Hotelling’s Trace 0.008 0.205 3.000 82.000 0.893 0.007

Roy’s Largest Root 0.008 0.205 3.000 82.000 0.893 0.007

Instructional_Method

Pillai’s Trace 0.866 176.930ᵇ 3.000 82.000 0.000 0.866

Wilks’ Lambda 0.134 176.930ᵇ 3.000 82.000 0.000 0.866

Hotelling’s Trace 6.473 176.930ᵇ 3.000 82.000 0.000 0.866

Roy’s Largest Root 6.473 176.930ᵇ 3.000 82.000 0.000 0.866

TABLE 6  Tests between-subjects effects.

Source Dependent 
Variable

Type III Sum 
of Squares

df Mean Square F Sig. η2

Corrected Model

Engagement_Posttest 13826.762ᵃ 2 6913.381 95.167 0.000 0.694

Motivation_Posttest 2266.705ᵇ 2 1133.353 94.050 0.000 0.691

Achievement_Posttest 7041.041ᶜ 2 3520.521 45.352 0.000 0.519

Intercept

Engagement_Posttest 35432.668 1 35432.668 487.755 0.000 0.853

Motivation_Posttest 3642.624 1 3642.624 302.280 0.000 0.783

Achievement_Posttest 29695.241 1 29695.241 382.536 0.000 0.820

Prior_Programming_

Experience

Engagement_Posttest 31.065 1 31.065 0.428 0.515 0.005

Motivation_Posttest 0.190 1 0.190 0.016 0.900 0.000

Achievement_Posttest 10.859 1 10.859 0.140 0.709 0.002

Instructional_Method

Engagement_Posttest 13816.929 1 13816.929 190.199 0.000 0.694

Motivation_Posttest 2251.031 1 2251.031 186.800 0.000 0.690

Achievement_Posttest 7032.515 1 7032.515 90.593 0.000 0.519

Error

Engagement_Posttest 6102.135 84 72.644

Motivation_Posttest 1012.241 84 12.050

Achievement_Posttest 6520.692 84 77.627

Total

Engagement_Posttest 36560.010 87

Motivation_Posttest 3659.110 87

Achievement_Posttest 29686.896 87

Corrected total

Engagement_Posttest 19928.897 86

Motivation_Posttest 3278.946 86

Achievement_Posttest 13561.733 86

ᵃ R Squared = 0.694 (Adjusted R Squared = 0.687); ᵇ R Squared = 0.691 (Adjusted R Squared = 0.684); ᶜ R Squared = 0.519 (Adjusted R Squared = 0.508).
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resource-constrained environments where infrastructure limitations 
and unreliable connectivity impede technology’s effectiveness 
(Adewale et al., 2024). Additionally, when AI-driven systems provide 
overly prescriptive guidance, they may discourage independent 
problem solving, limiting long-term knowledge retention. This study 
mitigated these concerns by blending AI tools with instructor 
facilitation and peer collaboration, ensuring that AI functioned as a 
support mechanism rather than a prescriptive tutor. Moreover, 
performance gains observed in our context suggest that AI-supported 
PBL can overcome systemic constraints when implemented 
strategically, echoing the recommendations by Pillai and Sivathanu 
(2020) and Torres and Inga (2025) on leveraging AI to enhance 
structured STEM instruction.

Interestingly, prior programming experience did not significantly 
affect engagement, motivation, or achievement once instructional 
method was accounted for. This finding reinforces claims by MacNeil 
et al. (2023) and Woodrow et al. (2024) that adaptive technologies can 
neutralize disparities in prior knowledge through personalized 
feedback and dynamic scaffolding. One could argue that in highly 
technical subjects like CRP, prior experience will inevitably shape task 
navigation and conceptual understanding, rendering instructional 
interventions secondary to baseline knowledge (Harding et al., 2024). 
While prior knowledge influences initial confidence, our findings 
suggest that AI-supported PBL offsets these differences by tailoring 
instructional complexity and offering real-time performance analytics, 
enabling novice learners to engage effectively and achieve outcomes 
comparable to their experienced peers.

This study findings underscore the transformative role of 
AI-enhanced pedagogical strategies in promoting equitable and 
engaging STEM education in developing contexts like Nigeria. 
Educators should prioritize integrating AI tools within structured 

frameworks like PBL, while policymakers must invest in digital 
infrastructure and instructor training to ensure scalability.

