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In response to the growing demand for innovative instructional strategies in STEM
education, we examine the effectiveness of Al-supported Problem-Based Learning
(PBL) in improving students’ engagement, intrinsic motivation, and academic
achievement. Traditional pedagogies often fail to sustain learner interest and
problem-solving skills, particularly in computing disciplines, which informed
our focus on integrating artificial intelligence into PBL to address these gaps.
We adopted a quasi-experimental design with a non-equivalent pretest—posttest
control group structure, involving 87 s-year undergraduates enrolled in Computer
Robotics Programming courses in Nigeria Universities. Participants were divided
into two groups: the experimental group (n = 45, University of Nigeria) received
Al-supported PBL instruction, while the control group (n = 42, Nnmadi Azikwe
University) engaged in traditional PBL. We ensured the reliability and validity
of our instruments, with Cronbach’s alpha values exceeding 0.70, composite
reliability > 0.70, and AVE > 0.50. Data were analyzed using one-way multivariate
analysis of covariance (MANCOVA) to assess the combined and individual effects
of instructional method, controlling for prior programming experience. Results
revealed a significant multivariate effect of instructional method on the combined
outcomes, Wilks' A = 0.134, F(3, 82) = 176.93, p < 0.001, n? = 0.866. Univariate
analyses showed that Al-supported PBL significantly improved engagement
(m? = 0.694), motivation (n? = 0.690), and achievement (n?> = 0.519) compared to
traditional PBL. We conclude that integrating Al into active learning environments
transforms cognitive and skills learning outcomes. We recommend that curriculum
designers, educators and policymakers prioritize Al-enhanced pedagogies and
invest in faculty training for sustainable STEM education. This approach promises
to advance learner-centered instruction and equip graduates for the challenges
of a technology-driven future.

KEYWORDS

Al-supported learning, problem-based learning, robotics programming, students’
motivation, students’ engagement, STEM education

1 Introduction

The adoption of Artificial Intelligence (AI) is transforming Science, Technology,
Engineering, and Mathematics (STEM) education, offering innovative opportunities for
personalized, adaptive, and engaging learning experiences (Leon et al., 2025). Studies indicate
that over 51% of students exposed to Al-driven learning environments show improved
academic achievement compared to those taught using traditional methods (Pertiwi et al.,
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2024; Strielkowski et al., 2025), especially in developed regions like
America and Europe. AI tools have been widely applied in
personalizing instruction for disciplines such as chemistry and
programming, particularly in developing countries (Iyamuremye
etal,, 2024; Omeh et al., 2025). These tools not only enhance academic
outcomes but also increase learner interest and motivation.
Consequently, scholars recommend integrating AI tools within
effective pedagogical frameworks rather than using them in isolation
to optimize learning (Pertiwi et al., 2024). Problem-Based Learning
(PBL) offers such a pedagogical framework. As a student-centered
approach, PBL engages learners in solving real-world, open-ended
problems to foster critical thinking and creativity (Umakalu and
Omeh, 2025). While traditional PBL has been shown to enhance
collaboration, problem-solving, and conceptual understanding (Ito
et al., 2021; Kurniawan et al, 2025), empirical evidence on the
integration of AI with PBL in STEM education, especially in African
contexts remains scarce. Notably, Kurniawan et al. (2025) reported a
40% rise in class participation and conceptual understanding through
PBL, recommending the adoption of emerging technologies such as
AT to further enrich the learning experience.

Al defined as the development of systems capable of performing
tasks requiring human intelligence, such as pattern recognition,
decision-making, and language processing has expanded rapidly
across education (Zhu et al, 2023). In STEM, AI promotes
personalized learning, adaptive feedback, and intelligent tutoring,
fostering creative thinking and cross-disciplinary problem-solving
(Xu and Ouyang, 2022; Omeh, 2025). These capabilities are
particularly relevant in Computer Robotics Programming (CRP), a
multidisciplinary field integrating programming, control systems, and
sensor technologies to design intelligent robotic systems (Lozano-
Perez, 2005). However, in developing countries like Nigeria, the
teaching of CRP faces challenges such as limited access to modern
labs, robotics kits, and internet connectivity, coupled with a shortage
of instructors with both technical and pedagogical expertise (Bati
etal, 2014; Omeh et al., 2025). Consequently, instruction often relies
on lecture-based methods that do not adequately foster creativity,
practical skills, or problem-solving (Eteng et al., 2022).

To address these challenges, this study proposes integrating Al
technology within a PBL framework for teaching CRP, leveraging AT’s
ability to provide real-time feedback, adaptive scaffolding, and
personalized learning analytics. Such integration is grounded in Self-
Determination Theory (Deci and Ryan, 1987), which posits that
learning environments that support autonomy, competence, and
relatedness enhance intrinsic motivation. Al-supported PBL can fulfill
these psychological needs by offering structured guidance while
promoting learner autonomy. Additionally, the study draws on
Schneiderman’s (2000) engagement theory, emphasizing active
participation and meaningful interaction with peers and technology
as key to sustained engagement. Despite promising evidence, research
findings on AI adoption remain inconsistent. Some studies report
significant improvements in knowledge and skills acquisition through
Al integration (Pillai and Sivathanu, 2020), while others highlight
minimal or no impact (Adewale et al., 2024). This lack of consensus
underscores the need for empirical investigations in under-researched
contexts like Africa, focusing on how Al-supported PBL influences
engagement, intrinsic motivation, and academic achievement in
CRP. Thus, this study aims to examine the effect of integrating AI
technology with PBL on student outcomes, controlling for prior
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programming experience, which often influences confidence and task
performance (Bowman etal., 2019; Harding et al., 2024). By addressing
these gaps, the study seeks to provide actionable insights for designing
equitable and motivating learning environments in STEM education.

