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Ways of thinking about teaching
an idea in mathematics: how
teachers’ mathematical meanings
for teaching ideas impact their
instructional practices

Alan E. O'Bryan*

Rational Reasoning, LLC, Lansing, KS, United States

Despite decades of reform efforts, many mathematics teachers continue to struggle
with implementing instruction that supports deep mathematical understanding and
meaningful student engagement. This case study demonstrates how professional
development targeting teachers” mathematical meanings for teaching can transform
instructional practice in K-12 algebra. Tracy, an Algebra Il teacher, participated in
professional development focused on quantitative reasoning while implementing
research-based curriculum materials. Through classroom observations, interviews,
and artifact analysis, the study shows how quantitative reasoning functioned as
(1) a productive framework for analyzing teachers’ mathematical meanings for
teaching algebraic concepts, (2) an effective target for professional development
that supports teachers in constructing pedagogically powerful mathematical
understandings, (3) a vehicle enabling teacher decentering, and (4) a foundation
for classroom instruction emphasizing meaningful quantitative relationships. Data
were analyzed through the frameworks of mathematical meanings for teaching
and ways of thinking about teaching an idea. Findings suggest that professional
development addressing teachers’ mathematical meanings, combined with
curriculum supporting student reasoning and ongoing classroom support, can
produce significant changes in instructional practice that create high-quality
learning opportunities for students.

KEYWORDS
mathematical knowledge for teaching, mathematics education, mathematical

meanings for teaching, quantitative reasoning, curricular innovation, professional
development

1 Introduction

Over the last few decades, mathematical organizations have prioritized publishing new
content and teaching standards documents to provide guidance for improving the quality of
students’ mathematical experiences [e.g., Mathematical Association of America (2018),
National Council of Teachers of Mathematics (2000), and National Governors Association
Center for Best Practices, Council of Chief State School Officers (2010)]. These documents call
for inquiry-based teaching featuring deep engagement with mathematics, a focus on coherence
across lessons and modules, and creating a positive classroom environment that supports
developing students’ mathematical curiosity, confidence, enjoyment, and persistence. Despite
these calls, many students still experience math classes that fall short of these goals at all grade
levels. Studies continue to show U. S. teachers struggling to move away from direct instruction
and teacher-demonstrated algorithms (e.g., Boston (2012), Litke (2020), Schoenfeld (2022),
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and Stockero et al. (2020a)], highlight the deficiencies of mathematics
curricula in developing powerful mathematical ideas [e.g., Frank and
Thompson (2021)], and call into question the learning goals
instructors choose to assess and value [e.g., Tallman et al. (2016,
2021)]. These findings coincide with both the Programme for
International Student Assessment (PISA) and the National Assessment
of Educational Progress (NAEP) showing declining student
mathematical performance and a widening achievement gap among
American students (The National Center for Education Statistics,
2025; Organizalion for Economic Co-operation and Developmenl,
2023). This persistent gap between reform intentions and classroom
realities highlights the critical role professional development must play
to support the kinds of instructional changes needed to improve the
quality of students’ mathematical learning opportunities.

This paper addresses these persistent challenges by examining
how professional development can transform mathematics teaching
when it focuses on supporting teachers in developing pedagogically
powerful mathematical meanings for teaching. Specifically, this case
study explores how professional development targeting teachers’
understanding of quantitative and covariational reasoning (see Section
3.3) can serve as a vehicle for developing the kinds of mathematical
meanings for teaching that support high-quality instruction. While
this study focuses on quantitative reasoning as the specific set of
targeted mathematical ideas, the broader principle being investigated
is how professional development that systematically addresses
teachers’ mathematical meanings, combined with a coherent
curriculum and ongoing support, can produce fundamental changes
in instructional practice. The quantitative reasoning focus provides a
concrete lens through which to examine the mechanisms by which
teachers’ mathematical understandings become pedagogically
powerful and influence the quality of learning opportunities they
create for students.

This study was guided by the following research questions. Note
that key terms in these questions (such as quantitative reasoning and
mathematical meanings for teaching) will be unpacked within
this paper.

1. How does professional development focused on quantitative
reasoning influence a secondary mathematics teacher’s
instructional practice?

2. What role does decentering play in a teacher’s development of
pedagogically powerful mathematical meanings?

3. How do a teacher’s mathematical meanings for teaching
manifest in the quality of learning opportunities provided
to students?

2 Literature review and research
frameworks

The following literature review establishes the theoretical
foundation for this case study by examining four interconnected areas:
(1) research on professional development effectiveness and its
persistent challenges, (2) frameworks for understanding teachers’
specialized mathematical knowledge, (3) theoretical constructs that
explain how teachers’ mathematical meanings influence instruction,
and (4) the specific role of quantitative reasoning in mathematics
education. This review demonstrates that while researchers have
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identified characteristics of effective professional development and
teaching practices, fewer studies have examined the mechanisms by
which teachers’ mathematical understandings become pedagogically
powerful. The frameworks presented here provide the theoretical lens
for understanding how professional development focused on
mathematical meanings can transform teaching practice.

2.1 Professional development

Research on mathematics teacher professional development has
revealed both promising practices and persistent challenges. Large-
scale studies consistently identify key characteristics of effective
professional development, such as a focus on content, active learning,
coherence with other reform efforts, sufficient duration, and collective
1999; Darling-
Hammond et al., 2017; Desimone, 2009). Other researchers have

participation (Darling-Hammond and Sykes,

reinforced these findings while adding nuanced understanding of
implementation factors. Lee and Vongkulluksn (2022) emphasized
that effective professional development must be embedded in teachers’
daily practice and connected to their specific contexts, while Kennedy
(2016) highlighted the importance of inquiry-based approaches,
teacher agency, and teacher motivation in professional development.

However, Yoon et al’s (2007) meta-analysis revealed that many
professional development programs show minimal impact on teaching
practice or student learning, a pattern later research supported. Kraft
et al. (2018) conducted a comprehensive meta-analysis of teacher
coaching interventions and found that while coaching can be effective,
the average effect sizes are modest and highly variable across contexts.
Similarly, a randomized controlled trial of a widely used mathematics
professional development program found no significant effects on
student achievement despite substantial investment in teacher training
(Jacob et al., 2017). Several factors contribute to these disappointing
outcomes, including insufficient attention to teachers’ existing beliefs
and knowledge (Opfer and Pedder, 2011), lack of alignment between
professional development goals and school accountability pressures
(Coburn and Russell, 2008), and the challenge of scaling effective
models while maintaining quality (Domitrovich et al., 2008).

Studies specifically focused on mathematics professional
development have revealed additional complexities. Sztajn et al.
(2017) found that teachers’ mathematical knowledge for teaching
improved following professional development, but these gains did not
consistently translate into changes in classroom practice or student
learning. Work by Hill and Charalambous (2012) and Carlson et al.
(2024a) suggests that the relationship between teacher knowledge and
practice is mediated by factors such as curriculum materials, school
culture, and administrative support, highlighting the need for systemic
approaches to professional development. These perspectives suggest
that effective professional development requires attention not only to
what teachers learn, but to how that learning is supported within the
broader educational system.

One reason for the limited success of many professional
development programs may be that they are not strongly grounded in
theories of teacher learning (how teachers construct, modify, and apply
professional knowledge in classroom contexts). As Kennedy (2016)
noted, “Education research is at a stage in which we have strong
theories of student learning, but we do not have well-developed ideas
about teacher learning, nor about how to help teachers incorporate
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new ideas into their ongoing systems of practice” (p. 29). This gap
highlights the need for professional development approaches that are
explicitly grounded in understanding how teachers learn and change
their practice.

2.2 Mathematical knowledge for teaching
and professional noticing

Mathematical knowledge for teaching (MKT) and professional
noticing of students’ mathematical thinking are research areas that can
inform professional development efforts. MKT is an extension of
Shulman (1986, 1987) work on pedagogical content knowledge (PCK)
applied to mathematics education (Ball et al., 2001, 2008; Kahan et al.,
2003; Hill et al., 2005, 2008; Silverman and Thompson, 2008; Tallman,
2023). Researchers examining MKT have helped emphasize issues in
teacher preparation programs and professional development training
by highlighting the disconnect between the kinds of specialized
mathematical knowledge teachers need compared to the kinds of
mathematical knowledge emphasized in their university courses and
professional training. They have also produced categories of both
subject matter knowledge and PCK that make up a teacher’s MKT and
have developed assessments for measuring aspects of teachers’
MKT. Research studies [e.g., Hill et al. (2005)] have also demonstrated
a positive correlation between a teacher’s MKT (as assessed by their
instruments) and students’ mathematical achievement.

