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Introduction: Many studies have demonstrated that Machine Learning 
algorithms can predict students’ exam outcomes based on a variety of student 
data. Yet it remains a challenge to provide students with actionable learning 
recommendations based on the predictive model outcome.
Methods: This study examined whether actionable recommendations could be 
achieved by synchronous innovations in both pedagogy and analysis methods. 
On the pedagogy side, one exam problem was selected from a large bank of 44 
isomorphic problems that was open to students for practice 1 week ahead of 
the exam. This ensures near-perfect alignment between learning resources and 
assessment items. On the algorithm side, we compare three Machine Learning 
models to predict student outcomes on the individual exam problems and a 
similar transfer problem, and identify important features.
Results: Our results show that 1. The best ML model can predict single exam 
problem outcomes with >70% accuracy, using learning features from the 
practice problem bank. 2. Model performance is highly sensitive to the level of 
alignment between practice and assessment materials. 3. Actionable learning 
recommendations can be straightforwardly generated from the most important 
features. 4. The problem bank-based assessment mechanism did not encourage 
rote learning and exam outcomes are independent of which problems students 
had practiced on before the exam.
Discussion: The results demonstrated the potential for building a system that 
could provide data driven recommendations for student learning, and has 
implications for building future intelligent learning environments.
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1 Introduction

Predicting students’ outcomes on future assessments from students’ learning data using 
Machine Learning (ML) has been one of the major focuses of learning analytics and educational 
data mining (Arizmendi et al., 2022; Papamitsiou et al., 2020; Tomasevic et al., 2020). While 
the immediate goal of predictive analysis is to identify students potentially at risk of failing the 
test, the overall objective has always been to provide students with targeted interventions to 
improve assessment outcomes and avoid failing. Therefore, an ideal predictive model would 
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not only predict likely outcome, but also make actionable learning 
recommendation for students to improve the outcome. In particular, 
most students would benefit from three types of recommendations: 
Am I ready for the exam? What should I study to get ready for the 
exam? How should I  study to get ready for the exam? Moreover, 
predictive models could also provide instructors with information on 
how interventions are contributing to students’ assessment 
performance, allowing for data driven improvement to interventions.

However, as discussed in detail below, many existing predictive 
ML models have limited ability in translating prediction outcome into 
actionable interventions or recommendations (Liu et  al., 2023), 
especially regarding what and how to study for an exam. We believe 
that overcoming those limitations requires innovations in both 
pedagogy and analytical methods at the same time. In this paper 
we present a case where an innovation in assessment method, based 
on large isomorphic problem banks, combined with Explainable 
Machine Learning (xML), has the potential to significantly improve 
the ability of ML models to make actionable recommendations on 
how students could better prepare for an upcoming exam.

1.1 Existing predictive analysis methods 
and their limitations

Existing research on using Machine Learning (ML) methods to 
predict students’ course or assessment outcomes utilizes a variety of 
data sources including demographic background, academic history, 
and log data from learning management systems (LMS). Most models 
could predict a dichotomous pass-fail outcome on an entire course or 
assessment, with prediction accuracy of 70% or above (Arizmendi 
et al., 2022). However, we believe that at least three factors limit the 
ability of the ML models to make recommendations on “what to 
study” and “how to study.”

First, most existing predictive analysis only predict dichotomous 
outcome on an entire exam or an entire course. As a result, they are 
unable to predict students’ level of mastery on individual topics on a 
multi-topic exam, so they cannot make specific recommendations for 
the question of “what should I study.” Most models could only make 
recommendation such as “spend more time on studying will increase 
your chance of passing the course.”

Second, most predictive analysis research do not account for the 
level of alignment between learning resources and assessment 
problems. In other words, most existing predictive models are 
agonistic to what types problems are being asked on the exam, and 
whether students had been exposed to similar problems during 
practice. Research on transfer have shown that similarity between 
different tasks play a critical role in people’s ability to transfer 
knowledge to new context (Novick, 1988), and small differences that 
seems trivial to experts in problem context can lead to larger than 
expected differences in measured problem difficulty (Fakcharoenphol 
et  al., 2015). Factors that could potentially impact the level of 
alignment between two problems include the concepts and skills being 
assessed, the problem type (i.e., multiple-choice, numerical input, 
open response), the complexity of the problem solving process (for 
example the level of math skills required), and the similarity of the 
problem context. Not accounting for the level of similarity between 
practice problems and assessment problems could significantly reduce 
the reliability of the model’s performance when the instructor uses a 

different set of problems on an exam. More importantly, it limits the 
model’s ability to make good recommendations regarding “what 
should I  study to get ready for the exam,” and to predict when a 
student is ready for an exam based on the students’ practice history.

Third, conventional ML models are black-box models that lack 
the ability to provide information on how much and in what direction 
each factor impact the prediction outcome. ML models generally 
out-perform conventional regression-based methods in terms of 
prediction accuracy, since impact of students’ learning behavior on 
assessment outcome is most likely non-linear (Tomasevic et al., 2020). 
Unfortunately, their superior performance came at the cost of 
significantly worse explainability compared to regression-based 
methods. As a result, they cannot give students meaningful guidance 
about what or how to study to improve their exam outcome.

Another form of predictive analysis method is Knowledge Tracing 
(KT) models, which can predict students’ probability of correctly 
answering a new problem based on students’ performance on prior 
problems that assess the same concept or skill [see (Abdelrahman et al., 
2023) for an overview of the field]. However, many KT models include 
no or only a small number of data features related to students’ learning 
or practice behavior, which limits their ability to provide recommendation 
on “how to study.” For example, should students browse through as many 
practice problems as possible or focus on studying only a couple of 
problems? How much time should a student spend on practice problems 
to have a noticeable impact on exam performance?

