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Mobile learning (ML) was widely adopted during the coronavirus disease 2019 
(COVID-19) pandemic, but its sustained use post-pandemic is not guaranteed. This 
study identifies the factors influencing university students’ intention to continue 
using ML. Using the Unified Theory of Acceptance and Use of Technology (UTAUT-2) 
model, data from 445 students at King Faisal University were analyzed via structural 
equation modeling. The results showed that attitude toward ML was significantly 
influenced by effort expectancy (β = 0.620, p < 0.001), performance expectancy 
(β = 0.521, p < 0.001), and hedonic motivation (β = 0.313, p < 0.001). For continuous 
intention, habit was the strongest predictor (β = 0.445, p < 0.001), followed by hedonic 
motivation (β = 0.471, p < 0.001) and attitude (β = 0.175, p < 0.05). Performance 
expectancy, effort expectancy, social influence, and facilitating conditions had 
no significant direct effects on continuance intention. These findings confirm 
habit as the cornerstone of post-pandemic ML continuance, highlighting a shift 
from utilitarian factors to automated use and enjoyment. Post-pandemic ML 
integration must strategically foster habitual use and enhance enjoyment, moving 
beyond utility-focused approaches. This study provides evidence-based insights for 
educational leaders and platform developers to guide ML’s sustainable integration.
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1 Introduction

The successful incorporation of mobile learning (ML) into education requires viewing it 
as a sustainable process rather than a fleeting initiative (Bachmair and Pachler, 2015). 
Mainstreaming ML is therefore crucial for achieving a lasting impact on educational quality 
and access. ML aligns well with the fourth Sustainable Development Goal (SDG 4), which 
advocates for inclusive and equitable quality education and promotes lifelong learning 
opportunities for all (UNESCO, 2015). It supports this goal in several ways (Bachmair and 
Pachler, 2015; Setirek and Tanrikulu, 2015; Afzal and Anwar, 2023). Primarily, ML increases 
accessibility and inclusivity by leveraging portable devices to help bridge the digital divide. 
Furthermore, it can offer personalized, self-paced learning experiences that cater to diverse 
student needs and learning styles. ML also provides opportunities to continue education 
during disruptions, thereby supporting lifelong learning.

The use of ML in higher education has seen a significant upward trend (Al Mulhem, 
2020a). Due to rapid advancements in mobile technology, the majority of universities have 
integrated online learning tools, including ML platforms (Al Mulhem, 2020b). ML can 
be defined as a platform where learners access knowledge using mobile devices. During the 
coronavirus disease 2019 (COVID-19) pandemic, ML became one of the most popular tools 
for sustaining education in Saudi Arabia (Alsheibani et al., 2019; Almaiah and Al Mulhem, 
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2020; Chen et  al., 2022). It proved to be  a vital platform for 
developing and supporting distance learning for both teachers and 
students (Ho, 2021; Althunibat et al., 2021; Lutfi, 2022). Previous 
studies have indicated that ML platforms can improve student 
learning abilities (Malik et al., 2019). Given these advantages, many 
researchers have recommended a post-pandemic shift from 
traditional methods to ML to enhance the learning process (Sandu 
and Gide, 2019; Ahmad et al., 2022; Chaudhry and Kazim, 2021; 
Yang, 2022).

This adoption has persisted beyond the crisis. University teachers 
in Saudi Arabia have continued to use ML in the post-pandemic era, 
underscoring its increased usefulness and solidifying its role in the 
educational landscape (Almaiah et al., 2021a). This continued use 
presents a new challenge for Saudi universities: moving from 
emergency adoption to the strategic and sustained integration of 
ML. This shift in focus—from initial adoption to long-term 
continuance—is reflected in the growing body of post-pandemic ML 
research (Ermilinda et al., 2024).

While the existing literature provides ample evidence of ML 
adoption during the COVID-19 pandemic, a more nuanced and 
critical gap remains in understanding the drivers of its sustained use 
in the post-pandemic era. Previous research has extensively covered 
ML usage during the crisis (Almaiah et al., 2021a; Al Mulhem and 
Almaiah, 2021), its impact on student outcomes at that time (Almaiah 
et al., 2021b; Al-Maroof et al., 2021a), and its associated challenges 
(Babatunde et al., 2021). However, the pressing question is no longer 
about initial adoption but about continuance intention now that 
traditional learning options have been restored. A new paradigm is 
emerging from recent international research, which consistently 
identifies habit as the dominant predictor of technology continuance 
in the post-pandemic period, from university settings in Indonesia 
(Ermilinda et al., 2024) to healthcare systems in Ethiopia (Kelkay 
et al., 2025). While this suggests a global shift, the universality of this 
“habit-dominance” model cannot be assumed without validation in 
distinct socio-technical contexts.