A teacher’s professional noticing of students’ mathematical thinking
refers to their attention to students’ thinking and attempts to make
sense of and respond to products students generate. These products
include their verbal responses, explanations, and written work [e.g.,
Jacobs et al. (2010, 2024), Sherin et al. (2010), Stockero et al. (2017,
2020a, 2020b), Stockero and Stenzelbarton (2017), and Van Es and
Sherin (2002, 2006, 2008)]. Professional noticing studies claim that
“professional noticing of children’s mathematical thinking is
challenging and not something that adults routinely know how to do”
(Jacobs et al., 2010, p. 191), but also that increased noticing of students’
mathematical thinking can improve the quality of students’
mathematical experiences and learning.

Both MKT and professional noticing studies can provide guidance
for mathematics teacher professional development. Professional
noticing is a teaching practice intended to foreground students’
contributions to mathematics lessons and discussions. Professional
noticing researchers have designed tools to assess a teacher’s skills in
various aspects of noticing and to provide guidance for improving
teachers’ practice to positively impact student learning. Similarly,
researchers studying MKT have examined how effective teachers
interact with students during lessons and know how they respond
productively to students’ contributions.

2.3 Frameworks relevant to this study

As mentioned earlier, while researchers have identified elements
of professional development that lead to higher success in impacting
teacher success, many professional development programs fail to
produce positive results. One reason may be that many professional
development programs and research areas such as MKT and
professional noticing are not strongly grounded in theories of learning.
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As Kennedy (2016) noted, “Education research is at a stage in which
we have strong theories of student learning, but we do not have well-
developed ideas about teacher learning, nor about how to help
teachers incorporate new ideas into their ongoing systems of practice”
(p. 29) In this section, I discuss the complexities of shifting teachers’
meanings and practices and describe frameworks that characterize
mechanisms for supporting teachers’ learning and teaching practices.

2.3.1 The didactic triad

To understand why professional development interventions may
not significantly impact student learning outcomes, we can consider
the complexity of teaching via Thompson’s (2009) didactic triad. The
didactic triad is a framework that attempts to capture the
interconnected nature of teachers’ mathematical meanings, models of
students’ mathematical meanings, student learning goals, and their
instructional tools and practices (Figure 1). The triad highlights the
interdependency of these elements and why shifting teachers’
effectiveness is challenging. Professional development approaches that
address only a subset of these elements (such as training teachers on
active learning strategies without addressing learning goals or
classroom tasks or providing training on new curriculum materials
without addressing a teacher’s underlying mathematical meanings)
can fail to produce substantive, lasting change (Stigler and Hiebert,
2009). This observation aligns with broader research on teacher
change, which emphasizes that sustainable reform requires coherent
approaches that address teachers’ knowledge, fundamental beliefs
about mathematics and learning, and practices simultaneously [e.g.,
Clark and Hollingsworth (2002) and Guskey (2002)].

2.3.2 Mathematical meanings for teaching and
decentering

Silverman and Thompson (2008) and others building on their
work [e.g., Carlson et al. (2024a), Rocha (2023), Tallman (2021,
2023), and Thompson (2013, 2016)] have argued that MKT
frameworks have not yet addressed at least three important topics

Teacher’s
mathematical

meanings for the ﬁ

idea(s) at hand

Teacher’s models
of students’
mathematical

meanings

Student
Learning
Goals

Instructional
Resources

Practices

FIGURE 1

The didactic triad. Note that this was first formally presented by
Thompson (2009) but emerged through discussion and
collaboration with Carlson, Oehrtman, Moore, Strém, O'Bryan, and
their colleagues working in the Pathways research project [see
Carlson et al. (2024b)].
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critical to shifting teachers’ practice in ways that positively impact
student learning. (i) They do not explain how a teacher might
develop the special knowledge structures they identify grounded in
a theory of how teachers learn. (ii) They do not describe
mathematical meanings they conjecture to be necessary for shifting
teachers’ instruction to focus on students’ thinking and advancing
students’ understandings. (iii) Related to point (ii) and to
limitations in research on professional noticing, MKT studies do
not typically collect data on and analyze the mathematical meanings
participating teachers possess with the goal of linking those
meanings with teachers’ pedagogical actions. Further investigation
is needed into how a teacher’s mathematical meanings influence
such things as their learning goals, choice of curriculum, and the
nature of their questions and explanations. It is these decisions and
that
for students.

choices determine potential learning opportunities

Following calls from Silverman and Thompson (2008), researchers
such as Thompson (2013, 2016), Bas-Ader and Carlson (2022),
Carlson et al. (2024a), and Rocha (2023) have leveraged the construct
of mathematical meanings for teaching (MMT) (Thompson, 2013,
2016) to investigate the meanings teachers hold relative to specific
ideas and how these meanings influence their instructional decisions.
Researchers following this line of inquiry have argued for the need to
ground mathematics education research such as MKT and professional
noticing in a robust theory of how individuals construct knowledge
with an increased focus on “the system of meanings by which the
teacher [operates]” (Thompson, 2013, p. 79-80). This is a critical focus
if the goal is to help students construct coherent and useful
mathematical meanings themselves (Rocha, 2023; Silverman and
Thompson, 2008; Tallman, 2023; Thompson, 2013, 2016). A focus on
modeling the meanings teachers hold for specific ideas and studying
their influences on a teacher’s pedagogical actions allows researchers
to make conjectures about links between a teacher’s meanings and
their instructional decisions, both when planning for and when
delivering instruction (refer back to Figure 1). It is then possible to
identify meanings that might lead to more productive learning
experiences for students, to design professional development aimed at
supporting teachers in developing those meanings and leveraging
those meanings to drive pedagogical actions.

Thompson (2013, 2016) clarified MMT as the construct that refers
to the meanings a teacher possesses (which could be potentially
productive or potentially unproductive, coherent or incoherent, valid
or inconsistent with the field’s norms, and so on) and used MKT to
refer to the MMT that have been transformed into meanings with
pedagogical power. This transformation of personal mathematical
knowledge into pedagogically powerful knowledge occurs primarily
through decentering (Bas-Ader and Carlson, 2022; Carlson and
Bag-Ader, 2019; Carlson et al., 2007, 2024a; Rocha, 2021, 2022; Rocha
and Carlson, 2020; Silverman and Thompson, 2008; Teuscher et al.,
2016), a process by which teachers inquire about and attempt to
understand a student’s thinking. A teacher’s decentering actions
typically begin when a teacher demonstrates an interest in how a
student is thinking (Bas-Ader and Carlson, 2022). As teachers
repeatedly inquire about how their students are thinking they become
better at designing learning experiences that are effective in advancing
students’ learning. Note that decentering can be thought of as a type
of noticing, but differs in that decentering involves actively engaging
in describing the mental actions of another.
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2.3.3 Ways of thinking about teaching an idea

The concept of MMT emerged over several years and through
several works by various researchers. Carlson et al. (2024a)
summarized and extended this work in their framework for ways of
thinking about teaching an idea, which describes how teachers who
have developed pedagogically powerful MMT plan and deliver
instruction on specific mathematical concepts. This framework
suggests that effective mathematics teaching requires instructors to
develop conscious awareness of their own mathematical meanings,
construct models of various ways students might understand
mathematical ideas, and use these insights to design and adapt
instruction in real time. A teacher’s way of thinking about teaching an
idea can evolve over time, particularly when the teacher regularly
reflects on the impact of their teaching and attempts to decenter
relative to students’ thinking. See Figure 2. I will briefly describe the
various elements in this framework, but for a more detailed
explanation see Carlson et al. (2024a).