In addition, KT is most suitable for cases where most students 
make multiple problem attempts, and the attempts are mostly 
authentic, such as intelligent tutoring systems (Mao, 2018) or online 
courses with large numbers of for credit homework problems (Pardos 
et  al., 2013). They are less suitable in situations where students’ 
problem attempts are more heterogeneous and less authentic. For 
example, when students were given a bank of practice problems to 
prepare for an exam, many of them may submit random answers just 
to access as many problems as possible. The number of attempted 
problems could also differ significantly between different students. 
Therefore, in the current study we will focus on using ML methods 
instead of KT methods as prediction methods.

1.2 Aligning assessment and practice using 
isomorphic problem banks

Enabling predictive models to make actionable learning 
recommendations require more than isolated improvements in 
analysis algorithm. Rather, it requires simultaneous and 
complementary innovations in educational technology, pedagogy, 
and analysis methods. In particular, pedagogical innovation is needed 
for predictive models to account for the alignment between learning 
resources, especially practice problems, and assessment problems.

Providing practice problems or practice tests is a common and 
effective method for preparing students for upcoming exams. Many 
studies have consistently demonstrated that taking practice tests 
significantly improves exam performance compared to additional 
study without testing, especially when the practice comes with 
detailed feedback (Akbulut, 2024; Lipnevich et al., 2024; Polack and 
Miller, 2022). A meta-analyses suggests a medium effect size of 
practice tests around g = 0.50 across over 48,000 students (Yang et al., 
2021). Specifically, in college level physics, Zhang et al. (2023) showed 
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that realistic and earlier practice exams in physics courses promoted 
better self-regulated study behaviors and enhanced metacognitive 
exam preparation, resulting in improved performance among 
undergraduates in challenging physics assessments.

However, on conventional exams, students cannot have access to 
the assessment problems up to the time of the exam. As a result, 
instructors are constantly faced with a dilemma: if learning and 
practice resources are too similar to the assessment problem, then 
students will be motivated to rote memorize problem solution. If 
learning resources are too different from assessment problems, then 
the assessment may not accurately reflect students’ mastery of the 
learning resources. Instructors often have difficulty selecting 
assessment problems that are “similar but not too similar” to practice 
problems. As a result, quantify the similarity between learning and 
practice materials and assessment problems and be very challenging.

The rapid recent development of Large Language Models (LLMs) 
significantly reduces the time and effort required to write new 
problems (Bulathwela et al., 2023; Hwang et al., 2023; Wang et al., 
2022), which enables the authors to implement a new form of 
assessment. Assessment problems will be randomly selected from a 
large bank of isomorphic problems created with the assistance of 
LLM. Isomorphic problems are problems that test the same set of 
concepts and share similar solution structures, but contains variation 
in solution details and problem context. A more detailed definition 
of isomorphic problems used in the current study is presented in 
section 2.2.1 The problem bank is open to students for practice prior 
to the exam, and students are able to receive targeted feedback to the 
problems. All isomorphic problems share largely overlapping 
learning objectives. The hypothesis behind this new approach is that 
when the problem bank is large enough, rote memorization of 
problem solutions becomes an extremely inefficient, largely infeasible 
strategy, and students will be  more motivated to understand the 
concepts instead.

Under this new approach, practice problems and assessment 
problems are nearly perfectly aligned with each other in terms of 
concepts and skills assessed, format of the problem, and the overall 
complexity of the solution. Examples of two isomorphic problems 

used in the current study are shown in Figure 1. As can be seen in the 
example, the problem context and the details of the solution are 
similar but contain meaningful differences such as direction of 
motion of objects to prevent rote memorization. As a result of this 
alignment, ML models could predict students’ assessment outcome 
on a single problem on the exam, using data collected from students 
practicing on the corresponding problem bank. Therefore, this new 
assessment scheme overcomes the first and second barrier towards 
making learning recommendations at the same time. Meanwhile, 
results of the ML model are also needed to validate the hypothesis 
behind this novel assessment method. In particular, one need to 
examine would those students who happen to have practiced on the 
same problem that was selected on the exam have an unfair advantage 
over other students. The current study employs explainable ML 
methods to both overcome the third barrier towards making 
actionable recommendation, and to examine the validity and fairness 
of the new assessment method, by identifying the most influential 
factors that impact student performance.

1.3 Explainable Machine Learning with 
SHAP value

To overcome the “black-box” nature of traditional ML models, 
we use Explainable Machine Learning (xML) models, which have 
several advantages over traditional ML methods. One key advantage 
is that xML models can effectively identify important features among 
a large number of potentially relevant features, and reveal relation 
between feature value and prediction outcome, making the model’s 
decision-making process more interpretable and actionable.

Specifically, we use the SHAP (SHapley Additive exPlanations) 
to quantify the feature importance (Lundberg and Lee, 2017). The 
SHAP framework provides a principal approach for distributing the 
prediction among all features based on their individual contribution 
to the outcome (Lundberg et al., 2020). By computing SHAP values, 
it quantifies the average contribution of each feature across all 
possible subsets of features, offering a comprehensive view of their 

FIGURE 1

Example of isomorphic problems. The two problems involve identical physics principle, but differ in the detailed problem context (ball vs. block), 
direction of motion, and the known and unknown variables. Left: a problem used only in the practice. Right: a problem used in both practice and on 
the assessment.
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influence on the prediction (Lundberg and Lee, 2017). It provides a 
dimensionless measure of feature importance, where the absolute 
magnitude of a SHAP value represents the strength of a feature’s 
relative impact on the prediction, and its sign (positive or negative) 
corresponds to the direction of the feature’s impact on the predicted 
outcome. SHAP values are scaled consistently within a model, 
allowing for easy comparison of relative feature importance. They 
also help uncover feature interactions by showing how the presence 
or absence of one feature affects the impact of another. If no specific 
feature contributed to the prediction, the SHAP value would reflect 
the expected value of the model, which is the baseline prediction. 
We used waterfall plots and dependence scatter plots to illustrate the 
impact of individual features on the predicted outcome, providing 
insights into how the specific feature contributes to the model 
prediction (Lundberg et al., 2020).

