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Introduction: Educators need real time evidence of how students process 
pre class quiz items in flipped courses, not just whether answers are right or 
wrong. We examined whether two classroom feasible eye tracking metrics—
fixation intensity (total dwell time) and regression rate (proportion of backward 
saccades)—provide interpretable, item level signals of cognitive engagement 
once surface text features are taken into account.
Methods: Thirty four undergraduates completed 320 analysable attempts on 
55 multiple choice items coded by Bloom’s taxonomy while a 60 Hz tracker 
recorded gaze. Crossed mixed effects models included a covariate for each 
item’s total word count. A logistic mixed model tested whether fixation intensity 
and regression rate predicted correctness beyond Bloom level, gender, and 
length. After each block, students reported perceived mental effort to compare 
subjective and gaze based indicators.
Results: After controlling for total word count, Bloom category did not uniquely 
predict fixation intensity or regression rate, suggesting that previously observed 
demand patterns largely reflected text length. In the accuracy model, fixation 
intensity showed a small, positive association with being correct, whereas 
regression rate showed a small, negative association.
Discussion: In authentic flipped class quizzes, fixation intensity and regression 
rate can serve as complementary, real time indicators of engagement, but only 
when item length and layout are standardised or statistically modelled. Claims 
about differences across Bloom levels should be made cautiously. We outline 
design guidance for future item banks—length matched stems, fixed numbers of 
options, and pre registered word count covariates—to enable firmer inferences 
and practical classroom diagnostics.
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1 Introduction

Digital technologies have broadened when and where students learn, yet instructors still 
have limited access to real-time engagement evidence during pre-class work. In flipped 
courses, weekly formative multiple-choice (MC) quizzes help surface misconceptions before 
class, but right–wrong scores alone miss how items are processed. We examine whether 
economical eye-tracking can supply response-process evidence in this formative context. The 
flipped classroom is an educational methodology in which traditional lecture content is 
delivered outside of class, typically via pre-recorded videos or readings, while in-class time is 
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dedicated to active, collaborative, and higher-order learning tasks 
(Zainuddin and Halili, 2016). It is not a prescriptive model but rather 
a flexible approach that can be adapted with various instructional 
activities, such as problem-solving, discussions, simulations, and 
quizzes. While our study uses quizzes as the primary pre-class activity, 
these are just one of many possible modalities in flipped pedagogy. 
Flipped designs seek to enhance learning and increase motivation by 
shifting exposition to pre-class assignments and allocating contact 
hours to higher-order tasks (Akçayır and Akçayır, 2018; Hew et al., 
2021). Meta-analyses validate these advantages but caution that the 
benefits are most pronounced when educators can identify 
misconceptions promptly and modify classroom activities accordingly 
(Lundin et al., 2018). Conventional right–wrong quiz scores inform 
instructors about students’ correct responses but fail to capture their 
cognitive processing of items—an oversight that eye-tracking data can 
overcome by providing detailed insights into visual attention and 
engagement patterns, essential for delivering personalized feedback 
and adaptive learning sequences (Tehranchi et al., 2020).

While eye-tracking can index on-task processing in real time, 
routine classroom use hinges on pragmatic constraints—calibration, 
cost, and privacy. We therefore frame eye tracking here as a classroom-
compatible research instrument whose outputs can inform design 
rules and, in the longer run, lightweight diagnostics. Following the 
eye–mind and immediacy assumptions (Just and Carpenter, 1976), 
fixations can reflect ongoing processing at the fixated location, and 
regressions can mark re-inspection; however, these links are context-
dependent and sensitive to text features (Hyönä, 2010). We therefore 
use the term visual effort to denote gaze-based indicators—Fixation 
Intensity (FI) and Regression Rate (RR)—and reserve subjective 
mental effort for self-reports. Across domains, fixation-based metrics 
index intrinsic and extraneous cognitive load (Lai et al., 2013). These 
measures remain reliable at 60 Hz on affordable trackers (Beatty and 
Lucero-Wagoner, 2000) and can flag learners needing support before 
errors surface (Alemdag and Cagiltay, 2018). Yet few studies align gaze 
behavior with Bloom-coded demand or test whether item-specific 
effort predicts immediate success, leaving the effort–complexity link 
unsettled. We operationalize visual effort as fixation intensity and 
regression rate (i.e., effort inferred from eye movements).

In our setting, weekly pre-class multiple-choice quizzes were 
strictly formative—informing instruction and self-regulation rather 
than grades—within a flipped design that assigns lower-order 
processes to preparation and higher-order reasoning to class time 
(Krathwohl, 2002; Zainuddin and Halili, 2016). Prior findings on 
Bloom-aligned gaze demand are mixed. A key design risk is surface 
text: higher-order items are often more concise, so raw dwell time may 
confound conceptual demand with total word count across stem and 
options. We therefore model Total Word Count in all primary analyses 
and treat Bloom effects as interpretable only when surface features are 
standardized or statistically controlled (Özdemir and Tosun, 2025), 
while others observe no significant difference when controlling for 
stem length. These inconsistencies underscore a design quandary: 
higher-order items tend to be more concise in terms of text length, 
potentially conflating conceptual complexity with the amount of 
reading required for each item. This study examines whether visual 
effort correlates with conceptual difficulty in real classroom settings 
by categorizing remember/understand objects as low demand and 
apply/analyze item as high demand.

Grounded in engagement theory, we target cognitive engagement—
the effort devoted to comprehension—which relates most strongly to 
achievement (Fredricks et al., 2019). We treat Fixation Intensity (longer 
dwell times) and Regression Rate (backward saccades/re-reading) as 
behavioral traces of that effort (van Gog and Jarodzka, 2013). Because 
subjective mental-effort ratings often diverge from objective process 
measures (Paas and Van Merriënboer, 1994), we  examine their 
correspondence: convergence supports construct validity, whereas 
systematic gaps clarify what each metric captures under cognitive load 
theory and how to interpret them for classroom analytics. We distinguish 
(a) cognitive load as a theoretical construct; (b) gaze-based effort as 
objective, procss-level indicators derived from Fixation Intensity (FI) 
and Regression Rate (RR); and (c) self-reported mental effort as a block-
level subjective rating. FI and RR are interpreted as load-sensitive rather 
than direct measures of intrinsic or extraneous load; their validity 
depends on task control (e.g., text length) and statistical adjustment 
(here, Total word count included as a covariate). In addition, women 
generally exhibit slightly longer fixations and more regressions, whereas 
men tend to scan faster at comparable accuracy. While these effects are 
overshadowed by skill disparities, incorporating gender as a covariate 
facilitates an exploratory examination.

Accordingly, we examine whether higher-order items elicit more 
visual effort when controlling for TotalWC; test whether Fixation 
Intensity (FI) and Regression Rate (RR) predict item-level success over 
and above Bloom level, gender, and TotalWC; quantify the alignment 
between gaze-based effort and block-level subjective effort; and 
explore baseline gender differences in speed/strategy.