According to this framework, teachers develop productive ways
of thinking about teaching an idea through an iterative process of
decentering and reflection. A first-order model (Stefte, 1995; Steffe
et al., 1983; Steffe and Thompson, 2000; Thompson, 2000) describes
the teacher’s personal mathematical meanings for the idea being
taught. Importantly, teachers must have conscious awareness of these
meanings to leverage them pedagogically (Tallman, 2021; Tallman and
Frank, 2020; Tallman et al., 2024). This requirement for conscious
awareness discounts that teachers can effectively teach concepts they
understand only tacitly or procedurally. Second-order models (Steffe,
1995; Steffe et al., 1983; Steffe and Thompson, 2000; Thompson, 1982,
2000) describe the teacher’s hypotheses about students’ mathematical
meanings, constructed through experience and decentering. The
quality of these models depends heavily on teachers’ ability to
recognize and distinguish mathematical thinking different from their
own and on their conceptual analysis (Thompson, 2008). Conceptual
analysis involves the teacher’s systematic reflection on the
mathematical idea itself, considering issues such as what mental
operations are required to understand it, how it connects to other
ideas, and what makes it difficult or accessible for learners.

When teachers have developed conscious awareness of their own
meanings and mental models of a variety of ways students understand
the concept (and related concepts), they are positioned to construct
generalized models of common meanings students possess for the idea
(both productive and unproductive). These models are called epistemic
students (Thompson, 2002), or epistemic ways of understanding. By
considering epistemic students as well as the results of their conceptual
analysis of the idea at hand, teachers can conceptualize ways of learning
an idea, which includes how to construct learning activities that address,
build on, or attempt to modify these meanings. The act of teaching, with
interactions informed by their learning goals and images of epistemic
students, then provides new data for additional iterations of reflection,
decentering, and conceptual analysis that feeds into the iterative process
of further developing the teacher’s ways of thinking about teaching
the idea.

2.4 Summary

If teachers’ mathematical meanings are central to the quality of
instruction they provide, then effective professional development
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FIGURE 2

Carlson et al. (2024a) framework for a way of thinking about teaching an idea in mathematics (p. 316).

must address these meanings directly. For example, Carpenter et al.
(1989)
understanding of mathematical concepts and student thinking

demonstrated that interventions targeting teachers’
patterns produced measurable improvements in both teaching quality
and student achievement. Programs that focus primarily on
curriculum implementation, general pedagogical strategies, or even
advanced mathematical content may fail to help teachers develop the
specific kinds of mathematical meanings that support high-
quality instruction.

The MMT and ways of thinking about teaching an idea
frameworks have significant implications for professional
development. The frameworks suggest that professional development
should support teachers in transforming their personal mathematical
meanings into pedagogically powerful ones through sustained
practice in decentering and reflection on their own and their students’
mathematical meanings. This might involve analyzing student work,
reflecting on classroom interactions, and explicitly considering the
implications of different mathematical meanings on future learning.
As s illustrated in the didactic triad (Figure 1), it is useful to emphasize
that what teachers notice about students’ mathematical meanings
depend not just on their own mathematical meanings (what they are
primed to notice), but also on the nature of their learning goals,
pedagogical actions, and classroom tasks that comprise their lessons.

For example, a teacher who approaches teaching operations with

Frontiers in Education

fractions by demonstrating examples, giving students practice
problems similar to the worked examples, and prioritizing accurate
calculations is not creating opportunities to gather information about
students’ meanings for fractions outside of calculational performance.
The images of epistemic students they construct will be shallow and
focused on classes of procedural behaviors, and their opportunities
will be limited for updating their first-order models to be more robust
and coherent relative to other mathematical ideas. It is when teachers
intentionally begin to foreground students’ mathematical reasoning
that opportunities arise for teachers to deepen their MMT and
transform their MMT into meanings with real pedagogical power.
Supporting teachers in making this shift requires attention to the
teacher’s personal mathematical meanings, their student learning
goals, the mathematical tasks they utilize, and their teaching practices.
Otherwise, as Stigler and Hiebert (2009) noted, “[tJhe system
assimilates individual changes and swallows them up” (p. 98).

3 The study
3.1 Study overview

This paper reports on a case study of Tracy, a secondary
mathematics teacher who participated in professional development
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based on the ways of thinking about teaching an idea framework with
a focus on developing Tracy’s quantitative, covariational, and algebraic
reasoning skills (see Section 3.3) and preparing her to teach with the
Pathways Algebra IT materials (Carlson and O’'Bryan, 2014) that have
similar learning goals for students. Tracy participated in one year of
training through bimonthly professional learning community
meetings. The following fall semester she taught using research-based
curriculum materials while receiving ongoing professional
development support, classroom observations, and targeted feedback.
The study examined Tracy’s evolving understanding of key
mathematical ideas, her developing ability to notice and respond to
student thinking, and the impact on her instructional practices as
evidenced through classroom observations and interview data. The
analysis is framed by the theoretical constructs of mathematical
meanings for teaching, decentering, and ways of thinking about

teaching an idea.

3.2 Methods

The goal of this research was to provide an in-depth examination
of how professional development focused on mathematical meanings
for teaching can influence instructional practice, using quantitative
reasoning as a specific content focus to understand these mechanisms
(see Section 3.3). While not necessarily providing findings that
automatically generalize to all professional development contexts,
this case study provides documentation of the processes by which
teacher change occurs when professional development systematically
addresses the mathematical meanings teachers hold and use in
instruction., this case study aimed to (i) provide detailed
documentation of one teacher’s instructional practices after training
focused on quantitative reasoning while implementing research-
based curriculum materials, (ii) examine the role of decentering in
transforming teachers’ personal mathematical knowledge into
pedagogically powerful knowledge, and (iii) investigate how teachers’
mathematical meanings impact the quality of learning opportunities
provided to students. The analysis is grounded in Carlson et al’s
(2024a) framework of ways of thinking about teaching an idea,
offering concrete examples of how this theoretical framework can
illuminate the mechanisms of effective professional development.

3.2.1 Research design, participant, and setting

This study employed a longitudinal case study design (Yin, 2018)
to examine how professional development focused on mathematical
meanings for teaching influenced one secondary mathematics
teacher’s instructional practice. Case study methodology was
appropriate for this investigation because it enabled deep examination
of the complex processes involved in teacher change within the
authentic context of classroom practice (Tisdell et al., 2025). The study
was conducted as part of the larger Pathways Project, an NSF-funded
research program examining approaches to improving secondary
STEM teaching through professional development and curriculum
innovation (see Carlson et al., 2024b). This paper reports specifically
on data collected during one semester of intensive work with Tracy
(pseudonym), an Algebra II teacher at a large suburban secondary
school in the Southwestern United States.

Tracy was selected based on her willingness to participate in
extended professional development, use research-based curriculum
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materials in her Algebra II class (of 28 students), and allow regular
classroom observations. At the time of the study, Tracy had been
teaching mathematics for eight years and held a bachelor’s degree in
secondary mathematics teaching. Tracy’s school had a population of
about 1,200 students with 38% minority enrollment and a school-wide
math proficiency of 43%. Tracy provided informed consent for all data
collection activities. Student consent was obtained for classroom
observations, with seating arrangements modified to ensure that the
one non-consenting student did not appear in video recordings. Their
participation was redacted from video recordings, transcripts, and
data analysis. All participants’ names were replaced with pseudonyms
or numbers.

3.2.2 The professional development intervention

During the previous school year, Tracy participated in a year-long
intervention consisting of monthly two-hour professional learning
community meetings. These meetings focused on helping teachers see
mathematical ways of thinking that united various topics in their
courses and could be used as key focal points to bring greater
coherence to their instruction. Teachers were also supported in
working together in a lesson design study (Stigler and Hiebert, 2009).
Prior to the subsequent fall semester when data was collected, Tracy
participated in an intensive two-day summer workshop with activities
designed to support her in constructing productive personal meanings
related to quantitative reasoning, covariational reasoning, and
representational equivalence in an Algebra II course (see Section 3.3).
The workshop was explicitly aligned with features of the Pathways
Algebra II research-based curriculum materials (Carlson and O’Bryan,
2014), designed to engage students in quantitative reasoning while
providing teachers with opportunities to observe and respond to
student thinking. Throughout the semester, Tracy participated in five
individual professional development sessions that combined clinical
interviews about Tracy’s mathematical meanings and her observations
of her students’ thinking along with professional development
targeting upcoming ideas in the course and how they built on ideas
Tracy had already taught. These sessions were scheduled approximately
every three weeks and lasted about 90 min each.'

The curriculum served multiple functions beyond providing
activities for students. For example, it provided models for the kinds
of mathematical discussions the professional development promoted
and generated artifacts of student reasoning for Tracy to analyze.
Without this coherent system, Tracy’s developing mathematical
meanings might not have translated into productive changes in her
classroom practice.