1.4 Study design and research questions

This study tests a prototype case of the isomorphic problem bank 
assessment, by providing students in a University introductory level 
physics course with one isomorphic problem bank as practice 
material 1 week prior to an upcoming mid-term exam. Providing 
practice exam problems is a common and effective practice to help 
students prepare for exam (Fakcharoenphol et al., 2011; Zhang et al., 
2020). The exam contains one problem that is directly selected from 
the problem bank, and a second problem that is not from the bank 
but similar to the first one. We then built a predictive ML model 
based on learning features extracted from students’ practice behavior, 
to answer the following four research questions:

RQ1. Can ML models use predominantly data from students 
practicing with an isomorphic problem bank to predict students’ 
outcome on the exam problem selected from the same bank?

Hypothesis 1: The prediction accuracy of ML models relying 
predominantly on student practice data will be comparable to 
existing models (>70%). Justification: The high level of alignment 
between practice problems and assessment items should 
be sufficient in ensuring a high level of prediction accuracy.

RQ2. How well can the same data predict students’ performance 
on a similar problem not chosen from the problem bank?

Hypothesis 2: Prediction accuracy for student performance on a 
similar problem will be  slightly lower than on the Original 
problem bank problems. Justification: The alignment between a 
similar problem and practice problems is weaker than with the 
original problem, resulting in reduced prediction accuracy.

RQ3. Which learning features from students’ practice data are 
most important in predicting students’ exam outcome?

Hypothesis 3: Certain learning features will have much higher 
contribution to the prediction outcome than others, as indicated 
by their SHAP values. Justification: Explainable Machine Learning 
models are capable of identifying features of high importance to 
the prediction outcome.

RQ4. Does viewing identical or highly similar practice problems 
significantly increase assessment outcome compared to viewing 
less similar isomorphic problems?

Hypothesis 4: Viewing identical or highly similar problems will 
have either a minor or no impact on the assessment outcome. 
Justification: The size of the isomorphic problem banks and the 
level of variation between problems should be  sufficient to 
discourage rote memorization of the problem answer or the 
specific solution. Therefore, whether students had practiced on 
items that are identical or highly similar to the exam items should 
not be a key factor predicting their exam performance.

2 Methods

2.1 Instructional condition

The study was implemented in a calculus-based university 
introductory-level physics class during Spring 2023. The class had 
328 registered students, of which 26% were Female, 32% were under-
represented minority in STEM, 17% were first generation students, 
and 21% were transfer students from 2-year institutions. The course 
was taught in a blended instruction mode: students were instructed 
to view pre-recorded lecture videos and conduct online homework 
using the Obojobo online learning platform (Center for Distributed 
Learning, n.d.).

A total of three mid-term exams were administered throughout 
the semester. The exams were administered synchronously during 
class times with an option to take the exam remotely with video 
camera on per student request. Each exam is conducted as an auto-
graded Quiz on the Canvas Learning Management System 
(Instructure Inc., n.d.). All problems were either multiple-choice or 
numeric answer problems. All numeric answer problems had 
randomized variable numbers. Students were allowed 50 min to 
complete each exam.

2.2 Study design

2.2.1 Creation of isomorphic problem bank
There are multiple different definitions of “isomorphic” problem 

pairs. For the current study, we  define isomorphic problems as 
problems that are being created from a common “seed” problem by 
applying a set of isomorphic variations. Each isomorphic variation 
should: (1) preserve the main concepts and physics principles required 
to solve the problem, (2) preserve the overall complexity of the 
solution, such as the number of steps or the type of mathematical 
operation, and (3) introduce one or more minor changes to the 
solution that are less likely to affect its difficulty, such as flipping the 
direction of an applied force that will result in changing a “+” sign to 
a “−” sign in the solution.

The isomorphic problem bank in the current study is created 
according to the following four step process:

Step 1: Creating a “seed” problem. A human expert first writes a 
“seed problem” that would serve as the basis of the isomorphic 
problem bank, which involves the learning objective(s) that the bank 
intends to assess.
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Step 2: Determine Acceptable Variations. The human expert then 
determines a number of variations to the seed problem that could 
be seen as isomorphic. In the current study, the isomorphic variations 
come in three hierarchical levels:

	 a	 Major variation: change to the problem context, such as 
replacing a block sliding down a ramp to a human riding a bike 
up a hill.

	 b	 Minor variation: change of smaller details such as the direction 
of motion of an object or direction of a force.

	 c	 Rotation of variable: rotate the known and unknown variables 
for a problem.

A second human expert then reviews the variation, identify ones 
that could potentially result in a significant shift in solution complexity, 
and modifies the problem bank in collaboration with the first 
human expert.

Step 3: Generative AI Assisted Problem Text Writing: Writing of 
isomorphic problem text is assisted by Generative Pre-trained 
Transformer 3 (GPT-3) in completion mode (Dale, 2021). To generate 
the problem text for one isomorphic problem variation, the GPT model 
is first provided with a simple prompt capturing the essence of the seed 
problem, followed by the seed problem text itself as an example. A new 
prompt describing the first isomorphic variation is appended to the 
input text, creating a “prompt-problem-prompt” structure. When 
submitted, GPT-3 attempts to generate the first isomorphic variation 
problem text according to both the seed prompt-problem text pair, and 
the isomorphic variation prompt. The problem author then reviews the 
generated problem text and makes edits when necessary and appends 
a new variation prompt after the previously generated text. The process 
is repeated 5–7 times for each minor variation.

Step 4: Creation of problem figures and Solution Formula: Problem 
diagrams are being generated manually in scalar vector graphics 
(SVG) format, using a free open-source tool named Inkscape. 
Formulas for calculating the correct answer for each problem are 
being generated with the assistance of Wolfram Alpha.

The final isomorphic problem bank contains 4 Major variation, 
each with 2 Minor variations, each with 5–6 Rotation of variables, 
with a combined total of 44 isomorphic problems. The problem bank 
assesses students’ ability to solve problems related to the conservation 
of mechanical energy.