Classroom eye-tracking on multiple-choice tasks remains largely 
descriptive. In a systematic review of 17 studies, Paskovske and 
Klizienė (2024) note that most work still correlates mean dwell time 
with achievement; reviews in STEM education echo the need for 
multilevel modeling to separate student from item variance. 
We  address this by using crossed mixed-effects models that nest 
attempts within students and items (Barr et al., 2013), allowing us to 
test whether effort on a specific item predicts success on that item—
rather than only unit-level aggregates. To our knowledge, this is 
among the first Bloom-aligned, mixed-effects analyses of gaze in 
routine flipped-class quizzes. Recent STEM work shows gaze patterns 
can reveal strategies and misconceptions, not just accuracy (Becker 
et al., 2023; Becker et al., 2022; Fehlinger et al., 2025).

We embedded economical eye-tracking in weekly flipped-quiz 
sessions: undergraduates answered Bloom-coded items while FI and 
RR were logged. We model (a) whether higher-order demand increases 
visual effort controlling TotalWC, (b) whether FI/RR add predictive 
value for item correctness beyond Bloom, gender, and TotalWC, (c) 
correspondence between gaze-based and subjective effort, and (d) 
baseline gender differences in speed/strategy. By pinpointing when FI 
and RR are valid and actionable signals, the study supplies 
instructors—and adaptive algorithms—with item-level evidence of 
visual effort vs. confusion, enabling targeted support without 
displacing in-class collaborative learning central to flipped pedagogy.

Advances in learning analytics make it feasible to pair real-time 
gaze data with AI to trigger just-in-time scaffolds (D’Mello et al., 2017). 
We treat AI-assisted use as a future pathway that depends on matched-
length item banks, clear data-use policies, and replication across classes. 
In the present paper, eye tracking serves primarily to derive design 
guidance and to benchmark lighter proxies for eventual classroom 
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diagnostics. At-scale use, however, hinges on affordable hardware, 
validated item banks, transparent data policies, and LMS integration.

2 Literature review

2.1 Transitioning from flipped classroom to 
process analytics

The flipped classroom is an educational methodology rather than 
a fixed model; early work emphasized affective benefits (e.g., 
satisfaction, attendance) and used online quizzes primarily for 
pre-class compliance checks (Akçayır and Akçayır, 2018). Meta-
analyses now show medium achievement gains, conditional on tight 
alignment between pre-study work and in-class higher-order tasks 
(Hew et al., 2021; Lundin et al., 2018). Significantly, most outcome 
studies continue to depend on binary accuracy or final unit grades. 
Such product-centric metrics obscure how answers were produced. 
Neutrosophic cognitive diagnosis extends classical CDMs by 
representing knowledge, misconception, and uncertainty on the same 
scale, yielding richer profiles for adaptation (Ma H. et  al., 2023). 
Unlike conventional models that classify student responses into 
simply correct or incorrect, neutrosophic cognitive diagnosis captures 
the degree of uncertainty in students’ knowledge states, thereby 
offering a more nuanced and diagnostically rich profile for adaptive 
interventions. This approach aligns with the broader movement 
toward fine-grained, process-aware analytics in education. Likewise, 
models predicting cognitive presence in MOOCs achieve 92.5% 
accuracy by analyzing discussion traces instead of relying on sparse 
clickstreams alone (Lee et  al., 2022), while Gijsen et  al. (2024) 
demonstrate that combining clickstream data with think-aloud 
protocols in video-based learning uncovers deeper processing patterns 
that binary metrics miss. Intelligent Tutoring System (ITS) diagnostic 
engines refer to automated systems that analyze learner interactions 
(e.g., responses, clickstreams, or gaze data) to infer knowledge states, 
misconceptions, or areas of struggle and then adapt instruction 
accordingly. ITS aims to provide timely, personalized feedback but are 
limited by the granularity and specificity of the available process data 
(Graesser et  al., 2012). Its that depend solely on clickstreams or 
delayed self-reports falter in detecting misconceptions promptly and 
cannot direct limited instructional time to areas of greatest need.

Eye tracking is especially complementary to flipped education, as 
pre-class activities occur on-screen, making the integration of a 
low-cost tracker minimally burdensome. The emergence of AI-driven 
learning analytics has further raised the possibility of real-time, gaze-
informed adaptations. Such systems can leverage eye-movement 
patterns—such as prolonged fixations or frequent regressions—to 
infer moments of struggle or disengagement, triggering tailored 
scaffolds before errors manifest (Alemdag and Cagiltay, 2018). 
However, transforming these research prototypes into robust, 
classroom-ready tools remains a non-trivial engineering and 
validation challenge. Real-time gaze traces reveal the specific 
components of a question stem that capture immediate attention, the 
systematic comparison of options, and the moments when a learner 
experiences a “stall” on a challenging segment. Pilot implementations 
within learning management systems have demonstrated that 
identifying the pattern “low fixation + high error” enables instructors 
to provide follow-up explanations more effectively (Alemdag and 
Cagiltay, 2018). Nonetheless, these proof-of-concept studies seldom 

correlate gaze behavior with Bloom-coded cognitive demand, nor do 
they associate process data with immediate in-class performance—
two deficiencies that constrain both theoretical understanding and 
practical application.

Rectifying these inadequacies provides two advantages. Initially, 
trial-level gaze evidence enhances the response-process dimension of 
validity highlighted—but infrequently substantiated—in the Standards 
for Educational and Psychological Testing (American Educational 
Research Association, American Psychological Association, & 
National Council on Measurement in Education, 2014) and in 
contemporary digital assessment frameworks. Secondly, affluent 
process signals provide actionable inputs for AI-driven personalisation 
frameworks: recommendation systems can activate timely scaffolds, 
and predictive dashboards can identify students in need of human 
intervention. This study incorporates eye tracking into standard 
flipped-class quizzes and correlates gaze patterns with Bloom’s 
taxonomy, accuracy, and self-reported effort, advancing the 
development of a process-aware, AI-enhanced future.

The rise of process data analytics in education—fueled by 
advances in educational technology and artificial intelligence—now 
allows researchers and instructors to move beyond snapshots of 
achievement (scores, grades) to continuous, longitudinal analysis of 
learning behaviors (D’Mello et  al., 2017). For example, AI-driven 
analytics can detect subtle patterns in eye movements, keystrokes, or 
physiological signals that precede errors or signal conceptual 
breakthroughs, enabling just-in-time scaffolding or adaptive task 
sequencing. However, the reliable implementation of such systems 
requires robust evidence for the validity and generalizability of 
process-based indicators, a focus of the present study.

