
Frontiers in Education 01 frontiersin.org

Ways of thinking about teaching 
an idea in mathematics: how 
teachers’ mathematical meanings 
for teaching ideas impact their 
instructional practices
Alan E. O’Bryan *
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Despite decades of reform efforts, many mathematics teachers continue to struggle 
with implementing instruction that supports deep mathematical understanding and 
meaningful student engagement. This case study demonstrates how professional 
development targeting teachers’ mathematical meanings for teaching can transform 
instructional practice in K-12 algebra. Tracy, an Algebra II teacher, participated in 
professional development focused on quantitative reasoning while implementing 
research-based curriculum materials. Through classroom observations, interviews, 
and artifact analysis, the study shows how quantitative reasoning functioned as 
(1) a productive framework for analyzing teachers’ mathematical meanings for 
teaching algebraic concepts, (2) an effective target for professional development 
that supports teachers in constructing pedagogically powerful mathematical 
understandings, (3) a vehicle enabling teacher decentering, and (4) a foundation 
for classroom instruction emphasizing meaningful quantitative relationships. Data 
were analyzed through the frameworks of mathematical meanings for teaching 
and ways of thinking about teaching an idea. Findings suggest that professional 
development addressing teachers’ mathematical meanings, combined with 
curriculum supporting student reasoning and ongoing classroom support, can 
produce significant changes in instructional practice that create high-quality 
learning opportunities for students.
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1 Introduction

Over the last few decades, mathematical organizations have prioritized publishing new 
content and teaching standards documents to provide guidance for improving the quality of 
students’ mathematical experiences [e.g., Mathematical Association of America (2018), 
National Council of Teachers of Mathematics (2000), and National Governors Association 
Center for Best Practices, Council of Chief State School Officers (2010)]. These documents call 
for inquiry-based teaching featuring deep engagement with mathematics, a focus on coherence 
across lessons and modules, and creating a positive classroom environment that supports 
developing students’ mathematical curiosity, confidence, enjoyment, and persistence. Despite 
these calls, many students still experience math classes that fall short of these goals at all grade 
levels. Studies continue to show U. S. teachers struggling to move away from direct instruction 
and teacher-demonstrated algorithms (e.g., Boston (2012), Litke (2020), Schoenfeld (2022), 
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and Stockero et al. (2020a)], highlight the deficiencies of mathematics 
curricula in developing powerful mathematical ideas [e.g., Frank and 
Thompson (2021)], and call into question the learning goals 
instructors choose to assess and value [e.g., Tallman et  al. (2016, 
2021)]. These findings coincide with both the Programme for 
International Student Assessment (PISA) and the National Assessment 
of Educational Progress (NAEP) showing declining student 
mathematical performance and a widening achievement gap among 
American students (The National Center for Education Statistics, 
2025; Organization for Economic Co-operation and Development, 
2023). This persistent gap between reform intentions and classroom 
realities highlights the critical role professional development must play 
to support the kinds of instructional changes needed to improve the 
quality of students’ mathematical learning opportunities.

This paper addresses these persistent challenges by examining 
how professional development can transform mathematics teaching 
when it focuses on supporting teachers in developing pedagogically 
powerful mathematical meanings for teaching. Specifically, this case 
study explores how professional development targeting teachers’ 
understanding of quantitative and covariational reasoning (see Section 
3.3) can serve as a vehicle for developing the kinds of mathematical 
meanings for teaching that support high-quality instruction. While 
this study focuses on quantitative reasoning as the specific set of 
targeted mathematical ideas, the broader principle being investigated 
is how professional development that systematically addresses 
teachers’ mathematical meanings, combined with a coherent 
curriculum and ongoing support, can produce fundamental changes 
in instructional practice. The quantitative reasoning focus provides a 
concrete lens through which to examine the mechanisms by which 
teachers’ mathematical understandings become pedagogically 
powerful and influence the quality of learning opportunities they 
create for students.

This study was guided by the following research questions. Note 
that key terms in these questions (such as quantitative reasoning and 
mathematical meanings for teaching) will be  unpacked within 
this paper.

	 1.	 How does professional development focused on quantitative 
reasoning influence a secondary mathematics teacher’s 
instructional practice?

	 2.	 What role does decentering play in a teacher’s development of 
pedagogically powerful mathematical meanings?

	 3.	 How do a teacher’s mathematical meanings for teaching 
manifest in the quality of learning opportunities provided 
to students?

2 Literature review and research 
frameworks

The following literature review establishes the theoretical 
foundation for this case study by examining four interconnected areas: 
(1) research on professional development effectiveness and its 
persistent challenges, (2) frameworks for understanding teachers’ 
specialized mathematical knowledge, (3) theoretical constructs that 
explain how teachers’ mathematical meanings influence instruction, 
and (4) the specific role of quantitative reasoning in mathematics 
education. This review demonstrates that while researchers have 

identified characteristics of effective professional development and 
teaching practices, fewer studies have examined the mechanisms by 
which teachers’ mathematical understandings become pedagogically 
powerful. The frameworks presented here provide the theoretical lens 
for understanding how professional development focused on 
mathematical meanings can transform teaching practice.

2.1 Professional development

Research on mathematics teacher professional development has 
revealed both promising practices and persistent challenges. Large-
scale studies consistently identify key characteristics of effective 
professional development, such as a focus on content, active learning, 
coherence with other reform efforts, sufficient duration, and collective 
participation (Darling-Hammond and Sykes, 1999; Darling-
Hammond et al., 2017; Desimone, 2009). Other researchers have 
reinforced these findings while adding nuanced understanding of 
implementation factors. Lee and Vongkulluksn (2022) emphasized 
that effective professional development must be embedded in teachers’ 
daily practice and connected to their specific contexts, while Kennedy 
(2016) highlighted the importance of inquiry-based approaches, 
teacher agency, and teacher motivation in professional development.

However, Yoon et al.’s (2007) meta-analysis revealed that many 
professional development programs show minimal impact on teaching 
practice or student learning, a pattern later research supported. Kraft 
et  al. (2018) conducted a comprehensive meta-analysis of teacher 
coaching interventions and found that while coaching can be effective, 
the average effect sizes are modest and highly variable across contexts. 
Similarly, a randomized controlled trial of a widely used mathematics 
professional development program found no significant effects on 
student achievement despite substantial investment in teacher training 
(Jacob et al., 2017). Several factors contribute to these disappointing 
outcomes, including insufficient attention to teachers’ existing beliefs 
and knowledge (Opfer and Pedder, 2011), lack of alignment between 
professional development goals and school accountability pressures 
(Coburn and Russell, 2008), and the challenge of scaling effective 
models while maintaining quality (Domitrovich et al., 2008).

Studies specifically focused on mathematics professional 
development have revealed additional complexities. Sztajn et  al. 
(2017) found that teachers’ mathematical knowledge for teaching 
improved following professional development, but these gains did not 
consistently translate into changes in classroom practice or student 
learning. Work by Hill and Charalambous (2012) and Carlson et al. 
(2024a) suggests that the relationship between teacher knowledge and 
practice is mediated by factors such as curriculum materials, school 
culture, and administrative support, highlighting the need for systemic 
approaches to professional development. These perspectives suggest 
that effective professional development requires attention not only to 
what teachers learn, but to how that learning is supported within the 
broader educational system.

One reason for the limited success of many professional 
development programs may be that they are not strongly grounded in 
theories of teacher learning (how teachers construct, modify, and apply 
professional knowledge in classroom contexts). As Kennedy (2016) 
noted, “Education research is at a stage in which we  have strong 
theories of student learning, but we do not have well-developed ideas 
about teacher learning, nor about how to help teachers incorporate 
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new ideas into their ongoing systems of practice” (p. 29). This gap 
highlights the need for professional development approaches that are 
explicitly grounded in understanding how teachers learn and change 
their practice.

2.2 Mathematical knowledge for teaching 
and professional noticing

Mathematical knowledge for teaching (MKT) and professional 
noticing of students’ mathematical thinking are research areas that can 
inform professional development efforts. MKT is an extension of 
Shulman (1986, 1987) work on pedagogical content knowledge (PCK) 
applied to mathematics education (Ball et al., 2001, 2008; Kahan et al., 
2003; Hill et al., 2005, 2008; Silverman and Thompson, 2008; Tallman, 
2023). Researchers examining MKT have helped emphasize issues in 
teacher preparation programs and professional development training 
by highlighting the disconnect between the kinds of specialized 
mathematical knowledge teachers need compared to the kinds of 
mathematical knowledge emphasized in their university courses and 
professional training. They have also produced categories of both 
subject matter knowledge and PCK that make up a teacher’s MKT and 
have developed assessments for measuring aspects of teachers’ 
MKT. Research studies [e.g., Hill et al. (2005)] have also demonstrated 
a positive correlation between a teacher’s MKT (as assessed by their 
instruments) and students’ mathematical achievement.

