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Introduction: Many studies have demonstrated that Machine Learning
algorithms can predict students’ exam outcomes based on a variety of student
data. Yet it remains a challenge to provide students with actionable learning
recommendations based on the predictive model outcome.

Methods: This study examined whether actionable recommendations could be
achieved by synchronous innovations in both pedagogy and analysis methods.
On the pedagogy side, one exam problem was selected from a large bank of 44
isomorphic problems that was open to students for practice 1 week ahead of
the exam. This ensures near-perfect alignment between learning resources and
assessment items. On the algorithm side, we compare three Machine Learning
models to predict student outcomes on the individual exam problems and a
similar transfer problem, and identify important features.

Results: Our results show that 1. The best ML model can predict single exam
problem outcomes with >70% accuracy, using learning features from the
practice problem bank. 2. Model performance is highly sensitive to the level of
alignment between practice and assessment materials. 3. Actionable learning
recommendations can be straightforwardly generated from the most important
features. 4. The problem bank-based assessment mechanism did not encourage
rote learning and exam outcomes are independent of which problems students
had practiced on before the exam.

Discussion: The results demonstrated the potential for building a system that
could provide data driven recommendations for student learning, and has
implications for building future intelligent learning environments.

KEYWORDS

Explainable Machine Learning, SHAP value, predictive analysis, assessment outcome,
actionable recommendation

1 Introduction

Predicting students’ outcomes on future assessments from students learning data using
Machine Learning (ML) has been one of the major focuses of learning analytics and educational
data mining (Arizmendi et al., 2022; Papamitsiou et al., 2020; Tomasevic et al., 2020). While
the immediate goal of predictive analysis is to identify students potentially at risk of failing the
test, the overall objective has always been to provide students with targeted interventions to
improve assessment outcomes and avoid failing. Therefore, an ideal predictive model would
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not only predict likely outcome, but also make actionable learning
recommendation for students to improve the outcome. In particular,
most students would benefit from three types of recommendations:
Am I ready for the exam? What should I study to get ready for the
exam? How should I study to get ready for the exam? Moreover,
predictive models could also provide instructors with information on
how interventions are contributing to students assessment
performance, allowing for data driven improvement to interventions.

However, as discussed in detail below, many existing predictive
ML models have limited ability in translating prediction outcome into
actionable interventions or recommendations (Liu et al., 2023),
especially regarding what and how to study for an exam. We believe
that overcoming those limitations requires innovations in both
pedagogy and analytical methods at the same time. In this paper
we present a case where an innovation in assessment method, based
on large isomorphic problem banks, combined with Explainable
Machine Learning (xML), has the potential to significantly improve
the ability of ML models to make actionable recommendations on
how students could better prepare for an upcoming exam.

1.1 Existing predictive analysis methods
and their limitations

Existing research on using Machine Learning (ML) methods to
predict students’ course or assessment outcomes utilizes a variety of
data sources including demographic background, academic history,
and log data from learning management systems (LMS). Most models
could predict a dichotomous pass-fail outcome on an entire course or
assessment, with prediction accuracy of 70% or above (Arizmendi
et al., 2022). However, we believe that at least three factors limit the
ability of the ML models to make recommendations on “what to
study” and “how to study”

First, most existing predictive analysis only predict dichotomous
outcome on an entire exam or an entire course. As a result, they are
unable to predict students’ level of mastery on individual topics on a
multi-topic exam, so they cannot make specific recommendations for
the question of “what should I study” Most models could only make
recommendation such as “spend more time on studying will increase
your chance of passing the course””

Second, most predictive analysis research do not account for the
level of alignment between learning resources and assessment
problems. In other words, most existing predictive models are
agonistic to what types problems are being asked on the exam, and
whether students had been exposed to similar problems during
practice. Research on transfer have shown that similarity between
different tasks play a critical role in peoples ability to transfer
knowledge to new context (Novick, 1988), and small differences that
seems trivial to experts in problem context can lead to larger than
expected differences in measured problem difficulty (Fakcharoenphol
et al, 2015). Factors that could potentially impact the level of
alignment between two problems include the concepts and skills being
assessed, the problem type (i.e., multiple-choice, numerical input,
open response), the complexity of the problem solving process (for
example the level of math skills required), and the similarity of the
problem context. Not accounting for the level of similarity between
practice problems and assessment problems could significantly reduce
the reliability of the model’s performance when the instructor uses a
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different set of problems on an exam. More importantly, it limits the
model’s ability to make good recommendations regarding “what
should T study to get ready for the exam,” and to predict when a
student is ready for an exam based on the students’ practice history.

Third, conventional ML models are black-box models that lack
the ability to provide information on how much and in what direction
each factor impact the prediction outcome. ML models generally
out-perform conventional regression-based methods in terms of
prediction accuracy, since impact of students’ learning behavior on
assessment outcome is most likely non-linear (Tomasevic et al., 2020).
Unfortunately, their superior performance came at the cost of
significantly worse explainability compared to regression-based
methods. As a result, they cannot give students meaningful guidance
about what or how to study to improve their exam outcome.

Another form of predictive analysis method is Knowledge Tracing
(KT) models, which can predict students’ probability of correctly
answering a new problem based on students’ performance on prior
problems that assess the same concept or skill [see (Abdelrahman et al.,
2023) for an overview of the field]. However, many KT models include
no or only a small number of data features related to students’ learning
or practice behavior, which limits their ability to provide recommendation
on “how to study” For example, should students browse through as many
practice problems as possible or focus on studying only a couple of
problems? How much time should a student spend on practice problems
to have a noticeable impact on exam performance?

In addition, KT is most suitable for cases where most students
make multiple problem attempts, and the attempts are mostly
authentic, such as intelligent tutoring systems (Mao, 2018) or online
courses with large numbers of for credit homework problems (Pardos
et al., 2013). They are less suitable in situations where students’
problem attempts are more heterogeneous and less authentic. For
example, when students were given a bank of practice problems to
prepare for an exam, many of them may submit random answers just
to access as many problems as possible. The number of attempted
problems could also differ significantly between different students.
Therefore, in the current study we will focus on using ML methods
instead of KT methods as prediction methods.