2.2 Cognitive-engagement framework

Student engagement is widely conceptualized as a triad of 
behavioral, emotional, and cognitive dimensions (Fredricks et  al., 
2019). Cognitive engagement—the strategic and meta visual effort 
learners dedicate to comprehending and mastering content—exhibits 
the most consistent correlation with long-term success, surpassing 
both time-on-task and emotional enthusiasm (Lei et  al., 2018). 
Cognitive engagement also refers to the depth of student involvement 
in learning tasks; mental effort denotes the subjective experience of 
cognitive exertion. Time-on-task has long been recognized as a robust 
indicator of engagement and learning success. In digital environments, 
efficient gaze allocation—such as longer fixations and fewer 
regressions—reflects focused visual effort, whereas fragmented or 
hesitant reading patterns may signal confusion or disengagement 
(Spichtig et al., 2017). Tracking these metrics enables a more nuanced 
understanding of how students allocate effort during formative 
assessments, beyond simple accuracy scoring. Flipped pedagogy is 
designed to enhance cognitive engagement: learners self-regulate 
during content preview and thereafter utilize contact hours to study, 
apply, or evaluate topics (Zainuddin and Halili, 2016). In this paper, 
we use “gaze-based effort” to denote FI and RR (objective, process-
level), and “self-reported mental effort” to denote the block-level 
subjective ratings; “cognitive load” is treated as the broader 
theoretical construct.

Student engagement in flipped classrooms is often measured using 
retrospective self-report instruments, such as the Motivated Strategies 
for Learning Questionnaire (MSLQ; Pintrich, 2004), the Flipped 
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Learning Student Engagement Scale (FLSES; Yan and Lv, 2023), or 
single-item post-activity questionnaires administered after the 
learning experience. However, these retrospective measures are 
vulnerable to recall bias and social desirability effects, which may lead 
students to overestimate or misremember their actual engagement 
(Fuller et al., 2018). In contrast, real-time process data—such as gaze 
patterns or interaction logs—offer a more immediate and objective 
window into cognitive engagement.

Self-report scales like the Student Engagement Instrument 
(SEI: Appleton et al., 2006) and Psychological State of Cognitive 
Presence Cognitive Engagement Scale (PSCP: Özek and Fer, 2025) 
have demonstrated strong validity and reliability in capturing 
sub-factors such as cognitive attention and effort. However, such 
retrospective measures correlate only modestly with process data 
(Han, 2023).

To overcome these limitations, researchers advocate integrating 
established frameworks and automated methods. The ICAP Model 
(Interactive, Constructive, Active, Passive; Chi and Wylie, 2014) 
increases the reliability of engagement measurement by providing a 
theoretically grounded framework that distinguishes qualitatively 
different levels of cognitive involvement. Higher ICAP modes 
(Interactive, Constructive) are consistently associated with deeper 
learning outcomes, supporting the use of process data to infer 
engagement quality rather than mere time-on-task (Xu et al., 2023), 
distinguishing quality beyond time-on-task. Advanced, Analytic, 
Automated (AAA) approaches further enrich measurement by 
inferring cognitive engagement from real-time behavioral and 
physiological signals—such as facial expressions, eye tracking, and 
clickstream data—offering fine-grained insights that self-reports miss 
(D’Mello et al., 2017). While these automated techniques require 
robust infrastructure and raise privacy considerations, their 
combination with self-report instruments and observational 
checklists yields the most comprehensive assessment of cognitive 
engagement in flipped classrooms (Barlow and Brown, 2020; Liu 
et al., 2022).

2.3 Eye-movement metrics as cognitive 
load proxies

Eye-tracking may serve as indirect, load-sensitive indicators of 
processing effort under specified task conditions (e.g., text length and 
layout controlled), rather than direct measures of intrinsic or 
extraneous load (Spichtig et al., 2017; Inhoff et al., 2019; Lai et al., 
2013). However, these metrics should not be interpreted as direct or 
unambiguous measures of specific cognitive load components (e.g., 
intrinsic, extraneous), as fixation duration and regressions are 
influenced by multiple factors, including reading skill, task familiarity, 
and item complexity (Becker et al., 2022).

Fixation intensity and regression rate may serve as indirect, 
behaviorally observable indicators of visual effort under specific 
conditions, particularly when text complexity and task demands are 
carefully controlled. Accordingly, in our study FI/RR are interpreted 
as load-sensitive only after statistically controlling for Total word 
count (stem+options) at the attempt level and reporting item-
level checks.

Fixation-based metrics provide a sensitive window on processing 
effort. Longer fixations and more regressions typically signal greater 

cognitive demand or lower reading efficiency; regressions, in particular, 
index comprehension difficulty and, in modeling studies, help predict 
individual differences in reading comprehension (Inhoff et al., 2019; Kim 
et al., 2022; Man and Harring, 2019). Proficiency contrasts are robust: 
efficient readers show shorter/ fewer fixations and fewer regressions, 
whereas struggling readers maintain elevated levels into high school 
(Spichtig et al., 2017). Beyond description, fixation counts and regression 
patterns have been used to estimate item-specific attention and difficulty, 
highlighting how process data discriminate effortless from effortful 
reading in ways outcome scores cannot (Man and Harring, 2019).

For classroom use, practicality matters. Pupillometry can index 
effort but typically requires ≥120 Hz to separate effort-related changes 
from light reflexes (Beatty and Lucero-Wagoner, 2000). By contrast, 
fixation intensity (FI) and regression rate (RR) are stable at 60 Hz, the 
sampling rate of economical trackers (van Gog and Jarodzka, 2013), so 
we focus on these signals here. FI reflects prolonged, high-resolution 
processing of stems and options—sometimes accompanying conceptual 
reorganization in expository text (Ma X. et al., 2023). RR captures 
strategic re-inspection when learners confront contradictions across 
representations (Abt et  al., 2024). Although pupil diameter was 
recorded, it was not analyzed due to expected noise at 60 Hz. 
Embedding FI and RR in flipped-course quizzes yields time-stamped 
evidence of engagement that self-reports and clickstreams miss, 
enabling instructors—and adaptive algorithms—to identify confusion 
and deliver targeted, just-in-time support.

2.4 Bloom demand and item characteristics

Bloom’s new taxonomy categorizes cognitive activities in a 
continuum ranging from remembering to comprehending, applying, 
analysing, and ultimately producing (Krathwohl, 2002). Meta-analytic 
research suggests that flipped courses achieve the greatest professional 
competency improvements when classroom time is allocated to 
application and analysis rather than to rote memorisation (Lundin 
et al., 2018). The extent to which higher-order things provoke more 
visual effort remains ambiguous. A persistent risk is confounding 
conceptual demand with surface reading: higher-order items in MC 
banks are often shorter because they presume context, making raw 
dwell time uninterpretable unless length is controlled. Özdemir and 
Tosun (2025) observed prolonged fixation durations on analysis-level 
questions, but Abt et  al. (2024) found no demand impact after 
adjusting for stem length, underscoring the risk of confounding 
conceptual complexity with textual superficiality. Research utilizing 
multiple-choice formats indicates that higher-Bloom stems are 
frequently intentionally concise, since they assume prior context, 
rendering raw dwell time an unreliable indicator until length is taken 
into account. This dichotomy mirrors flipped sequencing (pre-class 
fundamentals vs. in-class application/analysis).