1.1 Research questions

What is the effect of instructional method (AI-supported PBL vs.
traditional PBL) on students’ engagement in computer robotics
programming after controlling for prior programming experience?

What is the effect of instructional method on students’ intrinsic
motivation after controlling for prior programming experience?

What is the effect of instructional method on students’ academic
achievement after controlling for prior programming experience?

2 Related literature review and
theoretical framework

2.1 Evolution of teaching computer
robotics programming (CRP)

The teaching of Computer Robotics Programming (CRP) has
evolved significantly over the last few decades, reflecting its
interdisciplinary nature and growing complexity. Robotics education
combines programming, control systems, and sensor technologies,
requiring both theoretical understanding and practical application
(Krishnamoorthy and Kapila, 2016). Traditional lecture-based
methods have historically dominated robotics education, particularly
in developing countries, where limited infrastructure and resource
constraints often necessitate conventional instructional models
(Corral et al.,, 2016; Zhang et al., 2024). While lectures provide a
foundational understanding of concepts such as algorithms, sensors,
and actuators, they are often insufficient for fostering critical skills like
problem-solving, collaboration, and innovation (Thomas and Bauer,
2020). Hands-on experiences using platforms like LEGO Mindstorms
and Arduino have been widely recognized for enhancing technical
proficiency and practical application in robotics programming
(Thomas and Bauer, 2020). However, such benefits are amplified when
coupled with active learning approaches, particularly Problem-Based
Learning (PBL), which emphasizes real-world problem-solving and
learner autonomy (Jonassen and Carr, 2020; Chen and Chung, 2024).

2.2 Problem-based learning (PBL) and
emerging technologies

PBL fosters iterative learning cycles, critical thinking, and collaborative
problem-solving, positioning students as active participants rather than
passive recipients of knowledge (Jonassen and Carr, 2020). In recent years,
educational research has highlighted the importance of integrating
emerging technologies, such as Al virtual simulation environments,
gamification, and mixed reality, into PBL environments to enhance
student engagement and achievement (Marin et al., 2018; Srimadhaven
et al,, 2020). Virtual simulation platforms like ROS and Webots have
become central in robotics programming, providing scalable, risk-free
environments for experimentation (Ahn and Jeong, 2025; Washington
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and Sealy, 2024). Moreover, the integration of Al-driven tools offers
adaptive feedback and real-time analytics, which help bridge gaps in
learners’ prior knowledge and maintain engagement in complex tasks
(Yilmaz and Yilmaz, 2023; Chavez-Valenzuela et al.,, 2025). AI not only
supports personalized learning pathways but also fosters collaborative
practices, enabling peer-to-peer programming and shared responsibility
for problem-solving. Despite these advancements, limited empirical
studies exist on Al-supported PBL in CRP within African higher
education contexts, underscoring the need for the present study.

2.3 Engagement in robotics programming

Engagement comprising behavioral, cognitive, and emotional
dimensions, which is critical to learning outcomes, influencing
persistence, creativity, and task performance (Bakir-Yal¢in and Usluel,
2024). Prior research suggests that engagement in CRP is often shaped
by prior programming experience, as students with prior exposure
exhibit higher confidence and smoother task navigation (Bowman
et al., 2019; Harding et al., 2024). Conversely, novice learners may
struggle with syntax and logic, diverting attention from robotics-
specific problem-solving (Woodrow et al., 2024). Studies recommend
controlling for prior knowledge through stratified grouping or
statistical adjustment using pre-test scores to ensure fair measurement
of engagement (MacNeil et al., 2023; Nie et al., 2024). Adaptive
feedback systems integrated within Al-supported environments can
help sustain engagement by tailoring task complexity and providing
timely scaffolding (Yilmaz and Yilmaz, 2023; Omeh et al., 2025). PBL
further enhances engagement through peer collaboration, enabling
novices to learn from experienced peers while experts consolidate
knowledge by teaching. Thus, we hypothesize that:

HI: There is no significant difference in engagement between
students in Al-supported PBL and those in traditional PBL,
controlling for prior programming experience.

2.4 Intrinsic motivation in Al-supported
learning

Intrinsic motivation—the internal drive to learn for interest and
enjoyment rather than external rewards—is a key determinant of
persistence and academic success in STEM education (Kotera et al.,
2023). Robotics programming environments that emphasize autonomy,
competence, and relatedness foster intrinsic motivation (Gressmann
etal, 2019; Anselme and Hidi, 2024). Research shows that integrating
Al technologies, such as real-time hints and adaptive feedback, can
enhance learners’ sense of mastery and autonomy, thereby sustaining
motivation (Lin and Muenks, 2025; Tozzo et al., 2025). However,
concerns exist regarding overreliance on Al systems, which may reduce
self-reliance and autonomy if not carefully managed (Kotera et al.,
2023). The present study addresses this by embedding AI within a
student-centered PBL structure, ensuring technology acts as a scaffold
rather than a substitute for human facilitation. Thus, we hypothesize that:

H2: There is no significant difference in intrinsic motivation

between students in Al-supported PBL and those in traditional
PBL, controlling for prior programming experience.
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2.5 Academic achievement in robotics
programming

Academic achievement in CRP encompasses content mastery,
problem-solving ability, and application of programming skills (Omeh
etal,, 2025). Empirical evidence indicates that PBL significantly enhances
these outcomes compared to lecture-based methods by promoting active
learning and knowledge transfer (Orhan, 2025; Chen and Yang, 2019).
Al integration further amplifies these benefits through personalized
scaffolding, real-time analytics, and adaptive prompts, reducing cognitive
load and enhancing skill acquisition (Torres and Inga, 2025; Yilmaz and
Yilmaz, 2023). Nevertheless, some studies report mixed results regarding
AT’s impact on academic performance, citing infrastructure limitations
and poor pedagogical alignment as contributing factors (Adewale et al.,
2024). Effective implementation, therefore, requires balancing
technological support with human facilitation, a principle incorporated
into the present study design. Thus, we hypothesize that:

H3: There is no significant difference in academic achievement
between students in Al-supported PBL and those in traditional
PBL, controlling for prior programming experience.

