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Fixations, regressions, and results:
eye-tracking metrics as real-time
signals of cognitive engagement
in flipped-class quizzes

Yuanyuan Wang?, Nina Xie?* and Yujun Liu**

!Department of Management and Strategy, Hong Kong Metropolitan University, Ho Man Tin, Hong
Kong SAR, China, 2Department of Management, Lingnan University, Tuen Mun, Hong Kong SAR,
China, *Faculty of Businesingnan University, Tuen Mun, Hong Kong SAR, China

Introduction: Educators need real time evidence of how students process
pre class quiz items in flipped courses, not just whether answers are right or
wrong. We examined whether two classroom feasible eye tracking metrics—
fixation intensity (total dwell time) and regression rate (proportion of backward
saccades)—provide interpretable, item level signals of cognitive engagement
once surface text features are taken into account.

Methods: Thirty four undergraduates completed 320 analysable attempts on
55 multiple choice items coded by Bloom’'s taxonomy while a 60 Hz tracker
recorded gaze. Crossed mixed effects models included a covariate for each
item'’s total word count. A logistic mixed model tested whether fixation intensity
and regression rate predicted correctness beyond Bloom level, gender, and
length. After each block, students reported perceived mental effort to compare
subjective and gaze based indicators.

Results: After controlling for total word count, Bloom category did not uniquely
predict fixation intensity or regression rate, suggesting that previously observed
demand patterns largely reflected text length. In the accuracy model, fixation
intensity showed a small, positive association with being correct, whereas
regression rate showed a small, negative association.

Discussion: In authentic flipped class quizzes, fixation intensity and regression
rate can serve as complementary, real time indicators of engagement, but only
when item length and layout are standardised or statistically modelled. Claims
about differences across Bloom levels should be made cautiously. We outline
design guidance for future item banks—length matched stems, fixed numbers of
options, and pre registered word count covariates—to enable firmer inferences
and practical classroom diagnostics.

KEYWORDS

eye tracking, fixation intensity, regression rate, flipped classroom, process data,
adaptive assessment

1 Introduction

Digital technologies have broadened when and where students learn, yet instructors still
have limited access to real-time engagement evidence during pre-class work. In flipped
courses, weekly formative multiple-choice (MC) quizzes help surface misconceptions before
class, but right-wrong scores alone miss how items are processed. We examine whether
economical eye-tracking can supply response-process evidence in this formative context. The
flipped classroom is an educational methodology in which traditional lecture content is
delivered outside of class, typically via pre-recorded videos or readings, while in-class time is
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dedicated to active, collaborative, and higher-order learning tasks
(Zainuddin and Halili, 2016). It is not a prescriptive model but rather
a flexible approach that can be adapted with various instructional
activities, such as problem-solving, discussions, simulations, and
quizzes. While our study uses quizzes as the primary pre-class activity,
these are just one of many possible modalities in flipped pedagogy.
Flipped designs seek to enhance learning and increase motivation by
shifting exposition to pre-class assignments and allocating contact
hours to higher-order tasks (Akcayir and Akeayir, 2018; Hew et al.,
2021). Meta-analyses validate these advantages but caution that the
benefits are most pronounced when educators can identify
misconceptions promptly and modify classroom activities accordingly
(Lundin et al., 2018). Conventional right-wrong quiz scores inform
instructors about students’ correct responses but fail to capture their
cognitive processing of items—an oversight that eye-tracking data can
overcome by providing detailed insights into visual attention and
engagement patterns, essential for delivering personalized feedback
and adaptive learning sequences (Tehranchi et al., 2020).

While eye-tracking can index on-task processing in real time,
routine classroom use hinges on pragmatic constraints—calibration,
cost, and privacy. We therefore frame eye tracking here as a classroom-
compatible research instrument whose outputs can inform design
rules and, in the longer run, lightweight diagnostics. Following the
eye-mind and immediacy assumptions (Just and Carpenter, 1976),
fixations can reflect ongoing processing at the fixated location, and
regressions can mark re-inspection; however, these links are context-
dependent and sensitive to text features (Hyoné, 2010). We therefore
use the term visual effort to denote gaze-based indicators—Fixation
Intensity (FI) and Regression Rate (RR)—and reserve subjective
mental effort for self-reports. Across domains, fixation-based metrics
index intrinsic and extraneous cognitive load (Lai et al., 2013). These
measures remain reliable at 60 Hz on affordable trackers (Beatty and
Lucero-Wagoner, 2000) and can flag learners needing support before
errors surface (Alemdag and Cagiltay, 2018). Yet few studies align gaze
behavior with Bloom-coded demand or test whether item-specific
effort predicts immediate success, leaving the effort-complexity link
unsettled. We operationalize visual effort as fixation intensity and
regression rate (i.e., effort inferred from eye movements).

In our setting, weekly pre-class multiple-choice quizzes were
strictly formative—informing instruction and self-regulation rather
than grades—within a flipped design that assigns lower-order
processes to preparation and higher-order reasoning to class time
(Krathwohl, 2002; Zainuddin and Halili, 2016). Prior findings on
Bloom-aligned gaze demand are mixed. A key design risk is surface
text: higher-order items are often more concise, so raw dwell time may
confound conceptual demand with total word count across stem and
options. We therefore model Total Word Count in all primary analyses
and treat Bloom effects as interpretable only when surface features are
standardized or statistically controlled (Ozdemir and Tosun, 2025),
while others observe no significant difference when controlling for
stem length. These inconsistencies underscore a design quandary:
higher-order items tend to be more concise in terms of text length,
potentially conflating conceptual complexity with the amount of
reading required for each item. This study examines whether visual
effort correlates with conceptual difficulty in real classroom settings
by categorizing remember/understand objects as low demand and
apply/analyze item as high demand.
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Grounded in engagement theory, we target cognitive engagement—
the effort devoted to comprehension—which relates most strongly to
achievement (Fredricks et al., 2019). We treat Fixation Intensity (longer
dwell times) and Regression Rate (backward saccades/re-reading) as
behavioral traces of that effort (van Gog and Jarodzka, 2013). Because
subjective mental-effort ratings often diverge from objective process
measures (Paas and Van Merriénboer, 1994), we examine their
correspondence: convergence supports construct validity, whereas
systematic gaps clarify what each metric captures under cognitive load
theory and how to interpret them for classroom analytics. We distinguish
(a) cognitive load as a theoretical construct; (b) gaze-based effort as
objective, procss-level indicators derived from Fixation Intensity (FI)
and Regression Rate (RR); and (c) self-reported mental effort as a block-
level subjective rating. FI and RR are interpreted as load-sensitive rather
than direct measures of intrinsic or extraneous load; their validity
depends on task control (e.g., text length) and statistical adjustment
(here, Total word count included as a covariate). In addition, women
generally exhibit slightly longer fixations and more regressions, whereas
men tend to scan faster at comparable accuracy. While these effects are
overshadowed by skill disparities, incorporating gender as a covariate
facilitates an exploratory examination.