2.2.2 Exam design and implementation
The study was conducted on the second mid-term exam, which 

contained 9 problems in either multiple choice or numerical input 
formats. Question 6 was directly selected from the isomorphic problem 
bank, which we will refer to as the Original problem. Question 6 asks 
about an object moving up or down an inclined ramp with the presence 
of a spring. Students were presented with one of two versions of 
Question 6, Q6_V1 and Q6_V2. V1 involves an object moving up the 
ramp, and V2 involves the object moving down the ramp. The symbolic 
solution for both versions is identical. Q6 was a numerical input problem 
for which students must compute the numeric value of the unknown 
variable from a set of known variables. The numerical values of the 
known variables were selected from 20 sets of randomly generated values.

Question 4 was not present in the problem bank, but can 
be  solved with identical process and identical set of concepts as 
problems in the problem bank. As shown in Figure 2, Question 4 asks 
about a person doing bungee jumping under a bridge, and the two 
versions of Q4 refers to the person moving either up or down in 
direction. The problem context of Q4 can be seen as an isomorph of 
that of Q6, with the only difference being the absence of a ramp. As 
a result the symbolic solution of Q4 was very similar but 
mathematically slightly easier that of Q6. We will refer to Question 4 
as the Transfer problem. All other settings of Question 4 are identical 
to that of Question 6.

Approximately 1 week prior to the exam, the instructor made an 
announcement to the class on the topic of each problem to appear on 
the upcoming exam as a review guide. The announcement explicitly 
pointed out that one problem would be  directly drawn from the 
practice problem bank that students have access to, and another 
problem will be similar to the problems in the practice problem bank. 
The entire problem bank was made available to students together with 
the announcement. Students can make an infinite number of attempts 
on the problem bank, and on each attempt students could receive 2 
problems randomly selected from 2 different Major variations.

2.3 Extraction of learning features

From the log data collected from students’ interaction with 
practice problem bank, we engineered 10 features related to students’ 
practice behavior on the isomorphic practice problem bank, most of 

FIGURE 2

Example of transfer problems (Question 4) used on the assessment, showing a bungee jumper diving down. The jumper and bungee cord system can 
be seen as isomorphic variation of the block and spring system in the Original problem.
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which can be  categorized to the following four categories, and 
explained in Table 1:

Effort: Measure of both quantity and quality of students’ 
practice process.

Planning: How early did students start their practice effort relative 
to the exam.

Rote Learning: Whether students had the opportunity to rote learn 
the solution to the exam problem from identical or similar problems. 
Those features are included to answer RQ4.

Ability: One academic history feature was included as a proxy for 
the general subject matter proficiency.

From a self-regulated learning perspective (Winne, 2015), features 
in “Planning” and “Effort” categories roughly correspond to the 
“planning” phase and “execution” phase of self-regulation. Many prior 
research has shown that those features have significant impact on 
students’ achievement. We did not include the “reflection” phase of 
self-regulation as it is challenging to find quality proxy measures for 
reflection in the current dataset.

In addition, we  also included students’ score on an earlier 
mid-term exam (mid-term exam 1) as a proxy for their general ability 
within the subject matter. Finally, we  included the version of the 
Original question (Q6_Version), to ensure that the two versions 
created did not accidentally have large differences in difficulty.

Three aspects of features in Table 1 requires additional clarification 
of their definitions:

Long durations: A significant body of earlier research suggest that 
abnormally short time-on-task on problem solving process indicates 
less authentic problem solving behavior, such as guessing or answer 
copying (Alexandron et  al., 2017; Chen, 2022; Chen et  al., 2020; 
Palazzo et  al., 2010; Warnakulasooriya et  al., 2007). In this study, 
we classify problem solving duration with more than 70s as “long,” and 
use long time-spent as a proxy for authentic engagement with problem 
solving. The cutoff time of 70s between long and short is obtained by 
applying a mixture model approach over the entire dataset, following 
the procedure explained in detail in Chen (2022).

Identical and Similar practice problems: “Identical” means that the 
student submitted an answer to the practice problem that is identical 
(aside from the actual numbers of the variables) to the Original 
problem on the exam (Question 6). “Similar” means that the student 

submitted an answer to a practice problem that is only different from 
the exam problem by Rotation of variables. In other words, they have 
the same solution equation. Both “Identical” and “Similar” are defined 
only with regard to the “Original” problem.

Separation between practice and Exam: This is measured as the 
time difference between the time of submission to a practice problem, 
and the start time of the exam. For example, feature last_practice_to_
exam is the time separation between the last submission on any 
practice problem, and the start time of the mid-term exam.

Furthermore, the nPracticed_log and medTime_correct_log are 
transformed onto log scale in the model, since we  believe that the 
significance of the unit difference in data reduces as the magnitude 
increases. For example, spending 5 min or 1 min on a problem is a 
much more significant difference than spending 25 min or 30 min on a 
problem. Feature fracLong was also log transformed into fracLong_log 
according to “fracLong_log”=ln(“fracLong”+1), since the distribution 
of original feature is highly skewed towards 1, and log transformation 
is necessary to reduce the skewedness. The last_practice_to_Exam_log 
and med_lead_to_Exam_log are log transformed, because the 
distributions are highly right skewed and apply to log transformation to 
reduce skewness. The frac_correct_std is standardized, because the 
feature has the different scales and standardization was used to prevent 
the feature from dominating due to its scale.

2.4 Creation of predictive classification 
models

The primary aim of this study is to provide actionable 
recommendations for students to better prepare for exams by 
interpreting the outcomes of predictive models. To achieve this, 
we  employ three tree-based Machine Learning models—Random 
Forest, eXtreme Gradient Boosting (XGBoost), and Classification and 
Regression Trees (CART). Each of the three models strikes a balance 
between predictive accuracy and interpretability, making them well-
suited for analyzing complex relationships within the data while 
offering insights into factors influencing the outcomes. The response 
variable is a binary indicator of whether a student passed or failed on 
either the Original problem or the Transfer problem on the exam. The 

TABLE 1  Features related to students’ practice strategy used for prediction.