2.6 Theoretical framework

This study is grounded in Self-Determination Theory (Deci and
Ryan, 1987) and Engagement Theory (Schneiderman, 2000). Self-
Determination Theory posits that intrinsic motivation is fostered
when learning environments support three core psychological needs:
autonomy, competence, and relatedness. In the context of PBL,
students are given the freedom to explore open-ended problems
(autonomy), develop technical and collaborative skills (competence),
and engage meaningfully with peers and mentors (relatedness). These
conditions are essential for nurturing intrinsic motivation. However,
while SDT provides a strong foundation for understanding motivation,
it offers limited insight into the mechanisms of student engagement
particularly in dynamic, technology-enhanced learning environments.
To address this gap, Engagement Theory offers a complementary
perspective by emphasizing purposeful, collaborative, and technology-
mediated activities. It suggests that meaningful engagement arises
when learners are involved in tasks that are authentic, socially
interactive, and supported by digital tools. Within the AI-supported
PBL framework, this theory becomes especially relevant. The proposed
intervention Artificial Intelligence Meets PBL operationalizes the
principles of both theories by: Structuring learning around problem-
driven tasks that promote autonomy and relevance. Integrating
adaptive AI feedback, which supports competence through
personalized guidance and scaffolding. Facilitating peer collaboration,
enhancing relatedness and social engagement.

3 Methodology
3.1 Participants, and design
Our sample comprised 87 s-year students of computing Education

that offers Computer Robotics programming in Nigeria universities
university of Nigeria, with n =45 students while Nnamdi Azikwe
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University Akwa with n = 43 students. The study population is made
up of 38 males (43.7%) and 49 females (56.3%), indicating a slightly
higher representation of females. In terms of age distribution, most
participants were within the 18-20 years age group (48.3%), followed
by 21-23 years (32.2%) and 24 years and above (19.5%), suggesting
that the majority were traditional-age undergraduates. Regarding
prior programming experience, 34 students (39.1%) reported previous
exposure to programming, while 53 students (60.9%) had no prior
experience, underscoring the diversity in baseline skills. Additionally,
63 students (72.4%) indicated adequate access to digital devices,
whereas 24 students (27.6%) had limited access, reflecting some level
of digital inequality among the participants. Furthermore, we adopted
a quasi-experimental design with a non-equivalent pretest—post-test
control group structure to examine our objectives. This design was
appropriate for examining the effect of AI-supported Problem-Based
Learning (PBL) on students’ engagement, intrinsic motivation, and
academic achievement in a computer robotics programming course.
It allowed us to compare learning outcomes between two groups an
experimental group exposed to Al-enhanced instruction and a control
group taught using traditional PBL while statistically controlling for
prior programming experience as a covariate.

3.2 System design of Al-supported PBL
learning environment

The AI-Supported Problem-Based Learning Environment (APLE)
(See Figure 1) was conceptualized and implemented to facilitate
active, personalized, and adaptive learning experiences for students
enrolled in computer robotics programming. The system was designed
to combine intelligent tutoring capabilities with the pedagogical
principles of PBL, ensuring students could access real-time support
while engaging in structured problem-solving tasks.

10.3389/feduc.2025.1674320

3.2.1 System architecture

The APLE was developed using a modular architecture based on
the frontend-backend separation model to ensure scalability,
maintainability, and smooth integration of AI components.

3.2.1.1 Frontend development

The user interface was developed using Flutter, an open-source Ul
toolkit renowned for its ability to deliver cross-platform applications.
This choice enabled a consistent user experience across desktop and
mobile devices, although this version primarily deployed as a
desktop application.

3.2.1.2 Backend development

The backend was implemented with Firebase, which provided
a secure and scalable environment for authentication, real-time
data synchronization, and API management. Cloud Firestore, a
NoSQL database solution within Firebase, was employed to
session data, and

store user profiles, lesson progress,

engagement logs.

3.2.1.3 Al integration

To enable intelligent interaction, OpenATD’s API was integrated as
the conversational agent responsible for real-time problem-solving
assistance. This feature allowed students to query ChatGPT for
explanations, coding guidance, and debugging support, simulating an
on-demand virtual tutor.

3.2.2 Core functionalities

3.2.2.1 Interactive learning pane (left section)

The left pane of the interface (see Figure 1) serves as the Al
interaction window, where students input queries and receive context-
sensitive responses. This component supports code generation,

Multimodal Intelligent Skill Development System using ChatGpt

To soive & regression problem in Jeva, you can use & Mbeary
ke Apache Commons Math or o machne learning ibrary
ke Weka or Deeplearnngd

N pusde you Tirough & Dasic exampie of lnesr regression
using Apache Commons Math, which is & populer Jeve
kbrary for mathematcal computations

mport org apache.commons mathd stet regresseon SenpleR
egression,
puble class LinearRegressont xample (
< < void man(String(] egs)
Create a SimpleRegression instance
SempleRegression regression = o
Surp eRegression()

Add data points 10 the reqression model
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FIGURE 1
Interface of the Al-supported PBL learning environment (APLE).

5 ) Compier Construction |
st 1 ho S e

Frontiers in Education

04

frontiersin.org


https://doi.org/10.3389/feduc.2025.1674320
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Omeh and Ayanwale

concept clarification, and personalized hints for robotics programming
challenges, promoting active engagement.

3.2.2.2 Lesson navigation panel (right section)

The right pane contains a structured lesson navigation module,
organized into weekly topics such as Introduction to Computer
Robotics and Compiler Construction I. Each lesson includes
instructional materials, practice exercises, and reflective questions
aligned with the course objectives.