A teacher’s professional noticing of students’ mathematical thinking 
refers to their attention to students’ thinking and attempts to make 
sense of and respond to products students generate. These products 
include their verbal responses, explanations, and written work [e.g., 
Jacobs et al. (2010, 2024), Sherin et al. (2010), Stockero et al. (2017, 
2020a, 2020b), Stockero and Stenzelbarton (2017), and Van Es and 
Sherin (2002, 2006, 2008)]. Professional noticing studies claim that 
“professional noticing of children’s mathematical thinking is 
challenging and not something that adults routinely know how to do” 
(Jacobs et al., 2010, p. 191), but also that increased noticing of students’ 
mathematical thinking can improve the quality of students’ 
mathematical experiences and learning.

Both MKT and professional noticing studies can provide guidance 
for mathematics teacher professional development. Professional 
noticing is a teaching practice intended to foreground students’ 
contributions to mathematics lessons and discussions. Professional 
noticing researchers have designed tools to assess a teacher’s skills in 
various aspects of noticing and to provide guidance for improving 
teachers’ practice to positively impact student learning. Similarly, 
researchers studying MKT have examined how effective teachers 
interact with students during lessons and know how they respond 
productively to students’ contributions.

2.3 Frameworks relevant to this study

As mentioned earlier, while researchers have identified elements 
of professional development that lead to higher success in impacting 
teacher success, many professional development programs fail to 
produce positive results. One reason may be that many professional 
development programs and research areas such as MKT and 
professional noticing are not strongly grounded in theories of learning. 

As Kennedy (2016) noted, “Education research is at a stage in which 
we have strong theories of student learning, but we do not have well-
developed ideas about teacher learning, nor about how to help 
teachers incorporate new ideas into their ongoing systems of practice” 
(p. 29) In this section, I discuss the complexities of shifting teachers’ 
meanings and practices and describe frameworks that characterize 
mechanisms for supporting teachers’ learning and teaching practices.

2.3.1 The didactic triad
To understand why professional development interventions may 

not significantly impact student learning outcomes, we can consider 
the complexity of teaching via Thompson’s (2009) didactic triad. The 
didactic triad is a framework that attempts to capture the 
interconnected nature of teachers’ mathematical meanings, models of 
students’ mathematical meanings, student learning goals, and their 
instructional tools and practices (Figure 1). The triad highlights the 
interdependency of these elements and why shifting teachers’ 
effectiveness is challenging. Professional development approaches that 
address only a subset of these elements (such as training teachers on 
active learning strategies without addressing learning goals or 
classroom tasks or providing training on new curriculum materials 
without addressing a teacher’s underlying mathematical meanings) 
can fail to produce substantive, lasting change (Stigler and Hiebert, 
2009). This observation aligns with broader research on teacher 
change, which emphasizes that sustainable reform requires coherent 
approaches that address teachers’ knowledge, fundamental beliefs 
about mathematics and learning, and practices simultaneously [e.g., 
Clark and Hollingsworth (2002) and Guskey (2002)].

2.3.2 Mathematical meanings for teaching and 
decentering

Silverman and Thompson (2008) and others building on their 
work [e.g., Carlson et al. (2024a), Rocha (2023), Tallman (2021, 
2023), and Thompson (2013, 2016)] have argued that MKT 
frameworks have not yet addressed at least three important topics 

FIGURE 1

The didactic triad. Note that this was first formally presented by 
Thompson (2009) but emerged through discussion and 
collaboration with Carlson, Oehrtman, Moore, Ström, O’Bryan, and 
their colleagues working in the Pathways research project [see 
Carlson et al. (2024b)].
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critical to shifting teachers’ practice in ways that positively impact 
student learning. (i) They do not explain how a teacher might 
develop the special knowledge structures they identify grounded in 
a theory of how teachers learn. (ii) They do not describe 
mathematical meanings they conjecture to be necessary for shifting 
teachers’ instruction to focus on students’ thinking and advancing 
students’ understandings. (iii) Related to point (ii) and to 
limitations in research on professional noticing, MKT studies do 
not typically collect data on and analyze the mathematical meanings 
participating teachers possess with the goal of linking those 
meanings with teachers’ pedagogical actions. Further investigation 
is needed into how a teacher’s mathematical meanings influence 
such things as their learning goals, choice of curriculum, and the 
nature of their questions and explanations. It is these decisions and 
choices that determine potential learning opportunities 
for students.

Following calls from Silverman and Thompson (2008), researchers 
such as Thompson (2013, 2016), Baş-Ader and Carlson (2022), 
Carlson et al. (2024a), and Rocha (2023) have leveraged the construct 
of mathematical meanings for teaching (MMT) (Thompson, 2013, 
2016) to investigate the meanings teachers hold relative to specific 
ideas and how these meanings influence their instructional decisions. 
Researchers following this line of inquiry have argued for the need to 
ground mathematics education research such as MKT and professional 
noticing in a robust theory of how individuals construct knowledge 
with an increased focus on “the system of meanings by which the 
teacher [operates]” (Thompson, 2013, p. 79–80). This is a critical focus 
if the goal is to help students construct coherent and useful 
mathematical meanings themselves (Rocha, 2023; Silverman and 
Thompson, 2008; Tallman, 2023; Thompson, 2013, 2016). A focus on 
modeling the meanings teachers hold for specific ideas and studying 
their influences on a teacher’s pedagogical actions allows researchers 
to make conjectures about links between a teacher’s meanings and 
their instructional decisions, both when planning for and when 
delivering instruction (refer back to Figure 1). It is then possible to 
identify meanings that might lead to more productive learning 
experiences for students, to design professional development aimed at 
supporting teachers in developing those meanings and leveraging 
those meanings to drive pedagogical actions.

Thompson (2013, 2016) clarified MMT as the construct that refers 
to the meanings a teacher possesses (which could be  potentially 
productive or potentially unproductive, coherent or incoherent, valid 
or inconsistent with the field’s norms, and so on) and used MKT to 
refer to the MMT that have been transformed into meanings with 
pedagogical power. This transformation of personal mathematical 
knowledge into pedagogically powerful knowledge occurs primarily 
through decentering (Baş-Ader and Carlson, 2022; Carlson and 
Baş-Ader, 2019; Carlson et al., 2007, 2024a; Rocha, 2021, 2022; Rocha 
and Carlson, 2020; Silverman and Thompson, 2008; Teuscher et al., 
2016), a process by which teachers inquire about and attempt to 
understand a student’s thinking. A teacher’s decentering actions 
typically begin when a teacher demonstrates an interest in how a 
student is thinking (Baş-Ader and Carlson, 2022). As teachers 
repeatedly inquire about how their students are thinking they become 
better at designing learning experiences that are effective in advancing 
students’ learning. Note that decentering can be thought of as a type 
of noticing, but differs in that decentering involves actively engaging 
in describing the mental actions of another.

2.3.3 Ways of thinking about teaching an idea
The concept of MMT emerged over several years and through 

several works by various researchers. Carlson et  al. (2024a) 
summarized and extended this work in their framework for ways of 
thinking about teaching an idea, which describes how teachers who 
have developed pedagogically powerful MMT plan and deliver 
instruction on specific mathematical concepts. This framework 
suggests that effective mathematics teaching requires instructors to 
develop conscious awareness of their own mathematical meanings, 
construct models of various ways students might understand 
mathematical ideas, and use these insights to design and adapt 
instruction in real time. A teacher’s way of thinking about teaching an 
idea can evolve over time, particularly when the teacher regularly 
reflects on the impact of their teaching and attempts to decenter 
relative to students’ thinking. See Figure 2. I will briefly describe the 
various elements in this framework, but for a more detailed 
explanation see Carlson et al. (2024a).