This presents a critical research gap: not a simple lack of studies in 
Saudi Arabia, but a need to test this emerging paradigm within its 
unique higher education landscape. The Saudi context, characterized 
by its rapid, state-driven digital transformation and specific cultural 
dynamics, offers a vital test case. Does habit indeed become the 
cornerstone of sustained ML use here as well? Furthermore, the shift 
from mandatory to voluntary use is likely to reshuffle the relative 
importance of all determinants. It remains unclear which factors from 
the UTAUT-2 model (e.g., performance expectancy and social 
influence) diminish in significance and which persist in this new 
“voluntary” phase. To address this, our study employs the Unified 
Theory of Acceptance and Use of Technology (UTAUT-2) to 
investigate post-pandemic ML continuance among Saudi university 
students. The findings are expected to make two key contributions:

	•	 Theoretically, by testing and validating the emerging global 
consensus on habit as the cornerstone of post-crisis technology 
continuance within the significant yet under-explored context of 
Saudi higher education.

	•	 Contextually, by quantifying the relative importance of all 
UTAUT-2 constructs in this new phase, thereby mapping which 
drivers are most critical for sustaining use when the compulsion 
of a crisis has passed.

2 Literature review

2.1 The promise and adoption of mobile 
learning in higher education

Mobile learning (ML) has established itself as a significant 
component of modern higher education, primarily due to its capacity 
to enhance learning accessibility and student engagement. The body 
of research on ML has grown steadily over the past decade (Almaiah 
and Abdul Jalil, 2014), documenting its well-documented benefits 
such as time convenience, ease of access, and cost reduction (Hooks 
et al., 2021). ML actively supports learners by providing on-demand 
access to educational resources, enabling activities such as 
downloading materials, submitting assignments, and accessing new 
knowledge (Al Mulhem and Almaiah, 2021). It serves as a valuable 
tool for reinforcing classroom instruction (Salloum and Shaalan, 
2018) and allows educators to create tailored learning resources 
(Almaiah et al., 2022a). Consequently, many scholars now advocate 
for ML platforms to be a core component of modern education (Tahat 
et al., 2021; Hair et al., 2017), with studies indicating that students 
often prefer and perform successfully with mobile devices over purely 
online or traditional methods (Alsyouf et al., 2022; Al-Maroof et al., 
2021b). The relevance of ML extends beyond general education, as 
evidenced by its growing adoption in specialized fields like healthcare 
training, where its flexibility supports continuing professional 
development (Kelkay et al., 2025).

2.2 The pandemic as a catalyst and the 
emergence of a new challenge

The COVID-19 pandemic acted as an unprecedented catalyst, 
forcing the rapid, large-scale adoption of ML and other online learning 
tools globally (Al Mulhem, 2020b). In Saudi Arabia, this emergency 
shift was characterized by the widespread use of platforms to ensure 
educational continuity (Alturki and Aldraiweesh, 2022). This period 
generated a significant volume of research, extensively covering ML 
usage during the crisis (Almaiah et  al., 2021a; Al Mulhem and 
Almaiah, 2021), its impact on student outcomes at that time (Almaiah 
et  al., 2021b), and the considerable challenges faced, including 
inadequate technical support, poor connectivity, and low digital 
literacy (Derbali and Ltaifa, 2022; Elumalai et al., 2020).

Despite these challenges, the pandemic period underscored the 
potential of ML to provide educational flexibility and accessibility 
(Hassan, 2022), accelerating digital adoption and fostering greater 
acceptance among educators and students (Alatni et al., 2021). Now, 
in the post-pandemic era, Saudi universities are building upon these 
experiences, moving from emergency remote teaching to a more 
strategic integration of blended learning models (Alqahtani, 2022). 
This transition—from forced adoption to voluntary, sustained use—is 
a central theme in contemporary ML research, with studies across 
different nations highlighting the need to understand “continuance 
intention” in a world with restored educational choices (Ermilinda 
et al., 2024). Current efforts focus on improving digital infrastructure, 
providing training, and ensuring equitable access (Alshathry and 
Alojail, 2024; Alkabaa, 2022). This transition from forced adoption to 
voluntary, sustained integration represents a new and critical challenge 
for educational institutions.
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2.3 Identifying the research gap: from 
adoption to continuance

A synthesis of the existing literature reveals a clear demarcation. 
While research is abundant on the initial adoption of ML during the 
pandemic, there is a distinct lack of investigation into the factors that 
drive its continuous use after the crisis has subsided and traditional 
learning options are fully available. Previous studies have effectively 
explained how and why students and teachers started using ML out 
of necessity (Almaiah et al., 2021c; Al-Maroof et al., 2021a). However, 
understanding why they would choose to continue using it—a 
concept known as continuance intention—is a different research 
question that remains largely unexplored, particularly in the 
Saudi Arabian context.