To achieve a discernible contrast while maintaining statistical 
power, we categorize Bloom levels 1–2 (Remember, Understand) as 
low demand and levels 3–4 (Apply, Analyse) as high demand. This 
division reflects the instructional cadence of flipped classrooms—
fundamentals before class versus in-depth exploration during class—
and aligns with systematic evaluations categorizing levels 3–4 as 
“higher-order cognition” (Zainuddin and Halili, 2016). By examining 
whether gaze-based effort increases or unexpectedly decreases on 
these higher-order items, we directly investigate the prevalent notion 
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that heightened load-sensitive indicators invariably results in 
prolonged fixation and increased regressions.

2.5 Gender as a exploratory moderator

Minor yet consistent sex differences in eye movement behavior 
can skew demand or accuracy estimates if not properly managed. 
Gabel et al. (2025) demonstrate that eye-tracking uncovers teachers’ 
implicit gender biases—pre-service teachers fixate more on female 
students in ways that mirror their IAT-measured attitudes—while 
Argunsah et al. (2025) reveal that female medical students exhibit 
stronger visual learning preferences and higher GPAs, suggesting 
gendered differences in attention and performance. Meta-analyses 
report small, task-dependent sex differences (women: slightly longer 
fixations/more regressions; men: faster scanning at comparable 
accuracy). Given our unbalanced cohort (≈ 76% female), Gender is 
treated as a covariate; all moderation is exploratory.

2.6 Development of research questions

Current learning analytics roadmaps emphasize the integration of 
multimodal, fine-grained process data—such as eye tracking, keystroke 
logging, and physiological sensors—to complement traditional outcome 
measures (D’Mello et al., 2017). These frameworks highlight a paradigm 
shift toward real-time, data-informed personalization in digital learning 
environments, where actionable insights are derived not only from what 
learners answer but also from how they engage, hesitate, or struggle 
during task performance. Guided by the preceding review, the present 
study addresses four interrelated questions concerning cognitive 
demand, visual engagement, performance, and learner characteristics.

2.6.1 Research questions (model-explicit)
We study trial-level relations among Bloom demand (High vs. 

Low), two gaze metrics—Fixation Intensity (zFI) and Regression Rate 
(zRR)—and Accuracy, while statistically controlling item text length 
with TotalWC_z (z-scored word count of stem+options). Gender is 
included as a covariate and all gender findings are exploratory. 
Grounded in the flipped-learning context and prior evidence that 
fixation duration and regressions can index processing effort under 
appropriate controls, we asked four questions:

2.6.1.1 Research question 1 – demand and gaze-based 
effort

Do higher-order items (Apply/Analyse) elicit greater visual effort 
than lower-order items (Remember/Understand) once item length is 
taken into account? Visual effort is operationalized by Fixation 
Intensity (FI)—total dwell time on stem + options—and Regression 
Rate (RR)—the proportion of backward saccades. This analysis will 
determine whether higher cognitive demand is reflected not only in 
eventual correctness but also in the moment-by-moment allocation of 
visual attention during task performance.

2.6.1.2 Research question 2 – gaze-based effort and 
performance

RQ2 (Gaze-based effort → performance). Do FI and RR, above and 
beyond Bloom demand and Total word count (stem + options), predict 

the probability of answering an item correctly? This approach helps 
disentangle the effects of genuine conceptual challenge from other 
item features (e.g., text length or surface layout).

2.6.1.3 Research question 3 – objective versus subjective 
load

RQ3 (Objective vs. subjective effort). To what extent do block-level 
self-reports of mental effort (SR_LOAD) align with objective, trial-level 
gaze indicators (FI, RR) and block accuracy? This approach allows us 
to compare fine-grained, moment-by-moment gaze data with learners’ 
retrospective, aggregate perceptions of effort for each block, 
highlighting the strengths and limitations of each 
measurement strategy.

2.6.1.4 Research question 4 – exploratory gender check
Do females and males differ in average FI or RR, and does gender 

moderate the relation between FI and success? Given the small and 
imbalanced subsample, all gender analyses are treated as exploratory.

These questions were addressed with crossed mixed-effects 
models at the attempt level (trials nested within both students and 
items). Length was modeled with a z-standardized TotalWC covariate; 
item-level word-count diagnostics are provided in the Supplement.

3 Method

3.1 Participants and ethical procedures

Forty-five undergraduate volunteers (29 women, 16 men; M 
age = 20.4 years, SD = 1.2) enrolled in an English-medium business-
skills course (Organizational Behavior) at a research-intensive 
university took part in the eye-tracking study. After the data cleaning, 
we left 34 with analysable record. All participants were familiar with 
flipped classroom instruction through previous module experiences, 
but none had prior exposure to eye-tracking technology. Gender was 
included as a covariate primarily to control for known differences in 
eye-movement patterns, as prior research has shown that gender can 
influence fixation duration and regression rates. Due to our small 
sample size and unbalanced gender distribution, all findings related 
to gender should be  interpreted as exploratory and hypothesis-
generating rather than confirmatory. Participation was elective and 
rewarded with course credit plus shopping coupons (≈ US$15) if 
students completed at least three of the scheduled laboratory sessions. 
The institutional review board approved all procedures (Ref. 2023-
EC134-2324). Students signed written consent that described data 
uses, anonymity safeguards, and their right to withdraw at any time 
without penalty. All data were de-identified at source and analysed 
only in aggregate, in accordance with the Standards for Educational 
and Psychological Testing (American Educational Research 
Association, American Psychological Association, & National Council 
on Measurement in Education, 2014).

3.2 Course context, session structure, and 
multiple-choice bank

This course is a second-year core module on organisational 
behavior delivered in a flipped format. Before each contact session, 
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students studied a chapter in the McGraw-Hill Connect e-book, 
short screencasts, and self-check quizlets. During the 11-week 
laboratory phase that forms the present dataset, students attended 
weekly 30-min eye-tracking blocks scheduled immediately before 
the regular lesson. Each block comprised five Bloom-coded 
multiple-choice (MC) questions (one remembers, two understand, 
one apply, one analyse) drawn without replacement from an expert-
reviewed bank of 55 items. The stems tested the chapter of the week; 
distractors targeted common misconceptions identified in 
earlier cohorts.

Two instructional designers first classified every item according 
to the revised Bloom taxonomy: inter-rater κ = 0.82 (96% agreement). 
To maximize statistical power in the mixed-models analysis, we later 
collapsed the four categories into Low-Demand (remember + 
understand) and High-Demand (apply + analyse). Power analysis was 
conducted prior to data collection using the variance components 
observed in a pilot sample. With a projected intraclass correlation 
coefficient (ICC) of approximately 0.20, the planned 320 item attempts 
were estimated to provide 80% power to detect medium fixed effects, 
given the observed intraclass correlation. This design deliberately 
maximized within-subject contrasts while recognizing the trade-off in 
generalisability due to a modest N for demographic 
subgroup comparisons.

3.3 Apparatus and area-of-interest (AOI) 
definition

Eye movements were recorded with a Tobii Pro Nano eye tracker 
(60 Hz; manufacturer-reported accuracy < 0.4°) mounted below a 
14-inch laptop display (1,920 × 1,080 px). Each session began with a 
five-point calibration; data collection proceeded only when the 
average gaze-position error was ≤ 0.8°, otherwise calibration 
was repeated.