According to this framework, teachers develop productive ways 
of thinking about teaching an idea through an iterative process of 
decentering and reflection. A first-order model (Steffe, 1995; Steffe 
et al., 1983; Steffe and Thompson, 2000; Thompson, 2000) describes 
the teacher’s personal mathematical meanings for the idea being 
taught. Importantly, teachers must have conscious awareness of these 
meanings to leverage them pedagogically (Tallman, 2021; Tallman and 
Frank, 2020; Tallman et al., 2024). This requirement for conscious 
awareness discounts that teachers can effectively teach concepts they 
understand only tacitly or procedurally. Second-order models (Steffe, 
1995; Steffe et al., 1983; Steffe and Thompson, 2000; Thompson, 1982, 
2000) describe the teacher’s hypotheses about students’ mathematical 
meanings, constructed through experience and decentering. The 
quality of these models depends heavily on teachers’ ability to 
recognize and distinguish mathematical thinking different from their 
own and on their conceptual analysis (Thompson, 2008). Conceptual 
analysis involves the teacher’s systematic reflection on the 
mathematical idea itself, considering issues such as what mental 
operations are required to understand it, how it connects to other 
ideas, and what makes it difficult or accessible for learners.

When teachers have developed conscious awareness of their own 
meanings and mental models of a variety of ways students understand 
the concept (and related concepts), they are positioned to construct 
generalized models of common meanings students possess for the idea 
(both productive and unproductive). These models are called epistemic 
students (Thompson, 2002), or epistemic ways of understanding. By 
considering epistemic students as well as the results of their conceptual 
analysis of the idea at hand, teachers can conceptualize ways of learning 
an idea, which includes how to construct learning activities that address, 
build on, or attempt to modify these meanings. The act of teaching, with 
interactions informed by their learning goals and images of epistemic 
students, then provides new data for additional iterations of reflection, 
decentering, and conceptual analysis that feeds into the iterative process 
of further developing the teacher’s ways of thinking about teaching 
the idea.

2.4 Summary

If teachers’ mathematical meanings are central to the quality of 
instruction they provide, then effective professional development 
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must address these meanings directly. For example, Carpenter et al. 
(1989) demonstrated that interventions targeting teachers’ 
understanding of mathematical concepts and student thinking 
patterns produced measurable improvements in both teaching quality 
and student achievement. Programs that focus primarily on 
curriculum implementation, general pedagogical strategies, or even 
advanced mathematical content may fail to help teachers develop the 
specific kinds of mathematical meanings that support high-
quality instruction.

The MMT and ways of thinking about teaching an idea 
frameworks have significant implications for professional 
development. The frameworks suggest that professional development 
should support teachers in transforming their personal mathematical 
meanings into pedagogically powerful ones through sustained 
practice in decentering and reflection on their own and their students’ 
mathematical meanings. This might involve analyzing student work, 
reflecting on classroom interactions, and explicitly considering the 
implications of different mathematical meanings on future learning. 
As is illustrated in the didactic triad (Figure 1), it is useful to emphasize 
that what teachers notice about students’ mathematical meanings 
depend not just on their own mathematical meanings (what they are 
primed to notice), but also on the nature of their learning goals, 
pedagogical actions, and classroom tasks that comprise their lessons. 
For example, a teacher who approaches teaching operations with 

fractions by demonstrating examples, giving students practice 
problems similar to the worked examples, and prioritizing accurate 
calculations is not creating opportunities to gather information about 
students’ meanings for fractions outside of calculational performance. 
The images of epistemic students they construct will be shallow and 
focused on classes of procedural behaviors, and their opportunities 
will be limited for updating their first-order models to be more robust 
and coherent relative to other mathematical ideas. It is when teachers 
intentionally begin to foreground students’ mathematical reasoning 
that opportunities arise for teachers to deepen their MMT and 
transform their MMT into meanings with real pedagogical power. 
Supporting teachers in making this shift requires attention to the 
teacher’s personal mathematical meanings, their student learning 
goals, the mathematical tasks they utilize, and their teaching practices. 
Otherwise, as Stigler and Hiebert (2009) noted, “[t]he system 
assimilates individual changes and swallows them up” (p. 98).

3 The study

3.1 Study overview

This paper reports on a case study of Tracy, a secondary 
mathematics teacher who participated in professional development 

FIGURE 2

Carlson et al. (2024a) framework for a way of thinking about teaching an idea in mathematics (p. 316).

https://doi.org/10.3389/feduc.2025.1611159
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


O’Bryan� 10.3389/feduc.2025.1611159

Frontiers in Education 06 frontiersin.org

based on the ways of thinking about teaching an idea framework with 
a focus on developing Tracy’s quantitative, covariational, and algebraic 
reasoning skills (see Section 3.3) and preparing her to teach with the 
Pathways Algebra II materials (Carlson and O’Bryan, 2014) that have 
similar learning goals for students. Tracy participated in one year of 
training through bimonthly professional learning community 
meetings. The following fall semester she taught using research-based 
curriculum materials while receiving ongoing professional 
development support, classroom observations, and targeted feedback. 
The study examined Tracy’s evolving understanding of key 
mathematical ideas, her developing ability to notice and respond to 
student thinking, and the impact on her instructional practices as 
evidenced through classroom observations and interview data. The 
analysis is framed by the theoretical constructs of mathematical 
meanings for teaching, decentering, and ways of thinking about 
teaching an idea.

3.2 Methods

The goal of this research was to provide an in-depth examination 
of how professional development focused on mathematical meanings 
for teaching can influence instructional practice, using quantitative 
reasoning as a specific content focus to understand these mechanisms 
(see Section 3.3). While not necessarily providing findings that 
automatically generalize to all professional development contexts, 
this case study provides documentation of the processes by which 
teacher change occurs when professional development systematically 
addresses the mathematical meanings teachers hold and use in 
instruction., this case study aimed to (i) provide detailed 
documentation of one teacher’s instructional practices after training 
focused on quantitative reasoning while implementing research-
based curriculum materials, (ii) examine the role of decentering in 
transforming teachers’ personal mathematical knowledge into 
pedagogically powerful knowledge, and (iii) investigate how teachers’ 
mathematical meanings impact the quality of learning opportunities 
provided to students. The analysis is grounded in Carlson et  al.’s 
(2024a) framework of ways of thinking about teaching an idea, 
offering concrete examples of how this theoretical framework can 
illuminate the mechanisms of effective professional development.

3.2.1 Research design, participant, and setting
This study employed a longitudinal case study design (Yin, 2018) 

to examine how professional development focused on mathematical 
meanings for teaching influenced one secondary mathematics 
teacher’s instructional practice. Case study methodology was 
appropriate for this investigation because it enabled deep examination 
of the complex processes involved in teacher change within the 
authentic context of classroom practice (Tisdell et al., 2025). The study 
was conducted as part of the larger Pathways Project, an NSF-funded 
research program examining approaches to improving secondary 
STEM teaching through professional development and curriculum 
innovation (see Carlson et al., 2024b). This paper reports specifically 
on data collected during one semester of intensive work with Tracy 
(pseudonym), an Algebra II teacher at a large suburban secondary 
school in the Southwestern United States.

Tracy was selected based on her willingness to participate in 
extended professional development, use research-based curriculum 

materials in her Algebra II class (of 28 students), and allow regular 
classroom observations. At the time of the study, Tracy had been 
teaching mathematics for eight years and held a bachelor’s degree in 
secondary mathematics teaching. Tracy’s school had a population of 
about 1,200 students with 38% minority enrollment and a school-wide 
math proficiency of 43%. Tracy provided informed consent for all data 
collection activities. Student consent was obtained for classroom 
observations, with seating arrangements modified to ensure that the 
one non-consenting student did not appear in video recordings. Their 
participation was redacted from video recordings, transcripts, and 
data analysis. All participants’ names were replaced with pseudonyms 
or numbers.

3.2.2 The professional development intervention
During the previous school year, Tracy participated in a year-long 

intervention consisting of monthly two-hour professional learning 
community meetings. These meetings focused on helping teachers see 
mathematical ways of thinking that united various topics in their 
courses and could be  used as key focal points to bring greater 
coherence to their instruction. Teachers were also supported in 
working together in a lesson design study (Stigler and Hiebert, 2009). 
Prior to the subsequent fall semester when data was collected, Tracy 
participated in an intensive two-day summer workshop with activities 
designed to support her in constructing productive personal meanings 
related to quantitative reasoning, covariational reasoning, and 
representational equivalence in an Algebra II course (see Section 3.3). 
The workshop was explicitly aligned with features of the Pathways 
Algebra II research-based curriculum materials (Carlson and O’Bryan, 
2014), designed to engage students in quantitative reasoning while 
providing teachers with opportunities to observe and respond to 
student thinking. Throughout the semester, Tracy participated in five 
individual professional development sessions that combined clinical 
interviews about Tracy’s mathematical meanings and her observations 
of her students’ thinking along with professional development 
targeting upcoming ideas in the course and how they built on ideas 
Tracy had already taught. These sessions were scheduled approximately 
every three weeks and lasted about 90 min each.1

The curriculum served multiple functions beyond providing 
activities for students. For example, it provided models for the kinds 
of mathematical discussions the professional development promoted 
and generated artifacts of student reasoning for Tracy to analyze. 
Without this coherent system, Tracy’s developing mathematical 
meanings might not have translated into productive changes in her 
classroom practice.