1.2 Aligning assessment and practice using
isomorphic problem banks

Enabling predictive models to make actionable learning
recommendations require more than isolated improvements in
analysis algorithm. Rather, it requires simultaneous and
complementary innovations in educational technology, pedagogy,
and analysis methods. In particular, pedagogical innovation is needed
for predictive models to account for the alignment between learning
resources, especially practice problems, and assessment problems.

Providing practice problems or practice tests is a common and
effective method for preparing students for upcoming exams. Many
studies have consistently demonstrated that taking practice tests
significantly improves exam performance compared to additional
study without testing, especially when the practice comes with
detailed feedback (Akbulut, 2024; Lipnevich et al., 2024; Polack and
Miller, 2022). A meta-analyses suggests a medium effect size of
practice tests around g = 0.50 across over 48,000 students (Yang et al.,

2021). Specifically, in college level physics, Zhang et al. (2023) showed
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that realistic and earlier practice exams in physics courses promoted
better self-regulated study behaviors and enhanced metacognitive
exam preparation, resulting in improved performance among
undergraduates in challenging physics assessments.

However, on conventional exams, students cannot have access to
the assessment problems up to the time of the exam. As a result,
instructors are constantly faced with a dilemma: if learning and
practice resources are too similar to the assessment problem, then
students will be motivated to rote memorize problem solution. If
learning resources are too different from assessment problems, then
the assessment may not accurately reflect students’ mastery of the
learning resources. Instructors often have difficulty selecting
assessment problems that are “similar but not too similar” to practice
problems. As a result, quantify the similarity between learning and
practice materials and assessment problems and be very challenging.

The rapid recent development of Large Language Models (LLMs)
significantly reduces the time and effort required to write new
problems (Bulathwela et al., 2023; Hwang et al., 2023; Wang et al,,
2022), which enables the authors to implement a new form of
assessment. Assessment problems will be randomly selected from a
large bank of isomorphic problems created with the assistance of
LLM. Isomorphic problems are problems that test the same set of
concepts and share similar solution structures, but contains variation
in solution details and problem context. A more detailed definition
of isomorphic problems used in the current study is presented in
section 2.2.1 The problem bank is open to students for practice prior
to the exam, and students are able to receive targeted feedback to the
problems. All isomorphic problems share largely overlapping
learning objectives. The hypothesis behind this new approach is that
when the problem bank is large enough, rote memorization of
problem solutions becomes an extremely inefficient, largely infeasible
strategy, and students will be more motivated to understand the
concepts instead.

Under this new approach, practice problems and assessment
problems are nearly perfectly aligned with each other in terms of
concepts and skills assessed, format of the problem, and the overall
complexity of the solution. Examples of two isomorphic problems

10.3389/feduc.2025.1632132

used in the current study are shown in Figure 1. As can be seen in the
example, the problem context and the details of the solution are
similar but contain meaningful differences such as direction of
motion of objects to prevent rote memorization. As a result of this
alignment, ML models could predict students” assessment outcome
on a single problem on the exam, using data collected from students
practicing on the corresponding problem bank. Therefore, this new
assessment scheme overcomes the first and second barrier towards
making learning recommendations at the same time. Meanwhile,
results of the ML model are also needed to validate the hypothesis
behind this novel assessment method. In particular, one need to
examine would those students who happen to have practiced on the
same problem that was selected on the exam have an unfair advantage
over other students. The current study employs explainable ML
methods to both overcome the third barrier towards making
actionable recommendation, and to examine the validity and fairness
of the new assessment method, by identifying the most influential
factors that impact student performance.

1.3 Explainable Machine Learning with
SHAP value

To overcome the “black-box” nature of traditional ML models,
we use Explainable Machine Learning (xML) models, which have
several advantages over traditional ML methods. One key advantage
is that xML models can effectively identify important features among
a large number of potentially relevant features, and reveal relation
between feature value and prediction outcome, making the model’s
decision-making process more interpretable and actionable.

Specifically, we use the SHAP (SHapley Additive exPlanations)
to quantify the feature importance (Lundberg and Lee, 2017). The
SHAP framework provides a principal approach for distributing the
prediction among all features based on their individual contribution
to the outcome (Lundberg et al., 2020). By computing SHAP values,
it quantifies the average contribution of each feature across all
possible subsets of features, offering a comprehensive view of their

Practice Only

You are designing a rudimentary pinball
machine, and you want your targets to
activate whenever the ball pushes the spring
back to s = 2.9 m. The target naturally
rests at Sp = 1.8 m. The pinball has a mass
m = 1.8kg. Based on your design, you
know that the angle of your playfield will be
6 = 15°, and the ball will travel d =
0.9 m from the starting point below at a
speed of v = 1.6m/s. For simplicity,
assume the pinball is not rolling and just
sliding on the smooth field without friction.
What is the spring constant k required in
order for it to activate the target assuming
the ball comes to a stop? Round your
answer to 2 decimal places.

before

pinball

W

FIGURE 1

the assessment.

Example of isomorphic problems. The two problems involve identical physics principle, but differ in the detailed problem context (ball vs. block),
direction of motion, and the known and unknown variables. Left: a problem used only in the practice. Right: a problem used in both practice and on

Practice and Assessment
before

A block of some mass m slides down
from an inclined frictionless ramp that
forms an angle 0 = 44.7° with the
ground. A long spring with a spring
constant k = 502.28 N/m and a
relaxed length sq = 1.28 m is situated
at the base of the ramp. The block
started at a distance d = 1.8 m from
the tip of the relaxed spring, with an
initial velocity of vy =9.37m/
s down the ramp. It compressed the
spring to a length of s
0.57 m before temporarily coming to
a stop. What is the mass of the block?
Round your answer to 2 decimal
places.
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influence on the prediction (Lundberg and Lee, 2017). It provides a
dimensionless measure of feature importance, where the absolute
magnitude of a SHAP value represents the strength of a feature’s
relative impact on the prediction, and its sign (positive or negative)
corresponds to the direction of the feature’s impact on the predicted
outcome. SHAP values are scaled consistently within a model,
allowing for easy comparison of relative feature importance. They
also help uncover feature interactions by showing how the presence
or absence of one feature affects the impact of another. If no specific
feature contributed to the prediction, the SHAP value would reflect
the expected value of the model, which is the baseline prediction.
We used waterfall plots and dependence scatter plots to illustrate the
impact of individual features on the predicted outcome, providing
insights into how the specific feature contributes to the model
prediction (Lundberg et al., 2020).