This gap is critical because the factors that drive initial adoption 
in a crisis (e.g., mandatory use, lack of alternatives) may differ 
significantly from those that foster long-term, sustainable use in a 
blended learning environment. A recent meta-analysis of digital 
learning adoption during the pandemic provides a robust baseline, 
confirming the general predictive power of UTAUT2 constructs but 
also revealing significant heterogeneity, suggesting that post-pandemic 
drivers need to be  re-examined in specific contexts (Zheng et  al., 
2025). Emerging empirical studies in the post-pandemic era, such as 
one conducted in South  African universities, highlight that 
continuance intention is a complex phenomenon often driven more 
strongly by individual factors such as satisfaction and learning 
compatibility than by institutional support (Steyn et  al., 2024). 
Therefore, this study identifies a specific research gap: the need to 
validate the emerging “habit-dominance” paradigm of post-pandemic 
technology continuance within the Saudi higher education context. 
While studies from Indonesia (Ermilinda et al., 2024) and Ethiopia 
(Kelkay et al., 2025) point to habit as the key driver, it is essential to 
determine if this finding holds true in contexts with different 
infrastructural, cultural, and educational policies. Furthermore, by 
applying the full UTAUT-2 model, this research will not only test for 
the dominance of habit but will also elucidate the complete factor 
landscape, revealing which other constructs (e.g., Performance 
Expectancy, Social Influence) retain their influence and which 
diminish in the transition from mandatory adoption to 
voluntary continuance.

2.4 Theoretical model and hypothesis 
development

To explore the factors that explain ML continuance intention from 
the perspective of Saudi university students in the post-COVID-19 
context, a conceptual model is developed based on the Unified Theory 
of Acceptance and Use of Technology (UTAUT-2) framework. The 
UTAUT-2 model is a comprehensive technology adoption model that 
has been widely applied to measure the adoption, acceptance, and use 
of ML (Urbach and Ahlemann, 2010; Almaiah et al., 2022b; Hair et al., 
2022; Lutfi et al., 2022a). It is particularly suited for this investigation 
as it incorporates Habit as a key construct, allowing us to directly test 
its purported dominance against other established factors in the post-
pandemic era.

As shown in Figure 1, the UTAUT-2 proposed model consists of 
seven key constructs: performance expectancy, effort expectancy, 
facilitating conditions, hedonic motivation, social influence, price 
value, and habit. Prior research has found that UTAUT-2 outperforms 
the original UTAUT model in explaining variance in usage behaviors 
(from 40 to 52%) and behavioral intentions (from 56 to 74%) (Chávez 
Herting et al., 2020). The UTAUT-2 model has also been used to 
predict students’ behavioral intentions and teachers’ attitudes toward 
online learning systems (Rudhumbu, 2022). Crucially, the model’s 
applicability extends to understanding the psychological drivers of 
long-term use, such as user satisfaction, which is a key outcome of 
positive UTAUT2 predictors and a direct precursor to continuance 
intention (García de Blanes Sebastián et al., 2024). Based on these 
recommendations, the researchers have selected the UTAUT-2 model 
as the theoretical foundation for the proposed model in this study, as 
it is expected to provide a more accurate explanation of the factors 
influencing the intention of learners to continue adopting ML in the 
post-COVID-19 context. Figure  2 presents the proposed research 
model, and the subsequent sections will discuss the hypotheses of 
this study.

2.5 Performance expectancy (PE)

The PE in the ML context refers to the degree to which a learner 
believes that using an ML platform will improve their learning 

FIGURE 1

The UTAUT-2 proposed model.
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performance and effectiveness (Al-Emran et al., 2020). When students 
perceive that ML enhances their capabilities and outcomes, they are more 
likely to view it favorably. For instance, since learners relied on these tools 
during the COVID-19 pandemic, their positive experiences with their 
utility could foster a continued intention to use ML in the post-pandemic 
era. This is supported by meta-analytic evidence indicating that PE is 
among the most consistent predictors of behavioral intention across 
numerous e-learning studies (Zheng et  al., 2025). However, in post-
pandemic continuance contexts where users have substantial experience, 
the direct effect of utilitarian factors, such as PE, on intention may 
be superseded by more experiential factors, such as habit (García de 
Blanes Sebastián et al., 2024), leaving its continued influence an open 
question. Hence, the study hypothesizes that the following:

H1: PE has a significant positive influence on students' attitudes 
toward the ML platform.

H2: PE has a significant positive influence on students’ intention 
to continue adopting the ML platform.

2.6 Effort expectancy (EE)

The EE refers to the perceived ease of use associated with an ML 
technology (Salloum et al., 2019). Technologies that are simple to 
understand and use are adopted more quickly than those that require 
significant new skills (Lutfi et al., 2022b). This construct aligns with 
the perceived ease of use in the Technology Acceptance Model (TAM). 
Consistent with prior studies (Almaiah et al., 2022b; Al-Maroof and 
Salloum, 2020), the complexity of an application negatively impacts 
its adoption. The perception of complexity can vary among learners 
based on their prior experience. However, in contexts where users 

have gained substantial experience, such as during the pandemic, the 
direct effect of EE on intention may diminish, giving way to more 
experiential factors, such as habit (García de Blanes Sebastián et al., 
2024). Hence, the study hypothesizes the following:

H3: EE has a significant positive influence on students' attitudes 
toward the ML platform.