3.2.3 Data collection and analysis
Data collection occurred over one full semester (August–

December) and included multiple sources. Five complete class lessons 
were video recorded throughout the semester, with observations 

1  To summarize the timeline of this research, during year one, Tracy 

participated in monthly professional learning community meetings. In the 

summer between year one and year two, she attended an intensive two-day 

workshop. During the fall of year two, she taught using the curriculum materials 

while receiving ongoing support through five individual sessions, and all data 

collection for this study occurred during the fall semester of year two.
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strategically scheduled to capture Tracy’s teaching at different points 
in the semester. Each observation lasted the full 65-min class period. 
All five individual interview/training sessions with Tracy were also 
video recorded with the camera focused on the table to capture 
anything Tracy wrote or showed. Transcripts were also created for 
each classroom observation and interview/training session. Student 
work samples, lesson plans, and Tracy’s written reflections were 
collected throughout the semester for analysis. Finally, brief 
conversations with Tracy before and after observed lessons were 
documented through field notes.

Data analysis followed an iterative process of open coding (Corbin 
and Strauss, 1990) with particular attention to evidence of Tracy’s 
evolving mathematical meanings and teaching practices. Video 
recordings, transcripts, and reflections were coded to capture instances 
of (i) Tracy explicitly expressing her mathematical meanings and 
learning goals, (ii) observable behaviors implying Tracy’s mathematical 
meanings and learning goals, (iii) observable behaviors in line with 
elements of reasoning quantitatively related to algebraic expressions 
(see Table 1 in Section 3.3), (iv) evidence of decentering behaviors, and 
(v) characteristics of her responses to students’ contributions and work. 
Codes were analyzed across time to identify patterns in Tracy’s 
development particularly moments that suggested shifts in her 
mathematical meanings, learning goals, or instructional practices. 
Summaries of each lesson and interview/training session were 
produced to characterize the quality of mathematics in the lesson, the 
character of the mathematical discussions, and Tracy’s responsiveness 
to student contributions. The coded lessons and summaries were then 
analyzed through the lens of the ways of thinking about teaching an 
idea framework to understand the mechanisms underlying Tracy’s 
growth. Whenever possible, key interpretations were shared with Tracy 
during later professional development sessions. The goal was to verify 
the accuracy of interpretations and gather additional insights about her 
thinking. For example, in Section 4.2 details are shared of a lesson 
Tracy designed for the exponential functions module. During this 
lesson Tracy deviated from the printed curriculum materials and 
designed her own lesson tasks that created a lesson that unfolded 
similarly to one of the training sessions. This move was particularly 
noteworthy, leading to follow-up questions and activities designed to 
better understand her learning goals and what she learned about her 
students’ thinking during this lesson.

3.3 Quantitative and covariational 
reasoning and their role as learning goals

Quantitative and covariational reasoning are foundational ways of 
thinking about mathematical relationships in ways that are productive 
particularly for the algebra to calculus pipeline. It is important to 
elaborate on this way of thinking because developing Tracy’s 
quantitative and covariational reasoning skills was a key goal of the 
professional development intervention, developing students’ 
quantitative and covariational reasoning skills is a key goal and 
unifying theme in the curriculum materials Tracy used, and 
observations of Tracy’s teaching show strong evidence that Tracy 
conceptualized her lesson goals and engaged in decentering actions 
grounded in this reasoning.

Quantitative reasoning, as described by Thompson (1990, 2011), 
involves conceptualizing situations in terms of quantities (measurable 
attributes of objects) and the relationships among quantities, rather than 
focusing primarily on numerical calculations and symbol manipulation. 
When an individual has distinguished between conceptualized quantities 
in a situation with measurements that can change and those with fixed 
measurements, then they can begin to coordinate changes in pairs of 
quantities’ magnitudes or values, identify patterns in those coordinated 
changes, and reason about the implications of those patterns. This is 
covariational reasoning (Carlson et al., 2002; Castillo-Garsow et al., 2013; 
Moore and Thompson, 2015; Saldanha and Thompson, 1998; Thompson 
and Carlson, 2017) and is foundational to a robust understanding of 
algebra, functions, and rate of change and accumulation in calculus. The 
relationships identified can be represented and communicated through 
a variety of equivalent representations that may highlight different 
features of these relationships.

Thompson’s work on quantitative reasoning emerged from his 
analysis of students’ difficulties with algebra and calculus. He observed 
that many students approached mathematical problems by 
immediately applying numerical procedures without first 
conceptualizing the underlying quantitative structure. This tendency 
often led to procedural errors and limited students’ ability to reason 
about novel situations. On the other hand, students can accomplish 
impressive mathematical reasoning when instruction focuses on 
supporting students in conceptualizing a problem’s quantities, how 
they are related and vary together as a foundation for representing 

TABLE 1  Elements of reasoning quantitatively related to creating and interpreting algebraic representations.

Number (for 
reference only)

Elements of reasoning quantitatively related to algebraic representations

1

Conceptualizing a variable as a symbol that represents a quantity’s value and that value is free to vary within the situation. When defining a 

variable, it is important to clearly indicate the quantity whose value is being represented by stating where the measure begins, the direction of 

measurement, and the unit of measure for the value.

2 Formulas are used to describe constraints on how two or more quantities’ values vary in tandem.

3

An equal sign represents the equality of expressions in two ways: (a) equality of value and (b) equality of meaning. In other words, not only must 

the two expressions always maintain identical values (even as variables’ values change), but the two expressions represent the value of the same 

quantity. [This assumes contexts where the equal sign is used to represent equality and not as a simple statement of fact, used in a definition, or used in 

conditional statements.]

4
The order of operations in a formula, evaluation process, solving process, and so on mirrors a way to reason about relationships within a 

quantitative structure.

5 Building on 5, if two statements are mathematically equivalent, it does not imply that identical reasoning produced those statements.
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these relationships with formulas and graphs [e.g., see Castillo-
Garsow et  al. (2013), Ellis et  al. (2012, 2015), Moore (2014), and 
Thompson (1993, 2011)].

Individuals inclined to engage in quantitative reasoning when 
encountering mathematical contexts, especially when done with 
conscious intention, will exhibit certain observable behaviors 
dependent on the context and the mathematical representation 
methods given to them or that they choose to use to present their 
reasoning. For purposes of this paper, I  will focus on individuals 
interpreting and using algebraic statements. If they are reasoning 
quantitatively, their behaviors will be driven by expectations inherent 
to such reasoning (O’Bryan, 2020).

	 1.	 An expectation that performing calculations or generating 
expressions should reflect a quantification process for 
quantities that the individual conceptualizes.

	 2.	 An expectation that demonstrating calculations and producing 
expressions are attempts to communicate an individual’s 
meanings. Thus, when given a set of calculations or expression/
formula, we can hypothesize how the individual conceptualized 
a situation based on analyzing the products of their reasoning.

	 3.	 An expectation that the order of operations used to perform 
calculations, evaluate expressions, and solve equations “reflects 
the hierarchy of quantities within a conceptualized quantitative 
structure” (O'Bryan, 2018, p. 234). (p. 450).

When an individual is operating from expectations such as these, 
we  would expect to see behaviors in which the individual is 
constructing an image of the quantitative structure of an applied 
problem and using that image to build meaningful algebraic 
representations of these quantitative relationships. O'Bryan (2018) and 
O’Bryan (2020) described individuals doing so as engaging in emergent 
symbolization (with emergent symbol meaning describing the general 
conceptualization of algebraic statements in line with these 
expectations). When teachers hold these meanings and can consciously 
leverage them in instruction, they become positioned to support 
students in developing similarly powerful ways of reasoning about 
algebraic situations.

During the professional development sessions with Tracy she was 
presented tasks and contexts highlighting the utility of thinking carefully 
about quantities’ values represented by mathematical expressions. The 
major points of emphasis related to reasoning about algebraic 
representations for these sessions are listed in Table 1. It is worth noting 
that students need to be supported in taking the time to conceptualize 
situations and construct a mental model of how the quantities are related 
before attempting to produce algebraic models to represent these 
relationships and this process is more challenging and more time 
consuming than teachers usually assume [See Carlson et al. (2022)].