Items were presented in a fixed HTML layout. Using Tobii Pro Lab 
v1.204, we  drew non-overlapping rectangular AOIs that were 
coextensive with each on-screen component: the stem and the five 
options (A–E). AOI coordinates were held constant across items. 
Fixations were attributed to the AOI entered at the first in-bounds 
sample; fixations that straddled boundaries were assigned to the 
recipient AOI at entry. Transitions between successive fixations 
located in different AOIs were logged to characterize navigation 
among question components (e.g., stem ↔ option back-tracking).

3.4 Event parsing

Fixations and saccades were parsed with Tobii Pro Lab’s 
dispersion-based algorithm (dispersion threshold = 30 px; minimum 
fixation duration = 60 ms). These settings are reported once here to 
avoid duplication elsewhere.

Item characteristics and text-length control.
Item word-counting and covariate. To disentangle conceptual 

demand from surface reading, we operationalized item length at three 
levels: StemWC (stem words), OptionsWC (sum across retained 
options), and TotalWC = StemWC + OptionsWC. Word counts were 
computed on the rendered HTML (whitespace-delimited tokens), 

then merged back to trial records. For modeling, TotalWC was 
z-standardized across attempts (TotalWC_z) and entered as a covariate 
in all primary models.

Item-level check. Because length is an item property, we compared 
per-item means (each QuestionID counted once) between Low- vs. 
High-Bloom items using Welch tests. Effects were small and not 
statistically significant at the item level; for transparency we report 
Low/High means, High–Low differences, and t (df), p in 
Supplementary Table S1. Given attempt-level differences and to 
be conservative, TotalWC_z is retained as a control in the primary 
mixed-effects analyses.

Pre-registration / power note. The planned ≥300 attempts with 
ICC ≈ 0.20 were expected (Monte-Carlo) to provide ~80% power to 
detect medium fixed effects (β ≈ 0.35 SD). Length control does not 
change this power calculation but reduces bias in the Bloom coefficient.

3.5 Self-report instruments

Immediately after each eye-tracking block, students completed a 
four-item, 5-point Likert checklist adapted from the NASA-TLX 
mental-effort dimension and the Paas and Van Merriënboer (1994) 
single-item scale:

“How much mental effort did you  exert to understand 
the questions?”

“How difficult were the underlying concepts?”
“How complex were the questions?”
We adapted three block-level prompts (5-point Likert) from the 

NASA-TLX mental-effort dimension and Paas & Van Merriënboer’s 
single-item index. The self-reported cognitive-load index (SR_
LOAD) is the mean of the three items (α = 0.86). We acknowledge 
that NASA-TLX does not separate intrinsic from extraneous load; 
our choice prioritized brevity and ecological validity during weekly 
labs. In line with reviewer guidance, we treat SR_LOAD as a coarse, 
block-level comparator to objective gaze signals rather than as a 
multidimensional load diagnostic; future work should add 
instruments such as the Cognitive Load Scale for load-type 
decomposition. Self-report ratings were collected at the block level to 
reduce participant burden and better reflect the overall visual effort 
required for each 5-item set, recognizing that this approach limits the 
per-item, fine-grained correspondence with gaze-based indicators 
but maintains ecological validity for classroom settings. While our 
self-reported cognitive load index (SR_LOAD) was adapted from 
established scales, it does not differentiate between intrinsic and 
extrinsic cognitive load, as do more recently developed instruments 
such as the Cognitive Load Scale. Future studies should incorporate 
these validated tools for finer-grained analysis of cognitive load types 
in educational settings.

3.6 Eye-movement metrics

We computed two load-sensitive gaze measures per attempt by 
summing across stem and options AOIs: Fixation Intensity (FI)—total 
dwell time (ms); and Regression Rate (RR)—the proportion of 
backward saccades relative to total saccades. To reduce leverage of 
extreme scan-paths, both metrics were winsorised at the 98th 
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percentile, then z-standardized within participant (grand-mean = 0, 
SD = 1) to remove baseline speed differences. Saccade-velocity and 
pupil signals were exploratory and are not analysed due to known 
noise at 60 Hz.

Following prior work, we treat Fixation Intensity and Regression 
Rate as “load-sensitive” metrics: longer fixations often reflect deeper 
semantic processing or greater integrative demand, and more 
regressions tend to accompany ambiguity or inconsistency (Spichtig 
et al., 2017; Inhoff et al., 2019; Lai et al., 2013; van Gog and Jarodzka, 
2013). These associations are context-dependent, influenced by text 
complexity, prior knowledge, reading skill, and task design (Becker 
et al., 2022; Becker et al., 2023). Notably, when items differ in length 
or layout—as in this study—Fixation Intensity may not cleanly index 
load-sensitive indicators. We therefore interpret these measures as 
indicators of processing effort when task characteristics are held 
constant, while cautioning that they are not direct, unambiguous 
measures of load-sensitive indicators. Their validity as proxies hinges 
on controlling extraneous factors and aligning use with the empirical 
contexts in which they were originally validated (e.g., Lai et al., 2013; 
Spichtig et al., 2017).

3.7 Data structure and analytic power

After excluding 12 trials with >30% data loss, the analytic file 
comprises 320 item attempts completed by 34 students across 55 items 
(median = 9 attempts per learner). The crossed structure yields most 
precision from the large number of level-1 observations. This structure 
is well suited for multilevel models, which gain precision primarily 
from the number of level-1 (item) observations rather than the 
number of level-2 (person) units (Barr et al., 2013).

Post-hoc power analysis (reported in Methods, Section 3.6) 
indicates that, with the observed intraclass correlation coefficient 
(ICC ≈ 0.20), this design provides >80% power to detect medium-
sized fixed effects (β ≈ 0.35 SD, OR ≈ 1.4) for our primary gaze 
metrics. However, subgroup analyses (e.g., gender interactions) and 
detection of small effects remain underpowered, as expected with 
modest N. We  therefore interpret  all subgroup and interaction 
findings as exploratory and hypothesis-generating, not confirmatory.

3.8 Analysis plan

All predictors were grand-mean centered. Fixation Intensity (FI) 
and Regression Rate (RR) were winsorized at the 98th percentile and 
standardized within participant (zFI, zRR). TotalWC_z denotes the 
z-scored total word count of each item (stem + options) and was 
included as a covariate in all primary models.

RQ1: Demand → gaze-based effort. We  estimated two linear 
mixed-effects models in which zFI and zRR were the dependent 
variables. Fixed effects were Bloom demand (High vs. Low; effects-
coded ±0.5), Gender (male = 1), and TotalWC_z. Each model 
included crossed random intercepts for Student and Item to account 
for clustering of attempts within persons and questions.