3.2.3 Data collection and analysis

Data collection occurred over one full semester (August—
December) and included multiple sources. Five complete class lessons
were video recorded throughout the semester, with observations

1 To summarize the timeline of this research, during year one, Tracy
participated in monthly professional learning community meetings. In the
summer between year one and year two, she attended an intensive two-day
workshop. During the fall of year two, she taught using the curriculum materials
while receiving ongoing support through five individual sessions, and all data

collection for this study occurred during the fall semester of year two.
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strategically scheduled to capture Tracy’s teaching at different points
in the semester. Each observation lasted the full 65-min class period.
All five individual interview/training sessions with Tracy were also
video recorded with the camera focused on the table to capture
anything Tracy wrote or showed. Transcripts were also created for
each classroom observation and interview/training session. Student
work samples, lesson plans, and Tracy’s written reflections were
collected throughout the semester for analysis. Finally, brief
conversations with Tracy before and after observed lessons were
documented through field notes.

Data analysis followed an iterative process of open coding (Corbin
and Strauss, 1990) with particular attention to evidence of Tracy’s
evolving mathematical meanings and teaching practices. Video
recordings, transcripts, and reflections were coded to capture instances
of (i) Tracy explicitly expressing her mathematical meanings and
learning goals, (ii) observable behaviors implying Tracy’s mathematical
meanings and learning goals, (iii) observable behaviors in line with
elements of reasoning quantitatively related to algebraic expressions
(see Table 1 in Section 3.3), (iv) evidence of decentering behaviors, and
(v) characteristics of her responses to students’ contributions and work.
Codes were analyzed across time to identify patterns in Tracy’s
development particularly moments that suggested shifts in her
mathematical meanings, learning goals, or instructional practices.
Summaries of each lesson and interview/training session were
produced to characterize the quality of mathematics in the lesson, the
character of the mathematical discussions, and Tracy’s responsiveness
to student contributions. The coded lessons and summaries were then
analyzed through the lens of the ways of thinking about teaching an
idea framework to understand the mechanisms underlying Tracy’s
growth. Whenever possible, key interpretations were shared with Tracy
during later professional development sessions. The goal was to verify
the accuracy of interpretations and gather additional insights about her
thinking. For example, in Section 4.2 details are shared of a lesson
Tracy designed for the exponential functions module. During this
lesson Tracy deviated from the printed curriculum materials and
designed her own lesson tasks that created a lesson that unfolded
similarly to one of the training sessions. This move was particularly
noteworthy, leading to follow-up questions and activities designed to
better understand her learning goals and what she learned about her
students’ thinking during this lesson.

10.3389/feduc.2025.1611159

3.3 Quantitative and covariational
reasoning and their role as learning goals

Quantitative and covariational reasoning are foundational ways of
thinking about mathematical relationships in ways that are productive
particularly for the algebra to calculus pipeline. It is important to
elaborate on this way of thinking because developing Tracy’s
quantitative and covariational reasoning skills was a key goal of the
professional development intervention, developing students’
quantitative and covariational reasoning skills is a key goal and
unifying theme in the curriculum materials Tracy used, and
observations of Tracy’s teaching show strong evidence that Tracy
conceptualized her lesson goals and engaged in decentering actions
grounded in this reasoning.

Quantitative reasoning, as described by Thompson (1990, 2011),
involves conceptualizing situations in terms of quantities (measurable
attributes of objects) and the relationships among quantities, rather than
focusing primarily on numerical calculations and symbol manipulation.
When an individual has distinguished between conceptualized quantities
in a situation with measurements that can change and those with fixed
measurements, then they can begin to coordinate changes in pairs of
quantities’ magnitudes or values, identify patterns in those coordinated
changes, and reason about the implications of those patterns. This is
covariational reasoning (Carlson et al., 2002; Castillo-Garsow et al., 2013;
Moore and Thompson, 2015; Saldanha and Thompson, 1998; Thompson
and Carlson, 2017) and is foundational to a robust understanding of
algebra, functions, and rate of change and accumulation in calculus. The
relationships identified can be represented and communicated through
a variety of equivalent representations that may highlight different
features of these relationships.

Thompson’s work on quantitative reasoning emerged from his
analysis of students’ difficulties with algebra and calculus. He observed
that many students approached mathematical problems by
first

conceptualizing the underlying quantitative structure. This tendency

immediately applying numerical procedures without
often led to procedural errors and limited students’ ability to reason
about novel situations. On the other hand, students can accomplish
impressive mathematical reasoning when instruction focuses on
supporting students in conceptualizing a problem’s quantities, how

they are related and vary together as a foundation for representing

TABLE 1 Elements of reasoning quantitatively related to creating and interpreting algebraic representations.

Number (for

Elements of reasoning quantitatively related to algebraic representations

reference only)

measurement, and the unit of measure for the value.

Conceptualizing a variable as a symbol that represents a quantity’s value and that value is free to vary within the situation. When defining a

1 variable, it is important to clearly indicate the quantity whose value is being represented by stating where the measure begins, the direction of

2 Formulas are used to describe constraints on how two or more quantities’ values vary in tandem.

An equal sign represents the equality of expressions in two ways: (a) equality of value and (b) equality of meaning. In other words, not only must

the two expressions always maintain identical values (even as variables” values change), but the two expressions represent the value of the same

} quantity. [ This assumes contexts where the equal sign is used to represent equality and not as a simple statement of fact, used in a definition, or used in
conditional statements.]
The order of operations in a formula, evaluation process, solving process, and so on mirrors a way to reason about relationships within a

* quantitative structure.

5 Building on 5, if two statements are mathematically equivalent, it does not imply that identical reasoning produced those statements.
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these relationships with formulas and graphs [e.g., see Castillo-
Garsow et al. (2013), Ellis et al. (2012, 2015), Moore (2014), and
Thompson (1993, 2011)].

Individuals inclined to engage in quantitative reasoning when
encountering mathematical contexts, especially when done with
conscious intention, will exhibit certain observable behaviors
dependent on the context and the mathematical representation
methods given to them or that they choose to use to present their
reasoning. For purposes of this paper, I will focus on individuals
interpreting and using algebraic statements. If they are reasoning
quantitatively, their behaviors will be driven by expectations inherent
to such reasoning (O’Bryan, 2020).

1. An expectation that performing calculations or generating
expressions should reflect a quantification process for
quantities that the individual conceptualizes.

2. An expectation that demonstrating calculations and producing
expressions are attempts to communicate an individual’s
meanings. Thus, when given a set of calculations or expression/
formula, we can hypothesize how the individual conceptualized
a situation based on analyzing the products of their reasoning.

3. An expectation that the order of operations used to perform
calculations, evaluate expressions, and solve equations “reflects
the hierarchy of quantities within a conceptualized quantitative
structure” (O'Bryan, 2018, p. 234). (p. 450).

When an individual is operating from expectations such as these,
we would expect to see behaviors in which the individual is
constructing an image of the quantitative structure of an applied
problem and using that image to build meaningful algebraic
representations of these quantitative relationships. O'Bryan (2018) and
O’Bryan (2020) described individuals doing so as engaging in emergent
symbolization (with emergent symbol meaning describing the general
conceptualization of algebraic statements in line with these
expectations). When teachers hold these meanings and can consciously
leverage them in instruction, they become positioned to support
students in developing similarly powerful ways of reasoning about
algebraic situations.

During the professional development sessions with Tracy she was
presented tasks and contexts highlighting the utility of thinking carefully
about quantities’ values represented by mathematical expressions. The
major points of emphasis related to reasoning about algebraic
representations for these sessions are listed in Table 1. It is worth noting
that students need to be supported in taking the time to conceptualize
situations and construct a mental model of how the quantities are related
before attempting to produce algebraic models to represent these
relationships and this process is more challenging and more time
consuming than teachers usually assume [See Carlson et al. (2022)].

As previously argued, a teacher’s instructional goals, the classroom
tasks they select to achieve these goals, and their beliefs about what it
means to learn and understand mathematics influence their
pedagogical actions [also see Simon et al. (2000), Thompson (2016),
and Thompson et al. (1994)]. Therefore, the professional development
sessions were focused on supporting Tracy in: (i) constructing the
targeted meanings, (i) seeing the pedagogical power of those
meanings, (iii) conceptualizing student learning goals relative to the
ideas highlighted in the professional development sessions, and (iv)
prompting her to consider the thinking her students were expressing
in their verbal contributions, written homework, and assessments.