As previously argued, a teacher’s instructional goals, the classroom 
tasks they select to achieve these goals, and their beliefs about what it 
means to learn and understand mathematics influence their 
pedagogical actions [also see Simon et al. (2000), Thompson (2016), 
and Thompson et al. (1994)]. Therefore, the professional development 
sessions were focused on supporting Tracy in: (i) constructing the 
targeted meanings, (ii) seeing the pedagogical power of those 
meanings, (iii) conceptualizing student learning goals relative to the 
ideas highlighted in the professional development sessions, and (iv) 
prompting her to consider the thinking her students were expressing 
in their verbal contributions, written homework, and assessments. 

Furthermore, the intervention structure reflected research-based 
principles of effective professional development. Following Darling-
Hammond et al. (2017), the program was content-focused, sustained 
over time, included opportunities for active learning, and provided 
ongoing support for implementation.

4 Results

In this section I share data from Tracy’s comments and classroom 
teaching and analyze it using constructs of MMT and ways of thinking 
about teaching an idea. As the semester progressed, Tracy (a) often 
tried to replicate her experiences in the professional development 
sessions with her students, (b) increasingly discussed her learning goals 
with me in terms of students’ understandings of the ideas, rather than 
their performance on specific tasks, (c) increasingly focused on the 
meanings of the expressions she wrote, the expressions students wrote, 
and how mathematical formulas reflected quantitative structures 
someone had conceptualized, (d) began to notice when students were 
not thinking about particular mathematical expressions and formulas 
in the ways she intended, and (e) increasingly discussed her reflections 
on what kinds of activities would support students in thinking about 
the mathematical ideas in the ways she intended and why.

4.1 Early evidence of attending to students’ 
quantitative reasoning and decentering

In the examples in this section, we  see evidence of Tracy 
modifying her instruction based on her observations and reflections 
on her students’ thinking. Rather than simply correcting students’ 
errors, Tracy created experiences designed to help students construct 
more productive meanings and advance their quantitative 
reasoning skills.

Early in the semester, Tracy began noticing that students were not 
conceptualizing the quantities in a problem statement, nor were they 
conceptualizing the starting point for variables or constructing 
formulas that accurately represented the quantitative relationships 
described in the problem statement. Based on our work in the 
professional development sessions, she described recognizing the 
potential issues this would cause for students later in the course. 
Excerpt 1 is part of Tracy’s reflection on student work from a quiz she 
gave on linear relationships early in the course.

4.1.1 Excerpt 1

Tracy: On number three (see Figure 3) […] [T]he first one was 
writing a formula telling them how to define the variables, and 
then the second two questions were, so how far is your house from 
the school and how long did it take you to get there? What was 
interesting is almost everybody got (b) and (c) correct [but] a lot 
of people missed (a). Because they were like, I know you told me 
that the distance should be distance from my house, but what 
I would really like to do is distance from school. […]

So, we really have done several problems like this after that. I’ve 
had them walk across the room. […] I have problems where I had 
them model, okay, so now back up. What’s happening? And go 
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forward, what’s happening to the distance? And I also did several 
problems after this where I made them write both formulas. […] 
One thing that I realized they were doing is your reference point 
has to match your variables, so like they would be  using a 
reference point where the d in the reference point was distance 
from [school], but then they are trying to write a formula 
[representing the] distance from [their house]. […] That got back 
to a discussion of how important is it that we  define our 
variables accurately.

Tracy’s main concern was that students were not carefully 
attending to what quantities she asked them to track as revealed in the 
students’ variable definitions and expressed that this would become a 
significant problem for them in future lessons. In particular, she 
conveyed that it was important that the reference points students 
chose (the starting point for a quantity’s measurement) align with 
their variable definitions. Based on her observations, Tracy planned 
her future instruction to help students improve their attention to detail 
in terms of conceptualizing quantities they were being asked 
to consider.

Later in the semester, Tracy described her students’ work to 
interpret the parts of the general explicit formula for geometric 
sequences (see Excerpt 2). Over one and a half class sessions, students 
worked to make sense of situations represented by geometric 
sequences, including their noticing similarities in how those sequences 
are constructed, and writing a general formula to express the value of 
the nth term based on its position. According to Tracy, students had 
little difficulty coming up with the general formula an = a1∙rn–1. 

However, when she assigned a task from the Pathways Algebra II 
workbook that asked students to describe the quantities’ values 
represented by each part of the formula (see Figure 4), she expressed 
surprise that many students had an inaccurate interpretation of the 
role the expression n  – 1 played in relating the term’s value with 
its position.

4.1.2 Excerpt 2

Tracy: The one that was most concerning to me actually out of 
these five […] [points to part (b. v.) in Figure 4], they said this is 
the first term multiplied by the ratio n minus one times. And 
I said, well, what does that find? Well, the nth term. Okay, so this 
represents the nth term. Then they said this- when I asked them 
what this was [points to part (b. iii.) in Figure 4] they said that’s the 
position before the nth position. They did not see it as that’s how 
far you need to change, that’s how far your position is changing 
away from one. So that led to a discussion. And so, and then it had 
to be linked to this is multiplying by the ratio this many times but 
why? Because you are changing away that many positions.

Tracy’s ability to interpret and assess the correctness of students’ 
meaning for the expression n  – 1 relied on her understanding a 
difference as representing an amount of change in a quantity’s value, 
and in particular conceptualizing the expression as “the change in the 
term position from the first term to the nth term.” Understanding that 
her students’ interpretation differed from her own, Tracy had to 
recognize the utility of this meaning in helping her students 

FIGURE 4

A task from Pathways Algebra II (Carlson and O’Bryan, 2014, p. 94) to explore students’ meanings for expressions in the explicit formula representing 
the term value in a geometric sequence, an, in terms of the term position, n.

FIGURE 3

A question Tracy wrote for a class quiz during the first module.
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FIGURE 6

Tracy’s diagram used in a class discussion about the meaning of the 
exponent in the explicit formula for a geometric sequence.

conceptualize what the expression n – 1 represents. Her intentional 
actions relied on her believing that this meaning would also 
be valuable for students. This led to her targeting these meanings 
during her instruction.

Once Tracy recognized that students’ meanings differed from her 
own, and that the meanings students expressed might not generalize 
productively to other topics in the course, Tracy modified her 
interactions with students in subsequent tasks to help them build the 
meanings she intended (see Excerpt 3 based on the exercises in 
Figure 5).

4.1.3 Excerpt 3

Tracy: But that kind of continued here [points to Figure 5] […] In 
problem number six and number seven when, uh, when they had 
this problem [copies down Exercise 6a part (ii) on a piece of scratch 
paper] or this one [copies down Exercise 7a part (ii) next to it] they 
knew that it was about multiplication so they kind of thought of it 
as two times what equals 250? [She writes the first line of Figure 6, 
leaving the box empty]. And they said, well 125 [adds 125 to the 
empty box in Figure 6]. So, then I-I tried to push them to think 
about, well, what does the 125 represent? And so, they kind of 
talked about that and came up with, well, that represents r cubed 
[adds r3 to Figure 6]. Why does it represent r cubed? Because it’s 
the fourth term, which is three positions over from the first term.

Excerpt 3 suggests that Tracy’s goal was not for students to simply 
generate and use the explicit formula for a geometric sequence. She 
also wanted to make sure that students thought about the exponent as 
representing a change in term position from the first term to the nth 
term. To emphasize this goal, Tracy modified her lesson in the 
moment of teaching to further support students’ development of this 
way of understanding. See Excerpt 4.

4.1.4 Excerpt 4

Tracy: So then I made something up where I tried to push them 
fur- I tried to create a need to actually know what the r [represents 

without needing to calculate its value]2. Something like [writes 
first line of Figure 7] that wasn’t gonna [trails off].

Alan: Be nice? [Alan conjectures what words she intended to use to 
finish her sentence.]

Tracy: At all. [laughs] It was gonna be  like a whatever root of 
something is your r. Good luck with that. [laughs] So then I said, 
okay, well what about this, um, and so then they had to really 
think about three times, like, what does this mean? [Writes second 
line of Figure 7.] Um. So, then they started thinking about that and 
trying to relate that back.3 What I think I’d like to emphasize even 
further, and, i-is just, just making sure to always relate that back 
to how your input, how that position is changing away from one, 
and just kind of relating, like that applies even though it’s no 
longer linear, it’s how many times you are multiplying, so to bring 
it back to that concept […] That is another way that, that the first 

2  I reworded the end of this sentence in the transcript. Tracy was referencing 

back to something she had said in part of the transcript I omitted which made 

clear she was talking about the meaning of r without knowing its precise value.