	

=β +β +β
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ij 0 1 ij 2 j
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TotalWC_z u u

RQ2: Gaze-based effort → success. Item-level correctness (0/1) 
was modeled with a binomial logit generalized linear mixed-effects 
model. Predictors were zFI, zRR, Bloom demand, Gender, and 
TotalWC_z, with crossed random intercepts for Student and Item. An 
exploratory zFI × Gender term tested moderation; given limited 
power, this interaction is interpreted cautiously while the main 
Gender effects are retained in the fixed-effects set.
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RQ3: Objective vs. subjective load. Because self-reported mental 
effort (SR_LOAD) was collected at the block level, trial data were 
aggregated to Student × Block (mean zFI, mean zRR, and block 
accuracy). Associations were summarized with Pearson correlations 
and Fisher-transformed 95% confidence intervals for the pairs SR_
LOAD × mean zFI, SR_LOAD × mean zRR, and SR_LOAD × 
accuracy.

Estimation and inference. Linear mixed models were fitted with 
lme4/lmerTest using REML = FALSE for comparability; denominator 
degrees of freedom followed the Satterthwaite approximation. The 
GLMM was estimated by Laplace approximation (optimizer bobyqa, 
maxfun = 2 × 10^5). For LMMs we report unstandardized coefficients 
(β), standard errors, 95% CIs, and random-effect variances; for the 
GLMM we  report odds ratios with 95% Wald CIs in addition to 
variance components. Potential singular fits (near-zero random-effect 
variance) are flagged and interpreted with caution. Robustness was 
further evaluated via 2,000 non-parametric bootstraps on fixed-
effect estimates.

Software and reproducibility. All analyses were conducted in R 
(version [fill in]; R Core Team), using the following packages: lme4 for 
mixed models (Bates et al., 2015), lmerTest for Satterthwaite degrees 
of freedom (Kuznetsova et al., 2017), dplyr for data manipulation 
(Wickham et al., 2023), and effsize for standardized mean-difference 
estimates. Exact package versions and the R session details are 
reported in Supplementary S5 (Computing environment). Replicable 
model formulas are given in Section 3.6; code to re-run the models is 
supplied in the Supplement.

Descriptive statistics for attempt-level zFI, zRR, and accuracy by 
Bloom level appear in Table 1. Item-level length characteristics and 
Welch tests are provided in Supplementary Table S1.

3.9 Rationale for the gender term

Small but systematic gender differences in reading and STEM 
eye-movements have been reported (e.g., slightly longer fixations and 
more regressions for females), potentially confounding demand effects 
(Zhan et al., 2020; Huang and Chen, 2016). Women typically show 
slightly longer fixations and more regressions, whereas men scan more 
quickly while achieving comparable accuracy. We therefore include 
Gender (male = 1) as a covariate in all primary models to absorb 
speed/strategy differences. Given the unbalanced sample (26F, 8 M) 
and Monte-Carlo power ≤5% for small interactions under our 
variance structure, all gender findings—including zFI × Gender—are 
labeled exploratory. Gender here is included primarily as a covariate 
to control for known speed-accuracy trade-offs.
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TABLE 2  Linear mixed-effects models for gaze metrics (zFI, zRR) controlling total word count.

Outcome Predictor β SE t df (Satt.) p

zFI ItemType (High vs. Low) −0.119 0.193 −0.614 45.775 0.542

Gender (1 = male) −0.779 0.244 −3.191 33.613 0.003

TotalWC_z (per 1 SD) −0.232 0.077 −3.002 46.791 0.004

zRR ItemType (High vs. Low) −0.101 0.133 −0.764 291.590 0.446

Gender (1 = male) −0.314 0.180 −1.748 31.346 0.090

TotalWC_z (per 1 SD) −0.025 0.053 −0.476 301.166 0.635

Crossed random intercepts for students and items. Fit—zFI: AIC 794.6, BIC 820.9, logLik −390.3; random SDs: item 0.487, student 0.543, residual 0.663. Fit—zRR: AIC 903.5, BIC 929.9, 
logLik −444.8; item intercept variance ≈ 0 (singular), student SD 0.294, residual SD 0.940. Predictors grand-mean centred; FI/RR winsorised at 98th percentile and z-scored within participant. 
TotalWC_z = z-scored total word count across stem + options.

TABLE 3  Logistic GLMM predicting item accuracy.

Predictor logit β SE z p OR 95% CI (OR)

z_FI (per 1 SD) 0.262 0.143 1.826 0.068 1.299 [0.981, 1.72]

z_RR (per 1 SD) −0.215 0.149 −1.444 0.149 0.806 [0.602, 1.08]

ItemType (High vs. Low) −0.451 0.446 −1.011 0.312 0.637 [0.266, 1.527]

Gender (1 = male) 0.052 0.334 0.156 0.876 1.053 [0.547, 2.027]

TotalWC_z (per 1 SD) 0.253 0.178 1.419 0.156 1.287 [0.908, 1.825]

Crossed random intercepts for students and items; student variance at boundary (≈ 0). Fit: AIC 405.4, BIC 435.5, logLik −194.7. Odds ratios are exponentiated coefficients with Wald 95% CIs.

4 Results

4.1 Portrait of the dataset

Students attempted 320 items (34 learners; 55 items). At the 
descriptive level (Table 1), higher-order items were answered slightly 
less often and received shorter fixation times (≈0.2 SD lower FI). RR 
and block-level SR_LOAD were very similar across Bloom levels. 
These patterns already suggest that text length may be driving dwell-
time differences more than conceptual demand, motivating the 
inclusion of TotalWC in the primary models.

4.2 Research questions 1: Does demand 
alter gaze-based effort once length is 
controlled?

Two LMMs regressed zFI and zRR on Bloom demand (High vs. 
Low), Gender, and TotalWC_z, with crossed random intercepts for 
Student and Item. When FI and RR were modeled from Bloom 
demand with TotalWC and Gender as covariates (random intercepts 
for students and items), item length—not Bloom level—was the 
reliable predictor of FI. Longer/shorter items were associated with 
correspondingly lower/greater FI (TotalWC term, p = 0.004), and the 
nominal Bloom contrast no longer reached significance after this 
control. RR showed no detectable change by Bloom. Thus, in this 

authentic quiz bank, how much text students had to process mattered 
more for dwell time than whether the item targeted lower- or higher-
order cognition. Full coefficients appear in Table 2.

A note on sensitivity: A stem-only specification (using 
StemWC in place of TotalWC) produced the expected positive 
association between stem length and FI and a small negative Bloom 
contrast, underlining that text-surface features can easily 
masquerade as “demand effects.” Details of this check are reported 
beneath Table 2.

4.3 Research questions 2: Do gaze metrics 
predict correctness?

A logistic GLMM with crossed random intercepts (Student, Item) 
predicted accuracy from FI, RR, Bloom demand, and gender (Table 3).

A logistic GLMM (logit link) predicted Accuracy from zFI, zRR, 
Bloom demand, Gender, and TotalWC_z, with the same random-
effects structure (Question random intercept retained; Student 
random intercept at boundary). The accuracy model (GLMM) 
indicated a clear tendency: items on which students fixated longer 
were more likely to be answered correctly (≈1.30 × odds per +1 SD 
FI), whereas more frequent regressions tended to accompany lower 
odds (≈0.81 × per +1 SD RR).