Feature Category Type Description

nPracticed_log Effort Integer Number of practice problems completed

frac_correct_std Effort Numeric Fraction of correctly solved practice problems (standardized scale)

fracLong_log Effort Numeric Fraction of practice problems with long duration (log scale)

medTime_correct_log Effort Time (m) Median time-spent on correctly solved practice problems (log scale)

med_lead_to_Exam_log Planning Time (h) Median time separation between each practice problem and Exam

last_practice_to_Exam_log Planning Time (h) Time separation between last practice problem and Exam

long_similar Memorization Logical If student practiced highly similar problem(s) with long-time spent

long_identical Memorization Logical If student practiced identical practice problem with long-time spent

is_similar Memorization Logical Did the student solve a highly similar practice problem?

is_identical Memorization Logical Did the student solve an identical practice problem?

Q6_version Other Logical Which version did the students receive

midterm_exam 1 Ability Numeric Students’ score on mid-term exam 1
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input variables are the 10 learning features plus 2 additional features 
explained in the previous section.

Random Forest is an ensemble learning technique that integrates 
multiple decision trees to enhance predictive accuracy and efficiently 
capture complex, non-linear relationships in the data (Breiman, 2001). 
It is resistant to overfitting, performs well with high-dimensional data, 
but can be computationally demanding. XGBoost is another ensemble 
method based on gradient boosting framework, which enhances 
predictive accuracy by iteratively improving decision trees to capture 
complex patterns in the data (Chen and Guestrin, 2016). XGBoost 
demonstrates exceptional efficiency and accuracy by iteratively 
constructing a series of decision trees. Its built-in regularization 
mechanisms effectively mitigate overfitting, ensuring robust 
generalization. However, achieving optimal performance often 
necessitates careful tuning of its complex hyperparameters. In 
contrast, Classification and Regression Trees (CART) is a decision tree 
algorithm that recursively partitions data into subsets based on the 
most important features, resulting in a tree-like structure used for 
classification tasks (Hastie et al., 2009). While CART is straightforward 
to interpret and visualize with numeric and categorical data, it is prone 
to overfitting unless appropriate pruning techniques are applied.

We randomly split the data into training and testing sets during 
the model training process and apply cross-validation to optimize the 
model’s hyperparameters. The dataset was split with 80% for training 
and 20% for testing. During training, we employed a 5-fold cross-
validation to optimize model hyperparameters and validate model 
performance. In this approach, the training dataset is divided into five 
subsets; the model is trained on four subsets and validated on the fifth. 
This process is repeated five times, with each subset used once for 
validation, and the results are averaged to ensure the model’s 
robustness and prevent overfitting.

2.4.1 Explainable Machine Learning (xML) via 
SHAP value

In this study, we utilized the SHAP package in Python (Version 
3.8.10) to compute and visualize SHAP values for the best-performing 
models for both original and transfer problem outcomes (Lundberg 
et al., 2018). To visualize the SHAP values of each feature, we used 
waterfall plots to provide a detailed breakdown of feature importance 
for each prediction. These plots visually represent how each feature 
either increases or decreases the predicted log-odds, starting from the 
expected value of the predicted variable, and adding the contribution 
of each feature step-by-step according to their SHAP value of each 
feature in the order of decreasing absolute SHAP value (Lundberg et al., 
2018). This approach helps to clearly see the impact of the most 
influential features on the final prediction. To emphasize the significant 
factors influencing the model’s predictions, we focused on the top 5 
most impactful features. Additionally, to gain deeper insights into the 
model’s decision-making process, we employed SHAP dependence 
scatter plot to visualize how the impact of each feature varies across its 
range of value. The plots illustrated the relationship between the feature 
actual value and its corresponding SHAP value, which represented the 
feature’s contribution to the model’s prediction for each data instance 
(Lundberg, 2023). For most features, the scatter plot shows a general 
trend in agreement with direction of impact indicated on the waterfall 
plots. In the Results section, we will focus on only the scatter plots that 
either shows a different trend as the waterfall plot, or provide additional 
information for the interpretation of the trends.

3 Results

3.1 Summary statistics of learning features

This study examined the relationship between various student 
behavior characteristics and two different types of problems: The 
Original problem outcome and the Transfer problem outcome. 
Descriptive statistics are provided in Supplementary Table S1, 
including the mean and standard deviation for continuous variables, 
as well as frequencies and proportions for categorical variables, 
stratified by the outcome groups: pass (outcome = 1) and fail 
(outcome = 0). Statistical comparisons between the pass and fail 
groups were conducted using t-tests for continuous variables and 
chi-square tests for categorical variables, applied separately to both 
the Original and Transfer problem sets.

The analysis of Original problems included 89 students who did 
not pass and 70 who passed. Seven variables are significantly different 
between outcome groups. For the Transfer problems, the analysis 
included 107 students who did not pass and 52 who passed. Six 
features demonstrated statistically significant differences between 
outcome groups. These results underscore the potential impact of 
practice and performance on outcomes. The findings indicated the 
significant difference in Original outcome and Transfer outcome, 
prompting us to examine which factors have the greatest impact on 
student behavior. Given the modest sample size, the stability of SHAP 
in small subgroups should be viewed with caution.

3.2 ML model performance and selection

In Figure 3, we plot the receiver operating characteristic (ROC) 
curves of the three models for predicting the performance of the 
Original problem and the Transfer problem. In Table 2, we report the 
values of the five performance evaluation metrics.

Best model for Original problem: As shown in Figure  3A, the 
XGBoost model achieved the highest area under the curve (AUC) 
value of 0.78, indicating best performance in distinguish between 
classes of original outcome. The Random Forest model followed 
closely with an AUC of 0.74. However, the Random Forest model 
showed the best overall performance by outperforming the other two 
models on the other four performance metrics, with prediction 
accuracy of 0.71, and F1 score of 0.74, as listed in Table 2. Therefore, 
we select the Random Forest model as the best performing mode, 
despite slightly worse AUC value compared to XGBoost.