3.2.2.3 Problem-based tasks with ai support

Students engage in open-ended robotics programming problems,
leveraging the AI assistant for guidance without receiving direct
solutions, thereby maintaining the constructivist nature of PBL. This
design  encourages  critical while

thinking minimizing

cognitive overload.

3.2.2.4 Performance analytics and adaptive feedback

Engagement data (e.g., frequency of interaction, task completion)
and assessment scores are logged in Firestore. These metrics enable
instructors to track student progress and inform adaptive
recommendations for further learning.

3.2.3 Design rationale

The system design aligns with Self-Determination Theory (Deci
and Ryan, 1987) and Engagement Theory (Schneiderman, 2000) by
promoting autonomy (through self-directed problem-solving),
competence (via Al-enabled feedback), and relatedness (through
collaborative PBL structures). By integrating Al into PBL, APLE
addresses limitations of traditional lecture-based instruction—such as
lack of immediate feedback and limited personalization—identified in
prior studies (Krishnamoorthy and Kapila, 2016; Omeh et al., 2025).
While the current implementation is desktop-based, future iterations
will prioritize mobile deployment to increase accessibility, particularly
in resource-limited environments.

3.3 Measures

To ensure accurate measurement of the key constructs—
engagement, intrinsic motivation, and academic achievement,
validated, and
instruments. Students’ engagement in computer robotics

we employed adapted, reliability-tested
programming was assessed using a 20-item engagement
questionnaire adapted from the University Student Report
(National Survey of Student Engagement, 2001) and tailored to
reflect robotics programming contexts within PBL environments.
The instrument measured behavioral, emotional and cognitive
engagement through items related to persistence, collaboration,
and active learning tasks. Responses were collected on a five-point
Likert scale ranging from 1 = Never, 2 = Rarely, 3 = sometime,
4 = often to, 5 = Very So Often. A sample item includes: “How
often do you collaborate with peers to solve robotics programming
challenges?” This adaptation ensured cognitive engagement with
authentic problem-solving experiences.

Academic achievement was measured using the Computer
Robotics Programming Achievement Test (CRPAT), which
consisted of 50 multiple-choice questions covering fundamental and
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applied robotics concepts. Each question had four alternatives
(A-D), with one correct answer scored as two points, giving a
maximum possible score of 100 marks. The test was constructed
following Bloom’s taxonomy, addressing knowledge, comprehension,
and application skills. Sample items include: “What is the primary
purpose of a robot’s control system in robotics programming?” and
“How can a robot use ultrasonic sensors to detect obstacles and
adjust its path accordingly?” The CRPAT was reviewed by three
experts in computer science education to ensure content validity. In
addition to the test, continuous assessment tasks were evaluated
using a 30-point rubric derived from a laboratory manual that
required  students to  complete real-world  robotics
programming exercises.

Intrinsic motivation was evaluated using a nine-item scale adapted
from Pintrich et al. (1993), contextualized to reflect robotics
programming activities. The instrument assessed students’ interest,
enjoyment, and perceived competence in problem-solving within the
Al-supported and traditional PBL environments. Responses were
rated on a five-point Likert scale from 1= Strongly Disagree to
5 = Strongly Agree. Sample items include: “I experience pleasure when
I discover new things in robotics programming” and “I often feel
excited when exploring interesting robotics topics” This scale
provided insight into learners’ internal drive to engage in robotics
programming tasks.

To establish validity and reliability, all instruments were subjected
to expert review and pilot testing. Reliability analysis using Cronbach’s
alpha indicated high internal consistency, with coefficients of 0.875 for
engagement, 0.804 for intrinsic motivation, and 0.790 for the
CRPAT. Composite reliability values exceeded 0.70, and Average
Variance Extracted (AVE) values were above 0.50 for all constructs,
confirming convergent validity. Discriminant validity was also verified
using the Fornell-Larcker criterion, ensuring that each construct
was distinct.

3.4 Data collection procedure

We implemented a structured and phased approach to collect data
for this study, ensuring systematic execution from pre-intervention
through post-intervention.

Phase 1: Pre-Test Administration (Week 1)

At the beginning of the semester, we administered a baseline
assessment to both groups using Google Forms. This included:

Engagement Scale (20 items, 5-point Likert scale)

Intrinsic Motivation Scale (9 items, 4-point Likert scale)

Academic Achievement Test (50 multiple-choice questions, 2
marks each)

Demographic Section, which captured gender, age group, prior
programming experience, and access to digital devices.

The purpose of the pre-test was twofold: (a) to establish baseline
scores for comparison with post-test data, and (b) to use these as
covariates in the subsequent statistical analysis, ensuring accurate
measurement of treatment effects.

Phase 2: Intervention (Weeks 2-15)

The instructional intervention spanned 14 weeks, with two 2-h
contact sessions weekly (total of 64 contact hours). Participants were
divided into two groups:

Experimental Group: AI-Supported PBL
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Students in this group experienced PBL enhanced with Al tools,
integrated into every learning activity:

Weeks 2-4:

Orientation and AI Familiarization: Students were introduced to
the Al learning platform and robotics programming basics.

Activity Example: Using an Al-driven coding simulator that
provided real-time syntax and logic feedback for simple
code exercises.

Weeks 5-8:

Al-Supported Group Problem-Solving: Students tackled
intermediate-level robotics tasks with Al-based adaptive hints.

Activity Example: “Develop a line-following robot,” where the AI
dashboard analyzed each team’s progress and suggested performance-
improving strategies.

Weeks 9-12:

Complex Robotics Projects: Students worked on advanced, real-
world problems, receiving Al-generated predictive analytics about
potential errors and recommended practice exercises.