Accordingly, we examine whether higher-order items elicit more
visual effort when controlling for TotalWC; test whether Fixation
Intensity (FI) and Regression Rate (RR) predict item-level success over
and above Bloom level, gender, and TotalWC; quantify the alignment
between gaze-based effort and block-level subjective effort; and
explore baseline gender differences in speed/strategy.

Classroom eye-tracking on multiple-choice tasks remains largely
descriptive. In a systematic review of 17 studies, Paskovske and
Kliziené (2024) note that most work still correlates mean dwell time
with achievement; reviews in STEM education echo the need for
multilevel modeling to separate student from item variance.
We address this by using crossed mixed-effects models that nest
attempts within students and items (Barr et al., 2013), allowing us to
test whether effort on a specific item predicts success on that item—
rather than only unit-level aggregates. To our knowledge, this is
among the first Bloom-aligned, mixed-effects analyses of gaze in
routine flipped-class quizzes. Recent STEM work shows gaze patterns
can reveal strategies and misconceptions, not just accuracy (Becker
etal,, 2023; Becker et al., 2022; Fehlinger et al., 2025).

We embedded economical eye-tracking in weekly flipped-quiz
sessions: undergraduates answered Bloom-coded items while FI and
RR were logged. We model (a) whether higher-order demand increases
visual effort controlling TotalWC, (b) whether FI/RR add predictive
value for item correctness beyond Bloom, gender, and TotalWC, (c)
correspondence between gaze-based and subjective effort, and (d)
baseline gender differences in speed/strategy. By pinpointing when FI
and RR are valid and actionable signals, the study supplies
instructors—and adaptive algorithms—with item-level evidence of
visual effort vs. confusion, enabling targeted support without
displacing in-class collaborative learning central to flipped pedagogy.

Advances in learning analytics make it feasible to pair real-time
gaze data with Al to trigger just-in-time scaffolds (D"Mello et al., 2017).
We treat Al-assisted use as a future pathway that depends on matched-
length item banks, clear data-use policies, and replication across classes.
In the present paper, eye tracking serves primarily to derive design
guidance and to benchmark lighter proxies for eventual classroom
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diagnostics. At-scale use, however, hinges on affordable hardware,
validated item banks, transparent data policies, and LMS integration.

2 Literature review

2.1 Transitioning from flipped classroom to
process analytics

The flipped classroom is an educational methodology rather than
a fixed model; early work emphasized affective benefits (e.g.,
satisfaction, attendance) and used online quizzes primarily for
pre-class compliance checks (Ak¢ayir and Akgayir, 2018). Meta-
analyses now show medium achievement gains, conditional on tight
alignment between pre-study work and in-class higher-order tasks
(Hew et al,, 2021; Lundin et al., 2018). Significantly, most outcome
studies continue to depend on binary accuracy or final unit grades.
Such product-centric metrics obscure how answers were produced.
Neutrosophic cognitive diagnosis extends classical CDMs by
representing knowledge, misconception, and uncertainty on the same
scale, yielding richer profiles for adaptation (Ma H. et al., 2023).
Unlike conventional models that classify student responses into
simply correct or incorrect, neutrosophic cognitive diagnosis captures
the degree of uncertainty in students’ knowledge states, thereby
offering a more nuanced and diagnostically rich profile for adaptive
interventions. This approach aligns with the broader movement
toward fine-grained, process-aware analytics in education. Likewise,
models predicting cognitive presence in MOOCs achieve 92.5%
accuracy by analyzing discussion traces instead of relying on sparse
clickstreams alone (Lee et al,, 2022), while Gijsen et al. (2024)
demonstrate that combining clickstream data with think-aloud
protocols in video-based learning uncovers deeper processing patterns
that binary metrics miss. Intelligent Tutoring System (ITS) diagnostic
engines refer to automated systems that analyze learner interactions
(e.g., responses, clickstreams, or gaze data) to infer knowledge states,
misconceptions, or areas of struggle and then adapt instruction
accordingly. ITS aims to provide timely, personalized feedback but are
limited by the granularity and specificity of the available process data
(Graesser et al., 2012). Its that depend solely on clickstreams or
delayed self-reports falter in detecting misconceptions promptly and
cannot direct limited instructional time to areas of greatest need.

Eye tracking is especially complementary to flipped education, as
pre-class activities occur on-screen, making the integration of a
low-cost tracker minimally burdensome. The emergence of AI-driven
learning analytics has further raised the possibility of real-time, gaze-
informed adaptations. Such systems can leverage eye-movement
patterns—such as prolonged fixations or frequent regressions—to
infer moments of struggle or disengagement, triggering tailored
scaffolds before errors manifest (Alemdag and Cagiltay, 2018).
However, transforming these research prototypes into robust,
classroom-ready tools remains a non-trivial engineering and
validation challenge. Real-time gaze traces reveal the specific
components of a question stem that capture immediate attention, the
systematic comparison of options, and the moments when a learner
experiences a “stall” on a challenging segment. Pilot implementations
within learning management systems have demonstrated that
identifying the pattern “low fixation + high error” enables instructors
to provide follow-up explanations more effectively (Alemdag and
Cagiltay, 2018). Nonetheless, these proof-of-concept studies seldom
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correlate gaze behavior with Bloom-coded cognitive demand, nor do
they associate process data with immediate in-class performance—
two deficiencies that constrain both theoretical understanding and
practical application.

Rectifying these inadequacies provides two advantages. Initially,
trial-level gaze evidence enhances the response-process dimension of
validity highlighted—but infrequently substantiated—in the Standards
for Educational and Psychological Testing (American Educational
Research Association, American Psychological Association, &
National Council on Measurement in Education, 2014) and in
contemporary digital assessment frameworks. Secondly, affluent
process signals provide actionable inputs for AI-driven personalisation
frameworks: recommendation systems can activate timely scaffolds,
and predictive dashboards can identify students in need of human
intervention. This study incorporates eye tracking into standard
flipped-class quizzes and correlates gaze patterns with Bloom’s
taxonomy, accuracy, and self-reported effort, advancing the
development of a process-aware, Al-enhanced future.

The rise of process data analytics in education—fueled by
advances in educational technology and artificial intelligence—now
allows researchers and instructors to move beyond snapshots of
achievement (scores, grades) to continuous, longitudinal analysis of
learning behaviors (ID’Mello et al., 2017). For example, Al-driven
analytics can detect subtle patterns in eye movements, keystrokes, or
physiological signals that precede errors or signal conceptual
breakthroughs, enabling just-in-time scaffolding or adaptive task
sequencing. However, the reliable implementation of such systems
requires robust evidence for the validity and generalizability of
process-based indicators, a focus of the present study.