1.4 Study design and research questions

This study tests a prototype case of the isomorphic problem bank
assessment, by providing students in a University introductory level
physics course with one isomorphic problem bank as practice
material 1 week prior to an upcoming mid-term exam. Providing
practice exam problems is a common and effective practice to help
students prepare for exam (Fakcharoenphol et al., 2011; Zhang et al.,
2020). The exam contains one problem that is directly selected from
the problem bank, and a second problem that is not from the bank
but similar to the first one. We then built a predictive ML model
based on learning features extracted from students’ practice behavior,
to answer the following four research questions:

RQI. Can ML models use predominantly data from students
practicing with an isomorphic problem bank to predict students’
outcome on the exam problem selected from the same bank?

Hypothesis 1: The prediction accuracy of ML models relying
predominantly on student practice data will be comparable to
existing models (>70%). Justification: The high level of alignment
between practice problems and assessment items should
be sufficient in ensuring a high level of prediction accuracy.

RQ2. How well can the same data predict students” performance
on a similar problem not chosen from the problem bank?

Hypothesis 2: Prediction accuracy for student performance on a
similar problem will be slightly lower than on the Original
problem bank problems. Justification: The alignment between a
similar problem and practice problems is weaker than with the
original problem, resulting in reduced prediction accuracy.

RQ3. Which learning features from students’ practice data are
most important in predicting students’ exam outcome?

Hypothesis 3: Certain learning features will have much higher
contribution to the prediction outcome than others, as indicated
by their SHAP values. Justification: Explainable Machine Learning
models are capable of identifying features of high importance to
the prediction outcome.
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RQ4. Does viewing identical or highly similar practice problems
significantly increase assessment outcome compared to viewing
less similar isomorphic problems?

Hypothesis 4: Viewing identical or highly similar problems will
have either a minor or no impact on the assessment outcome.
Justification: The size of the isomorphic problem banks and the
level of variation between problems should be sufficient to
discourage rote memorization of the problem answer or the
specific solution. Therefore, whether students had practiced on
items that are identical or highly similar to the exam items should
not be a key factor predicting their exam performance.

2 Methods
2.1 Instructional condition

The study was implemented in a calculus-based university
introductory-level physics class during Spring 2023. The class had
328 registered students, of which 26% were Female, 32% were under-
represented minority in STEM, 17% were first generation students,
and 21% were transfer students from 2-year institutions. The course
was taught in a blended instruction mode: students were instructed
to view pre-recorded lecture videos and conduct online homework
using the Obojobo online learning platform (Center for Distributed
Learning, n.d.).

A total of three mid-term exams were administered throughout
the semester. The exams were administered synchronously during
class times with an option to take the exam remotely with video
camera on per student request. Each exam is conducted as an auto-
graded Quiz on the Canvas Learning Management System
(Instructure Inc., n.d.). All problems were either multiple-choice or
numeric answer problems. All numeric answer problems had
randomized variable numbers. Students were allowed 50 min to
complete each exam.

2.2 Study design

2.2.1 Creation of isomorphic problem bank

There are multiple different definitions of “isomorphic” problem
pairs. For the current study, we define isomorphic problems as
problems that are being created from a common “seed” problem by
applying a set of isomorphic variations. Each isomorphic variation
should: (1) preserve the main concepts and physics principles required
to solve the problem, (2) preserve the overall complexity of the
solution, such as the number of steps or the type of mathematical
operation, and (3) introduce one or more minor changes to the
solution that are less likely to affect its difficulty, such as flipping the
direction of an applied force that will result in changing a “+” sign to

« »

a sign in the solution.

The isomorphic problem bank in the current study is created
according to the following four step process:

Step 1: Creating a ‘seed” problem. A human expert first writes a
“seed problem” that would serve as the basis of the isomorphic
problem bank, which involves the learning objective(s) that the bank

intends to assess.
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Step 2: Determine Acceptable Variations. The human expert then
determines a number of variations to the seed problem that could
be seen as isomorphic. In the current study, the isomorphic variations
come in three hierarchical levels:

a Major variation: change to the problem context, such as
replacing a block sliding down a ramp to a human riding a bike
up a hill.

b Minor variation: change of smaller details such as the direction
of motion of an object or direction of a force.

¢ Rotation of variable: rotate the known and unknown variables
for a problem.

A second human expert then reviews the variation, identify ones
that could potentially result in a significant shift in solution complexity,
and modifies the problem bank in collaboration with the first
human expert.

Step 3: Generative Al Assisted Problem Text Writing: Writing of
isomorphic problem text is assisted by Generative Pre-trained
Transformer 3 (GPT-3) in completion mode (Dale, 2021). To generate
the problem text for one isomorphic problem variation, the GPT model
is first provided with a simple prompt capturing the essence of the seed
problem, followed by the seed problem text itself as an example. A new
prompt describing the first isomorphic variation is appended to the
input text, creating a “prompt-problem-prompt” structure. When
submitted, GPT-3 attempts to generate the first isomorphic variation
problem text according to both the seed prompt-problem text pair, and
the isomorphic variation prompt. The problem author then reviews the
generated problem text and makes edits when necessary and appends
a new variation prompt after the previously generated text. The process
is repeated 5-7 times for each minor variation.

Step 4: Creation of problem figures and Solution Formula: Problem
diagrams are being generated manually in scalar vector graphics
(SVG) format, using a free open-source tool named Inkscape.
Formulas for calculating the correct answer for each problem are
being generated with the assistance of Wolfram Alpha.