Weeks 13-15:

Capstone Project: Collaborative design and testing of robotic
systems. Al-assisted peer assessment was introduced, where the
system scored submissions based on preloaded rubrics and flagged
anomalies for instructor review.

Control Group: Traditional PBL.

The control group engaged in identical robotics programming
problems and tasks without AI support. All feedback and guidance
were provided by the instructor and peers, replicating conventional
PBL practices.

Phase 3: Post-Test Administration (Week 16).

At the end of the intervention, we administered the same
engagement and intrinsic motivation scales along with a parallel form
of the achievement test via Google Forms. This allowed us to measure
changes attributable to the instructional method while maintaining
test validity and reliability.

3.5 Instructional parity

To address potential experimenter bias and ensure instructional
consistency, we engaged the existing computer robotics programming
lecturers at the University of Nigeria, Nsukka (UNN) and Nnamdi
Azikiwe University, Awka (UNIZIK) to deliver the intervention (see
Figure 2). This decision allowed for ecological validity while leveraging
institutional structures. The geographic distance between the two
universities minimized the risk of treatment diffusion. Two weeks
before implementation, the principal investigator conducted a
standardized two-day training for all instructors, focusing on research
protocols, ethical compliance, and instructional delivery. All
instructors received a unified, pre-developed lesson plan, facilitation
scripts, and identical problem-based learning (PBL) materials. The
control group used conventional PBL, while the experimental group
integrated the AI-Supported PBL Environment (APLE), ensuring that
the only instructional difference was the presence of the AI agent
(ChatGPT). Instructors in the experimental group were trained on the
APLE interface but instructed not to provide extra scaffolding beyond
the standard plan. This approach reduced variability and supported
fidelity. Observations and checklists were used to monitor
implementation across sites. While this design ensured parity,
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Target population

y

Select Sample

I
' Y

Control Group (CG)
No Treatment

Experimental Group
Treatment Applied
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Pre-Test (CG) Pre-Test (EG)

Y A

No Intervention Applied Intervention

Y A4

Post Test (CG) Post Test (EG)

l

Compare Results
(CG vs EG)

Analyze Effect of
Interverntion

FIGURE 2
Instructional flow chat.

we acknowledge that the absence of random assignment and the use
of different instructors could introduce bias.

3.6 Data analysis procedure

We conducted a Multivariate Analysis of Covariance
(MANCOVA) to assess the effectiveness of two instructional methods
on students’ engagement, intrinsic motivation, and academic
achievement, while controlling for prior programming experience.
Prior to the main analysis, we confirmed that all necessary statistical
assumptions, including normality, homogeneity of variance, equality
of covariance matrices, and linearity, were met. To ensure instrument
validity and reliability, we found that Cronbach’s alpha and Composite
values supported construct reliability, while Average Variance
Extracted (AVE) scores exceeded 0.50, confirming convergent validity.
Discriminant validity was established using the Fornell-Larcker
criterion, as the square roots of the AVEs for each construct were
greater than their inter-construct correlations. We then proceeded
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with the MANCOVA, reporting Wilks Lambda and partial eta
squared (n?) to evaluate the multivariate effects and effect sizes.
Following this, univariate tests were conducted to analyze the distinct
impact of each instructional method on the dependent variables.
Estimated marginal means and Bonferroni-adjusted pairwise
comparisons were used to identify specific group differences.

4 Results
4.1 Preliminary analysis

Before proceeding with the main analysis, we conducted a series of
preliminary checks to ensure that the assumptions underpinning
Multivariate Analysis of Covariance (MANCOVA) were met. These
diagnostic tests were essential for validating the integrity and robustness
of our findings regarding the effect of instructional method on student
outcomes. First, we assessed the normality of our dependent variables
such as engagement, intrinsic motivation, and academic achievement by
examining skewness and kurtosis values. The distribution of each
variable approximated normality, with skewness and kurtosis values
falling within the acceptable +2 range (Byrne, 2010; Hair et al., 2010).
This gave us confidence that the assumption of univariate normality was
satisfied. We also examined the linearity of relationships between our
covariate prior programming experience and each dependent variable.
Scatterplots revealed that the relationships were reasonably linear,
indicating that the linearity assumption for MANCOVA was met. Next,
we tested the homogeneity of variance-covariance matrices using Box’s
M test. Table 1 yielded a non-significant result, Box’s M = 2.11, F(6,
51656.13) = 0.338, p = 0.917, confirming that the covariance matrices for
the dependent variables were equal across the instructional groups. This
indicated that the multivariate homogeneity of variance-covariance
assumption was upheld.

To determine whether the assumption of homogeneity of regression
slopes held, we assessed the interaction between instructional method
and the covariate (prior programming experience) for each dependent
variable. The non-significant interaction effects suggested that the
regression slopes were homogeneous across groups, satisfying this
critical assumption. We further examined Levene’s Test of Equality of
Error Variances to assess the homoscedasticity of each dependent
variable. Table 2 revealed that engagement, motivation, and achievement
produced non-significant Levene’s test results (p > 0.05), confirming that
the assumption of equal variances was not violated. Finally, we evaluated
multicollinearity by inspecting the intercorrelations among the
dependent variables. The correlations ranged from moderate to strong
but did not exceed problematic thresholds of 0.85. This assured us that
the dependent variables shared some variance while still retaining

TABLE 1 Box's test of equality covariance matrices.

Covariance matrices ‘ Value
Box’s M 2.111

F 0.338
df1 6

a2 51656.133
Sig. 0.917
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distinct constructs, justifying their inclusion in a multivariate analysis.
Taken together, the results of these preliminary tests provided us with a
sound basis to proceed with the MANCOVA as all assumptions were
sufficiently met.