H4: EE has a significant positive influence on students’ intention 
to continue adopting the ML platform.

2.7 Habit (HB)

Habit is a key construct in UTAUT-2, reflecting the extent to which 
individuals tend to perform behaviors automatically because of 
learning (Al-Maroof et al., 2021a). Previous research indicates that 
habit significantly influences the use of various educational technologies 
(Al-Maroof and Salloum, 2020; Elareshi et al., 2022), and can transform 
initial intention into sustained usage. In the context of this study, the 
extensive use of ML during the pandemic may have formed strong 
usage habits among students. Recent studies underscore habit’s role as 
a dominant predictor of continuance intention post-pandemic, 
sometimes outweighing other factors, across diverse settings from 
Indonesian universities to Ethiopian healthcare systems (Ermilinda 
et al., 2024; Kelkay et al., 2025). Therefore, it is proposed that. Crucially, 
based on the emerging international consensus, we posit that Habit will 
be the strongest predictor of continuance intention, thereby validating 
the “habit-dominance” paradigm in the Saudi context:

H5: HB has a significant positive influence on students' attitudes 
toward the ML platform.

FIGURE 2

The analysis SEM for the proposed model.
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H6: HB has a significant positive influence on students’ intention 
to continue adopting the ML platform.

2.8 Hedonic motivation (HM)

The HM refers to the pleasure or enjoyment derived from using a 
technology (Almaiah et al., 2016). In the context of ML, if students 
find the platform enjoyable or fun to use, it can significantly increase 
their engagement and intention to use it. Several studies have 
established that hedonic motivation is a strong predictor of users’ 
intentions to adopt various educational technologies (Ntsiful et al., 
2022). Martins et al. (2018) confirmed its significant role in explaining 
students’ intention to use ML platforms. Furthermore, HM is not just 
a driver of initial use but is critically linked to user satisfaction, a key 
determinant of whether a positive experience translates into long-
term continuance (García de Blanes Sebastián et al., 2024). Therefore, 
the enjoyment gained from using an ML platform is expected to 
positively influence students’ continuance intention in the post-
pandemic era. Hence, the study hypothesizes that the following:

H7: HM has a significant positive influence on students' attitudes 
toward the ML platform.

H8: HM has a significant positive influence on students’ intention 
to continue adopting the ML platform.

2.9 Social influence (SI)

The SI refers to the degree to which an individual perceives that 
important others (e.g., friends and peers) believe they should use a new 
technology. In an educational context, a student’s decision to adopt an 
ML platform can be  significantly influenced by the opinions and 
behaviors of their social circle. Previous studies have found that social 
influence has a substantial impact on the utilization of ML 
(Nezamdoust et  al., 2022), as social support can strengthen the 
intention to use new technologies (Almaiah et al., 2020). Some studies 
have even identified social influence as one of the strongest predictors 
of ML use among learners (Wilson et al., 2021). However, contrasting 
perspectives emerge in post-pandemic continuance research, where 
SI’s effect can be non-significant once usage becomes voluntary and 
individualized, as found in a recent healthcare study (Kelkay et al., 
2025). This presents an interesting point of investigation for the Saudi 
student context. Consequently, this study proposes the following:

H9: SI has a significant positive influence on students’ intention to 
continue adopting the ML platform.

2.10 Facilitating conditions (FCs)

The FC refers to the degree to which an individual believes that 
an organizational and technical infrastructure exists to support the 
use of a system (Taamneh et al., 2022). This includes aspects like 
reliable internet connectivity, access to necessary devices, and 
available technical support. Effective FCs are crucial for the 
smooth utilization of an ML platform. Previous research has 

consistently reported that facilitating conditions significantly affect 
users’ intention to use ML (Almaiah et al., 2022d; Kosiba et al., 
2022). The critical role of FCs is particularly pronounced in 
contexts where infrastructural gaps remain, highlighting its 
potential as a key differentiator for sustainable adoption (Kelkay 
et  al., 2025). Based on this evidence, the study hypothesizes 
the following:

H10: FC has a significant positive influence on students’ intention 
to continue adopting the ML platform.

2.11 Attitudes toward ML platform (ATT)

The ATT measures the degree to which a student’s evaluation of 
the ML platform is favorable or unfavorable. A positive attitude 
develops when students believe that technology is helpful, beneficial, 
and effective for their learning. Consistent with prior research in 
educational technology, attitude has been shown to have a strong 
positive correlation with behavioral intention (Almaiah et al., 2022e; 
Alamri et  al., 2020a, 2020b). This relationship is reinforced by 
studies that position attitude as a central mediator, shaped by 
cognitive evaluations like PE and EE, and ultimately driving the 
decision to continue using a technology (García de Blanes Sebastián 
et al., 2024). Therefore, a positive attitude developed through past 
use is expected to be a critical determinant of students’ continuance 
intention in the post-pandemic context. Hence, the study 
hypothesizes the following:

H11: ATT has a significant positive influence on students’ 
intention to continue adopting the ML platform.