The final isomorphic problem bank contains 4 Major variation,
each with 2 Minor variations, each with 5-6 Rotation of variables,
with a combined total of 44 isomorphic problems. The problem bank
assesses students’ ability to solve problems related to the conservation
of mechanical energy.

10.3389/feduc.2025.1632132

2.2.2 Exam design and implementation

The study was conducted on the second mid-term exam, which
contained 9 problems in either multiple choice or numerical input
formats. Question 6 was directly selected from the isomorphic problem
bank, which we will refer to as the Original problem. Question 6 asks
about an object moving up or down an inclined ramp with the presence
of a spring. Students were presented with one of two versions of
Question 6, Q6_V1 and Q6_V2. V1 involves an object moving up the
ramp, and V2 involves the object moving down the ramp. The symbolic
solution for both versions is identical. Q6 was a numerical input problem
for which students must compute the numeric value of the unknown
variable from a set of known variables. The numerical values of the
known variables were selected from 20 sets of randomly generated values.

Question 4 was not present in the problem bank, but can
be solved with identical process and identical set of concepts as
problems in the problem bank. As shown in Figure 2, Question 4 asks
about a person doing bungee jumping under a bridge, and the two
versions of Q4 refers to the person moving either up or down in
direction. The problem context of Q4 can be seen as an isomorph of
that of Q6, with the only difference being the absence of a ramp. As
a result the symbolic solution of Q4 was very similar but
mathematically slightly easier that of Q6. We will refer to Question 4
as the Transfer problem. All other settings of Question 4 are identical
to that of Question 6.

Approximately 1 week prior to the exam, the instructor made an
announcement to the class on the topic of each problem to appear on
the upcoming exam as a review guide. The announcement explicitly
pointed out that one problem would be directly drawn from the
practice problem bank that students have access to, and another
problem will be similar to the problems in the practice problem bank.
The entire problem bank was made available to students together with
the announcement. Students can make an infinite number of attempts
on the problem bank, and on each attempt students could receive 2
problems randomly selected from 2 different Major variations.

2.3 Extraction of learning features

From the log data collected from students’ interaction with
practice problem bank, we engineered 10 features related to students’
practice behavior on the isomorphic practice problem bank, most of

Before After

) A bungee jumper that weighs m = 84.72kg is jumping with an

lo

<L
"

4

elastic bungee cord attached to his feet. When the bungee cord first
reaches its relaxed length of [, = 10.17m, the jumper's downward
velocity is v = 22.66 m/s. When the bungee cord extends to a
maximum length of [ = 21.69 m, the jumper temporarily stops
and then starts to bounce back. What must be the spring constant of
the bungee cord if we can model the cord as an ideal spring?
Neglect air resistance and other types of friction and retain your
answer to 2 decimal places.

FIGURE 2

Example of transfer problems (Question 4) used on the assessment, showing a bungee jumper diving down. The jumper and bungee cord system can
be seen as isomorphic variation of the block and spring system in the Original problem.
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which can be categorized to the following four categories, and
explained in Table 1:

Effort: Measure of both quantity and quality of students’
practice process.

Planning: How early did students start their practice effort relative
to the exam.

Rote Learning: Whether students had the opportunity to rote learn
the solution to the exam problem from identical or similar problems.
Those features are included to answer RQ4.

Ability: One academic history feature was included as a proxy for
the general subject matter proficiency.

From a self-regulated learning perspective (Winne, 2015), features
in “Planning” and “Effort” categories roughly correspond to the
“planning” phase and “execution” phase of self-regulation. Many prior
research has shown that those features have significant impact on
students’ achievement. We did not include the “reflection” phase of
self-regulation as it is challenging to find quality proxy measures for
reflection in the current dataset.

In addition, we also included students’ score on an earlier
mid-term exam (mid-term exam 1) as a proxy for their general ability
within the subject matter. Finally, we included the version of the
Original question (Q6_Version), to ensure that the two versions
created did not accidentally have large differences in difficulty.

Three aspects of features in Table 1 requires additional clarification
of their definitions:

Long durations: A significant body of earlier research suggest that
abnormally short time-on-task on problem solving process indicates
less authentic problem solving behavior, such as guessing or answer
copying (Alexandron et al., 2017; Chen, 2022; Chen et al., 2020;
Palazzo et al., 2010; Warnakulasooriya et al., 2007). In this study,
we classify problem solving duration with more than 70s as “long,” and
use long time-spent as a proxy for authentic engagement with problem
solving. The cutoff time of 70s between long and short is obtained by
applying a mixture model approach over the entire dataset, following
the procedure explained in detail in Chen (2022).

Identical and Similar practice problems: “Identical” means that the
student submitted an answer to the practice problem that is identical
(aside from the actual numbers of the variables) to the Original
problem on the exam (Question 6). “Similar” means that the student

TABLE 1 Features related to students’ practice strategy used for prediction.

10.3389/feduc.2025.1632132

submitted an answer to a practice problem that is only different from
the exam problem by Rotation of variables. In other words, they have
the same solution equation. Both “Identical” and “Similar” are defined
only with regard to the “Original” problem.

Separation between practice and Exam: This is measured as the
time difference between the time of submission to a practice problem,
and the start time of the exam. For example, feature last_practice_to_
exam is the time separation between the last submission on any
practice problem, and the start time of the mid-term exam.

Furthermore, the nPracticed_log and medTime_correct_log are
transformed onto log scale in the model, since we believe that the
significance of the unit difference in data reduces as the magnitude
increases. For example, spending 5 min or 1 min on a problem is a
much more significant difference than spending 25 min or 30 min on a
problem. Feature fracLong was also log transformed into fracLong_log
according to “fracLong_log”=In(“fracLong”+1), since the distribution
of original feature is highly skewed towards 1, and log transformation
is necessary to reduce the skewedness. The last_practice_to_Exam_log
and med_lead_to_Exam_log are log transformed, because the
distributions are highly right skewed and apply to log transformation to
reduce skewness. The frac_correct_std is standardized, because the
feature has the different scales and standardization was used to prevent
the feature from dominating due to its scale.