Best model for Transfer problem: As shown in Figure 3B; Table 2, 
the XGBoost model outperforms the other two models on all five 
metrics, achieving the AUC value of 0.66, the accuracy of 0.65 and the 
F1 score of 0.78. Note that the AUC values of all three models are all 
lower when predicting Transfer problem outcomes, indicating that all 
models’ predictive performance is less robust when predicting the 
performance of Transfer problems compared to predicting the 
performance on the Original problem.

3.3 Feature importance

Waterfall plots of the SHAP values for the most important features 
are shown in Figure 4, for the best performing model for both Original 
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problem and Transfer problem. We focus on the top 5 most influential 
features with the important contributions with SHAP values. The 
waterfall plot is designed to show how the SHAP value of each feature 
move the model output from the prior expectation under the background 
data distribution to the final model prediction given the evidence of the 
top 5 features. The value of each feature at the left side in Figure 4 
represented the mode of the data distribution (Lundberg et al., 2020). 
Most scatter plots show a general trend that aligns with the waterfall plot. 
We  only display scatter plots that either exhibit a highly non-linear 
relationship or a trend that differs from the direction in the waterfall plot.

For the RF model predicting the Original problem outcome 
(Figure 4A), the expected value of log-odds before considering any 
feature-specific contributions was 0.42, and the final predicted log-odds 
after accounting for all feature effects was 0.811. Among all features, 
the number of practiced problems attempted (nPracticed_log) had 
predominantly the largest impact on the outcome, contributing +0.33 
to the log-odds of the positive original outcomes when students 
practiced approximately 18 questions. From the scatter plot (Figure 5A) 
we can see that the positive SHAP value is exclusive to students with 10 
or more problems practiced. The second most impactful feature was 
the time separation (in hours) between last practice problem and exam, 
which added +0.06 to the log-odds when students practiced 22 h before 
the exam. Surprisingly, midterm exam 1 score had the highest negative 
contribution of −0.05 to the log-odds for a score of 5 out of 10 points. 
Examining the scatter plot in Figure 5B revealed that the mid-term 1 
score under 6 had negative contribution to the SHAP value, whereas 
scores >6 had positive SHAP value contribution. When the Q6 
question was not version 2, it had an impact of +0.03 on the log-odds. 

Finally, the fraction of practice problems with long duration (fracLong_
log) contributed positively with an addition of +0.02 to the log-odds of 
the positive original outcomes, when the fraction of the practice 
problems with long duration was 0.99.

Note that none of the features in the Memorization category had 
an impact of >0.01 on the log odds of the prediction, despite having 
statistically significant differences between positive and negative 
outcomes on the original problem (Supplementary Table S1). Having 
more correct attempts (frac_correct_std) was also not an important 
feature influencing the outcome.

For the XGBoost model predicting Transfer problem (Figure 4B), 
the initial expected value of log-odds was −0.81 before considering 
feature-specific contributions. After accounting for all feature effects, 
the final predicted log-odds was adjusted to −1.07. Feature importance 
was different from that of the Original problem model. As shown in 
Figure 4B, the most influential feature was median time separation 
between practice problem and exam (med_lead_to_Exam_log), with a 
log-odds change of −0.62 when the median time separation was about 
47 h, or 1.96 days. The midterm exam 1 of 5 points positively impacted 
the log-odds by +0.59. Practicing identical problems long time (long_
identical) also positively influenced the Transfer problem, contributing 
a log-odds increase of +0.46. The fraction of practice problems in long 
duration (fracLong_log) contributed to log-odd of +0.43 when the 
fraction was 0.99. Conversely, the fraction of correctly solved practice 
problem (frac_correct_std) negatively contributed the log-odd of −0.41 
when the fraction of correctly solved practice problems was 0.05.

Since the direction of impact of med_lead_to_Exam_log and 
frac_correct_std are counter intuitive, we  further examined the 

FIGURE 3

ROC curve plot comparing the performance of three models, CART, XGBoost (XGB), and Random Forest (RF), for the assessment problems. (A): 
Original problem. (B): Transfer problem.

TABLE 2  Model comparison table for outcomes.

Original problem Transfer problem

Model AUC Accuracy Precision Recall F1 
Score

AUC Accuracy Precision Recall F1 
Score

CART 0.70 0.35 0.43 0.59 0.50 0.59 0.62 0.70 0.76 0.73

Random Forest 0.74 0.71 0.72 0.77 0.74 0.58 0.65 0.70 0.76 0.73

XGBosot 0.78 0.68 0.55 0.65 0.59 0.66 0.65 0.67 0.95 0.78

The left side shows the comparison for the Original outcome with Random Forest as the best model; the right side shows the comparison for the Transfer outcome with XGBoost as the best 
model. Bold values indicated the best model.
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SHAP value dependence scatter plots of both features. As shown in 
Figure  6, it turns out that med_lead_to_Exam has peak positive 
SHAP value at about 3 (or about 1 day prior to the exam), and the 
SHAP value is negative when the feature value is greater than 3. For 
frac_correct_std, a higher correct fraction generally corresponds to 
a higher and positive SHAP value. Only when the feature value was 
below zero, which corresponds to roughly no correct attempt, did the 
SHAP value become negative. However, due to the large number of 
students with zero correct fraction, a negative SHAP value is reflected 
on the waterfall plot.

It is also worth emphasizing that the labels “identical” and 
“similar” are both defined regarding the similarity between a practice 
problem and the Original problem on the exam, not the Transfer 
problem, because the Transfer problem was not drawn from the 
practice problem bank. In other words, the Transfer problem can 
be seen as being equally different from all problems in the problem 
bank. This distinction suggests that features such as long_identical 
theoretically should have zero impact on the outcome of Transfer 
problem on the exam. However, out analysis revealed a positive 
contribution of long_identical to the log-odds in the Transfer problem 

FIGURE 4

SHAP value waterfall plots for top 5 feature importance assessment problems. (A): Original problem. (B): Transfer problem.

FIGURE 5

SHAP scatter plot for the impact of individual features on Original problem. (A): the number of practice problems influence the prediction of Original 
problem. (B): the midterm exam 1 score influences the prediction of Original problem. Takeaways: students who practiced more than 10 problems and 
spread practice at least 1 day before the exam performed significantly better.
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model, as shown in Figure 4B. This result may be an artifact of the 
data, potentially arising from the small sample size due to only 6 
students having a long_identical = 1 feature.