2.2 Cognitive-engagement framework

Student engagement is widely conceptualized as a triad of
behavioral, emotional, and cognitive dimensions (Fredricks et al.,
2019). Cognitive engagement—the strategic and meta visual effort
learners dedicate to comprehending and mastering content—exhibits
the most consistent correlation with long-term success, surpassing
both time-on-task and emotional enthusiasm (Lei et al., 2018).
Cognitive engagement also refers to the depth of student involvement
in learning tasks; mental effort denotes the subjective experience of
cognitive exertion. Time-on-task has long been recognized as a robust
indicator of engagement and learning success. In digital environments,
efficient gaze allocation—such as longer fixations and fewer
regressions—reflects focused visual effort, whereas fragmented or
hesitant reading patterns may signal confusion or disengagement
(Spichtig et al., 2017). Tracking these metrics enables a more nuanced
understanding of how students allocate effort during formative
assessments, beyond simple accuracy scoring. Flipped pedagogy is
designed to enhance cognitive engagement: learners self-regulate
during content preview and thereafter utilize contact hours to study,
apply, or evaluate topics (Zainuddin and Halili, 2016). In this paper,
we use “gaze-based effort” to denote FI and RR (objective, process-
level), and “self-reported mental effort” to denote the block-level
subjective ratings; “cognitive load” is treated as the broader
theoretical construct.

Student engagement in flipped classrooms is often measured using
retrospective self-report instruments, such as the Motivated Strategies
for Learning Questionnaire (MSLQ; Pintrich, 2004), the Flipped
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Learning Student Engagement Scale (FLSES; Yan and Lv, 2023), or
single-item post-activity questionnaires administered after the
learning experience. However, these retrospective measures are
vulnerable to recall bias and social desirability effects, which may lead
students to overestimate or misremember their actual engagement
(Fuller et al., 2018). In contrast, real-time process data—such as gaze
patterns or interaction logs—offer a more immediate and objective
window into cognitive engagement.

Self-report scales like the Student Engagement Instrument
(SEI: Appleton et al., 2006) and Psychological State of Cognitive
Presence Cognitive Engagement Scale (PSCP: Ozek and Fer, 2025)
have demonstrated strong validity and reliability in capturing
sub-factors such as cognitive attention and effort. However, such
retrospective measures correlate only modestly with process data
(Han, 2023).

To overcome these limitations, researchers advocate integrating
established frameworks and automated methods. The ICAP Model
(Interactive, Constructive, Active, Passive; Chi and Wylie, 2014)
increases the reliability of engagement measurement by providing a
theoretically grounded framework that distinguishes qualitatively
different levels of cognitive involvement. Higher ICAP modes
(Interactive, Constructive) are consistently associated with deeper
learning outcomes, supporting the use of process data to infer
engagement quality rather than mere time-on-task (Xu et al., 2023),
distinguishing quality beyond time-on-task. Advanced, Analytic,
Automated (AAA) approaches further enrich measurement by
inferring cognitive engagement from real-time behavioral and
physiological signals—such as facial expressions, eye tracking, and
clickstream data—offering fine-grained insights that self-reports miss
(D’Mello et al., 2017). While these automated techniques require
robust infrastructure and raise privacy considerations, their
combination with self-report instruments and observational
checklists yields the most comprehensive assessment of cognitive
engagement in flipped classrooms (Barlow and Brown, 2020; Liu
et al., 2022).

2.3 Eye-movement metrics as cognitive
load proxies

Eye-tracking may serve as indirect, load-sensitive indicators of
processing effort under specified task conditions (e.g., text length and
layout controlled), rather than direct measures of intrinsic or
extraneous load (Spichtig et al., 2017; Inhoff et al., 2019; Lai et al,,
2013). However, these metrics should not be interpreted as direct or
unambiguous measures of specific cognitive load components (e.g.,
intrinsic, extraneous), as fixation duration and regressions are
influenced by multiple factors, including reading skill, task familiarity,
and item complexity (Becker et al., 2022).

Fixation intensity and regression rate may serve as indirect,
behaviorally observable indicators of visual effort under specific
conditions, particularly when text complexity and task demands are
carefully controlled. Accordingly, in our study FI/RR are interpreted
as load-sensitive only after statistically controlling for Total word
count (stem-+options) at the attempt level and reporting item-
level checks.

Fixation-based metrics provide a sensitive window on processing
effort. Longer fixations and more regressions typically signal greater
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cognitive demand or lower reading efficiency; regressions, in particular,
index comprehension difficulty and, in modeling studies, help predict
individual differences in reading comprehension (Inhoff et al., 2019; Kim
etal,, 2022; Man and Harring, 2019). Proficiency contrasts are robust:
efficient readers show shorter/ fewer fixations and fewer regressions,
whereas struggling readers maintain elevated levels into high school
(Spichtig et al., 2017). Beyond description, fixation counts and regression
patterns have been used to estimate item-specific attention and difficulty,
highlighting how process data discriminate effortless from effortful
reading in ways outcome scores cannot (Man and Harring, 2019).

For classroom use, practicality matters. Pupillometry can index
effort but typically requires >120 Hz to separate effort-related changes
from light reflexes (Beatty and Lucero-Wagoner, 2000). By contrast,
fixation intensity (FI) and regression rate (RR) are stable at 60 Hz, the
sampling rate of economical trackers (van Gog and Jarodzka, 2013), so
we focus on these signals here. FI reflects prolonged, high-resolution
processing of stems and options—sometimes accompanying conceptual
reorganization in expository text (Ma X. et al., 2023). RR captures
strategic re-inspection when learners confront contradictions across
representations (Abt et al., 2024). Although pupil diameter was
recorded, it was not analyzed due to expected noise at 60 Hz.
Embedding FI and RR in flipped-course quizzes yields time-stamped
evidence of engagement that self-reports and clickstreams miss,
enabling instructors—and adaptive algorithms—to identify confusion
and deliver targeted, just-in-time support.

2.4 Bloom demand and item characteristics

Bloom’s new taxonomy categorizes cognitive activities in a
continuum ranging from remembering to comprehending, applying,
analysing, and ultimately producing (Krathwohl, 2002). Meta-analytic
research suggests that flipped courses achieve the greatest professional
competency improvements when classroom time is allocated to
application and analysis rather than to rote memorisation (Lundin
et al,, 2018). The extent to which higher-order things provoke more
visual effort remains ambiguous. A persistent risk is confounding
conceptual demand with surface reading: higher-order items in MC
banks are often shorter because they presume context, making raw
dwell time uninterpretable unless length is controlled. Ozdemir and
Tosun (2025) observed prolonged fixation durations on analysis-level
questions, but Abt et al. (2024) found no demand impact after
adjusting for stem length, underscoring the risk of confounding
conceptual complexity with textual superficiality. Research utilizing
multiple-choice formats indicates that higher-Bloom stems are
frequently intentionally concise, since they assume prior context,
rendering raw dwell time an unreliable indicator until length is taken
into account. This dichotomy mirrors flipped sequencing (pre-class
fundamentals vs. in-class application/analysis).