6 Conclusion and recommendation

This exploratory study provides compelling preliminary evidence 
that integrating Artificial Intelligence into Problem-Based Learning 
(PBL) environments can enhance student engagement, intrinsic 
motivation, and academic achievement in robotics programming 
courses. The results demonstrated statistically and practically 
significant improvements in learning outcomes for students in the 
AI-supported PBL environment compared to those in traditional 
PBL. However, we interpret these findings within the context of a 
limited, non-random sample drawn from a single institution. Rather 
than making broad generalizations, this study offers strong proof of 
concept that AI-driven instructional support can positively impact 
learning in specific STEM education contexts. It showcases the 
potential of AI to support personalized, interactive, and data-informed 
learning experiences that promote cognitive and affective gains. 
Importantly, it also highlights how AI tools such as ChatGPT can 
assist students by providing real-time feedback, programming 
support, and facilitating inquiry-based exploration.

6.1 Limitations and future research

As researchers committed to exploring the transformative 
potential of AI-supported pedagogies, we  recognize several 
limitations in our current study that provide fertile ground for future 
inquiry. Firstly, although we  employed validated self-report 

TABLE 7  Estimated marginal means.

Dependent Variable Instructional_Method Mean Std. Error 95% CI (Lower 
Bound)

95% CI (Upper 
Bound)

Engagement_Posttest

Traditional PBL 49.954ᵃ 1.317 47.335 52.573

AI-supported PBL 75.243ᵃ 1.272 72.713 77.773

Motivation_Posttest

Traditional PBL 14.289ᵃ 0.536 13.223 15.356

AI-supported PBL 24.497ᵃ 0.518 23.466 25.527

Achievement_Posttest

Traditional PBL 47.735ᵃ 1.361 45.027 50.442

AI-supported PBL 65.776ᵃ 1.315 63.161 68.392

ᵃ Covariates appearing in the model are evaluated at the following values: Prior_Programming_Experience = 1.37.

TABLE 8  Pairwise comparison.

Dependent 
Variable

(I) Instructional_
Method

(J) Instructional_
Method

Mean 
Difference 

(I–J)

Std. 
Error

Sig. 95% CI 
(Lower 
Bound)

95% CI 
(Upper 
Bound)

Engagement_Posttest

Traditional PBL AI-supported PBL −25.289* 1.834 0.000 −28.935 −21.642

AI-supported PBL Traditional PBL 25.289* 1.834 0.000 21.642 28.935

Motivation_Posttest

Traditional PBL AI-supported PBL −10.207* 0.747 0.000 −11.692 −8.722

AI-supported PBL Traditional PBL 10.207* 0.747 0.000 8.722 11.692

Achievement_

Posttest

Traditional PBL AI-supported PBL −18.042* 1.896 0.000 −21.811 −14.272

AI-supported PBL Traditional PBL 18.042* 1.896 0.000 14.272 21.811

*Indicates that the difference between the group means is statistically significant.
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instruments to assess student engagement and motivation, 
we acknowledge the inherent limitations of perceptual data. Learners 
may have unintentionally misrepresented their actual behaviors due 
to social desirability or limited self-awareness. In future iterations of 
this work, we plan to incorporate behavioral logging features directly 
into the APLE system to track user interactions, time on task, and 
problem-solving paths, thereby capturing a more nuanced and 
objective picture of engagement. Secondly, our choice of a quasi-
experimental design, while pragmatic given the institutional 
constraints, limits our ability to draw definitive causal conclusions. 
Despite controlling for prior programming experience, we cannot 
entirely rule out the influence of pre-existing group differences. As 
we  continue this line of research, we  are preparing to conduct a 
randomized controlled trial (RCT) within the same instructional 
context to strengthen internal validity and provide more robust 
evidence of AI’s causal impact on learning.

Third, the relatively small sample size, reflecting the limited 
number of computing students at the participating institution, 
restricts the generalizability of our findings. We view this study as a 
foundational proof-of-concept effort. Future research will involve 
larger, more diverse samples across multiple universities and STEM 
disciplines to enhance the external validity of our conclusions. 
Moreover, we  acknowledge a technological limitation: the 
AI-supported PBL environment was deployed exclusively as a desktop 
application. This limited mobile accessibility may have constrained 
some students’ participation. To address this, we  are currently 
developing a cross-platform version with mobile compatibility, 
ensuring broader reach and usability across devices. Lastly, while the 
quantitative results were compelling, we did not capture the lived 
experiences of students. As researchers deeply interested in learner 
agency and affective outcomes, we believe the next critical step is to 
conduct a mixed-methods study. We intend to follow up with focus 
groups and interviews to understand how AI influenced students’ 
problem-solving strategies, confidence, and collaboration dynamics. 
These qualitative insights will enrich the explanatory power of our 
findings and inform future refinements of the APLE system.
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