Frontiers in Education

10.3389/feduc.2025.1611159

Furthermore, the intervention structure reflected research-based
principles of effective professional development. Following Darling-
Hammond et al. (2017), the program was content-focused, sustained
over time, included opportunities for active learning, and provided
ongoing support for implementation.

4 Results

In this section I share data from Tracy’s comments and classroom
teaching and analyze it using constructs of MMT and ways of thinking
about teaching an idea. As the semester progressed, Tracy (a) often
tried to replicate her experiences in the professional development
sessions with her students, (b) increasingly discussed her learning goals
with me in terms of students’ understandings of the ideas, rather than
their performance on specific tasks, (c) increasingly focused on the
meanings of the expressions she wrote, the expressions students wrote,
and how mathematical formulas reflected quantitative structures
someone had conceptualized, (d) began to notice when students were
not thinking about particular mathematical expressions and formulas
in the ways she intended, and (e) increasingly discussed her reflections
on what kinds of activities would support students in thinking about
the mathematical ideas in the ways she intended and why.

4.1 Early evidence of attending to students’
quantitative reasoning and decentering

In the examples in this section, we see evidence of Tracy
modifying her instruction based on her observations and reflections
on her students’ thinking. Rather than simply correcting students’
errors, Tracy created experiences designed to help students construct
more productive meanings and advance their quantitative
reasoning skills.

Early in the semester, Tracy began noticing that students were not
conceptualizing the quantities in a problem statement, nor were they
conceptualizing the starting point for variables or constructing
formulas that accurately represented the quantitative relationships
described in the problem statement. Based on our work in the
professional development sessions, she described recognizing the
potential issues this would cause for students later in the course.
Excerpt 1 is part of Tracy’s reflection on student work from a quiz she
gave on linear relationships early in the course.

4.1.1 Excerpt 1

Tracy: On number three (see Figure 3) [...] [T]he first one was
writing a formula telling them how to define the variables, and
then the second two questions were, so how far is your house from
the school and how long did it take you to get there? What was
interesting is almost everybody got (b) and (c) correct [but] a lot
of people missed (a). Because they were like, I know you told me
that the distance should be distance from my house, but what
I would really like to do is distance from school. [...]

So, we really have done several problems like this after that. I've
had them walk across the room. [...] T have problems where I had
them model, okay, so now back up. What’s happening? And go

frontiersin.org


https://doi.org/10.3389/feduc.2025.1611159
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

O'Bryan

10.3389/feduc.2025.1611159

house.
a)

variables.
b)
c)

How far is your house from school?

FIGURE 3
A question Tracy wrote for a class quiz during the first module.

3. You leave a school and start walking home a constant speed of 4 ft/sec. Five minutes
later you are 100 feet from your house. Assume you walk along a straight path to your

Write a formula to define the relationship between the quantities distance from your
house (in feet) and time since leaving school (in seconds). Be sure to define your

How long does it take you to get home from school?

geometric sequences.

1. n il. an
FIGURE 4

the term value in a geometric sequence, a,, in terms of the term position, n.

5. We can create a general formula that serves as a model for the explicit formulas for all

a. What is the explicit formula that defines the value of a, for a geometric sequence
with an initial term value a; and a common ratio ?

b. Explain what each of the following represents in the formula (be clear and specific).
iii. n—1

A task from Pathways Algebra Il (Carlson and O'Bryan, 2014, p. 94) to explore students’ meanings for expressions in the explicit formula representing

iv. pl v. ap-rl

forward, what’s happening to the distance? And I also did several
problems after this where I made them write both formulas. [...]
One thing that I realized they were doing is your reference point
has to match your variables, so like they would be using a
reference point where the d in the reference point was distance
from [school], but then they are trying to write a formula
[representing the] distance from [their house]. [...] That got back
to a discussion of how important is it that we define our
variables accurately.

Tracy’s main concern was that students were not carefully
attending to what quantities she asked them to track as revealed in the
students’ variable definitions and expressed that this would become a
significant problem for them in future lessons. In particular, she
conveyed that it was important that the reference points students
chose (the starting point for a quantity’s measurement) align with
their variable definitions. Based on her observations, Tracy planned
her future instruction to help students improve their attention to detail
in terms of conceptualizing quantities they were being asked
to consider.

Later in the semester, Tracy described her students’ work to
interpret the parts of the general explicit formula for geometric
sequences (see Excerpt 2). Over one and a half class sessions, students
worked to make sense of situations represented by geometric
sequences, including their noticing similarities in how those sequences
are constructed, and writing a general formula to express the value of
the n™ term based on its position. According to Tracy, students had
little difficulty coming up with the general formula a, = a,er"".
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However, when she assigned a task from the Pathways Algebra II
workbook that asked students to describe the quantities’ values
represented by each part of the formula (see Figure 4), she expressed
surprise that many students had an inaccurate interpretation of the
role the expression n — 1 played in relating the term’s value with
its position.

4.1.2 Excerpt 2

Tracy: The one that was most concerning to me actually out of
these five [...] [points to part (b. v.) in Figure 4], they said this is
the first term multiplied by the ratio n minus one times. And
I said, well, what does that find? Well, the n™ term. Okay, so this
represents the n® term. Then they said this- when I asked them
what this was [points to part (b. iii.) in Figure 4] they said that’s the

position before the n™

position. They did not see it as that’s how
far you need to change, that’s how far your position is changing
away from one. So that led to a discussion. And so, and then it had
to be linked to this is multiplying by the ratio this many times but

why? Because you are changing away that many positions.

09

Tracy’s ability to interpret and assess the correctness of students’
meaning for the expression n — 1 relied on her understanding a
difference as representing an amount of change in a quantity’s value,
and in particular conceptualizing the expression as “the change in the
term position from the first term to the n™ term”” Understanding that
her students’ interpretation differed from her own, Tracy had to
recognize the utility of this meaning in helping her students
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FIGURE 5
Exercises from Pathways Algebra Il (Carlson and O'Bryan, 2014, p. 94-95).

Each of the following is a portion of a geometric sequence. Fill in the blanks and
then write an explicit formula for each sequence.

b. Find the value of the 6% term of each sequence.

Each of the following is a portion of a geometric sequence. Fill in the blanks and
then write an explicit formula for each sequence.

b. Find the value of the 12t term of each sequence.

i Bl 9

1 25,

conceptualize what the expression # — 1 represents. Her intentional
actions relied on her believing that this meaning would also
be valuable for students. This led to her targeting these meanings
during her instruction.

Once Tracy recognized that students’ meanings differed from her
own, and that the meanings students expressed might not generalize
productively to other topics in the course, Tracy modified her
interactions with students in subsequent tasks to help them build the
meanings she intended (see Excerpt 3 based on the exercises in
Figure 5).

4.1.3 Excerpt 3

Tracy: But that kind of continued here [points to Figure 5] [...] In
problem number six and number seven when, uh, when they had
this problem [copies down Exercise 6a part (ii) on a piece of scratch
paper] or this one [copies down Exercise 7a part (ii) next to it] they
knew that it was about multiplication so they kind of thought of it
as two times what equals 2507 [She writes the first line of Figure 6,
leaving the box empty]. And they said, well 125 [adds 125 to the
empty box in Figure 6]. So, then I-I tried to push them to think
about, well, what does the 125 represent? And so, they kind of
talked about that and came up with, well, that represents r cubed
[adds 1’ to Figure 6]. Why does it represent r cubed? Because it’s
the fourth term, which is three positions over from the first term.

Excerpt 3 suggests that Tracy’s goal was not for students to simply
generate and use the explicit formula for a geometric sequence. She
also wanted to make sure that students thought about the exponent as
representing a change in term position from the first term to the n™®
term. To emphasize this goal, Tracy modified her lesson in the
moment of teaching to further support students’ development of this
way of understanding. See Excerpt 4.

4.1.4 Excerpt 4

Tracy: So then I made something up where I tried to push them
fur- I tried to create a need to actually know what the r [represents
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FIGURE 6
Tracy's diagram used in a class discussion about the meaning of the
exponent in the explicit formula for a geometric sequence.

without needing to calculate its value]®. Something like [writes
first line of Figure 7] that wasn't gonna [trails off].