3 Methodology

3.1 Research design

This study employed a quantitative, cross-sectional research 
design. A survey-based approach was used to collect data, which is 
appropriate for testing the hypothesized relationships in the proposed 
UTAUT-2 model (Hair et al., 2017).

3.2 Participants and sampling

The study employed a non-probability, purposive sampling 
strategy to target students with specific experiences relevant to the 
research objective. The inclusion criteria were: (1) being a student at 
King Faisal University (KFU), and (2) having prior experience using 
the Blackboard mobile learning platform during the 
COVID-19 pandemic.

After obtaining ethical approval (approval reference number: 
KFU-REC-2024-JUL-ETHICS2446), data were collected from 445 
students who met the criteria. The researchers coordinated with 
instructors from the College of Computer Science and Information 
Technology (CCSIT) to distribute the online questionnaire via email. 
The voluntary participation rate was high. The demographic profile of 
the participants is presented in Table 1.
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3.3 Measures and instrument validation

The survey instrument was designed to measure the constructs of 
the adapted UTAUT-2 model. All measurement items were adapted 
from established scales in the literature to ensure content validity. A 
summary of constructs, sources, and the number of items is provided 
in Table 2. All items used a 5-point Likert scale (1 = Strongly Disagree 
to 5 = Strongly Agree), chosen for its suitability in attitude research 
and reduced respondent fatigue (Almaiah and Nasereddin, 2020). The 
questionnaire was structured into three sections: demographics, ML 
usage patterns, and perceptions of UTAUT-2 constructs.

To ensure accuracy for the Saudi context, a rigorous translation 
and validation process was followed:

	•	 Translation and Back-Translation: The instrument was translated 
from English to Arabic by bilingual experts and then back-
translated by an independent translator to ensure 
conceptual equivalence.

	•	 Expert Review: The Arabic version was reviewed for clarity and 
face validity by three professors specializing in 
information systems.

	•	 Pilot Study and Reliability: A pilot study (n = 30) was conducted. 
The internal consistency of all constructs, measured by 
Cronbach’s alpha in SPSS v23, exceeded the 0.70 threshold, 
indicating acceptable reliability (Nunnally, 1978). In the main 
study, all constructs demonstrated high reliability, with alpha 
values exceeding 0.80 (see Table 3).

3.4 Data analysis plan

The data analysis followed a two-stage approach for Structural 
Equation Modeling (SEM) using partial least squares (PLS-SEM) in 
SmartPLS software (Ringle et al., 2015), which is suitable for complex 
models and prediction-oriented research (Hair et al., 2017).

	 1.	 Measurement Model Assessment: The reliability and validity of 
the constructs were evaluated. Internal consistency was 
confirmed with Cronbach’s alpha and composite reliability. 
Convergent validity was established by ensuring Average 
Variance Extracted (AVE) values were above 0.50. Discriminant 
validity was assessed using the Fornell–Larcker criterion, 
whereby the square root of the AVE for each construct must 
be greater than its correlation with any other construct.

	 2.	 Structural Model Assessment: The structural model and 
hypotheses were tested by examining the path coefficients (β) 
and their significance levels using a bootstrapping procedure 
(5,000 subsamples). The model’s explanatory power was also 
evaluated using the R2 values.

4 Data analysis and results

4.1 Assessment of the measurement model

The results of the measurement model assessment confirmed the 
reliability and validity of the constructs. As shown in Table 3, all 
Cronbach’s alpha values and composite reliability values exceeded 
the recommended threshold of 0.70, indicating high internal 
consistency. Convergent validity was established, as all AVE values 
were above 0.50. Furthermore, as shown in Table 4, the square root 
of each construct’s AVE exceeded its correlations with all other 
constructs, confirming discriminant validity (Fornell and 
Larcker, 1981).

4.2 Discriminant validity

To assess the discriminant validity of each construct, the 
researchers calculated the square roots of the Average Variance 
Extracted (AVE) values and compared them with the correlation 
coefficients among the constructs. This showed that DV is accepted 
when the results exceed the correlations for each construct. In this 
case, the square roots of the AVE values exceeded the correlation 
coefficients for all constructs (Alksasbeh et al., 2019), as shown in 
Table 4.

4.3 Hypothesis testing and structural 
model

The results of the hypothesis tests are presented in Table 5 and 
Figure 2. The analysis revealed a complex pattern of relationships that 
illuminates the drivers of post-pandemic ML continuance.