4 Discussion

4.1 Prediction of individual problem 
performance (RQ1)

The best performing predictive models are able to reach predictive 
accuracy of 71% for predicting the outcome of the Original problem, 
which is similar to the average prediction accuracy of previous Machine 
Learning modules on entire exam outcome (Arizmendi et al., 2022). 
Our current method has two key advantages regarding making learning 
recommendations. First, it is based predominantly on learning data, and 
uses only one immutable feature (mid-term exam 1 score), which makes 
the recommendations highly actionable. This also avoids the privacy 
and ethics concerns associated with collection of students’ demographic 
data (Arizmendi et  al., 2022; Liu et  al., 2023). Second, the 
recommendation can be made with regard to a specific problem since 
each problem is associated with its corresponding problem bank. Rather 
than making generic recommendations such as “practice on more 
problems,” the current system could potentially recommend students to 
“practice more problems in those problem banks.”

4.2 Impact of alignment on prediction 
outcome (RQ2)

Performance of ML models on the Transfer problem is clearly 
worse than that of the Original problem, both in terms of prediction 
accuracy and interpretability of results. Given that the Transfer 
problem is designed to be  similar to the practice problems, this 
observation supports our hypothesis that predictive models can 
be highly sensitive to seemingly small differences between learning 
material and assessment problems. Therefore, we recommend future 
predictive models should take-into-account the level of alignment 
between learning resource and assessment items.

4.3 Recommendations for students (RQ3)

Based on the model outcome, the recommendation for students 
to improve their performance on the Original Problem is straight-
forward: “Practice at least 10 problems and do so at least one day before 
the exam. It is ok if you make mistakes, but avoid guessing or quickly 
glancing over the problems.” This recommendation is based on the 
observation that the feature nPracticed_log is the dominant positive 
predictor of performance, and both the duration between practice 
and exam and the fraction of long attempts are major positive 
contributors to success. On the other hand, having more correct 
attempts had far less impact on the outcome. This recommendation 
aligns very well with previous findings regarding the “doer” effect of 
learning (Koedinger et al., 2015), and is in agreement with deliberate 
practice (Ericsson et al., 2009) being an effective method to enhance 
mastery. In addition, mid-term exam 1 score has far less impact on 
the outcome compared to problems practiced, which might suggest 
that practicing on isomorphic problem banks could potentially 
reduce achievement gaps, especially among low performing students. 
It is worth noting that if all students were to adopt the recommended 
strategies, the variability in these behavioral variables would decrease, 
potentially diminishing their predictive power in future models. 
However, the predictive strength of these variables is not solely 
dependent on their variability, but rather on their effect size. That is, 
the magnitude of their relationship with performance outcomes. In 
our analysis, much of the variation in student performance stems 
from unmeasured sources of randomness and individual behavioral 
differences, which are inherently difficult to capture. While the 
included variables are informative, they account for a relatively small 
portion of the total variance. Therefore, even if their variability were 
reduced due to widespread adoption, the directional shift in behavior 
would likely still exert a meaningful and measurable impact 
on performance.

It is also worth pointing out that the current predictive models 
do not directly show evidence for the causality between the 
predictors and the prediction outcome. As discussed in detail later 
in the paper, future studies are needed to examine if those 
recommendations could actually help students improve their 
exam performance.

FIGURE 6

SHAP scatter plot for the impact of individual features on Transfer problem. (A): the impact of median time separation between practice and exam on 
Transfer problem success. (B): the impact of the fraction of correctly solved practice problems on Transfer problem success.
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The recommendation for preparing for the Transfer problem is 
less obvious. The most likely recommendation that could be made 
is to “Spend enough time on each attempt, and study the problem 
bank about 1 day before the exam.” The fact that mid-term exam 1 
score and fraction of correct attempts has much more impact on 
Transfer problem success may suggest that the ability to transfer 
depends more on students’ general physics abilities, rather than 
their learning behavior. In other words, learning from practicing on 
a problem bank can be very specific to the type of problems in the 
bank, especially for students who are less proficient with the 
subject matter.

4.4 Insight on pedagogical validity (RQ4)

The RF model result shows that having seen the identical problem 
or having seen similar problems during practice had little to no impact 
on students’ chances of correctly answering the Original problem on 
the exam. This provides evidence for the hypothesis behind the new 
assessment approach that having a large enough problem bank could 
deter rote-memorization of solution, and keep the assessment fair for 
all students. Even though “long_identical” has high SHAP values for 
predicting Transfer problem success, we believe this is an artifact of 
sparce data in the test set, since the feature “identical” is ill defined for 
Transfer problem.

However, the results also point to potential issues with the 
current implementation of isomorphic problem banks. For one, 
different isomorphic versions of the same problem can have a 
measurable impact on students’ chances of obtaining the correct 
answer, as Q6_Version_2 has significant contribution for success 
odds-ratio. Future exams could select multiple problems from the 
problem bank to increase fairness. Second, it seems that learning 
from practice problem bank is highly specific to the problem type, 
and transferring to even a slightly different problem context can 
be  challenging, especially for lower performing students. One 
possible way of improving transfer ability is to design problem banks 
that contain more variations between problems to assist with 
generalization of knowledge (Roelle and Berthold, 2016; Schwartz 
et al., 2011).

Finally, it is worth noting that had we relied on simple statistical 
tests of features between student groups with positive and negative 
outcomes (Supplementary Table S1), both the recommendations for 
students and insights for instructors would have been drastically 
different. For example, the feature “is_identical” is significantly 
different between student groups for the original problem, but 
determined as unimportant based on its SHAP value. The results 
from the ML models are more reliable since it could reflect the 
non-linear and highly inter-dependent nature of student 
learning data.