To achieve a discernible contrast while maintaining statistical
power, we categorize Bloom levels 1-2 (Remember, Understand) as
low demand and levels 3-4 (Apply, Analyse) as high demand. This
division reflects the instructional cadence of flipped classrooms—
fundamentals before class versus in-depth exploration during class—
and aligns with systematic evaluations categorizing levels 3-4 as
“higher-order cognition” (Zainuddin and Halili, 2016). By examining
whether gaze-based effort increases or unexpectedly decreases on
these higher-order items, we directly investigate the prevalent notion
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that heightened load-sensitive indicators invariably results in
prolonged fixation and increased regressions.

2.5 Gender as a exploratory moderator

Minor yet consistent sex differences in eye movement behavior
can skew demand or accuracy estimates if not properly managed.
Gabel et al. (2025) demonstrate that eye-tracking uncovers teachers’
implicit gender biases—pre-service teachers fixate more on female
students in ways that mirror their IAT-measured attitudes—while
Argunsah et al. (2025) reveal that female medical students exhibit
stronger visual learning preferences and higher GPAs, suggesting
gendered differences in attention and performance. Meta-analyses
report small, task-dependent sex differences (women: slightly longer
fixations/more regressions; men: faster scanning at comparable
accuracy). Given our unbalanced cohort (~ 76% female), Gender is
treated as a covariate; all moderation is exploratory.

2.6 Development of research questions

Current learning analytics roadmaps emphasize the integration of
multimodal, fine-grained process data—such as eye tracking, keystroke
logging, and physiological sensors—to complement traditional outcome
measures (D'Mello et al., 2017). These frameworks highlight a paradigm
shift toward real-time, data-informed personalization in digital learning
environments, where actionable insights are derived not only from what
learners answer but also from how they engage, hesitate, or struggle
during task performance. Guided by the preceding review, the present
study addresses four interrelated questions concerning cognitive
demand, visual engagement, performance, and learner characteristics.

2.6.1 Research questions (model-explicit)

We study trial-level relations among Bloom demand (High vs.
Low), two gaze metrics—Fixation Intensity (zFI) and Regression Rate
(zRR)—and Accuracy, while statistically controlling item text length
with TotalWC_z (z-scored word count of stem-+options). Gender is
included as a covariate and all gender findings are exploratory.
Grounded in the flipped-learning context and prior evidence that
fixation duration and regressions can index processing effort under
appropriate controls, we asked four questions:

2.6.1.1 Research question 1 — demand and gaze-based
effort

Do higher-order items (Apply/Analyse) elicit greater visual effort
than lower-order items (Remember/Understand) once item length is
taken into account? Visual effort is operationalized by Fixation
Intensity (FI)—total dwell time on stem + options—and Regression
Rate (RR)—the proportion of backward saccades. This analysis will
determine whether higher cognitive demand is reflected not only in
eventual correctness but also in the moment-by-moment allocation of
visual attention during task performance.

2.6.1.2 Research question 2 — gaze-based effort and
performance

RQ2 (Gaze-based effort - performance). Do FI and RR, above and
beyond Bloom demand and Total word count (stem + options), predict
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the probability of answering an item correctly? This approach helps
disentangle the effects of genuine conceptual challenge from other
item features (e.g., text length or surface layout).

2.6.1.3 Research question 3 — objective versus subjective
load

RQ3 (Objective vs. subjective effort). To what extent do block-level
self-reports of mental effort (SR_LOAD) align with objective, trial-level
gaze indicators (FI, RR) and block accuracy? This approach allows us
to compare fine-grained, moment-by-moment gaze data with learners’
retrospective, aggregate perceptions of effort for each block,
highlighting  the
measurement strategy.

strengths and  limitations of each

2.6.1.4 Research question 4 — exploratory gender check
Do females and males differ in average FI or RR, and does gender
moderate the relation between FI and success? Given the small and
imbalanced subsample, all gender analyses are treated as exploratory.
These questions were addressed with crossed mixed-effects
models at the attempt level (trials nested within both students and
items). Length was modeled with a z-standardized TotalWC covariate;
item-level word-count diagnostics are provided in the Supplement.

3 Method
3.1 Participants and ethical procedures

Forty-five undergraduate volunteers (29 women, 16 men; M
age = 20.4 years, SD = 1.2) enrolled in an English-medium business-
skills course (Organizational Behavior) at a research-intensive
university took part in the eye-tracking study. After the data cleaning,
we left 34 with analysable record. All participants were familiar with
flipped classroom instruction through previous module experiences,
but none had prior exposure to eye-tracking technology. Gender was
included as a covariate primarily to control for known differences in
eye-movement patterns, as prior research has shown that gender can
influence fixation duration and regression rates. Due to our small
sample size and unbalanced gender distribution, all findings related
to gender should be interpreted as exploratory and hypothesis-
generating rather than confirmatory. Participation was elective and
rewarded with course credit plus shopping coupons (~ US$15) if
students completed at least three of the scheduled laboratory sessions.
The institutional review board approved all procedures (Ref. 2023-
EC134-2324). Students signed written consent that described data
uses, anonymity safeguards, and their right to withdraw at any time
without penalty. All data were de-identified at source and analysed
only in aggregate, in accordance with the Standards for Educational
and  Psychological Testing (American Educational Research
Association, American Psychological Association, & National Council
on Measurement in Education, 2014).

3.2 Course context, session structure, and
multiple-choice bank

This course is a second-year core module on organisational
behavior delivered in a flipped format. Before each contact session,
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students studied a chapter in the McGraw-Hill Connect e-book,
short screencasts, and self-check quizlets. During the 11-week
laboratory phase that forms the present dataset, students attended
weekly 30-min eye-tracking blocks scheduled immediately before
the regular lesson. Each block comprised five Bloom-coded
multiple-choice (MC) questions (one remembers, two understand,
one apply, one analyse) drawn without replacement from an expert-
reviewed bank of 55 items. The stems tested the chapter of the week;
distractors targeted common misconceptions identified in
earlier cohorts.

Two instructional designers first classified every item according
to the revised Bloom taxonomy: inter-rater x = 0.82 (96% agreement).
To maximize statistical power in the mixed-models analysis, we later
collapsed the four categories into Low-Demand (remember +
understand) and High-Demand (apply + analyse). Power analysis was
conducted prior to data collection using the variance components
observed in a pilot sample. With a projected intraclass correlation
coefficient (ICC) of approximately 0.20, the planned 320 item attempts
were estimated to provide 80% power to detect medium fixed effects,
given the observed intraclass correlation. This design deliberately
maximized within-subject contrasts while recognizing the trade-off in
modest N for

generalisability due to a demographic

subgroup comparisons.