Regarding attitude formation, three of the four hypothesized 
relationships were supported. Effort expectancy (β = 0.620, p < 0.001) 
emerged as the strongest predictor of attitude, followed by 
performance expectancy (β = 0.521, p < 0.001) and hedonic 
motivation (β = 0.313, p < 0.001). However, habit did not significantly 
influence attitude (β = 0.138, p = 0.193), suggesting that automaticity 
alone does not shape students’ evaluative judgments of ML.

For continuous intention to use ML, the results revealed a more 
selective pattern. Habit was by far the strongest predictor (β = 0.445, 
p < 0.001), providing strong support for its dominance in driving 
sustained use. Hedonic motivation also demonstrated a substantial 
direct effect (β = 0.471, p < 0.001) on continuance intention, while 
attitude showed a significant but comparatively smaller influence 
(β = 0.175, p = 0.022).

Notably, several traditional UTAUT-2 constructs failed to reach 
statistical significance for continuous intention. Both performance 
expectancy (β = 0.028, p = 0.644) and effort expectancy (β = 0.063, 
p = 0.919) had non-significant direct effects, indicating that utilitarian 

TABLE 1  The demographic data.

Category Frequency Percentage (%)

Gender Female 225 50.5

Male 200 49.5

Age Between 18 and 29 381 85.6

Between 30 and 39 50 11.2

Between 40 and 49 14 3.2

Education 

level

Bachelor 355 79.8

Master 90 20.2

Doctorate 0 0
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considerations may have diminished in importance for continuance 
decisions. Similarly, social influence (β = 0.624, p = 0.410) and 
facilitating conditions (β = 0.325, p = 0.382) did not significantly affect 
students’ intention to continue using ML.

5 Discussion and implications

5.1 Summary of findings and theoretical 
contribution

This study successfully identified the key factors driving sustained 
mobile learning use among university students in the post-pandemic 
era. By applying the UTAUT-2 model, our findings reveal a significant 
restructuring of the factor landscape between mandatory adoption 
and voluntary continuance.

The most compelling finding is the dominant role of habit 
(β = 0.445, p < 0.001) in driving continuous intention, confirming the 
emerging global “habit-dominance” paradigm in post-crisis 
technology continuance. This result aligns with recent international 
studies (Ermilinda et al., 2024; Kelkay et al., 2025), suggesting that 
automated usage patterns formed during intensive pandemic use have 
become the primary driver of voluntary continuance.

However, the non-significant findings provide equally crucial 
insights into the evolving nature of technology acceptance. The lack 

TABLE 2  Items of the study.

Items Source

Performance expectancy

PE1 I continue to use mobile learning in post the COVID-19 because it helps me understand learning materials Venkatesh et al. (2003), Al-Emran 

et al. (2020), Alamri et al. (2020b)PE2 I continue to use mobile learning in post the COVID-19 because it improves in performing my learning activities

Effort expectancy

EE1 I do not need much effort when using mobile learning to learn Venkatesh et al. (2003) and 

Alamri et al. (2020b)EE2 I assume learning through mobile learning is easy

EE3 mobile learning is friendly

Social influence

SI1 My teacher advised me to use mobile learning to study my course in post the COVID-19 Venkatesh et al. (2003), Venkatesh 

et al. (2012), Wilson et al. (2021)SI2 My friends use mobile learning to study in post the COVID-19

Facilitating condition

FC1 I have smartphone to learn through mobile learning application Venkatesh et al. (2003)

FC2 My friends are helping me when I do not know how to use mobile learning to study in post the COVID-19.

Hedonic motivation

HM1 I continue to use mobile learning to study my courses in post the COVID-19 because it is fun tool Venkatesh et al. (2012)

HM2 I continue to use mobile learning to study courses in post the COVID-19 because it is entertaining tool

HM3 I continue to use mobile learning to study my courses in post the COVID-19 because it is so much fun

Continuous intention

CI1 I continue to use mobile learning to learn my courses in post the COVID-19 Arpaci and Basol (2020) and 

Rohan et al. (2021)CI2 I recommend the mobile learning to learn my courses to my friends

Habits

HB1 I continue to use mobile learning to learn my courses in post the COVID-19 because I am used to it Martins et al. (2018), Zacharis and 

Nikolopoulou (2022), Elareshi 

et al. (2022)
HB2 I continue to use mobile learning to learn in post the COVID-19 because I am used to repeating recordings

HB3 I continue to use mobile learning to study my courses in post the COVID-19 because I am used to using it to do my homework

Attitude

ATT1 Learning using mobile learning in post the COVID-19 is a good idea Smeda et al. (2018) and 

Agustyaningrum et al. (2021)ATT2 Learning using mobile learning in post the COVID-19 is very interesting for me

ATT3 Learning using mobile learning in post the COVID-19 is so much fun

TABLE 3  Cronbach’s alpha values for the pilot study (Cronbach’s alpha ≥ 
0.70).