4.5 Implications for the development of 
future learning systems

Results of the current study suggests two possible designs of 
future learning systems that are based on isomorphic problem banks 
and Explainable Machine Learning. First, for a learning system with 
conventional summative assessments with a fixed number of items, 

multiple practice problem banks aligned with each potential 
assessment item (or item bank) can be developed using Generative 
AI. During the learning process, students will be informed whether 
they have had enough practice to pass the exam based on their 
practice behavior, and receive suggestions on which problem banks 
to practice next. This static assessment design is more compatible 
with existing course structures, and could be implemented relatively 
easily. The second possible design involves dynamic summative 
assessments, in which each students’ level of mastery on each topic 
is estimated by their practice behavior and practice outcome via 
xML. The summative assessment is then generated dynamically 
based on students’ estimated level of mastery. In this design, the 
assessment only need to sample a fraction of the skills that the 
student should have mastered, and serve the purpose of verifying the 
validity of the collected learning data. This design has the benefit 
creating more accurate, flexible and accessible assessments while 
significantly reducing test anxiety, but requires more drastic reform 
of the existing course structure.

5 Conclusion and future directions

This paper demonstrates a case of synchronous innovation in both 
pedagogy and learning analytics. By combining isomorphic problem 
bank-based assessment with Explainable Machine Learning 
techniques, the study showed that:

1. ML models can predict the outcome of individual problems on 
a physics exam with >70% accuracy based predominantly on student 
learning data collected from aligned isomorphic practice problems.

2. Prediction accuracy and model interpretability of ML models 
can be  very sensitive to the level of similarity between learning 
resources and assessment problems, which was overlooked in many 
earlier studies.

3. Explainable Machine Learning (xML) models have clear 
advantage over traditional ML models in making specific and 
actionable learning recommendations for students.

4. The hypothesis that large isomorphic problem banks can 
prevent rote memorization is supported by the current results, but the 
fairness of the assessment should be improved in the future.

It is also worth mentioning that the potential benefits of the 
isomorphic problem bank assessments extend well beyond enabling 
more accurate and informative learning analytics. For example, since 
the problem banks are openly accessible, students can take the 
assessment at different times and can have multiple attempts. Test item 
security is no longer a concern, so the same assessment can be reused 
over time, and used across many different classes. In short, isomorphic 
problem banks could lead to completely re-designed assessment 
mechanism in the future.

As an initial attempt at implementing and studying this new 
assessment approach, the current study also has multiple limitations 
and caveats that needs to be addressed in future implementations and 
follow up studies. We  discuss some of the most important future 
directions below.

First, the current implementation only records binary outcomes of 
a multi-step problem, without taking into account students’ problem-
solving process. From an assessment approach perspective, it only 
provides very limited amount of information on students’ 
understanding of the problem-solving process. From a predictive 
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analysis perspective, it is likely one of the reasons for the reduced 
predictive performance on the transfer problem, since many students 
could have transferred some partial learning from the practice problem 
bank, but unable to obtain the correct end-result due to extraneous 
reasons. With the rapid development of GenAI based automated 
grading techniques (Kortemeyer, 2024; Pinto et al., 2023; Liu et al., 
2024), future implementations could utilize open-ended responses, to 
achieve more informative assessment and enable more accurate 
predictive models. It could also provide partial credit to students based 
on their responses, to improve the fairness of the assessment.

Second, the current study only assessed data from a single 
problem bank, which prevented us from directly testing the current 
approaches’ ability to make recommendations regarding “what to 
study.” Future implementations need to involve multiple problem 
banks that correspond to multiple assessment problems, and develop 
Machine Learning models that could estimate different levels of 
proficiency on different problems. Relatedly, the same pedagogical 
innovation could be administered to larger and more diverse student 
populations, which will likely result in more diverse learning 
behavior. This will likely lead to more robust predictive models, and 
could potentially lead to different learning recommendation for 
different student populations.

Third, future studies will need to examine the causality between 
identified important features and exam performance. This can 
be  achieved solely based on data, using tools such as TETRAD 
(Scheines et al., 1998). Alternatively, one could conduct randomized 
or natural experiments (such as in (Felker and Chen, 2023) and (Chen 
et al., 2024)), that provide one group of students with recommendations 
based on the previous ML results. Evidence for causality can 
be obtained by comparing to a second group of students, or the same 
group of students at an earlier instance, and looking for differences in 
both practice behavior and assessment outcome.

Forth, the current model only used data from students practicing 
for the upcoming exam 1 week ahead of time, and do not contain 
students’ learning behavior data earlier in the process. While 
practicing shortly before the exam is likely to have the most direct 
impact on assessment outcome, activities that took place earlier in the 
learning process likely had more influence on students’ conceptual 
understanding of the subject matter. Lack of earlier learning data 
might be part of the reason why the current ML models perform 
worse on the Transfer problem, as transfer tasks could depend more 
on conceptual understanding over short-term memory. Future studies 
with larger student population could include learning data from 
longer periods of time, which would not only improve model 
performance, but also allow the model to provide learning 
recommendations earlier in the learning process. Future studies could 
also consider combining Machine Learning with Knowledge Tracing 
methods or further increase prediction accuracy.

Fifth, the method of using Generative AI to develop isomorphic 
problems reported in the current study did not fully utilize the potential 
of the latest Generative AI models available. Future studies could 
further streamline the problem creation process, reducing the steps 
needed for more efficient creation of isomorphic problem banks. In 
addition, more student data is needed to verify if the current definition 
of isomorphic problems is sufficient to ensure an acceptable level of 
uniformity in difficulty across all problems in the problem bank, which 
is key to ensuring faireness in problem bank based assessments.

Finally, the current study only explored generating learning 
recommendations for the entire student population as a whole. The 

benefit of such recommendations will most likely not be uniform 
across different student cohorts, especially in large institutions with 
highly varied student population. It is an important research question 
to investigate whether those recommendations would mitigate or 
exacerbate existing achievement gaps between different student 
population. Furthermore, future ML models could be developed to 
provide customized learning recommendations for cohorts of 
student, or even individual students, by incorporating more detailed 
student learning records.
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