With this small sample these effects approached but did not meet 
conventional significance levels; nevertheless, effect sizes were 

TABLE 1  Descriptive statistics by Bloom demand (attempt-level).

Demand level zFI Mean ± SD zRR Mean ± SD Accuracy mean ± SD

Low (Bloom 1–2) 0.04 ± 0.99 0.02 ± 0.99 0.35 ± 0.48

High (Bloom 3–4) −0.15 ± 1.02 −0.06 ± 1.06 0.31 ± 0.47

Attempt-level means (FI and RR are within-participant z-scores). Sample: 320 attempts, 34 students, 55 items.

https://doi.org/10.3389/feduc.2025.1639273
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wang et al.� 10.3389/feduc.2025.1639273

Frontiers in Education 09 frontiersin.org

educationally meaningful and consistent with theory. Bloom demand, 
gender, and length did not add unique predictive value once FI and 
RR were in the model. Notably, the student random intercept sat on 
the boundary while the item intercept was substantial, indicating that 
items varied more in difficulty than students varied in overall 
performance. See Table 3 for model summaries.

4.4 Research questions 3: How do 
objective and subjective load relate?

Block-level SR_LOAD showed near-zero correlations with mean 
FI, mean RR, and block accuracy; Fisher 95% CIs exclude even modest 
associations. In other words, the retrospective “how hard did that 
block feel?” rating did not track the micro-fluctuations captured by 
gaze. This reinforces the value of unobtrusive process signals for 
formative diagnostics. Supplementary correlation estimates appear in 
Supplementary Table S4.

4.5 Research questions 4: exploratory 
gender effects

Males exhibited shorter fixation times on average (faster 
processing) with no reliable difference in RR. Crucially, gender neither 
predicted accuracy nor changed the beneficial slope of FI. Given the 
small and imbalanced male subgroup, these observations are treated 
as controls rather than confirmatory findings. Relevant terms are 
reported alongside the fixed-effect tables.

4.6 Result summary

Contrary to the simple “harder → longer” expectation, higher-
order items did not demand more dwell time once length was 
controlled. Instead, item length was the proximate driver of FI. Yet 
visual effort still mattered: longer fixation tended to help and frequent 
regressions tended to hinder success, pointing to two complementary 
process cues that conventional correctness scores miss. Paired with the 
divergence between self-reports and gaze, these results support the use 
of classroom-friendly eye-tracking as a response-process lens for 
flipped-class diagnostics, while also highlighting the necessity of 
length-matched item banks for clean causal interpretation. Tables 1–3 
and Supplementary Tables (word-count checks; SR_LOAD 
correlations) document the underlying estimates.

5 Discussion

5.1 General discussion

This study adds response-process evidence to flipped-class 
assessment by showing that two simple gaze metrics—fixation 
intensity (FI) and regression rate (RR)—carry complementary 
instructional signals during authentic, pre-class MCQs. In our crossed 
mixed-effects models, longer dwell time tended to help (OR≈1.30 per 
SD), whereas frequent back-tracking tended to hurt (OR≈0.81), while 
block-level self-reports showed near-zero correspondence with either 

gaze metric. Equally important, the apparent “higher-Bloom ⇒ more 
time” intuition did not hold once surface text was considered: with 
total word count (stem+options) entered as a covariate, the Bloom–
fixation association attenuated to non-significance, revealing a 
“harder-but-shorter” design pattern rather than a pure demand effect. 
Together, these findings reframe classroom eye tracking as 
measurement-aware diagnostics: FI and RR are informative when 
surface features are standardized or modeled, and they illuminate 
moment-to-moment engagement that correctness and retrospective 
ratings miss. The small gender speed difference we observed (men 
fixated less without an accuracy penalty) did not alter the fixation–
performance link, suggesting that process-aware feedback rules can 
be applied equitably in similar cohorts.

Practically, the results point to a concrete design protocol for 
future item banks and for scalable analytics: (i) standardize total word 
count in narrow bands; (ii) equalize option lengths and hold the 
number of options fixed; (iii) pre-register TotalWC as a covariate in 
primary models; and (iv) replace block-level self-reports with brief, 
item-level, multidimensional load measures. Under these conditions, 
classroom-friendly 60 Hz trackers can provide response-process 
validity evidence and serve as a “gold reference” to benchmark 
lighter-weight proxies (e.g., response-time distributions, option-
comparison sequences, click/keystroke traces, or privacy-preserving 
webcam gaze approximations). A conservative pathway—
standardized bank → small-class pilots → multi-class validation—can 
move flipped-class diagnostics toward a practical balance of cost, 
usability, and validity, complementing (not displacing) 
human instruction.

5.2 Limitations

We note four limitations:

	(1)	 Surface-text confound (interpretation risk).
The Bloom–fixation link vanished once TotalWC (stem + options) 

was controlled, and TotalWC negatively predicted Fixation Intensity 
(FI). High-Bloom stems were, on average, shorter, so the earlier 
“harder-but-shorter” pattern is best explained by text length rather 
than conceptual demand. Without balancing or adjusting for length/
layout, gaze metrics may misrepresent difficulty. Future work should: 
(a) construct length-matched item pairs within Bloom levels or (b) 
statistically adjust for characters/words and layout complexity; (c) 
include a manipulation check to verify parity before analysis.

	(2)	 Sampling and power (generalizability).
With 34 students and ~320 attempts, trial-level fixed effects were 

estimated with acceptable precision; however, subgroup contrasts (e.g., 
Gender × FI) were under-powered and should be treated as exploratory. 
Replications across courses and institutions—with larger, more balanced 
cohorts—are needed to confirm demographic patterns and strengthen 
external validity. In the present study, gender served primarily as a 
covariate to account for known speed–accuracy differences; all gender-
related inferences remain hypothesis-generating.

	(3)	 Self-report granularity (construct alignment).
Block-level self-reported effort (SR_LOAD) showed near-zero 

correlations with FI/RR, consistent with a level-of-analysis mismatch 
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(block vs. item). To test convergent validity with process data, 
subsequent studies should collect item-level, multidimensional 
cognitive-load ratings (e.g., intrinsic vs. extraneous) and align their 
timing with each response. Where feasible, triangulate with brief, 
low-friction prompts embedded in the quiz flow.

	(4)	 Signals and sampling (measurement scope).
The 60 Hz tracker was sufficient for aggregate FI and regression 

counts (RR) but too coarse for micro-saccades or fine-grained 
pupillometry. We  therefore restrict inference to fixation- and 
regression-based indicators. Replicating with ≥120 Hz devices 
would test robustness when higher-frequency information is 
available. For richer load diagnostics, future work should add 
multimodal signals (e.g., luminance-corrected pupil dilation, 
electrodermal activity) to improve sensitivity while monitoring 
privacy and classroom burden.