4.2 Assessment of construct reliability and
validity

Also, we evaluated the reliability and validity of our measurement
instruments for engagement, motivation, and achievement in the
context of Al-supported problem-based. Table 3 indicated that all
constructs demonstrated strong internal consistency, exceeding the
recommended threshold of 0.70 (Hair et al, 2010). Composite
reliability (CR) values also supported this, ranging from 0.865 to
0.905, confirming that the constructs consistently captured their
respective latent variables. Furthermore, all constructs demonstrated
adequate convergent validity, as the average variance extracted (AVE)
values exceeded the 0.50 benchmark suggesting that more than 50%
of the variance in observed variables was explained by their underlying
constructs (Fornell and Larcker, 1981).

Discriminant validity was also assessed using the Fornell-Larcker
criterion, and Table 4 showed that the square root of the AVE for each
construct was greater than its correlations with other constructs. This
pattern was consistent across all constructs, indicating that they were
empirically distinct and not overlapping in meaning. Overall, these
results provide strong evidence for the psychometric adequacy of our
instruments, justifying their use in the MANCOVA analysis and
supporting the credibility of our findings on the effectiveness of
Al-supported PBL in enhancing students’ engagement, motivation,
and achievement.

4.3 Multivariate analysis

To address our research hypotheses, we conducted a one-way
Multivariate Analysis of Covariance (MANCOVA), which allowed us
to assess the combined and individual effects of the instructional
method on the three outcome variables, while adjusting for the
covariate. The multivariate results revealed a statistically significant
effect of instructional method on the combined dependent variables.
As shown in Table 5, Wilks' Lambda was 0.134, F(3, 82) = 176.93,
P <0.001, with a partial eta squared (n*) of 0.866. This indicates that
the instructional method accounted for approximately 86.6% of the
variance in the combination of engagement, intrinsic motivation, and
achievement. Based on this strong effect size, we rejected the main null
hypothesis and concluded that the mode of instruction had a significant
joint effect on students’ learning outcomes. Conversely, Table 5 shows
that prior programming experience did not yield a statistically
significant multivariate effect, Wilks' Lambda = 0.993, F(3, 82) = 0.205,
p =0.893,1% = 0.007. This suggests that students’ previous exposure to
programming did not substantially affect the combined outcome
measures, reinforcing the dominant role of instructional method.

Assessing individual outcomes through the between-subjects
effects, we found that instructional method had a statistically significant
effect on each dependent variable. For engagement, Table 6 showed F(1,
84) =190.20, p <0.001, n*>=0.694, indicating that students in the
Al-supported PBL group were significantly more engaged than those
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TABLE 2 Levene test of equality of variance.

Dependent F dfl df2 Sig.
variable

Engagement_Posttest 0.205 1 85 0.652
Motivation_Posttest 0.301 1 85 0.584
Achievement_Posttest 1.467 1 85 0.229

TABLE 3 Construct reliability and validity.

Construct Cronbach's Composite Average
Alpha Reliability Variance
(CR) Extracted
(\Y3)]
Motivation 0.804 0.865 0511
Engagement 0.875 0.905 0.543
Achievement 0.790 0.870 0.600

TABLE 4 Discriminant validity- Fornell—Larcker criterion.

Construct  Motivation Engagement Achievement
Motivation 0.715

Engagement 0.622 0.737

Achievement 0.687 0.560 0.775

Revealed that all HTMT values were below the conservative 0.85 cut-off, with a few nearing
but not exceeding this threshold. For instance, the HTMT values among motivation,
engagement and achievement are shown in the table as bold. Overall, the HTMT analysis
supports that discriminant validity is adequately established.

taught through traditional PBL. In terms of intrinsic motivation, the
result was also significant, F(1, 84) = 186.80, p < 0.001, n* = 0.690,
confirming that students exposed to the Al-supported instructional
method reported notably higher levels of motivation. For academic
achievement, a significant effect was observed as well, F(1, 84) = 90.59,
P <0.001, n* = 0.519, highlighting the advantage of Al-supported PBL
in enhancing students’ academic performance. These results support our
hypotheses (H1-H3) and demonstrate that the instructional method
had a strong and consistent effect across all three learning outcomes.

To further reinforce these results, our estimated marginal means
revealed that students in the Al-supported PBL condition scored
higher across all outcomes. Specifically, they scored an average of
75.24 on engagement compared to 49.95 in the traditional PBL group;
24.50 on intrinsic motivation compared to 14.29; and 65.78 on
academic achievement compared to 47.74 (see Table 7). These mean
differences, adjusted for prior programming experience, affirm the
positive effect of integrating Al tools into PBL pedagogy.

Lastly, the pairwise comparisons substantiated these group
differences, with statistically significant mean differences observed for
each outcome: 25.29 for engagement, 10.21 for motivation, and 18.04
for achievement, all with p < 0.001 (see Table 8). The confidence
intervals for these differences did not include zero, which confirms the
robustness of the observed effects.

5 Discussion and implication

The purpose of this study was to evaluate the impact of

Al-supported Problem-Based Learning (PBL) on students
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engagement, intrinsic motivation, and academic achievement in
Computer Robotics Programming (CRP) compared to traditional
PBL, while controlling for prior programming experience. Results
demonstrated significant multivariate and univariate effects, favoring
Al-supported PBL for all three outcomes. The results indicate that
students exposed to Al-supported PBL reported significantly higher
engagement than those in traditional PBL environments. This
supports Schneiderman’s (2000) engagement theory, which highlights
that meaningful interaction and adaptive support enhance active
learning. The integration of Al offered personalized feedback, real-
time hints, and analytics that likely sustained students’ persistence in
task completion and fostered collaborative interaction, consistent with
findings by Kurniawan et al. (2025) and Ahn and Jeong (2025), who
observed improved engagement when technology enhanced problem-
based learning contexts. Meanwhile, some scholars argue that heavy
reliance on Al tools may diminish learner autonomy and create
dependency, potentially reducing authentic engagement (Mehdaoui,
2024). Students might focus on following Al prompts rather than
engaging in deeper inquiry or collaborative dialogue. This concern is
valid in contexts where AI replaces human facilitation rather than
complementing it. In this study, Al served as an enhancement rather
than a substitute for instructor guidance, offering adaptive scaffolding
without restricting learner autonomy. Moreover, engagement gains
observed here align with findings by Woodrow et al. (2024), which
suggest that adaptive feedback closes engagement gaps for novices,
allowing all students to contribute meaningfully in collaborative
PBL environments.