Alan: Be nice? [Alan conjectures what words she intended to use to
finish her sentence.]

Tracy: At all. [laughs] It was gonna be like a whatever root of
something is your r. Good luck with that. [laughs] So then I said,
okay, well what about this, um, and so then they had to really
think about three times, like, what does this mean? [ Writes second
line of Figure 7.] Um. So, then they started thinking about that and
trying to relate that back.? What I think I'd like to emphasize even
further, and, i-is just, just making sure to always relate that back
to how your input, how that position is changing away from one,
and just kind of relating, like that applies even though it's no
longer linear, it’s how many times you are multiplying, so to bring
it back to that concept [...] That is another way that, that the first

2 lreworded the end of this sentence in the transcript. Tracy was referencing
back to something she had said in part of the transcript | omitted which made
clear she was talking about the meaning of r without knowing its precise value.
3 In this passage she is referencing how linear functions was designed in the
curriculum with an emphasis in coordinating changes in the values of two

quantities, with “Change away from what value?” being a key question to consider.
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module can be leveraged, but their instinct wasn't to say change
away from one, their instinct was to say, well, [...] it’s the position
before the n™ position [...] it’s not a valuable way to [rails off].

My understanding of Tracy’s comments is that Tracy had
conceptualized differences as directed changes away from a reference
point and that she believed it was important for her students to
construct the same meaning for themselves. This represents her
developing an appreciation for the usefulness of certain mathematical
meanings. Excerpts 3 and 4 demonstrate how Tracy modified and
focused her instruction on supporting her students in developing
these meanings based on her emerging models of how students were
thinking about those ideas.

4.2 A detailed look at Tracy's teaching: the
exponential function lesson

To illustrate Tracy’s instruction near the end of the fall teaching
semester, this section presents a detailed analysis of one lesson from
late in the semester.

4.2.1 Key elements of Tracy's lesson

Tracy began the lesson by displaying the prompt shown in
Figure 8. This task differed from previous problems she had assigned
because it provided a growth factor for a three-hour interval rather
than a one-hour interval, something the class had not yet discussed
how to handle. Tracy stated during our post-lesson debriefing
conversation that she wanted to see how students would apply their
understanding of the ideas in the module to this novel situation.

After giving her students about five minutes to work on the task
in small groups, Tracy asked students from various groups to first
share with the class approaches they tried that did not work. Groups

t
shared solutions such as f(t)= (2)(%)(2500) and f(t)=2500 [ij ,

b _ _ _ar

ECl :ol}tls-

A problem Tracy created in the moment of teaching to emphasize
her learning goals based on her model of how students understood
geometric sequences.

10.3389/feduc.2025.1611159

and for each Tracy led a discussion about the thinking that produced
the answer and how they knew it was incorrect. A portion of one such
conversation is given in Excerpt 5. Tracy devoted about 25 min to
these discussions (out of 65 total minutes in the class), indicating that
she valued them as integral to her students’ learning experience.

4.2.2 Excerpt 5

Tracy: Okay, so, um what did you guys try that did not
work? Uh, S1.

S1: So, at first, we thought it, the growth factor, would be one
third. And you would do it to the t.

Tracy: So you did like one third to the t?
S1: Yeah and the zeroth term would be the twenty-five hundred.

Tracy: So what did you do with the two thousand five
hundred again?

S1: I multiplied it by that term.

Tracy: So you had something that maybe looked like this? [Tracy
writes Figure 9 during this exchange.] And what did t represent
for you?

S1: The number of hours that had passed since eight a.m. and
we thought that, oh wait it was, yeah, we thought that since every
three hours the population of the bacteria doubled, um,
you multiply by one-third to the t.

After these discussions, and once the class had collectively decided
that f (t) =2500 (2)”3 was an accurate model of the bacteria
population in terms of the number of hours since 8 a.m., Tracy asked
students to work in their groups to explain what quantities’ values were
represented by various parts of the formula. Excerpt 6 shows part of the
conversation once groups had discussed their thinking for about
one minute.

4.2.3 Excerpt 6
Tracy: Okay, so the twenty-five hundred, what does that represent?
S2: [student abstained from this study].
Tracy: The initial, th-the initial value and um it’s what we are, it’s

our reference point, it’s also the initial value because it happens at
time equals zero. That’s one thing we are going to talk about in

your homework, it talks about the initial value that’s at zero, which

FIGURE 8

A population of bacteria doubles every three hours. Suppose the population of
bacteria at 8 a.m. is 2500. Write a formula to determine the total population of
bacteria as a function of the number of hours since 8 a.m.

The prompt Tracy created to begin a lesson in the exponential functions module.
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FIGURE 9
A student's work when asked to provide an approach they tried that
did not produce a correct answer.

is a little bit different than what we were treating it with sequences,
right? We'll talk about that. Okay, so what does two represent? S3.

S3: It’s the growth factor you are multiplying the reference value
by to get farther down the line.

Tracy: Now, what do you guys think, do you agree? Growth factor?
Can you, like, describe the growth factor though? Like, what kind
of, a growth factor for what? A growth factor, like can you be more
specific because we can im-, we can imagine the same scenario and
talk about different types of growth factors within that scenario,
like, corresponding to different times, so what specific, S4?

S4: It’s the growth factor after three hours have passed.

Tracy: Okay, so would you agree it’s the three-hour growth
factor? Okay. So then what does my t divided by three

represent? S5.

S5: Like, um, how many groups of three there are in that amount
of time, like how many groups of three hours there are.

Tracy: So like how many three-hour chunks?

S5: Yeah, intervals of three.

Tracy: Okay, why-why do we need to do that? S6.

S6: Um, because, uh, it’s increased by every three hours.

Tracy: Okay, so it’s every three hours that you have to double.

After this discussion, Tracy presented another prepared task to the
class (see Figure 10). This task explicitly raised the issue that, when
equivalent formulas are written differently (for example, with different
groupings of terms or a different order of operations), it can reflect a
different way of conceptualizing the quantities and their relationship
to each other (refer back to Table 1).

Tracy allowed groups to work on this task for about three
minutes and then reconvened for a whole class discussion. See
Excerpt 7.
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Let ¢ = elapsed time since 8 a.m. (hours)

Let P = total population of bacteria where P =f(7)

f(#)=2500(2"

F@®=2500(2)"

Explain the difference in student thinking.

FIGURE 10
An example Tracy had ready to present to the class for analysis at an
appropriate time.

4.2.4 Excerpt?7

Tracy: Did anyone think that they kind of figured out what
might be the difference between the two ways of thinking? [long
pause, some students nod while others raise their hands] Cool,
some. S7.

S7: Um, I thi- I think the first equation they are trying to find the
growth factor for every hour.

Tracy: So where in the equation would you see that?

S7: Uh, because the- the exponent is t and not t divided by three.

Tracy: So then your hypothesis was that this number [Tracy puts
a bracket above 2'7 in Figure 10] represents what?

S7: Um, the growth factor for an hour. [Tracy writes “I-h growth
factor” above the bracket.]

Tracy: Okay did you, whereas in the bottom equation when
we discussed, what did two represent?

S7: Um, the growth factor for every three hours.

Tracy: Three hours. [Draws a bracket under “2” in the second
formula in Figure 10 and writes “3-h growth factor”].

Tracy concluded the lesson with a final prepared task. Tracy
presented a hypothetical alternative answer to the original lesson task
(see Excerpt 8 and Figure 11). This task provided Tracy an opportunity
to emphasize the importance of clear variable definitions as well as
provide another opportunity for students to reason about alternative
ways of conceptualizing the situation and formulas that result from
those conceptualizations.

4.2.5 Excerpt 8

Tracy: Now, one thing we'll end on before we move on, and we'll
continue to do problems like these, suppose a student writes this
[Tracy writes Figure 11 on a piece of paper and displays it under the
document camera).
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f(x)=2500(2)

FIGURE 11
A hypothetical student solution Tracy presents to the class.

Tracy: Take a second and try and consider what might they have
been, I mean is it okay? Is it completely wrong? What might they
have been thinking?

[Class] [Class discusses in groups for about one minute.]
Tracy: Okay. What do you guys think? S8.

S8: It seems like this is basically a person that’s thinking they-they, um,
they aren't thinking, uh, basically in terms of hours. It seems more like
in hours in pairs of three. So, um, you could not just find the first hour
with a whole number. You have to use something like one third kind
of thing. So, it seems like they think that it doubles every one hour.