5.3 Implications and design suggestions

The analytical strategy—including random intercepts for both 
students and items, and robust estimation of confidence intervals via 
bootstrapping—was specifically selected to address the data’s 
hierarchical structure and mitigate the limitations imposed by a 
modest participant sample. These choices align with current best 
practices for analyzing nested educational data with small to moderate 
samples (Snijders and Bosker, 2012).

This study shows that classroom-friendly eye tracking can yield 
actionable process signals during routine formative work. Scaling such 
use requires plug-and-play integration with LMSs, clear privacy/
consent policies, and—most importantly—validated item banks so 
that adaptive algorithms respond to genuine cognitive demand rather 
than surface features. In near-term classroom practice, gaze can flag 
low-dwell/high-regression episodes for targeted scaffolds during 
pre-class study, while recognizing that reliable triggers require length-
matched items or TotalWC-aware rules.

Because the Bloom–fixation association disappeared once 
TotalWC (stem + options) was controlled—and TotalWC negatively 
predicted fixation intensity—future banks should: (i) standardize 
TotalWC within narrow bands by Bloom level; (ii) equalize option 
lengths and fix the number of options; (iii) pre-register TotalWC 
(and layout features) as covariates; and (iv) replace block-level self-
reports with item-level, multidimensional load prompts to separate 
intrinsic and extraneous load. Practically, gaze metrics remain 
useful when surface features are either balanced by design or 
explicitly modeled.

An economical 60 Hz tracker, or a high-resolution webcam with 
model-based gaze estimation is sufficient for fixation- and regression-
based indicators. Embed the device in the pre-class quiz interface and 
stream two z-scored signals to an analytics microservice: dwell time 
and back-tracking frequency. Flag a potential struggle episode when 
dwell time falls >1 SD below a student’s baseline and regressions rise 
>1 SD above baseline. Trigger just-in-time scaffolds (e.g., “re-read 
stem,” concise glossary, or a worked example) before submission. In 
borderline cases (short dwell without excessive regressions), surface 
low-cost supports (definitions/examples) rather than full hints. For 
finer-grained pupillometry or micro-saccades, consider ≥120 Hz 
devices in future iterations.

Use these pipelines to strengthen response-process validity as 
outlined in the Standards for Educational and Psychological Testing: 
confirm that students attend to the intended elements of higher-order 
items. Pair the gaze assessments with per-item micro self-reports 
(single-tap confidence or perceived difficulty). Joint modeling of 
objective (gaze) and subjective (self-report) evidence will reveal which 
nudges (extra time, hints, recap videos) best close gaps between 
perceived and actual effort and will iteratively refine personalisation 
over semesters.

However, certain compliance and ethical expectations must 
be  taken into considerations. Adopt data-minimisation, local 
processing where feasible, opt-in consent, and transparent learner 
dashboards. Provide instructor controls to disable interventions, 
export diagnostics, and review item-level balance checks. Before real-
time, gaze-informed interventions are deployed at scale, invest first in 
high-quality, standardized item banks and a light-touch analytics layer 
that privileges measurement integrity over automation speed. Careful 
design and staged validation will prevent text-length artefacts from 
being misread as cognitive struggle and will make adaptive support 
both responsible and reliable.

5.4 Future research direction

Future work should implement parallel, length-matched forms at 
each Bloom level—equating word/character count, layout, and option 
length—and counterbalance presentation order across students. A 
preregistered analysis plan should include equivalence tests to 
determine whether Bloom effects remain negligible once TotalWC is 
controlled, alongside re-estimation of Fixation Intensity (R1) and 
Regression Rate (R2) using crossed mixed-effects models. Prospective 
power analyses should be calibrated for small effects and incorporate 
item- and student-level ICCs to ensure adequate precision for both 
fixed and random components.

To evaluate construct convergence at the appropriate grain size, 
block-level self-reports ought to be  replaced with item-level, 
multidimensional prompts (e.g., intrinsic vs. extraneous load, 
single-tap confidence/difficulty). Analyses should prioritize within-
person associations between R1/R2 and self-reports and use ROC and 
precision–recall curves to identify data-driven thresholds for flagging 
“struggle” episodes. Reporting convergent and discriminant validity 
will clarify what each metric uniquely captures and the conditions 
under which it is most informative.

Finally, the field needs evidence for causal impact. We recommend 
randomized A/B experiments or within-student micro-randomized 
trials in which hints, definitions, or worked examples are triggered by 
prespecified R1/R2 thresholds. Primary outcomes should include next-
item accuracy, time-to-mastery, and delayed retention; secondary 
outcomes should track false-positive/negative rates and any latency 
costs to ensure that supports are beneficial and efficient. Decision 
rules (including stopping boundaries) should be  preregistered to 
prevent analytical flexibility.

6 Conclusion

This exploratory study set out to recover what conventional 
flipped-class metrics miss: the moment-to-moment visual effort 
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students expend while answering routine multiple-choice 
questions. Using a classroom-friendly 60 Hz eye tracker and 
crossed mixed-effects models, we found that fixation time and 
regression frequency behave as complementary process signals—
longer dwell time tends to support success (OR ≈ 1.30 per +1 SD), 
whereas frequent back-tracking tends to undermine it (OR ≈ 
0.81)—while block-level self-reports add little diagnostic value. 
Critically, once total word count across stem + options (TotalWC) 
is entered as a covariate, the high- vs. low-Bloom difference in 
fixation time attenuates to non-significance, indicating that the 
earlier “harder-but-shorter” pattern is largely a surface-text effect 
rather than a pure demand effect. Gender introduced a small 
speed difference but neither predicted accuracy nor moderated 
the fixation–performance link, supporting equitable interpretation 
of the gaze-performance association in this sample.

Taken together, these results reframe classroom eye tracking 
as a measurement-aware diagnostic: gaze metrics are informative 
when surface features are standardized or explicitly modeled. 
Practically, we recommend that future MCQ banks (i) standardize 
total word count in narrow bands, (ii) equalize option lengths and 
hold the number of options fixed, and (iii) pre-register TotalWC 
as a covariate in primary models. With these controls in place, 
fixation intensity and regression rate provide distinct, actionable 
cues (productive deep processing vs. struggle/inefficient 
re-inspection) for formative diagnostics. This positioning also 
clarifies the contribution of the present work: not a universal 
Bloom effect on gaze, but conditions under which gaze signals can 
be  valid and useful for flipped-class assessment and for 
benchmarking affordable proxies (e.g., response-time 
distributions, option-comparison sequences).

A conservative next step is a “standardized bank → small-class 
pilots → multi-class validation” programme: replicate with length-
matched, layout-matched items, expand to larger and more balanced 
cohorts, and test lightweight multimodal signals alongside item-level 
self-reports to confirm that the observed patterns are not artifacts of 
surface features or sampling noise. Even as a pilot, however, the 
workflow charts a feasible pathway from 60 Hz gaze capture to 
actionable diagnostics in flipped learning, advancing response-
process validity without consuming class time and pointing toward 
AI-assisted personalisation that complements—rather than 
replaces—human teaching.
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