2.4 Creation of predictive classification
models

The primary aim of this study is to provide actionable
recommendations for students to better prepare for exams by
interpreting the outcomes of predictive models. To achieve this,
we employ three tree-based Machine Learning models—Random
Forest, eXtreme Gradient Boosting (XGBoost), and Classification and
Regression Trees (CART). Each of the three models strikes a balance
between predictive accuracy and interpretability, making them well-
suited for analyzing complex relationships within the data while
offering insights into factors influencing the outcomes. The response
variable is a binary indicator of whether a student passed or failed on
either the Original problem or the Transfer problem on the exam. The

Feature Category Type Description
nPracticed_log Effort Integer Number of practice problems completed
frac_correct_std Effort Numeric Fraction of correctly solved practice problems (standardized scale)
fracLong_log Effort Numeric Fraction of practice problems with long duration (log scale)
medTime_correct_log Effort Time (m) Median time-spent on correctly solved practice problems (log scale)
med_lead_to_Exam_log Planning Time (h) Median time separation between each practice problem and Exam
last_practice_to_Exam_log Planning Time (h) Time separation between last practice problem and Exam
long_similar Memorization Logical If student practiced highly similar problem(s) with long-time spent
long_identical Memorization Logical If student practiced identical practice problem with long-time spent
is_similar Memorization Logical Did the student solve a highly similar practice problem?
is_identical Memorization Logical Did the student solve an identical practice problem?
Q6_version Other Logical ‘Which version did the students receive
midterm_exam 1 Ability Numeric Students’ score on mid-term exam 1
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input variables are the 10 learning features plus 2 additional features
explained in the previous section.

Random Forest is an ensemble learning technique that integrates
multiple decision trees to enhance predictive accuracy and efficiently
capture complex, non-linear relationships in the data (Breiman, 2001).
It is resistant to overfitting, performs well with high-dimensional data,
but can be computationally demanding. XGBoost is another ensemble
method based on gradient boosting framework, which enhances
predictive accuracy by iteratively improving decision trees to capture
complex patterns in the data (Chen and Guestrin, 2016). XGBoost
demonstrates exceptional efficiency and accuracy by iteratively
constructing a series of decision trees. Its built-in regularization
mechanisms effectively mitigate overfitting, ensuring robust
generalization. However, achieving optimal performance often
necessitates careful tuning of its complex hyperparameters. In
contrast, Classification and Regression Trees (CART) is a decision tree
algorithm that recursively partitions data into subsets based on the
most important features, resulting in a tree-like structure used for
classification tasks (Hastie et al., 2009). While CART is straightforward
to interpret and visualize with numeric and categorical data, it is prone
to overfitting unless appropriate pruning techniques are applied.

We randomly split the data into training and testing sets during
the model training process and apply cross-validation to optimize the
model’s hyperparameters. The dataset was split with 80% for training
and 20% for testing. During training, we employed a 5-fold cross-
validation to optimize model hyperparameters and validate model
performance. In this approach, the training dataset is divided into five
subsets; the model is trained on four subsets and validated on the fifth.
This process is repeated five times, with each subset used once for
validation, and the results are averaged to ensure the model’s
robustness and prevent overfitting.

2.4.1 Explainable Machine Learning (xML) via
SHAP value

In this study, we utilized the SHAP package in Python (Version
3.8.10) to compute and visualize SHAP values for the best-performing
models for both original and transfer problem outcomes (Lundberg
et al., 2018). To visualize the SHAP values of each feature, we used
waterfall plots to provide a detailed breakdown of feature importance
for each prediction. These plots visually represent how each feature
either increases or decreases the predicted log-odds, starting from the
expected value of the predicted variable, and adding the contribution
of each feature step-by-step according to their SHAP value of each
feature in the order of decreasing absolute SHAP value (Lundberg et al.,
2018). This approach helps to clearly see the impact of the most
influential features on the final prediction. To emphasize the significant
factors influencing the models predictions, we focused on the top 5
most impactful features. Additionally, to gain deeper insights into the
model’s decision-making process, we employed SHAP dependence
scatter plot to visualize how the impact of each feature varies across its
range of value. The plots illustrated the relationship between the feature
actual value and its corresponding SHAP value, which represented the
feature’s contribution to the model’s prediction for each data instance
(Lundberg, 2023). For most features, the scatter plot shows a general
trend in agreement with direction of impact indicated on the waterfall
plots. In the Results section, we will focus on only the scatter plots that
either shows a different trend as the waterfall plot, or provide additional
information for the interpretation of the trends.
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3 Results
3.1 Summary statistics of learning features

This study examined the relationship between various student
behavior characteristics and two different types of problems: The
Original problem outcome and the Transfer problem outcome.
Descriptive statistics are provided in Supplementary Table SI,
including the mean and standard deviation for continuous variables,
as well as frequencies and proportions for categorical variables,
stratified by the outcome groups: pass (outcome =1) and fail
(outcome = 0). Statistical comparisons between the pass and fail
groups were conducted using t-tests for continuous variables and
chi-square tests for categorical variables, applied separately to both
the Original and Transfer problem sets.

The analysis of Original problems included 89 students who did
not pass and 70 who passed. Seven variables are significantly different
between outcome groups. For the Transfer problems, the analysis
included 107 students who did not pass and 52 who passed. Six
features demonstrated statistically significant differences between
outcome groups. These results underscore the potential impact of
practice and performance on outcomes. The findings indicated the
significant difference in Original outcome and Transfer outcome,
prompting us to examine which factors have the greatest impact on
student behavior. Given the modest sample size, the stability of SHAP
in small subgroups should be viewed with caution.

3.2 ML model performance and selection

In Figure 3, we plot the receiver operating characteristic (ROC)
curves of the three models for predicting the performance of the
Original problem and the Transfer problem. In Table 2, we report the
values of the five performance evaluation metrics.