Tracy: So you are thinking maybe they are thinking it doubles
every hour? What else? S9.

S9: Well they could, they have to define their variable as,
um, that one x is actually three hours. It's not, not growing by
one hour.

Tracy: Okay, so you are saying perhaps their thinking is
correct, but they defined their variables differently. Like
x does not represent number of hours since eight, what does
X represent?

S9: Like the [pause] [some classmates say something not picked up
on the microphone).

[Class] [several members of the class speak simultaneously
and it is impossible to make out on the recording exactly what

they said].

Tracy: Yeah [laughing]. The number of three-hour chunks since

eight a.m.

It is worth reiterating that Tracy clearly stated to me that her
students had not yet worked with tasks in which they were
given n-unit growth factors (n# 1) and expected to reason
about the corresponding 1-unit growth factors [although
they had worked with contexts where, given the 1-unit growth
factor, they reasoned about n-unit growth factors (n# 1)].
Thus, students’ reasoning in this lesson are not examples of students
performing rote memorized algorithms on sets of tasks identical to
provided examples. Instead, students’ work demonstrated their
ability to apply their thinking and build on prior understandings
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without explicit instruction on specific techniques. This example
underscores the impacts of Tracy’s (and the curriculum’s) focus on
quantitative reasoning as a foundation for their construction of
algebraic statements meaningful to the student.

4.2.6 Commentary on Tracy's lesson

Tracy’s choice of initial task for this lesson and how she leveraged
the task reflect several sophisticated aspects of effective teaching. First,
the novelty of the task required students to adapt their understanding
to a new situation. This choice, coupled with Tracy’s approach of not
over-emphasizing a single solution algorithm and the follow-up
she
mathematical discussions.

activities designed created opportunities for rich

Second, the tasks within the lesson required careful attention to
quantities, the relationship between quantities, and the meanings of
variables. They illustrate why quantitative reasoning is a cross-cutting
and essential way of thinking for learning and using ideas. Tracy’s
questions and comments created a lesson focused on connecting
symbolic representations with quantitative meaning (such as what the
expression /3 represented in the context), including exploring issues
of representational equivalence and the interaction between a
variable’s definition and the corresponding algebraic model based on
that definition. Rather than treating algebraic expressions as isolated
symbolic objects, she consistently connected them to the quantitative
relationships they represented.

Third, Tracy’s initial exploration of incorrect solution attempts
and the follow-up activities she designed provided her with ample
opportunities to gain insights into students’ mathematical meanings
and reasoning, thus supporting their engagement in productive
decentering. Rather than treating incorrect responses as errors to
be corrected, her actions suggested that she recognized student
contributions as reflecting specific mathematical meanings that she
could leverage in future interactions and discussions with students.
She also modeled how different representations of quantitative
relationships might emerge from different ways of thinking about a
context and conveyed to her students that these differences were

mathematically meaningful.

4.3 Evidence of student learning

While this study focuses primarily on Tracy’s development,
evidence suggests her evolving teaching practices created high-quality
learning opportunities for students. Throughout the observed lesson,
students engaged in practices consistent with national calls for
improvements in mathematics instruction. These practices included
(i) having students analyze their incorrect approaches to understand
why they were insufficient, (ii) making connections between current
problems and previously studied concepts, (iii) explaining their
reasoning using quantitative language, (iv) recognizing structural
relationships in algebraic expressions, and (v) engaging in
mathematical discussions about alternative solutions.

Students’ facility with these practices suggests they were
developing mathematical meanings aligned with Tracy’s instructional
goals. Their ability to discuss mathematical ideas in terms of quantities
and relationships, rather than just procedures and answers, indicates
that Tracy’s emphasis on quantitative reasoning was influencing their
mathematical thinking and understandings. The quality of
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mathematical discourse in Tracy’s classroom also reflected her
development as a teacher. Students regularly offered explanations,
questioned each other’s reasoning, and built on each other’s ideas.
These practices emerged by Tracy consistently modeling and
supporting mathematical sense-making rather than answer-seeking.

4.4 Tracy's reflection on her development

Tracy’s final reflection on her professional development experience
provides insight into her perception of the factors that contributed to
her growth as a teacher, directly addressing the first research question
about how professional development focused on quantitative
reasoning influenced her practice. In the final interview, Tracy
reflected on the role of professional development in her growth. See
Excerpt 9.

44.1 Excerpt 9

Tracy: You've given me some very helpful feedback when you have
come to observe in the classroom. [...] Some of it was verbal, like
while you were here. But just, um, mathematical feedback [gets
hand-written notes I had given her] that I could pull out as
discussion points, or, um, things I can work on with the kids. For
example, I mean, how to emphasize that it’s not just, um, like the
constant rate of change, say it’s three halves. Okay, ways not to
emphasize that it’s up three over two, up three over two every
time. So just the content feedback on ways to pull thinking out of
the students. That was helpful. Or, when you were here and
we were talking about whether something was [...] a function or
not, [like] imagining the Ferris wheel, all the kids totally got that,
hey, on the Ferris wheel, if I know the time, I know the position,
but if T know the position, I do not necessarily know the time. So,
they immediately got that and I think that helped them understand
how to transfer that to other scenarios [...] I've never had
observations that were content based. It’s always been more like

classroom management.

Tracy’s comments reveal several important aspects of her
development. First, she identified the mathematical focus of her
professional development as uniquely valuable, contrasting it with
typical administrative observations focused on generic teaching
behaviors rather than mathematical content and student thinking.
This distinction highlights the importance of the kind of content-
specific support for teacher development described in other research
[e.g., Darling-Hammond et al. (2017)].

Second, Tracy’s specific examples demonstrate her growing ability
to think pedagogically about mathematical content. Her mention of
“ways to pull thinking out of the students” reflects her developing
focus on understanding and advancing student thinking rather than
simply delivering content. Her reference to the Ferris wheel example
shows how concrete mathematical reasoning tools discussed in
professional development interactions became resources she could use
to help students understand abstract concepts.

Third, Tracy’s reflection reveals her recognition that teaching is
fundamentally about supporting students’ mathematical thinking.
This pedagogical awareness was present in her classroom teaching
alongside evidence of her mathematical meanings related to
quantitative reasoning. Her effectiveness in creating high-quality
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learning opportunities for her students supports the argument that
these are key characteristics of a successful mathematics teacher and
useful targets for professional development.

Finally, her ability to articulate specific ways the professional
development influenced her instruction suggests that she had
developed conscious awareness of her own learning and growth, a
metacognitive capacity that likely supports continued development
beyond the formal intervention period.

4.5 Results summary

Over the course of the intervention, evidence from classroom
observations and interviews suggested that Tracy developed
significantly in several areas. Tracy’s lesson design and interactions
reflect that she had internalized quantitative reasoning as a lens for
interpreting algebraic expressions and mathematical situations,
moving beyond procedural approaches to focus on quantitative
relationships. This shift enabled her to see connections between
different mathematical topics and to help students develop similar
connections. As the semester progressed, it appeared that Tracy
became increasingly intentional about collecting evidence of her
students’ thinking. In the exponential lesson, for example, Tracy asked
students to share initial attempts that failed. Her subsequent
instructional interactions built on those contributions as well as
students’ reasoning for accurate solutions.

The design of her follow-up tasks in this lesson were noteworthy
for at least two reasons. First, these activities appeared to be efforts to
reproduce discussions and points of emphasis from our professional
development and interview/training sessions for her students (see
Table 1). This led to interactions with a focus on constructing images
and representations of meaningful relationships rather than asking
students to reproduce memorized algorithms. Second, the activities
and her focus during discussion seemed to reflect an awareness of the
existence of multiple ways of understanding the situation and emerging
models of the relationship between the bacteria population and the
hours elapsed since eight a.m. This suggests progress in Tracy’s
developing images of epistemic students and constructing ways of
thinking about teaching exponential functions informed by
these models.

As the semester progressed, Tracy’s questioning, task selection,
and use of student contributions became more sophisticated as her
lesson learning goals increasingly appeared to target elements of
quantitative reasoning (see Table 1). This is in line with Silverman and
Thompson’s (2008) description of a teacher constructing personally
powerful mathematical meanings and those meanings coming to have
pedagogical power. As this happened, her teaching increasingly
reflected the kind of responsive, meaning-centered instruction called
for by mathematics education reform.