3.3 Apparatus and area-of-interest (AOI)
definition

Eye movements were recorded with a Tobii Pro Nano eye tracker
(60 Hz; manufacturer-reported accuracy < 0.4°) mounted below a
14-inch laptop display (1,920 x 1,080 px). Each session began with a
five-point calibration; data collection proceeded only when the
average gaze-position error was < 0.8°, otherwise calibration
was repeated.

Items were presented in a fixed HTML layout. Using Tobii Pro Lab
v1.204, we drew non-overlapping rectangular AOIs that were
coextensive with each on-screen component: the stem and the five
options (A-E). AOI coordinates were held constant across items.
Fixations were attributed to the AOI entered at the first in-bounds
sample; fixations that straddled boundaries were assigned to the
recipient AOI at entry. Transitions between successive fixations
located in different AOIs were logged to characterize navigation
among question components (e.g., stem < option back-tracking).

3.4 Event parsing

Fixations and saccades were parsed with Tobii Pro Lab’s
dispersion-based algorithm (dispersion threshold = 30 px; minimum
fixation duration = 60 ms). These settings are reported once here to
avoid duplication elsewhere.

Item characteristics and text-length control.

Item word-counting and covariate. To disentangle conceptual
demand from surface reading, we operationalized item length at three
levels: StemWC (stem words), OptionsWC (sum across retained
options), and TotalWC = StemWC + OptionsWC. Word counts were
computed on the rendered HTML (whitespace-delimited tokens),
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then merged back to trial records. For modeling, TotalWC was
z-standardized across attempts (Total WC_z) and entered as a covariate
in all primary models.

Item-level check. Because length is an item property, we compared
per-item means (each QuestionID counted once) between Low- vs.
High-Bloom items using Welch tests. Effects were small and not
statistically significant at the item level; for transparency we report
Low/High means, High-Low differences, and t (df), p in
Supplementary Table S1. Given attempt-level differences and to
be conservative, TotalWC_z is retained as a control in the primary
mixed-effects analyses.

Pre-registration / power note. The planned >300 attempts with
ICC = 0.20 were expected (Monte-Carlo) to provide ~80% power to
detect medium fixed effects (f ~ 0.35 SD). Length control does not
change this power calculation but reduces bias in the Bloom coefficient.

3.5 Self-report instruments

Immediately after each eye-tracking block, students completed a
four-item, 5-point Likert checklist adapted from the NASA-TLX
mental-effort dimension and the Paas and Van Merriénboer (1994)
single-item scale:

“How much mental effort did you exert to understand
the questions?”

“How difficult were the underlying concepts?”

“How complex were the questions?”

We adapted three block-level prompts (5-point Likert) from the
NASA-TLX mental-effort dimension and Paas & Van Merriénboer’s
single-item index. The self-reported cognitive-load index (SR_
LOAD) is the mean of the three items (a = 0.86). We acknowledge
that NASA-TLX does not separate intrinsic from extraneous load;
our choice prioritized brevity and ecological validity during weekly
labs. In line with reviewer guidance, we treat SR_LOAD as a coarse,
block-level comparator to objective gaze signals rather than as a
multidimensional load diagnostic; future work should add
instruments such as the Cognitive Load Scale for load-type
decomposition. Self-report ratings were collected at the block level to
reduce participant burden and better reflect the overall visual effort
required for each 5-item set, recognizing that this approach limits the
per-item, fine-grained correspondence with gaze-based indicators
but maintains ecological validity for classroom settings. While our
self-reported cognitive load index (SR_LOAD) was adapted from
established scales, it does not differentiate between intrinsic and
extrinsic cognitive load, as do more recently developed instruments
such as the Cognitive Load Scale. Future studies should incorporate
these validated tools for finer-grained analysis of cognitive load types
in educational settings.

3.6 Eye-movement metrics

We computed two load-sensitive gaze measures per attempt by
summing across stem and options AOIs: Fixation Intensity (FI)—total
dwell time (ms); and Regression Rate (RR)—the proportion of
backward saccades relative to total saccades. To reduce leverage of
extreme scan-paths, both metrics were winsorised at the 98th
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percentile, then z-standardized within participant (grand-mean = 0,
SD = 1) to remove baseline speed differences. Saccade-velocity and
pupil signals were exploratory and are not analysed due to known
noise at 60 Hz.

Following prior work, we treat Fixation Intensity and Regression
Rate as “load-sensitive” metrics: longer fixations often reflect deeper
semantic processing or greater integrative demand, and more
regressions tend to accompany ambiguity or inconsistency (Spichtig
etal., 2017; Inhoff et al., 2019; Lai et al., 2013; van Gog and Jarodzka,
2013). These associations are context-dependent, influenced by text
complexity, prior knowledge, reading skill, and task design (Becker
etal., 2022; Becker et al., 2023). Notably, when items differ in length
or layout—as in this study—Fixation Intensity may not cleanly index
load-sensitive indicators. We therefore interpret these measures as
indicators of processing effort when task characteristics are held
constant, while cautioning that they are not direct, unambiguous
measures of load-sensitive indicators. Their validity as proxies hinges
on controlling extraneous factors and aligning use with the empirical
contexts in which they were originally validated (e.g., Lai et al., 2013;
Spichtig et al., 2017).

3.7 Data structure and analytic power

After excluding 12 trials with >30% data loss, the analytic file
comprises 320 item attempts completed by 34 students across 55 items
(median = 9 attempts per learner). The crossed structure yields most
precision from the large number of level-1 observations. This structure
is well suited for multilevel models, which gain precision primarily
from the number of level-1 (item) observations rather than the
number of level-2 (person) units (Barr et al., 2013).

Post-hoc power analysis (reported in Methods, Section 3.6)
indicates that, with the observed intraclass correlation coefficient
(ICC & 0.20), this design provides >80% power to detect medium-
sized fixed effects (f ~ 0.35 SD, OR =~ 1.4) for our primary gaze
metrics. However, subgroup analyses (e.g., gender interactions) and
detection of small effects remain underpowered, as expected with
modest N. We therefore interpret all subgroup and interaction
findings as exploratory and hypothesis-generating, not confirmatory.

3.8 Analysis plan

All predictors were grand-mean centered. Fixation Intensity (FI)
and Regression Rate (RR) were winsorized at the 98th percentile and
standardized within participant (zFI, zZRR). TotalWC_z denotes the
z-scored total word count of each item (stem + options) and was
included as a covariate in all primary models.

RQIl: Demand — gaze-based effort. We estimated two linear
mixed-effects models in which zFI and zRR were the dependent
variables. Fixed effects were Bloom demand (High vs. Low; effects-
coded *0.5), Gender (male=1), and TotalWC_z. Each model
included crossed random intercepts for Student and Item to account
for clustering of attempts within persons and questions.