Best model for Original problem: As shown in Figure 3A, the
XGBoost model achieved the highest area under the curve (AUC)
value of 0.78, indicating best performance in distinguish between
classes of original outcome. The Random Forest model followed
closely with an AUC of 0.74. However, the Random Forest model
showed the best overall performance by outperforming the other two
models on the other four performance metrics, with prediction
accuracy of 0.71, and F1 score of 0.74, as listed in Table 2. Therefore,
we select the Random Forest model as the best performing mode,
despite slightly worse AUC value compared to XGBoost.

Best model for Transfer problem: As shown in Figure 3B; Table 2,
the XGBoost model outperforms the other two models on all five
metrics, achieving the AUC value of 0.66, the accuracy of 0.65 and the
F1 score of 0.78. Note that the AUC values of all three models are all
lower when predicting Transfer problem outcomes, indicating that all
models’ predictive performance is less robust when predicting the
performance of Transfer problems compared to predicting the
performance on the Original problem.

3.3 Feature importance

Waterfall plots of the SHAP values for the most important features
are shown in Figure 4, for the best performing model for both Original
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FIGURE 3
ROC curve plot comparing the performance of three models, CART, XGBoost (XGB), and Random Forest (RF), for the assessment problems. (A):
Original problem. (B): Transfer problem.

TABLE 2 Model comparison table for outcomes.

Original problem

Transfer problem

Model AUC  Accuracy Precision Recall AUC Accuracy Precision Recall F1
Score
CART 0.70 0.35 043 0.59 0.50 0.59 0.62 0.70 0.76 0.73
Random Forest 0.74 0.71 0.72 0.77 0.74 0.58 0.65 0.70 0.76 0.73
XGBosot 0.78 0.68 0.55 0.65 0.59 0.66 0.65 0.67 0.95 0.78

The left side shows the comparison for the Original outcome with Random Forest as the best model; the right side shows the comparison for the Transfer outcome with XGBoost as the best

model. Bold values indicated the best model.

problem and Transfer problem. We focus on the top 5 most influential
features with the important contributions with SHAP values. The
waterfall plot is designed to show how the SHAP value of each feature
move the model output from the prior expectation under the background
data distribution to the final model prediction given the evidence of the
top 5 features. The value of each feature at the left side in Figure 4
represented the mode of the data distribution (Lundberg et al., 2020).
Most scatter plots show a general trend that aligns with the waterfall plot.
We only display scatter plots that either exhibit a highly non-linear
relationship or a trend that differs from the direction in the waterfall plot.

For the RF model predicting the Original problem outcome
(Figure 4A), the expected value of log-odds before considering any
feature-specific contributions was 0.42, and the final predicted log-odds
after accounting for all feature effects was 0.811. Among all features,
the number of practiced problems attempted (nPracticed_log) had
predominantly the largest impact on the outcome, contributing +0.33
to the log-odds of the positive original outcomes when students
practiced approximately 18 questions. From the scatter plot (Figure 5A)
we can see that the positive SHAP value is exclusive to students with 10
or more problems practiced. The second most impactful feature was
the time separation (in hours) between last practice problem and exam,
which added +0.06 to the log-odds when students practiced 22 h before
the exam. Surprisingly, midterm exam 1 score had the highest negative
contribution of —0.05 to the log-odds for a score of 5 out of 10 points.
Examining the scatter plot in Figure 5B revealed that the mid-term 1
score under 6 had negative contribution to the SHAP value, whereas
scores >6 had positive SHAP value contribution. When the Q6
question was not version 2, it had an impact of +0.03 on the log-odds.
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Finally, the fraction of practice problems with long duration (fracLong_
log) contributed positively with an addition of +0.02 to the log-odds of
the positive original outcomes, when the fraction of the practice
problems with long duration was 0.99.

Note that none of the features in the Memorization category had
an impact of >0.01 on the log odds of the prediction, despite having
statistically significant differences between positive and negative
outcomes on the original problem (Supplementary Table S1). Having
more correct attempts (frac_correct_std) was also not an important
feature influencing the outcome.

For the XGBoost model predicting Transfer problem (Figure 4B),
the initial expected value of log-odds was —0.81 before considering
feature-specific contributions. After accounting for all feature effects,
the final predicted log-odds was adjusted to —1.07. Feature importance
was different from that of the Original problem model. As shown in
Figure 4B, the most influential feature was median time separation
between practice problem and exam (med_lead_to_Exam_log), with a
log-odds change of —0.62 when the median time separation was about
47 h, or 1.96 days. The midterm exam 1 of 5 points positively impacted
the log-odds by +0.59. Practicing identical problems long time (long_
identical) also positively influenced the Transfer problem, contributing
alog-odds increase of +0.46. The fraction of practice problems in long
duration (fracLong log) contributed to log-odd of +0.43 when the
fraction was 0.99. Conversely, the fraction of correctly solved practice
problem (frac_correct_std) negatively contributed the log-odd of —0.41
when the fraction of correctly solved practice problems was 0.05.

Since the direction of impact of med_lead_to_Exam_log and
frac_correct_std are counter intuitive, we further examined the
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SHAP value waterfall plots for top 5 feature importance assessment problems. (A): Original problem. (B): Transfer problem.
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SHAP scatter plot for the impact of individual features on Original problem. (A): the number of practice problems influence the prediction of Original
problem. (B): the midterm exam 1 score influences the prediction of Original problem. Takeaways: students who practiced more than 10 problems and

spread practice at least 1 day before the exam performed significantly better.