3  In this passage she is referencing how linear functions was designed in the 

curriculum with an emphasis in coordinating changes in the values of two 

quantities, with “Change away from what value?” being a key question to consider.

FIGURE 5

Exercises from Pathways Algebra II (Carlson and O’Bryan, 2014, p. 94–95).
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module can be leveraged, but their instinct wasn’t to say change 
away from one, their instinct was to say, well, […] it’s the position 
before the nth position […] it’s not a valuable way to [trails off].

My understanding of Tracy’s comments is that Tracy had 
conceptualized differences as directed changes away from a reference 
point and that she believed it was important for her students to 
construct the same meaning for themselves. This represents her 
developing an appreciation for the usefulness of certain mathematical 
meanings. Excerpts 3 and 4 demonstrate how Tracy modified and 
focused her instruction on supporting her students in developing 
these meanings based on her emerging models of how students were 
thinking about those ideas.

4.2 A detailed look at Tracy’s teaching: the 
exponential function lesson

To illustrate Tracy’s instruction near the end of the fall teaching 
semester, this section presents a detailed analysis of one lesson from 
late in the semester.

4.2.1 Key elements of Tracy’s lesson
Tracy began the lesson by displaying the prompt shown in 

Figure 8. This task differed from previous problems she had assigned 
because it provided a growth factor for a three-hour interval rather 
than a one-hour interval, something the class had not yet discussed 
how to handle. Tracy stated during our post-lesson debriefing 
conversation that she wanted to see how students would apply their 
understanding of the ideas in the module to this novel situation.

After giving her students about five minutes to work on the task 
in small groups, Tracy asked students from various groups to first 
share with the class approaches they tried that did not work. Groups 

shared solutions such as
 
( ) ( ) ( )=  

 
 

2 2500
3
t

f t
 
and

 
( ) =  

 
 
1

2500
3

t

f t ,
 

and for each Tracy led a discussion about the thinking that produced 
the answer and how they knew it was incorrect. A portion of one such 
conversation is given in Excerpt 5. Tracy devoted about 25 min to 
these discussions (out of 65 total minutes in the class), indicating that 
she valued them as integral to her students’ learning experience.

4.2.2 Excerpt 5

Tracy: Okay, so, um what did you  guys try that did not 
work? Uh, S1.

S1: So, at first, we thought it, the growth factor, would be one 
third. And you would do it to the t.

Tracy: So you did like one third to the t?

S1: Yeah and the zeroth term would be the twenty-five hundred.

Tracy: So what did you  do with the two thousand five 
hundred again?

S1: I multiplied it by that term.

Tracy: So you had something that maybe looked like this? [Tracy 
writes Figure 9 during this exchange.] And what did t represent 
for you?

S1: The number of hours that had passed since eight a.m. and 
we thought that, oh wait it was, yeah, we thought that since every 
three hours the population of the bacteria doubled, um, 
you multiply by one-third to the t.

After these discussions, and once the class had collectively decided 
that ( ) ( )= /32500 2 tf t  was an accurate model of the bacteria 
population in terms of the number of hours since 8 a.m., Tracy asked 
students to work in their groups to explain what quantities’ values were 
represented by various parts of the formula. Excerpt 6 shows part of the 
conversation once groups had discussed their thinking for about 
one minute.

4.2.3 Excerpt 6

Tracy: Okay, so the twenty-five hundred, what does that represent?

S2: [student abstained from this study].

Tracy: The initial, th-the initial value and um it’s what we are, it’s 
our reference point, it’s also the initial value because it happens at 
time equals zero. That’s one thing we are going to talk about in 
your homework, it talks about the initial value that’s at zero, which 

FIGURE 7

A problem Tracy created in the moment of teaching to emphasize 
her learning goals based on her model of how students understood 
geometric sequences.

FIGURE 8

The prompt Tracy created to begin a lesson in the exponential functions module.
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is a little bit different than what we were treating it with sequences, 
right? We’ll talk about that. Okay, so what does two represent? S3.

S3: It’s the growth factor you are multiplying the reference value 
by to get farther down the line.

Tracy: Now, what do you guys think, do you agree? Growth factor? 
Can you, like, describe the growth factor though? Like, what kind 
of, a growth factor for what? A growth factor, like can you be more 
specific because we can im-, we can imagine the same scenario and 
talk about different types of growth factors within that scenario, 
like, corresponding to different times, so what specific, S4?

S4: It’s the growth factor after three hours have passed.

Tracy: Okay, so would you  agree it’s the three-hour growth 
factor? Okay. So then what does my t divided by three 
represent? S5.

S5: Like, um, how many groups of three there are in that amount 
of time, like how many groups of three hours there are.

Tracy: So like how many three-hour chunks?

S5: Yeah, intervals of three.

Tracy: Okay, why-why do we need to do that? S6.

S6: Um, because, uh, it’s increased by every three hours.

Tracy: Okay, so it’s every three hours that you have to double.

After this discussion, Tracy presented another prepared task to the 
class (see Figure 10). This task explicitly raised the issue that, when 
equivalent formulas are written differently (for example, with different 
groupings of terms or a different order of operations), it can reflect a 
different way of conceptualizing the quantities and their relationship 
to each other (refer back to Table 1).

Tracy allowed groups to work on this task for about three 
minutes and then reconvened for a whole class discussion. See 
Excerpt 7.

4.2.4 Excerpt 7
Tracy: Did anyone think that they kind of figured out what 
might be the difference between the two ways of thinking? [long 
pause, some students nod while others raise their hands] Cool, 
some. S7.

S7: Um, I thi- I think the first equation they are trying to find the 
growth factor for every hour.

Tracy: So where in the equation would you see that?

S7: Uh, because the- the exponent is t and not t divided by three.

Tracy: So then your hypothesis was that this number [Tracy puts 
a bracket above 21/3 in Figure 10] represents what?

S7: Um, the growth factor for an hour. [Tracy writes “1-h growth 
factor” above the bracket.]

Tracy: Okay did you, whereas in the bottom equation when 
we discussed, what did two represent?

S7: Um, the growth factor for every three hours.

Tracy: Three hours. [Draws a bracket under “2” in the second 
formula in Figure 10 and writes “3-h growth factor”].

Tracy concluded the lesson with a final prepared task. Tracy 
presented a hypothetical alternative answer to the original lesson task 
(see Excerpt 8 and Figure 11). This task provided Tracy an opportunity 
to emphasize the importance of clear variable definitions as well as 
provide another opportunity for students to reason about alternative 
ways of conceptualizing the situation and formulas that result from 
those conceptualizations.

4.2.5 Excerpt 8

Tracy: Now, one thing we’ll end on before we move on, and we’ll 
continue to do problems like these, suppose a student writes this 
[Tracy writes Figure 11 on a piece of paper and displays it under the 
document camera].

FIGURE 10

An example Tracy had ready to present to the class for analysis at an 
appropriate time.FIGURE 9

A student’s work when asked to provide an approach they tried that 
did not produce a correct answer.
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Tracy: Take a second and try and consider what might they have 
been, I mean is it okay? Is it completely wrong? What might they 
have been thinking?

[Class] [Class discusses in groups for about one minute.]

Tracy: Okay. What do you guys think? S8.

S8: It seems like this is basically a person that’s thinking they-they, um, 
they aren’t thinking, uh, basically in terms of hours. It seems more like 
in hours in pairs of three. So, um, you could not just find the first hour 
with a whole number. You have to use something like one third kind 
of thing. So, it seems like they think that it doubles every one hour.

Tracy: So you are thinking maybe they are thinking it doubles 
every hour? What else? S9.

S9: Well they could, they have to define their variable as, 
um, that one x is actually three hours. It’s not, not growing by 
one hour.

Tracy: Okay, so you  are saying perhaps their thinking is 
correct, but they defined their variables differently. Like 
x does not represent number of hours since eight, what does 
x represent?

S9: Like the [pause] [some classmates say something not picked up 
on the microphone].

[Class] [several members of the class speak simultaneously 
and it is impossible to make out on the recording exactly what 
they said].

Tracy: Yeah [laughing]. The number of three-hour chunks since 
eight a.m.