Furthermore, students in AI-supported PBL reported significantly
higher intrinsic motivation than those in traditional PBL, reinforcing
Self-Determination Theory (Deci and Ryan, 1987), which emphasizes
that fulfilling learners’ needs for competence and autonomy fosters
intrinsic motivation. Al-driven feedback systems and predictive
analytics provided students with a sense of progress and mastery,
reducing frustration and promoting self-directed learning. These
findings echo Lin and Muenks (2025) and Tozzo et al. (2025), who
reported increased motivation through adaptive technologies in
STEM settings. Critics argue that excessive Al support can undermine
intrinsic motivation by reducing students’ sense of autonomy, as
learners may attribute success to the system rather than their own
efforts (Kotera et al., 2023). In addition, students accustomed to real-
time feedback may develop dependency, which could weaken
motivation in non-Al-supported contexts. While such concerns are
plausible, our intervention design balanced Al assistance with learner-
driven problem solving and peer collaboration, which preserved
autonomy and encouraged active participation. This aligns with
Yilmaz and Yilmaz (2023), who asserted that Al integration enhances
motivation when combined with student-centered pedagogies like
PBL, rather than implemented in isolation.

Our analysis also revealed a significant advantage for AI-supported
PBL in improving academic achievement compared to traditional
PBL. This is consistent with Chen and Yang (2019), who reported a
12% higher post-test performance among students receiving adaptive
feedback, and Omeh et al. (2025), who highlighted ATs role in
facilitating knowledge transfer and complex problem solving in
robotics programming. Personalized scaffolding and automated error
detection likely reduced cognitive overload, enabling students to
master challenging CRP concepts. However, some studies suggest that
AT does not uniformly improve academic achievement, especially in
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TABLE 5 Multivariate test results.

Hypothesis df Error df ig. Partial Eta
Squared
Intercept
Pillai’s Trace 0.940 429.8730 3.000 82.000 0.000 0.940
Wilks' Lambda 0.060 429.873° 3.000 82.000 0.000 0.940
Hotellings Trace 15.727 429.873° 3.000 $2.000 0.000 0.940
Roy’s Largest Root 15.727 429.873° 3.000 82.000 0.000 0.940

Prior_Programming_Experience

Pillai’s Trace 0.007 0.205 3.000 82.000 0.893 0.007
Wilks’ Lambda 0.993 0.205 3.000 82.000 0.893 0.007
Hotelling’s Trace 0.008 0.205 3.000 82.000 0.893 0.007
Roy’s Largest Root 0.008 0.205 3.000 82.000 0.893 0.007

Instructional_Method

Pillai’s Trace 0.866 176.930° 3.000 82.000 0.000 0.866
Wilks' Lambda 0.134 176.930° 3.000 82.000 0.000 0.866
Hotelling’s Trace 6.473 176.930° 3.000 82.000 0.000 0.866
Roy’s Largest Root 6.473 176.930° 3.000 82.000 0.000 0.866

TABLE 6 Tests between-subjects effects.

Dependent Type Ill Sum df Mean Square
Variable of Squares
Engagement_Posttest 13826.7622 2 6913.381 95.167 0.000 0.694
Motivation_Posttest 2266.705° 2 1133.353 94.050 0.000 0.691
Corrected Model Achievement_Posttest 7041.041¢ 2 3520.521 45.352 0.000 0.519
Engagement_Posttest 35432.668 1 35432.668 487.755 0.000 0.853
Motivation_Posttest 3642.624 1 3642.624 302.280 0.000 0.783
Intercept Achievement_Posttest 29695.241 1 29695.241 382.536 0.000 0.820
Engagement_Posttest 31.065 1 31.065 0.428 0.515 0.005
Prior_Programming_ Motivation_Posttest 0.190 1 0.190 0.016 0.900 0.000
Experience Achievement_Posttest 10.859 1 10.859 0.140 0.709 0.002
Engagement_Posttest 13816.929 1 13816.929 190.199 0.000 0.694
Motivation_Posttest 2251.031 1 2251.031 186.800 0.000 0.690
Instructional_Method Achievement_Posttest 7032.515 1 7032.515 90.593 0.000 0.519
Engagement_Posttest 6102.135 84 72.644
Motivation_Posttest 1012.241 84 12.050
Error Achievement_Posttest 6520.692 84 77.627
Engagement_Posttest 36560.010 87
Motivation_Posttest 3659.110 87
Total Achievement_Posttest 29686.896 87
Engagement_Posttest 19928.897 86
Motivation_Posttest 3278.946 86
Corrected total Achievement_Posttest 13561.733 86

2R Squared = 0.694 (Adjusted R Squared = 0.687); ® R Squared = 0.691 (Adjusted R Squared = 0.684); © R Squared = 0.519 (Adjusted R Squared = 0.508).
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TABLE 7 Estimated marginal means.

10.3389/feduc.2025.1674320

Dependent Variable = Instructional_Method Std. Error 95% CI (Lower 95% Cl (Upper
Bound) Bound)
Traditional PBL 49.9542 1.317 47.335 52.573
Engagement_Posttest Al-supported PBL 75.243% 1.272 72.713 77.773
Traditional PBL 14.2892 0.536 13.223 15.356
Motivation_Posttest Al-supported PBL 24.4972 0.518 23.466 25.527
Traditional PBL 47.735% 1.361 45.027 50.442
Achievement_Posttest Al-supported PBL 65.776* 1.315 63.161 68.392

@ Covariates appearing in the model are evaluated at the following values: Prior_Programming_Experience = 1.37.