SHAP value dependence scatter plots of both features. As shown in
Figure 6, it turns out that med_lead_to_Exam has peak positive
SHAP value at about 3 (or about 1 day prior to the exam), and the
SHAP value is negative when the feature value is greater than 3. For
frac_correct_std, a higher correct fraction generally corresponds to
a higher and positive SHAP value. Only when the feature value was
below zero, which corresponds to roughly no correct attempt, did the
SHAP value become negative. However, due to the large number of
students with zero correct fraction, a negative SHAP value is reflected
on the waterfall plot.
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It is also worth emphasizing that the labels “identical” and
“similar” are both defined regarding the similarity between a practice
problem and the Original problem on the exam, not the Transfer
problem, because the Transfer problem was not drawn from the
practice problem bank. In other words, the Transfer problem can
be seen as being equally different from all problems in the problem
bank. This distinction suggests that features such as long_identical
theoretically should have zero impact on the outcome of Transfer
problem on the exam. However, out analysis revealed a positive
contribution of long_identical to the log-odds in the Transfer problem
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model, as shown in Figure 4B. This result may be an artifact of the
data, potentially arising from the small sample size due to only 6
students having a long_identical = 1 feature.

4 Discussion

4.1 Prediction of individual problem
performance (RQ1)

The best performing predictive models are able to reach predictive
accuracy of 71% for predicting the outcome of the Original problem,
which is similar to the average prediction accuracy of previous Machine
Learning modules on entire exam outcome (Arizmendi et al., 2022).
Our current method has two key advantages regarding making learning
recommendations. First, it is based predominantly on learning data, and
uses only one immutable feature (mid-term exam 1 score), which makes
the recommendations highly actionable. This also avoids the privacy
and ethics concerns associated with collection of students’ demographic
data (Arizmendi et al, 2022; Liu et al, 2023). Second, the
recommendation can be made with regard to a specific problem since
each problem is associated with its corresponding problem bank. Rather
than making generic recommendations such as “practice on more
problems,” the current system could potentially recommend students to
“practice more problems in those problem banks”

4.2 Impact of alignment on prediction
outcome (RQ2)

Performance of ML models on the Transfer problem is clearly
worse than that of the Original problem, both in terms of prediction
accuracy and interpretability of results. Given that the Transfer
problem is designed to be similar to the practice problems, this
observation supports our hypothesis that predictive models can
be highly sensitive to seemingly small differences between learning
material and assessment problems. Therefore, we recommend future
predictive models should take-into-account the level of alignment
between learning resource and assessment items.

10.3389/feduc.2025.1632132

4.3 Recommendations for students (RQJ3)

Based on the model outcome, the recommendation for students
to improve their performance on the Original Problem is straight-
forward: “Practice at least 10 problems and do so at least one day before
the exam. It is ok if you make mistakes, but avoid guessing or quickly
glancing over the problems.” This recommendation is based on the
observation that the feature nPracticed_log is the dominant positive
predictor of performance, and both the duration between practice
and exam and the fraction of long attempts are major positive
contributors to success. On the other hand, having more correct
attempts had far less impact on the outcome. This recommendation
aligns very well with previous findings regarding the “doer” effect of
learning (Koedinger et al., 2015), and is in agreement with deliberate
practice (Ericsson et al., 2009) being an effective method to enhance
mastery. In addition, mid-term exam 1 score has far less impact on
the outcome compared to problems practiced, which might suggest
that practicing on isomorphic problem banks could potentially
reduce achievement gaps, especially among low performing students.
It is worth noting that if all students were to adopt the recommended
strategies, the variability in these behavioral variables would decrease,
potentially diminishing their predictive power in future models.
However, the predictive strength of these variables is not solely
dependent on their variability, but rather on their effect size. That is,
the magnitude of their relationship with performance outcomes. In
our analysis, much of the variation in student performance stems
from unmeasured sources of randomness and individual behavioral
differences, which are inherently difficult to capture. While the
included variables are informative, they account for a relatively small
portion of the total variance. Therefore, even if their variability were
reduced due to widespread adoption, the directional shift in behavior
would likely still exert a meaningful and measurable impact
on performance.

It is also worth pointing out that the current predictive models
do not directly show evidence for the causality between the
predictors and the prediction outcome. As discussed in detail later
in the paper, future studies are needed to examine if those
recommendations could actually help students improve their
exam performance.
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FIGURE 6
SHAP scatter plot for the impact of individual features on Transfer problem. (A): the impact of median time separation between practice and exam on
Transfer problem success. (B): the impact of the fraction of correctly solved practice problems on Transfer problem success.
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The recommendation for preparing for the Transfer problem is
less obvious. The most likely recommendation that could be made
is to “Spend enough time on each attempt, and study the problem
bank about 1 day before the exam.” The fact that mid-term exam 1
score and fraction of correct attempts has much more impact on
Transfer problem success may suggest that the ability to transfer
depends more on students’ general physics abilities, rather than
their learning behavior. In other words, learning from practicing on
a problem bank can be very specific to the type of problems in the
bank, especially for students who are less proficient with the
subject matter.

4.4 Insight on pedagogical validity (RQ4)

The RF model result shows that having seen the identical problem
or having seen similar problems during practice had little to no impact
on students’ chances of correctly answering the Original problem on
the exam. This provides evidence for the hypothesis behind the new
assessment approach that having a large enough problem bank could
deter rote-memorization of solution, and keep the assessment fair for
all students. Even though “long_identical” has high SHAP values for
predicting Transfer problem success, we believe this is an artifact of
sparce data in the test set, since the feature “identical” is ill defined for
Transfer problem.

However, the results also point to potential issues with the
current implementation of isomorphic problem banks. For one,
different isomorphic versions of the same problem can have a
measurable impact on students’ chances of obtaining the correct
answer, as Q6_Version_2 has significant contribution for success
odds-ratio. Future exams could select multiple problems from the
problem bank to increase fairness. Second, it seems that learning
from practice problem bank is highly specific to the problem type,
and transferring to even a slightly different problem context can
be challenging, especially for lower performing students. One
possible way of improving transfer ability is to design problem banks
that contain more variations between problems to assist with
generalization of knowledge (Roelle and Berthold, 2016; Schwartz
etal., 2011).

Finally, it is worth noting that had we relied on simple statistical
tests of features between student groups with positive and negative
outcomes (Supplementary Table S1), both the recommendations for
students and insights for instructors would have been drastically
different. For example, the feature “is_identical” is significantly
different between student groups for the original problem, but
determined as unimportant based on its SHAP value. The results
from the ML models are more reliable since it could reflect the
non-linear and highly inter-dependent nature of student
learning data.