It is worth reiterating that Tracy clearly stated to me that her 
students had not yet worked with tasks in which they were 
given n-unit growth factors (n ≠ 1) and expected to reason 
about the corresponding 1-unit growth factors [although 
they had worked with contexts where, given the 1-unit growth 
factor, they reasoned about n-unit growth factors (n ≠ 1)]. 
Thus, students’ reasoning in this lesson are not examples of students 
performing rote memorized algorithms on sets of tasks identical to 
provided examples. Instead, students’ work demonstrated their 
ability to apply their thinking and build on prior understandings 

without explicit instruction on specific techniques. This example 
underscores the impacts of Tracy’s (and the curriculum’s) focus on 
quantitative reasoning as a foundation for their construction of 
algebraic statements meaningful to the student.

4.2.6 Commentary on Tracy’s lesson
Tracy’s choice of initial task for this lesson and how she leveraged 

the task reflect several sophisticated aspects of effective teaching. First, 
the novelty of the task required students to adapt their understanding 
to a new situation. This choice, coupled with Tracy’s approach of not 
over-emphasizing a single solution algorithm and the follow-up 
activities she designed created opportunities for rich 
mathematical discussions.

Second, the tasks within the lesson required careful attention to 
quantities, the relationship between quantities, and the meanings of 
variables. They illustrate why quantitative reasoning is a cross-cutting 
and essential way of thinking for learning and using ideas. Tracy’s 
questions and comments created a lesson focused on connecting 
symbolic representations with quantitative meaning (such as what the 
expression t/3 represented in the context), including exploring issues 
of representational equivalence and the interaction between a 
variable’s definition and the corresponding algebraic model based on 
that definition. Rather than treating algebraic expressions as isolated 
symbolic objects, she consistently connected them to the quantitative 
relationships they represented.

Third, Tracy’s initial exploration of incorrect solution attempts 
and the follow-up activities she designed provided her with ample 
opportunities to gain insights into students’ mathematical meanings 
and reasoning, thus supporting their engagement in productive 
decentering. Rather than treating incorrect responses as errors to 
be  corrected, her actions suggested that she recognized student 
contributions as reflecting specific mathematical meanings that she 
could leverage in future interactions and discussions with students. 
She also modeled how different representations of quantitative 
relationships might emerge from different ways of thinking about a 
context and conveyed to her students that these differences were 
mathematically meaningful.

4.3 Evidence of student learning

While this study focuses primarily on Tracy’s development, 
evidence suggests her evolving teaching practices created high-quality 
learning opportunities for students. Throughout the observed lesson, 
students engaged in practices consistent with national calls for 
improvements in mathematics instruction. These practices included 
(i) having students analyze their incorrect approaches to understand 
why they were insufficient, (ii) making connections between current 
problems and previously studied concepts, (iii) explaining their 
reasoning using quantitative language, (iv) recognizing structural 
relationships in algebraic expressions, and (v) engaging in 
mathematical discussions about alternative solutions.

Students’ facility with these practices suggests they were 
developing mathematical meanings aligned with Tracy’s instructional 
goals. Their ability to discuss mathematical ideas in terms of quantities 
and relationships, rather than just procedures and answers, indicates 
that Tracy’s emphasis on quantitative reasoning was influencing their 
mathematical thinking and understandings. The quality of 

FIGURE 11

A hypothetical student solution Tracy presents to the class.
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mathematical discourse in Tracy’s classroom also reflected her 
development as a teacher. Students regularly offered explanations, 
questioned each other’s reasoning, and built on each other’s ideas. 
These practices emerged by Tracy consistently modeling and 
supporting mathematical sense-making rather than answer-seeking.

4.4 Tracy’s reflection on her development

Tracy’s final reflection on her professional development experience 
provides insight into her perception of the factors that contributed to 
her growth as a teacher, directly addressing the first research question 
about how professional development focused on quantitative 
reasoning influenced her practice. In the final interview, Tracy 
reflected on the role of professional development in her growth. See 
Excerpt 9.

4.4.1 Excerpt 9

Tracy: You’ve given me some very helpful feedback when you have 
come to observe in the classroom. […] Some of it was verbal, like 
while you were here. But just, um, mathematical feedback [gets 
hand-written notes I  had given her] that I  could pull out as 
discussion points, or, um, things I can work on with the kids. For 
example, I mean, how to emphasize that it’s not just, um, like the 
constant rate of change, say it’s three halves. Okay, ways not to 
emphasize that it’s up three over two, up three over two every 
time. So just the content feedback on ways to pull thinking out of 
the students. That was helpful. Or, when you  were here and 
we were talking about whether something was […] a function or 
not, [like] imagining the Ferris wheel, all the kids totally got that, 
hey, on the Ferris wheel, if I know the time, I know the position, 
but if I know the position, I do not necessarily know the time. So, 
they immediately got that and I think that helped them understand 
how to transfer that to other scenarios […] I’ve never had 
observations that were content based. It’s always been more like 
classroom management.

Tracy’s comments reveal several important aspects of her 
development. First, she identified the mathematical focus of her 
professional development as uniquely valuable, contrasting it with 
typical administrative observations focused on generic teaching 
behaviors rather than mathematical content and student thinking. 
This distinction highlights the importance of the kind of content-
specific support for teacher development described in other research 
[e.g., Darling-Hammond et al. (2017)].

Second, Tracy’s specific examples demonstrate her growing ability 
to think pedagogically about mathematical content. Her mention of 
“ways to pull thinking out of the students” reflects her developing 
focus on understanding and advancing student thinking rather than 
simply delivering content. Her reference to the Ferris wheel example 
shows how concrete mathematical reasoning tools discussed in 
professional development interactions became resources she could use 
to help students understand abstract concepts.

Third, Tracy’s reflection reveals her recognition that teaching is 
fundamentally about supporting students’ mathematical thinking. 
This pedagogical awareness was present in her classroom teaching 
alongside evidence of her mathematical meanings related to 
quantitative reasoning. Her effectiveness in creating high-quality 

learning opportunities for her students supports the argument that 
these are key characteristics of a successful mathematics teacher and 
useful targets for professional development.

Finally, her ability to articulate specific ways the professional 
development influenced her instruction suggests that she had 
developed conscious awareness of her own learning and growth, a 
metacognitive capacity that likely supports continued development 
beyond the formal intervention period.

4.5 Results summary

Over the course of the intervention, evidence from classroom 
observations and interviews suggested that Tracy developed 
significantly in several areas. Tracy’s lesson design and interactions 
reflect that she had internalized quantitative reasoning as a lens for 
interpreting algebraic expressions and mathematical situations, 
moving beyond procedural approaches to focus on quantitative 
relationships. This shift enabled her to see connections between 
different mathematical topics and to help students develop similar 
connections. As the semester progressed, it appeared that Tracy 
became increasingly intentional about collecting evidence of her 
students’ thinking. In the exponential lesson, for example, Tracy asked 
students to share initial attempts that failed. Her subsequent 
instructional interactions built on those contributions as well as 
students’ reasoning for accurate solutions.

The design of her follow-up tasks in this lesson were noteworthy 
for at least two reasons. First, these activities appeared to be efforts to 
reproduce discussions and points of emphasis from our professional 
development and interview/training sessions for her students (see 
Table 1). This led to interactions with a focus on constructing images 
and representations of meaningful relationships rather than asking 
students to reproduce memorized algorithms. Second, the activities 
and her focus during discussion seemed to reflect an awareness of the 
existence of multiple ways of understanding the situation and emerging 
models of the relationship between the bacteria population and the 
hours elapsed since eight a.m. This suggests progress in Tracy’s 
developing images of epistemic students and constructing ways of 
thinking about teaching exponential functions informed by 
these models.

As the semester progressed, Tracy’s questioning, task selection, 
and use of student contributions became more sophisticated as her 
lesson learning goals increasingly appeared to target elements of 
quantitative reasoning (see Table 1). This is in line with Silverman and 
Thompson’s (2008) description of a teacher constructing personally 
powerful mathematical meanings and those meanings coming to have 
pedagogical power. As this happened, her teaching increasingly 
reflected the kind of responsive, meaning-centered instruction called 
for by mathematics education reform.

5 Discussion

This case study examined one teacher’s instruction using a research-
based curriculum after participating in professional development 
focused on developing her quantitative reasoning skills. The findings 
illuminate three interconnected aspects of teacher development: the 
influence of content-focused professional development on practice, the 
role of decentering in developing pedagogical knowledge, and the 
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manifestation of teachers’ mathematical meanings in classroom 
learning opportunities. Research on professional development has 
demonstrated that many interventions fail to make an impact on 
teachers’ practice in ways that improve student learning (Jacob et al., 
2017; Kraft et al., 2018; Yoon et al., 2007). The didactic triad framework 
(Figure  1) provides insight into the source of these challenges, 
suggesting that effective professional development must address the 
interconnected elements of teachers’ mathematical meanings, learning 
goals, pedagogical actions, lesson resources, and models of student 
thinking. This study documents evidence that professional development 
that systematically addresses these elements through sustained, content-
focused support can support teachers in providing high-quality learning 
opportunities for students.