Yj; = Bo + PrDemand;; + B,Gender;
+B3TotalWC _z;; +ugj +ug; +&j
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RQ2: Gaze-based effort — success. Item-level correctness (0/1)
was modeled with a binomial logit generalized linear mixed-effects
model. Predictors were zFI, zZRR, Bloom demand, Gender, and
TotalWC_z, with crossed random intercepts for Student and Item. An
exploratory zFI x Gender term tested moderation; given limited
power, this interaction is interpreted cautiously while the main
Gender effects are retained in the fixed-effects set.

logit {P (Accuracyij = 1)} =PBo +B1zFLj + B2zRR;5¢
BsDemand;j, B4Gender;; +B5TotalWC _zjj, ugj+ug;

RQ3: Objective vs. subjective load. Because self-reported mental
effort (SR_LOAD) was collected at the block level, trial data were
aggregated to Student x Block (mean zFI, mean zRR, and block
accuracy). Associations were summarized with Pearson correlations
and Fisher-transformed 95% confidence intervals for the pairs SR_
LOAD x mean zFI, SR_LOAD x mean zRR, and SR_LOAD x
accuracy.

Estimation and inference. Linear mixed models were fitted with
Ime4/ImerTest using REML = FALSE for comparability; denominator
degrees of freedom followed the Satterthwaite approximation. The
GLMM was estimated by Laplace approximation (optimizer bobyqa,
maxfun = 2 x 1015). For LMMs we report unstandardized coeflicients
(B), standard errors, 95% Cls, and random-effect variances; for the
GLMM we report odds ratios with 95% Wald ClIs in addition to
variance components. Potential singular fits (near-zero random-effect
variance) are flagged and interpreted with caution. Robustness was
further evaluated via 2,000 non-parametric bootstraps on fixed-
effect estimates.

Software and reproducibility. All analyses were conducted in R
(version [fill in]; R Core Team), using the following packages: Ime4 for
mixed models (Bates et al., 2015), ImerTest for Satterthwaite degrees
of freedom (Kuznetsova et al., 2017), dplyr for data manipulation
(Wickham et al.,, 2023), and effsize for standardized mean-difference
estimates. Exact package versions and the R session details are
reported in Supplementary S5 (Computing environment). Replicable
model formulas are given in Section 3.6; code to re-run the models is
supplied in the Supplement.

Descriptive statistics for attempt-level zFI, zZRR, and accuracy by
Bloom level appear in Table 1. Item-level length characteristics and
Welch tests are provided in Supplementary Table S1.

3.9 Rationale for the gender term

Small but systematic gender differences in reading and STEM
eye-movements have been reported (e.g., slightly longer fixations and
more regressions for females), potentially confounding demand effects
(Zhan et al., 2020; Huang and Chen, 2016). Women typically show
slightly longer fixations and more regressions, whereas men scan more
quickly while achieving comparable accuracy. We therefore include
Gender (male = 1) as a covariate in all primary models to absorb
speed/strategy differences. Given the unbalanced sample (26F, 8 M)
and Monte-Carlo power <5% for small interactions under our
variance structure, all gender findings—including zFI x Gender—are
labeled exploratory. Gender here is included primarily as a covariate
to control for known speed-accuracy trade-offs.
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4 Results
4.1 Portrait of the dataset

Students attempted 320 items (34 learners; 55 items). At the
descriptive level (Table 1), higher-order items were answered slightly
less often and received shorter fixation times (~0.2 SD lower FI). RR
and block-level SR_LOAD were very similar across Bloom levels.
These patterns already suggest that text length may be driving dwell-
time differences more than conceptual demand, motivating the
inclusion of TotalWC in the primary models.

4.2 Research questions 1: Does demand
alter gaze-based effort once length is
controlled?

Two LMMs regressed zFI and zRR on Bloom demand (High vs.
Low), Gender, and TotalWC_z, with crossed random intercepts for
Student and Item. When FI and RR were modeled from Bloom
demand with TotalWC and Gender as covariates (random intercepts
for students and items), item length—not Bloom level—was the
reliable predictor of FI. Longer/shorter items were associated with
correspondingly lower/greater FI (TotalWC term, p = 0.004), and the
nominal Bloom contrast no longer reached significance after this
control. RR showed no detectable change by Bloom. Thus, in this

TABLE 1 Descriptive statistics by Bloom demand (attempt-level).

10.3389/feduc.2025.1639273

authentic quiz bank, how much text students had to process mattered
more for dwell time than whether the item targeted lower- or higher-
order cognition. Full coefficients appear in Table 2.

A note on sensitivity: A stem-only specification (using
StemWC in place of TotalWC) produced the expected positive
association between stem length and FI and a small negative Bloom
contrast, underlining that text-surface features can easily
masquerade as “demand effects” Details of this check are reported
beneath Table 2.

4.3 Research questions 2: Do gaze metrics
predict correctness?

A logistic GLMM with crossed random intercepts (Student, Item)
predicted accuracy from FI, RR, Bloom demand, and gender (Table 3).

A logistic GLMM (logit link) predicted Accuracy from zFI, zRR,
Bloom demand, Gender, and TotalWC_z, with the same random-
effects structure (Question random intercept retained; Student
random intercept at boundary). The accuracy model (GLMM)
indicated a clear tendency: items on which students fixated longer
were more likely to be answered correctly (~1.30 x odds per +1 SD
FI), whereas more frequent regressions tended to accompany lower
odds (~0.81 x per +1 SD RR).

With this small sample these effects approached but did not meet
conventional significance levels; nevertheless, effect sizes were

Demand level zFl Mean + SD ZRR Mean + SD Accuracy mean + SD
Low (Bloom 1-2) 0.04 +0.99 0.02+0.99 0.35+0.48 ‘
High (Bloom 3-4) —0.15+1.02 —0.06 + 1.06 0.31£0.47 ‘
Attempt-level means (FI and RR are within-participant z-scores). Sample: 320 attempts, 34 students, 55 items.
TABLE 2 Linear mixed-effects models for gaze metrics (zFl, ZRR) controlling total word count.
Outcome Predictor B 3 3 df (Satt.) p
zFI ItemType (High vs. Low) —0.119 0.193 —0.614 45.775 0.542
Gender (1 = male) —0.779 0.244 —3.191 33613 0.003
TotalWC_z (per 1 SD) —0.232 0.077 —3.002 46.791 0.004
zRR ItemType (High vs. Low) —0.101 0.133 —0.764 291.590 0.446
Gender (1 = male) —0.314 0.180 —1.748 31.346 0.090
TotalWC_z (per 1 SD) —-0.025 0.053 —0.476 301.166 0.635

Crossed random intercepts for students and items. Fit—zFI: AIC 794.6, BIC 820.9, logLik —390.3; random SDs: item 0.487, student 0.543, residual 0.663. Fit—zRR: AIC 903.5, BIC 929.9,
logLik —444.8; item intercept variance ~ 0 (singular), student SD 0.294, residual SD 0.940. Predictors grand-mean centred; FI/RR winsorised at 98th percentile and z-scored within participant.