4.5 Implications for the development of
future learning systems

Results of the current study suggests two possible designs of
future learning systems that are based on isomorphic problem banks
and Explainable Machine Learning. First, for a learning system with
conventional summative assessments with a fixed number of items,
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multiple practice problem banks aligned with each potential
assessment item (or item bank) can be developed using Generative
AL During the learning process, students will be informed whether
they have had enough practice to pass the exam based on their
practice behavior, and receive suggestions on which problem banks
to practice next. This static assessment design is more compatible
with existing course structures, and could be implemented relatively
easily. The second possible design involves dynamic summative
assessments, in which each students’ level of mastery on each topic
is estimated by their practice behavior and practice outcome via
xML. The summative assessment is then generated dynamically
based on students” estimated level of mastery. In this design, the
assessment only need to sample a fraction of the skills that the
student should have mastered, and serve the purpose of verifying the
validity of the collected learning data. This design has the benefit
creating more accurate, flexible and accessible assessments while
significantly reducing test anxiety, but requires more drastic reform
of the existing course structure.

5 Conclusion and future directions

This paper demonstrates a case of synchronous innovation in both
pedagogy and learning analytics. By combining isomorphic problem
bank-based assessment with Explainable Machine Learning
techniques, the study showed that:

1. ML models can predict the outcome of individual problems on
a physics exam with >70% accuracy based predominantly on student
learning data collected from aligned isomorphic practice problems.

2. Prediction accuracy and model interpretability of ML models
can be very sensitive to the level of similarity between learning
resources and assessment problems, which was overlooked in many
earlier studies.

3. Explainable Machine Learning (xML) models have clear
advantage over traditional ML models in making specific and
actionable learning recommendations for students.

4. The hypothesis that large isomorphic problem banks can
prevent rote memorization is supported by the current results, but the
fairness of the assessment should be improved in the future.

It is also worth mentioning that the potential benefits of the
isomorphic problem bank assessments extend well beyond enabling
more accurate and informative learning analytics. For example, since
the problem banks are openly accessible, students can take the
assessment at different times and can have multiple attempts. Test item
security is no longer a concern, so the same assessment can be reused
over time, and used across many different classes. In short, isomorphic
problem banks could lead to completely re-designed assessment
mechanism in the future.

As an initial attempt at implementing and studying this new
assessment approach, the current study also has multiple limitations
and caveats that needs to be addressed in future implementations and
follow up studies. We discuss some of the most important future
directions below.

First, the current implementation only records binary outcomes of
a multi-step problem, without taking into account students’ problem-
solving process. From an assessment approach perspective, it only
provides very limited amount of information on students
understanding of the problem-solving process. From a predictive
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analysis perspective, it is likely one of the reasons for the reduced
predictive performance on the transfer problem, since many students
could have transferred some partial learning from the practice problem
bank, but unable to obtain the correct end-result due to extraneous
reasons. With the rapid development of GenAl based automated
grading techniques (Kortemeyer, 2024; Pinto et al., 2023; Liu et al,,
2024), future implementations could utilize open-ended responses, to
achieve more informative assessment and enable more accurate
predictive models. It could also provide partial credit to students based
on their responses, to improve the fairness of the assessment.

Second, the current study only assessed data from a single
problem bank, which prevented us from directly testing the current
approaches’ ability to make recommendations regarding “what to
study” Future implementations need to involve multiple problem
banks that correspond to multiple assessment problems, and develop
Machine Learning models that could estimate different levels of
proficiency on different problems. Relatedly, the same pedagogical
innovation could be administered to larger and more diverse student
populations, which will likely result in more diverse learning
behavior. This will likely lead to more robust predictive models, and
could potentially lead to different learning recommendation for
different student populations.

Third, future studies will need to examine the causality between
identified important features and exam performance. This can
be achieved solely based on data, using tools such as TETRAD
(Scheines et al., 1998). Alternatively, one could conduct randomized
or natural experiments (such as in (Felker and Chen, 2023) and (Chen
etal.,2024)), that provide one group of students with recommendations
based on the previous ML results. Evidence for causality can
be obtained by comparing to a second group of students, or the same
group of students at an earlier instance, and looking for differences in
both practice behavior and assessment outcome.

Forth, the current model only used data from students practicing
for the upcoming exam 1 week ahead of time, and do not contain
students’ learning behavior data earlier in the process. While
practicing shortly before the exam is likely to have the most direct
impact on assessment outcome, activities that took place earlier in the
learning process likely had more influence on students’ conceptual
understanding of the subject matter. Lack of earlier learning data
might be part of the reason why the current ML models perform
worse on the Transfer problem, as transfer tasks could depend more
on conceptual understanding over short-term memory. Future studies
with larger student population could include learning data from
longer periods of time, which would not only improve model
performance, but also allow the model to provide learning
recommendations earlier in the learning process. Future studies could
also consider combining Machine Learning with Knowledge Tracing
methods or further increase prediction accuracy.

Fifth, the method of using Generative Al to develop isomorphic
problems reported in the current study did not fully utilize the potential
of the latest Generative AI models available. Future studies could
further streamline the problem creation process, reducing the steps
needed for more efficient creation of isomorphic problem banks. In
addition, more student data is needed to verify if the current definition
of isomorphic problems is sufficient to ensure an acceptable level of
uniformity in difficulty across all problems in the problem bank, which
is key to ensuring faireness in problem bank based assessments.

Finally, the current study only explored generating learning
recommendations for the entire student population as a whole. The
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benefit of such recommendations will most likely not be uniform
across different student cohorts, especially in large institutions with
highly varied student population. It is an important research question
to investigate whether those recommendations would mitigate or
exacerbate existing achievement gaps between different student
population. Furthermore, future ML models could be developed to
provide customized learning recommendations for cohorts of
student, or even individual students, by incorporating more detailed
student learning records.
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