Each of the following three sections address one of the research 
questions outlined at the beginning of this paper.

5.1 How professional development focused 
on quantitative reasoning influenced 
teaching practice

Early in the semester, Tracy’s concerns about student variable 
definitions (Excerpt 1) reflected her developing awareness that 
students’ mathematical meanings differed from her own and that 
these differences had pedagogical implications. By the exponential 
function lesson (Section 4.2), Tracy was systematically designing 
instruction to reveal and build on student thinking, using tasks that 
required careful attention to quantitative relationships and creating 
opportunities for rich mathematical discourse.

This transformation reflects what Silverman and Thompson 
(2008) described as the result of a teacher transforming personal 
mathematical meanings into meanings with pedagogical power. 
Tracy’s growing facility with quantitative reasoning provided her with 
a coherent lens for interpreting algebraic situations, student work, and 
instructional decisions. More importantly, her conscious awareness of 
these meanings enabled her to use them pedagogically, as evidenced 
by her ability to recognize when students were not thinking about 
expressions and formulas in quantitatively meaningful ways and her 
capacity to design instruction to address these gaps.

The specific focus on quantitative reasoning proved particularly 
productive because it provided a unifying instructional goal that 
connected different algebraic topics and enabled Tracy to see 
coherence across the curriculum. As demonstrated in the exponential 
lesson, Tracy used quantitative reasoning to help students understand 
why different representations of the same relationship might emerge 
from different ways of thinking about a context. This represents 
sophisticated mathematical teaching that goes well beyond procedural 
instruction or even conceptual explanation to focus on the 
development of powerful mathematical reasoning.

5.2 The role of decentering in developing 
pedagogically powerful mathematical 
meanings

Tracy’s ability to notice and respond to student thinking (her 
decentering) developed in tandem with her mathematical meanings 
and proved central to transforming her personal knowledge into 

pedagogically powerful knowledge. The geometric sequence example 
(Excerpts 2–4) illustrates this process clearly. Tracy first recognized 
that students’ interpretation of the expression n – 1 differed from her 
own. She then considered the implications of her intended meaning 
and the meanings students expressed and designed instruction to 
support students in constructing more productive meanings.

This finding supports and extends previous research on teacher 
noticing [e.g., Jacobs et  al. (2010) and Sherin et  al. (2010)] and 
decentering [e.g., Baş-Ader and Carlson (2022) and Teuscher et al. 
(2016)] by demonstrating that what teachers notice and how they 
interpret student contributions is fundamentally shaped by their own 
mathematical meanings. Tracy’s ability to recognize the pedagogical 
significance of students’ interpretation of n – 1 as “the position before 
the nth position” rather than “the change in position from the first 
term” in the context of the explicit formulas for geometric sequences 
required both mathematical understanding and awareness of how 
different meanings might influence future learning.

The development of decentering skills appeared to follow an 
iterative process consistent with Carlson et al.’s (2024a) framework. 
Tracy’s first-order models (her personal mathematical meanings) 
became more conscious and articulated through the professional 
development activities. Her interactions with students then provided 
opportunities to construct second-order models of student thinking, 
which informed her instructional decisions and provided data for 
further refinement of both her mathematical meanings and her 
models of student understanding.

Importantly, Tracy’s decentering was not simply about attending 
to student contributions but about actively seeking to understand the 
mathematical meanings underlying those contributions and their 
implications for future learning. This represents a sophisticated form 
of professional noticing that requires both strong mathematical 
knowledge and pedagogical insight.

5.3 How mathematical meanings for 
teaching manifest in learning opportunities

The quality of learning opportunities in Tracy’s classroom 
reflected her evolving mathematical meanings in multiple ways. Most 
notably, her lessons increasingly featured tasks that required students 
to engage in quantitative reasoning, opportunities for mathematical 
discourse centered on meaning-making rather than answer-getting, 
and systematic attention to connecting different representations and 
solution approaches.

The exponential function lesson provides clear evidence of how 
Tracy’s mathematical meanings shaped the learning opportunities she 
created. Her choice to begin with a novel task requiring students to 
adapt their understanding, her systematic exploration of incorrect 
approaches, and her focus on connecting different ways of thinking 
about the same relationship all reflect sophisticated pedagogical 
reasoning grounded in quantitative reasoning. These instructional 
moves created opportunities for students to develop the kinds of 
mathematical meanings the professional development targeted.

However, this study’s evidence for the quality of learning 
opportunities is primarily observational rather than measured 
through student learning outcomes. While students demonstrated 
facility with mathematical discourse and reasoning consistent with the 
instructional goals, claiming direct evidence of improved learning 
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would require additional data. What can be claimed is that Tracy’s 
instruction increasingly reflected the characteristics of high-quality 
mathematics teaching identified by research [e.g., National Governors 
Association Center for Best Practices, Council of Chief State School 
Officers (2010)] and created opportunities for the kinds of 
mathematical engagement that support learning.

5.4 Implications for professional 
development design

This case study provides empirical support for professional 
development approaches that target teachers’ mathematical meanings 
for teaching and that simultaneously address multiple aspects of the 
didactic triad. The findings suggest that effective professional 
development must address teachers’ personal mathematical meanings, 
support their development of models of student thinking, and provide 
ongoing opportunities to apply these insights in classroom practice 
with targeted feedback.

The specific focus on quantitative reasoning proved effective not 
only as mathematical content but as a lens for pedagogical reasoning. 
Quantitative reasoning provided Tracy with tools for analyzing 
student work, designing tasks, and making in-the-moment 
instructional decisions. This suggests that professional development 
content should be selected not only for its mathematical importance 
but for its potential to serve as a framework for pedagogical thinking.

The sustained nature of the intervention, including preparation 
during the prior year, intensive workshops, and ongoing support 
throughout implementation, appears to have been crucial to Tracy’s 
development. This aligns with research on effective professional 
development [e.g., Darling-Hammond et al. (2017)] while providing 
concrete evidence of how sustained support enables the kind of 
fundamental change in practice that mathematics education 
reform requires.

5.5 Limitations and future research

The author served dual roles as both the professional 
developer and the researcher in this study. This positioning provided 
unique access to Tracy’s mathematical thinking and development but 
also created potential for bias in data interpretation. Several measures 
were taken to address this limitation including the following. (i) All 
professional development and classroom observation sessions were 
recorded to enable systematic analysis. (ii) Interpretations about 
Tracy’s thinking were grounded in her explicit statements, observable 
behaviors, and the activities she designed to achieve stated learning 
goals. Hypotheses about Tracy’s motivations and goals developed 
through analysis were confirmed with Tracy during subsequent 
meetings whenever possible. (iii) The analysis focused on 
documenting change over time using multiple data points rather than 
making broad generalizations from single incidents. This single case 
study of one teacher engaging in professional development and 
implementing a research-based curriculum is not intended to generate 
fully generalizable results for all teachers and in all settings. However, 
the results provide insights into how professional development that 
supported advances in a teacher’s decentering abilities through a 

consistent focus on supporting her students’ quantitative reasoning 
impacted her teaching.

This study raises several questions that warrant 
further investigation:

	 1.	 Scalability: How do these approaches perform when 
implemented with larger groups of teachers across diverse 
contexts? What adaptations are needed for different school 
settings and teacher populations? [See Carlson et al. (2024b)] 
for some initial work on answering this question.

	 2.	 Content Generalizability: While quantitative reasoning 
proved effective as a focus for this intervention, would similar 
approaches work with other mathematical content areas? What 
characteristics make mathematical ideas suitable for this kind 
of professional development?

	 3.	 Student Learning Outcomes: Future research should 
examine student learning gains associated with teaching 
practices developed through mathematical meanings for 
teaching approaches. What evidence can demonstrate that 
changes in teaching practice translate to improved 
student learning?

	 4.	 Sustainability: How do changes in teaching practice persist 
over time? What ongoing support is needed to maintain 
reform-oriented instruction, and how do teachers continue 
developing their mathematical meanings for teaching beyond 
formal professional development?

	 5.	 Measurement and Assessment: How can the development of 
teachers’ mathematical meanings for teaching be measured 
reliably? What tools are needed to assess both the mathematical 
and pedagogical dimensions of teacher knowledge in this 
framework? [See Thompson (2016)] for the foundations of one 
possible approach to addressing this question.
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