Total WC_z = z-scored total word count across stem + options.

TABLE 3 Logistic GLMM predicting item accuracy.

Predictor logit B SE z p OR 95% CI (OR)
2_FI (per 1 D) 0262 0.143 1.826 0.068 1.299 [0.981, 1.72]
2_RR (per 1SD) -0215 0.149 —1.444 0.149 0.806 [0.602, 1.08]
ItemType (High vs. Low) ~0.451 0.446 —1.011 0312 0.637 [0.266, 1.527]
Gender (1 = male) 0.052 0.334 0.156 0.876 1.053 [0.547, 2.027]
TotalWC_z (per 1 SD) 0.253 0178 1.419 0.156 1287 [0.908, 1.825]

Crossed random intercepts for students and items; student variance at boundary (~ 0). Fit: AIC 405.4, BIC 435.5, logLik —194.7. Odds ratios are exponentiated coefficients with Wald 95% Cls.
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educationally meaningful and consistent with theory. Bloom demand,
gender, and length did not add unique predictive value once FI and
RR were in the model. Notably, the student random intercept sat on
the boundary while the item intercept was substantial, indicating that
items varied more in difficulty than students varied in overall
performance. See Table 3 for model summaries.

4.4 Research questions 3: How do
objective and subjective load relate?

Block-level SR_LOAD showed near-zero correlations with mean
FI, mean RR, and block accuracy; Fisher 95% CIs exclude even modest
associations. In other words, the retrospective “how hard did that
block feel?” rating did not track the micro-fluctuations captured by
gaze. This reinforces the value of unobtrusive process signals for
formative diagnostics. Supplementary correlation estimates appear in
Supplementary Table S4.

4.5 Research questions 4: exploratory
gender effects

Males exhibited shorter fixation times on average (faster
processing) with no reliable difference in RR. Crucially, gender neither
predicted accuracy nor changed the beneficial slope of FI. Given the
small and imbalanced male subgroup, these observations are treated
as controls rather than confirmatory findings. Relevant terms are
reported alongside the fixed-effect tables.

4.6 Result summary

Contrary to the simple “harder — longer” expectation, higher-
order items did not demand more dwell time once length was
controlled. Instead, item length was the proximate driver of FI. Yet
visual effort still mattered: longer fixation tended to help and frequent
regressions tended to hinder success, pointing to two complementary
process cues that conventional correctness scores miss. Paired with the
divergence between self-reports and gaze, these results support the use
of classroom-friendly eye-tracking as a response-process lens for
flipped-class diagnostics, while also highlighting the necessity of
length-matched item banks for clean causal interpretation. Tables 1-3
SR_LOAD

and Supplementary Tables (word-count checks;

correlations) document the underlying estimates.

5 Discussion
5.1 General discussion

This study adds response-process evidence to flipped-class
assessment by showing that two simple gaze metrics—fixation
intensity (FI) and regression rate (RR)—carry complementary
instructional signals during authentic, pre-class MCQs. In our crossed
mixed-effects models, longer dwell time tended to help (OR~1.30 per
SD), whereas frequent back-tracking tended to hurt (OR~0.81), while
block-level self-reports showed near-zero correspondence with either
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gaze metric. Equally important, the apparent “higher-Bloom = more
time” intuition did not hold once surface text was considered: with
total word count (stem-+options) entered as a covariate, the Bloom-
fixation association attenuated to non-significance, revealing a
“harder-but-shorter” design pattern rather than a pure demand effect.
Together, these findings reframe classroom eye tracking as
measurement-aware diagnostics: FI and RR are informative when
surface features are standardized or modeled, and they illuminate
moment-to-moment engagement that correctness and retrospective
ratings miss. The small gender speed difference we observed (men
fixated less without an accuracy penalty) did not alter the fixation-
performance link, suggesting that process-aware feedback rules can
be applied equitably in similar cohorts.

Practically, the results point to a concrete design protocol for
future item banks and for scalable analytics: (i) standardize total word
count in narrow bands; (ii) equalize option lengths and hold the
number of options fixed; (iii) pre-register TotalWC as a covariate in
primary models; and (iv) replace block-level self-reports with brief,
item-level, multidimensional load measures. Under these conditions,
classroom-friendly 60 Hz trackers can provide response-process
validity evidence and serve as a “gold reference” to benchmark
lighter-weight proxies (e.g., response-time distributions, option-
comparison sequences, click/keystroke traces, or privacy-preserving
webcam gaze approximations). A conservative pathway—
standardized bank — small-class pilots — multi-class validation—can
move flipped-class diagnostics toward a practical balance of cost,
usability, and validity, (not

complementing displacing)

human instruction.

5.2 Limitations
We note four limitations:

(1) Surface-text confound (interpretation risk).

The Bloom-fixation link vanished once TotalWC (stem + options)
was controlled, and TotalWC negatively predicted Fixation Intensity
(FI). High-Bloom stems were, on average, shorter, so the earlier
“harder-but-shorter” pattern is best explained by text length rather
than conceptual demand. Without balancing or adjusting for length/
layout, gaze metrics may misrepresent difficulty. Future work should:
(a) construct length-matched item pairs within Bloom levels or (b)
statistically adjust for characters/words and layout complexity; (c)
include a manipulation check to verify parity before analysis.

(2) Sampling and power (generalizability).

With 34 students and ~320 attempts, trial-level fixed effects were
estimated with acceptable precision; however, subgroup contrasts (e.g.,
Gender x FI) were under-powered and should be treated as exploratory.
Replications across courses and institutions—with larger, more balanced
cohorts—are needed to confirm demographic patterns and strengthen
external validity. In the present study, gender served primarily as a
covariate to account for known speed-accuracy differences; all gender-
related inferences remain hypothesis-generating.

(3) Self-report granularity (construct alignment).

Block-level self-reported effort (SR_LOAD) showed near-zero
correlations with FI/RR, consistent with a level-of-analysis mismatch
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(block vs. item). To test convergent validity with process data,
subsequent studies should collect item-level, multidimensional
cognitive-load ratings (e.g., intrinsic vs. extraneous) and align their
timing with each response. Where feasible, triangulate with brief,
low-friction prompts embedded in the quiz flow.

(4) Signals and sampling (measurement scope).

The 60 Hz tracker was sufficient for aggregate FI and regression
counts (RR) but too coarse for micro-saccades or fine-grained
pupillometry. We therefore restrict inference to fixation- and
regression-based indicators. Replicating with >120 Hz devices
would test robustness when higher-frequency information is
available. For richer load diagnostics, future work should add
multimodal signals (e.g., luminance-corrected pupil dilation,
electrodermal activity) to improve sensitivity while monitoring
privacy and classroom burden.