Construct Cronbach’s alpha

PE 0.881

EE 0.842

SI 0.843

FC 0.790

HM 0.852

CI 0.843

HB 0.896

AT 0.901
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of direct effects from performance expectancy (β = 0.028, p = 0.644) 
and effort expectancy (β = 0.063, p = 0.919) on continuous intention 
represents a fundamental departure from traditional Technology 
Acceptance Models. We posit that during the extended pandemic 
usage period, students accumulated sufficient firsthand experience 
with ML’s utility and ease of use, transforming these from conscious 
evaluations into background assumptions. Their influence appears to 
have been largely absorbed into habit formation, with habitual use 
now serving as the primary behavioral driver rather than ongoing 
utilitarian assessments.

Similarly, the non-significant effects of social influence (β = 0.624, 
p = 0.410) and facilitating conditions (β = 0.325, p = 0.382) reveal 
that ML use has become internalized and normalized in the post-
pandemic context. The opinions of peers and basic technical support, 
while crucial during mandatory adoption, no longer serve as 
differentiating factors for continuance intention. This suggests ML 
has transitioned from a socially influenced behavior to a personal 
academic choice, with basic infrastructure perceived as an expected 
standard rather than a motivator.

The dual role of hedonic motivation is particularly noteworthy, 
as it demonstrates significant effects on both attitude (β = 0.313, 
p < 0.001) and continuous intention (β = 0.471, p < 0.001). This 

creates a crucial distinction: while utilitarian factors diminished, 
enjoyment persisted as a powerful direct driver. This underscores that 
sustained use requires not just automated behavior but also positive 
affective experiences.

This study contributes to theory by demonstrating how UTAUT-2 
constructs evolve as technology use matures from adoption to 
embedded continuance. We  provide a validated “Post-Adoption 
Continuance Model” where experiential factors (habit, hedonic 
motivation) supersede utilitarian factors (performance expectancy, 
effort expectancy) and external factors (social influence, facilitating 
conditions) in driving sustained use.

5.2 Practical implications

These findings translate into clear strategic directions for 
enhancing ML sustainability in the post-pandemic era:

For University Administrators and IT Departments:

	•	 Strategic Habit Formation: Move beyond promoting ML features 
to systematically designing for automatic use. Embed the 

TABLE 5  Hypothetical analysis.

Hypothesis Relationship Estimate S. E. C. R. p-value Interpretation

0.05 0.01

H1 Performance expectancy → attitude 0.521 0.058 8.983 0.000 Significant Significant

H2 Effort expectancy → attitude 0.620 0.162 3.827 0.000 Significant Significant

H3 Habit → attitude 0.138 0.106 1.301 0.193 Not Significant Not Significant

H4 Hedonic motivation → attitude 0.313 0.079 3.962 0.000 Significant Significant

H5 Performance expectancy → Continuous intention 0.028 0.060 0.462 0.644 Not Significant Not Significant

H6 Effort expectancy → Continuous intention 0.063 0.620 0.102 0.919 Not Significant Not Significant

H7 Habit → Continuous intention 0.445 0.114 3.904 0.000 Significant Significant

H8 Hedonic motivation → Continuous intention 0.471 0.087 5.414 0.000 Significant Significant

H9 Social Influence → Continuous intention 0.624 0.758 0.824 0.410 Not Significant Not Significant

H10 Facilitating conditions → Continuous intention 0.325 0.338 0.873 0.382 Not Significant Not Significant

H12 Attitude → Continuous intention 0.175 0.076 2.288 0.022 Significant Not Significant

TABLE 4  Discriminant validity test: square root of AVE (on the diagonal) and construct correlations (below the diagonal).

FC SI HM HB EE PE ATT CI

FC 0.370

SI 0.400 0.375

HM 0.543 0.309 0.325

HB 0.475 0.343 0.383 0.673

EE 0.409 0.366 0.369 0.507 0.554

PE 0.275 0.293 0.311 0.384 0.360 0.322

ATT 0.481 0.233 0.254 0.322 0.316 0.249 0.530

CI 0.425 0.332 0.356 0.509 0.449 0.362 0.282 0.587

The bold values on the diagonal represent the square root of the Average Variance Extracted (AVE). For discriminant validity, these values should be greater than the off-diagonal correlations 
in the corresponding rows and columns.
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platform into core academic workflows through consistent daily 
integration and predictable usage patterns.

	•	 Resource Reallocation: Given the non-significance of social 
influence, redirect efforts from peer persuasion campaigns 
toward initiatives that directly enhance user experience and 
habitual engagement.

	•	 Infrastructure as Baseline: Treat facilitating conditions as essential 
hygiene factors rather than key differentiators, ensuring reliable 
baseline support while focusing innovation on experiential aspects.