TABLE 8 Pairwise comparison.

Dependent (I) Instructional_ | (J) Instructional_ Mean 95% ClI 95% CI
Variable Method Method Difference (Lower (Upper
(EN)] Bound) Bound)
Traditional PBL Al-supported PBL —25.289* 1.834 0.000 —28.935 —21.642
Engagement_Posttest Al-supported PBL Traditional PBL 25.289% 1.834 0.000 21.642 28.935
Traditional PBL Al-supported PBL —10.207* 0.747 0.000 —11.692 —8.722
Motivation_Posttest Al-supported PBL Traditional PBL 10.207* 0.747 0.000 8.722 11.692
Achievement_ Traditional PBL Al-supported PBL —18.042* 1.896 0.000 —21.811 —14.272
Posttest Al-supported PBL Traditional PBL 18.042* 1.896 0.000 14.272 21.811

*Indicates that the difference between the group means is statistically significant.

resource-constrained environments where infrastructure limitations
and unreliable connectivity impede technology’s effectiveness
(Adewale et al,, 2024). Additionally, when AI-driven systems provide
overly prescriptive guidance, they may discourage independent
problem solving, limiting long-term knowledge retention. This study
mitigated these concerns by blending AI tools with instructor
facilitation and peer collaboration, ensuring that AI functioned as a
support mechanism rather than a prescriptive tutor. Moreover,
performance gains observed in our context suggest that Al-supported
PBL can overcome systemic constraints when implemented
strategically, echoing the recommendations by Pillai and Sivathanu
(2020) and Torres and Inga (2025) on leveraging Al to enhance
structured STEM instruction.

Interestingly, prior programming experience did not significantly
affect engagement, motivation, or achievement once instructional
method was accounted for. This finding reinforces claims by MacNeil
etal. (2023) and Woodrow et al. (2024) that adaptive technologies can
neutralize disparities in prior knowledge through personalized
feedback and dynamic scaffolding. One could argue that in highly
technical subjects like CRP, prior experience will inevitably shape task
navigation and conceptual understanding, rendering instructional
interventions secondary to baseline knowledge (Harding et al., 2024).
While prior knowledge influences initial confidence, our findings
suggest that AI-supported PBL offsets these differences by tailoring
instructional complexity and offering real-time performance analytics,
enabling novice learners to engage effectively and achieve outcomes
comparable to their experienced peers.

This study findings underscore the transformative role of
Al-enhanced pedagogical strategies in promoting equitable and
engaging STEM education in developing contexts like Nigeria.
Educators should prioritize integrating Al tools within structured
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frameworks like PBL, while policymakers must invest in digital
infrastructure and instructor training to ensure scalability.

6 Conclusion and recommendation

This exploratory study provides compelling preliminary evidence
that integrating Artificial Intelligence into Problem-Based Learning
(PBL) environments can enhance student engagement, intrinsic
motivation, and academic achievement in robotics programming
courses. The results demonstrated statistically and practically
significant improvements in learning outcomes for students in the
Al-supported PBL environment compared to those in traditional
PBL. However, we interpret these findings within the context of a
limited, non-random sample drawn from a single institution. Rather
than making broad generalizations, this study offers strong proof of
concept that Al-driven instructional support can positively impact
learning in specific STEM education contexts. It showcases the
potential of Al to support personalized, interactive, and data-informed
learning experiences that promote cognitive and affective gains.
Importantly, it also highlights how AI tools such as ChatGPT can
assist students by providing real-time feedback, programming
support, and facilitating inquiry-based exploration.

6.1 Limitations and future research

As researchers committed to exploring the transformative
potential of Al-supported pedagogies, we recognize several
limitations in our current study that provide fertile ground for future
inquiry. Firstly, although we employed validated self-report
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instruments to assess student engagement and motivation,
we acknowledge the inherent limitations of perceptual data. Learners
may have unintentionally misrepresented their actual behaviors due
to social desirability or limited self-awareness. In future iterations of
this work, we plan to incorporate behavioral logging features directly
into the APLE system to track user interactions, time on task, and
problem-solving paths, thereby capturing a more nuanced and
objective picture of engagement. Secondly, our choice of a quasi-
experimental design, while pragmatic given the institutional
constraints, limits our ability to draw definitive causal conclusions.
Despite controlling for prior programming experience, we cannot
entirely rule out the influence of pre-existing group differences. As
we continue this line of research, we are preparing to conduct a
randomized controlled trial (RCT) within the same instructional
context to strengthen internal validity and provide more robust
evidence of AT’s causal impact on learning.

Third, the relatively small sample size, reflecting the limited
number of computing students at the participating institution,
restricts the generalizability of our findings. We view this study as a
foundational proof-of-concept effort. Future research will involve
larger, more diverse samples across multiple universities and STEM
disciplines to enhance the external validity of our conclusions.
Moreover, we acknowledge a technological limitation: the
Al-supported PBL environment was deployed exclusively as a desktop
application. This limited mobile accessibility may have constrained
some students’ participation. To address this, we are currently
developing a cross-platform version with mobile compatibility,
ensuring broader reach and usability across devices. Lastly, while the
quantitative results were compelling, we did not capture the lived
experiences of students. As researchers deeply interested in learner
agency and affective outcomes, we believe the next critical step is to
conduct a mixed-methods study. We intend to follow up with focus
groups and interviews to understand how Al influenced students’
problem-solving strategies, confidence, and collaboration dynamics.
These qualitative insights will enrich the explanatory power of our
findings and inform future refinements of the APLE system.
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