5.3 Implications and design suggestions

The analytical strategy—including random intercepts for both
students and items, and robust estimation of confidence intervals via
bootstrapping—was specifically selected to address the datas
hierarchical structure and mitigate the limitations imposed by a
modest participant sample. These choices align with current best
practices for analyzing nested educational data with small to moderate
samples (Snijders and Bosker, 2012).

This study shows that classroom-friendly eye tracking can yield
actionable process signals during routine formative work. Scaling such
use requires plug-and-play integration with LMSs, clear privacy/
consent policies, and—most importantly—validated item banks so
that adaptive algorithms respond to genuine cognitive demand rather
than surface features. In near-term classroom practice, gaze can flag
low-dwell/high-regression episodes for targeted scaffolds during
pre-class study, while recognizing that reliable triggers require length-
matched items or Total WC-aware rules.

Because the Bloom-fixation association disappeared once
Total WC (stem + options) was controlled—and TotalWC negatively
predicted fixation intensity—future banks should: (i) standardize
TotalWC within narrow bands by Bloom level; (ii) equalize option
lengths and fix the number of options; (iii) pre-register TotalWC
(and layout features) as covariates; and (iv) replace block-level self-
reports with item-level, multidimensional load prompts to separate
intrinsic and extraneous load. Practically, gaze metrics remain
useful when surface features are either balanced by design or
explicitly modeled.

An economical 60 Hz tracker, or a high-resolution webcam with
model-based gaze estimation is sufficient for fixation- and regression-
based indicators. Embed the device in the pre-class quiz interface and
stream two z-scored signals to an analytics microservice: dwell time
and back-tracking frequency. Flag a potential struggle episode when
dwell time falls >1 SD below a student’s baseline and regressions rise
>1 SD above baseline. Trigger just-in-time scaffolds (e.g., “re-read
stem,” concise glossary, or a worked example) before submission. In
borderline cases (short dwell without excessive regressions), surface
low-cost supports (definitions/examples) rather than full hints. For
finer-grained pupillometry or micro-saccades, consider >120 Hz
devices in future iterations.
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Use these pipelines to strengthen response-process validity as
outlined in the Standards for Educational and Psychological Testing:
confirm that students attend to the intended elements of higher-order
items. Pair the gaze assessments with per-item micro self-reports
(single-tap confidence or perceived difficulty). Joint modeling of
objective (gaze) and subjective (self-report) evidence will reveal which
nudges (extra time, hints, recap videos) best close gaps between
perceived and actual effort and will iteratively refine personalisation
over semesters.

However, certain compliance and ethical expectations must
be taken into considerations. Adopt data-minimisation, local
processing where feasible, opt-in consent, and transparent learner
dashboards. Provide instructor controls to disable interventions,
export diagnostics, and review item-level balance checks. Before real-
time, gaze-informed interventions are deployed at scale, invest first in
high-quality, standardized item banks and a light-touch analytics layer
that privileges measurement integrity over automation speed. Careful
design and staged validation will prevent text-length artefacts from
being misread as cognitive struggle and will make adaptive support
both responsible and reliable.

5.4 Future research direction

Future work should implement parallel, length-matched forms at
each Bloom level—equating word/character count, layout, and option
length—and counterbalance presentation order across students. A
preregistered analysis plan should include equivalence tests to
determine whether Bloom effects remain negligible once TotalWC is
controlled, alongside re-estimation of Fixation Intensity (R') and
Regression Rate (R*) using crossed mixed-effects models. Prospective
power analyses should be calibrated for small effects and incorporate
item- and student-level ICCs to ensure adequate precision for both
fixed and random components.

To evaluate construct convergence at the appropriate grain size,
block-level self-reports ought to be replaced with item-level,
multidimensional prompts (e.g., intrinsic vs. extraneous load,
single-tap confidence/difficulty). Analyses should prioritize within-
person associations between R'/R* and self-reports and use ROC and
precision-recall curves to identify data-driven thresholds for flagging
“struggle” episodes. Reporting convergent and discriminant validity
will clarify what each metric uniquely captures and the conditions
under which it is most informative.

Finally, the field needs evidence for causal impact. We recommend
randomized A/B experiments or within-student micro-randomized
trials in which hints, definitions, or worked examples are triggered by
prespecified R'/R* thresholds. Primary outcomes should include next-
item accuracy, time-to-mastery, and delayed retention; secondary
outcomes should track false-positive/negative rates and any latency
costs to ensure that supports are beneficial and efficient. Decision
rules (including stopping boundaries) should be preregistered to
prevent analytical flexibility.

6 Conclusion

This exploratory study set out to recover what conventional
flipped-class metrics miss: the moment-to-moment visual effort
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students expend while answering routine multiple-choice
questions. Using a classroom-friendly 60 Hz eye tracker and
crossed mixed-effects models, we found that fixation time and
regression frequency behave as complementary process signals—
longer dwell time tends to support success (OR = 1.30 per +1 SD),
whereas frequent back-tracking tends to undermine it (OR ~
0.81)—while block-level self-reports add little diagnostic value.
Critically, once total word count across stem + options (TotalWC)
is entered as a covariate, the high- vs. low-Bloom difference in
fixation time attenuates to non-significance, indicating that the
earlier “harder-but-shorter” pattern is largely a surface-text effect
rather than a pure demand effect. Gender introduced a small
speed difference but neither predicted accuracy nor moderated
the fixation-performance link, supporting equitable interpretation
of the gaze-performance association in this sample.

Taken together, these results reframe classroom eye tracking
as a measurement-aware diagnostic: gaze metrics are informative
when surface features are standardized or explicitly modeled.
Practically, we recommend that future MCQ banks (i) standardize
total word count in narrow bands, (ii) equalize option lengths and
hold the number of options fixed, and (iii) pre-register TotalWC
as a covariate in primary models. With these controls in place,
fixation intensity and regression rate provide distinct, actionable
cues (productive deep processing vs. struggle/inefficient
re-inspection) for formative diagnostics. This positioning also
clarifies the contribution of the present work: not a universal
Bloom effect on gaze, but conditions under which gaze signals can
be valid and useful for flipped-class assessment and for
affordable (e.g.,
distributions, option-comparison sequences).

benchmarking proxies response-time

A conservative next step is a “standardized bank — small-class
pilots — multi-class validation” programme: replicate with length-
matched, layout-matched items, expand to larger and more balanced
cohorts, and test lightweight multimodal signals alongside item-level
self-reports to confirm that the observed patterns are not artifacts of
surface features or sampling noise. Even as a pilot, however, the
workflow charts a feasible pathway from 60 Hz gaze capture to
actionable diagnostics in flipped learning, advancing response-
process validity without consuming class time and pointing toward
than

Al-assisted personalisation that complements—rather

replaces—human teaching.
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