For Instructional Designers and Educators:

	•	 Dual-Pathway Design: Capitalize on hedonic motivation’s dual 
influence by incorporating engaging, interactive elements that 
simultaneously improve attitudes and drive 
continuance intention.

	•	 Routine Integration: Structure course interactions to create 
consistent usage patterns that gradually build habitual 
engagement, reducing reliance on conscious decision-making.

	•	 Experience over Utility: Emphasize enjoyable learning 
experiences rather than focusing primarily on efficiency gains 
when promoting ML tools to students.

For ML Platform Developers:

	•	 Habit-Centric Architecture: Implement features that encourage 
routine engagement, such as personalized notifications, 
streamlined workflows, and progress tracking that reinforces 
regular use.

	•	 Affective Experience Design: Prioritize enjoyable user 
interactions and interface design, recognizing that hedonic 
motivation is a primary sustainer of long-term use 
alongside habit.

	•	 Seamless Integration: Focus on reducing friction points to 
support the automaticity of use, recognizing that ease of use has 
become an expectation rather than a motivator.

6 Conclusion

This study successfully addressed the research gap concerning the 
drivers of continuous ML intention in the post-pandemic era within 
Saudi higher education. The findings provide a nuanced understanding 
of how technology acceptance factors evolve after periods of 
intensive use.

The results demonstrate that habit has emerged as the 
cornerstone of post-pandemic ML continuance, confirming the 
global shift toward automated behavioral patterns as the primary 
driver of sustained technology use. The strong influence of hedonic 
motivation on both attitude and continuance intention highlights 
the enduring importance of enjoyment in the learning 
technology experience.

Equally significant are the factors that were not significant for 
continuance intention. The lack of direct effects from performance 
expectancy and effort expectancy signals a fundamental transition in 
what drives sustained use compared to initial adoption. The 
insignificance of social influence and facilitating conditions further 

suggests that ML has transitioned from an externally influenced 
behavior to an individually determined practice.

These findings collectively indicate that post-pandemic ML 
continuance is driven primarily by automated patterns formed 
through past use, complemented by intrinsic enjoyment, rather than 
conscious utility evaluations or external pressures.

For educational institutions, this study offers a clear directive: 
sustainable ML integration requires strategies that deliberately foster 
habitual use and enjoyable experiences, moving beyond the utility-
focused approaches that sufficed during emergency adoption. The 
future of mobile learning depends not on compelling features alone, 
but on embedded practices and positive experiences that students 
willingly maintain.

For future research, longitudinal studies tracking the evolution of 
these factors from adoption to long-term continuance would 
be valuable. Investigating the specific instructional design features that 
most effectively foster habit formation could yield refined strategies 
for sustainable technology integration in education.

7 Limitations and future studies

While this study provides valuable insights, several limitations 
should be  acknowledged, which also present avenues for 
future research.

(1) Sampling and Generalizability: The study employed a 
purposive sampling strategy from a single college (Computer Science 
and Information Technology) at one university in Saudi Arabia. This 
specific sample characteristic limits the generalizability of the 
findings. The results are most representative of students within a 
similar technological and cultural context. The perspectives of 
students from humanities, health sciences, or other disciplines, as 
well as those from other regions or countries, may differ. Future 
studies should employ stratified random sampling across multiple 
universities and diverse academic disciplines to enhance the external 
validity and generalizability of the findings.

(2) Methodological Scope and Cross-Sectional Design: This 
research utilized a cross-sectional survey, capturing data at a single 
point in time. Consequently, it can demonstrate relationships 
between factors but cannot definitively establish causality. 
Furthermore, the exclusive reliance on a quantitative approach, while 
effective for testing the proposed model, limits the depth of 
understanding regarding the underlying reasons for students’ 
continuance intention. As suggested, future research would benefit 
from a mixed-methods approach, integrating qualitative interviews 
or focus groups to provide rich, contextual explanations for the 
statistical relationships uncovered here.

(3) Source of Data and Potential Biases: The study relied 
exclusively on self-reported data, which is susceptible to biases such 
as social desirability bias (where respondents answer in a way they 
believe is socially acceptable) and common method variance. Using 
a single questionnaire across all constructs may have artificially 
inflated the relationships among them. Future studies could 
mitigate this by collecting data from different sources (e.g., pairing 
student surveys with actual platform usage metrics) or by 
temporally separating the measurement of predictor and 
outcome variables.
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(4) Unexplored Constructs and Perspectives: The study focused 
on a student-centric view based on the UTAUT-2 framework. The 
perspective of teachers, who are crucial actors in the educational 
ecosystem, was not investigated. Their acceptance, habits, and 
facilitation skills are likely critical to the successful and sustained 
integration of ML. Future studies should develop a complementary 
model to explore the drivers of continuance intention among 
educators. Additionally, while other models like TAM were 
considered, the comprehensive nature of UTAUT-2 was deemed most 
suitable; however, integrating constructs from other theories could 
provide a more holistic understanding.
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