5 Discussion

This case study examined one teacher’s instruction using a research-
based curriculum after participating in professional development
focused on developing her quantitative reasoning skills. The findings
illuminate three interconnected aspects of teacher development: the
influence of content-focused professional development on practice, the
role of decentering in developing pedagogical knowledge, and the
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manifestation of teachers mathematical meanings in classroom
learning opportunities. Research on professional development has
demonstrated that many interventions fail to make an impact on
teachers’ practice in ways that improve student learning (Jacob et al.,
2017; Kraft et al., 2018; Yoon et al., 2007). The didactic triad framework
(Figure 1) provides insight into the source of these challenges,
suggesting that effective professional development must address the
interconnected elements of teachers’ mathematical meanings, learning
goals, pedagogical actions, lesson resources, and models of student
thinking. This study documents evidence that professional development
that systematically addresses these elements through sustained, content-
focused support can support teachers in providing high-quality learning
opportunities for students.

Each of the following three sections address one of the research
questions outlined at the beginning of this paper.

5.1 How professional development focused
on quantitative reasoning influenced
teaching practice

Early in the semester, Tracy’s concerns about student variable
definitions (Excerpt 1) reflected her developing awareness that
students’ mathematical meanings differed from her own and that
these differences had pedagogical implications. By the exponential
function lesson (Section 4.2), Tracy was systematically designing
instruction to reveal and build on student thinking, using tasks that
required careful attention to quantitative relationships and creating
opportunities for rich mathematical discourse.

This transformation reflects what Silverman and Thompson
(2008) described as the result of a teacher transforming personal
mathematical meanings into meanings with pedagogical power.
Tracy’s growing facility with quantitative reasoning provided her with
a coherent lens for interpreting algebraic situations, student work, and
instructional decisions. More importantly, her conscious awareness of
these meanings enabled her to use them pedagogically, as evidenced
by her ability to recognize when students were not thinking about
expressions and formulas in quantitatively meaningful ways and her
capacity to design instruction to address these gaps.

The specific focus on quantitative reasoning proved particularly
productive because it provided a unifying instructional goal that
connected different algebraic topics and enabled Tracy to see
coherence across the curriculum. As demonstrated in the exponential
lesson, Tracy used quantitative reasoning to help students understand
why different representations of the same relationship might emerge
from different ways of thinking about a context. This represents
sophisticated mathematical teaching that goes well beyond procedural
instruction or even conceptual explanation to focus on the
development of powerful mathematical reasoning.

5.2 The role of decentering in developing
pedagogically powerful mathematical
meanings

Tracy’s ability to notice and respond to student thinking (her

decentering) developed in tandem with her mathematical meanings
and proved central to transforming her personal knowledge into
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pedagogically powerful knowledge. The geometric sequence example
(Excerpts 2-4) illustrates this process clearly. Tracy first recognized
that students’ interpretation of the expression # - 1 differed from her
own. She then considered the implications of her intended meaning
and the meanings students expressed and designed instruction to
support students in constructing more productive meanings.

This finding supports and extends previous research on teacher
noticing [e.g., Jacobs et al. (2010) and Sherin et al. (2010)] and
decentering [e.g., Bas-Ader and Carlson (2022) and Teuscher et al.
(2016)] by demonstrating that what teachers notice and how they
interpret student contributions is fundamentally shaped by their own
mathematical meanings. Tracy’s ability to recognize the pedagogical
significance of students’ interpretation of n - 1 as “the position before
the n'™ position” rather than “the change in position from the first
term” in the context of the explicit formulas for geometric sequences
required both mathematical understanding and awareness of how
different meanings might influence future learning.

The development of decentering skills appeared to follow an
iterative process consistent with Carlson et al’s (2024a) framework.
Tracy’s first-order models (her personal mathematical meanings)
became more conscious and articulated through the professional
development activities. Her interactions with students then provided
opportunities to construct second-order models of student thinking,
which informed her instructional decisions and provided data for
further refinement of both her mathematical meanings and her
models of student understanding.

Importantly, Tracy’s decentering was not simply about attending
to student contributions but about actively seeking to understand the
mathematical meanings underlying those contributions and their
implications for future learning. This represents a sophisticated form
of professional noticing that requires both strong mathematical
knowledge and pedagogical insight.

5.3 How mathematical meanings for
teaching manifest in learning opportunities

The quality of learning opportunities in Tracy’s classroom
reflected her evolving mathematical meanings in multiple ways. Most
notably, her lessons increasingly featured tasks that required students
to engage in quantitative reasoning, opportunities for mathematical
discourse centered on meaning-making rather than answer-getting,
and systematic attention to connecting different representations and
solution approaches.

The exponential function lesson provides clear evidence of how
Tracy’s mathematical meanings shaped the learning opportunities she
created. Her choice to begin with a novel task requiring students to
adapt their understanding, her systematic exploration of incorrect
approaches, and her focus on connecting different ways of thinking
about the same relationship all reflect sophisticated pedagogical
reasoning grounded in quantitative reasoning. These instructional
moves created opportunities for students to develop the kinds of
mathematical meanings the professional development targeted.

However, this study’s evidence for the quality of learning
opportunities is primarily observational rather than measured
through student learning outcomes. While students demonstrated
facility with mathematical discourse and reasoning consistent with the
instructional goals, claiming direct evidence of improved learning
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would require additional data. What can be claimed is that Tracy’s
instruction increasingly reflected the characteristics of high-quality
mathematics teaching identified by research [e.g., National Governors
Association Center for Best Practices, Council of Chief State School
Officers (2010)] and created opportunities for the kinds of
mathematical engagement that support learning.

5.4 Implications for professional
development design

This case study provides empirical support for professional
development approaches that target teachers’ mathematical meanings
for teaching and that simultaneously address multiple aspects of the
didactic triad. The findings suggest that effective professional
development must address teachers’ personal mathematical meanings,
support their development of models of student thinking, and provide
ongoing opportunities to apply these insights in classroom practice
with targeted feedback.

The specific focus on quantitative reasoning proved effective not
only as mathematical content but as a lens for pedagogical reasoning.
Quantitative reasoning provided Tracy with tools for analyzing
student work, designing tasks, and making in-the-moment
instructional decisions. This suggests that professional development
content should be selected not only for its mathematical importance
but for its potential to serve as a framework for pedagogical thinking.

The sustained nature of the intervention, including preparation
during the prior year, intensive workshops, and ongoing support
throughout implementation, appears to have been crucial to Tracy’s
development. This aligns with research on effective professional
development [e.g., Darling-Hammond et al. (2017)] while providing
concrete evidence of how sustained support enables the kind of
fundamental change in practice that mathematics education
reform requires.

5.5 Limitations and future research

The author served dual roles as both the professional
developer and the researcher in this study. This positioning provided
unique access to Tracy’s mathematical thinking and development but
also created potential for bias in data interpretation. Several measures
were taken to address this limitation including the following. (i) All
professional development and classroom observation sessions were
recorded to enable systematic analysis. (ii) Interpretations about
Tracy’s thinking were grounded in her explicit statements, observable
behaviors, and the activities she designed to achieve stated learning
goals. Hypotheses about Tracy’s motivations and goals developed
through analysis were confirmed with Tracy during subsequent
meetings whenever possible. (iii) The analysis focused on
documenting change over time using multiple data points rather than
making broad generalizations from single incidents. This single case
study of one teacher engaging in professional development and
implementing a research-based curriculum is not intended to generate
fully generalizable results for all teachers and in all settings. However,
the results provide insights into how professional development that
supported advances in a teacher’s decentering abilities through a
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consistent focus on supporting her students’ quantitative reasoning
impacted her teaching.

This
further investigation:

study raises several questions that warrant

1. Scalability: How do these approaches perform when
implemented with larger groups of teachers across diverse
contexts? What adaptations are needed for different school
settings and teacher populations? [See Carlson et al. (2024b)]
for some initial work on answering this question.

2. Content Generalizability: While quantitative reasoning
proved effective as a focus for this intervention, would similar
approaches work with other mathematical content areas? What
characteristics make mathematical ideas suitable for this kind
of professional development?

3. Student Learning Outcomes: Future research should
examine student learning gains associated with teaching
practices developed through mathematical meanings for
teaching approaches. What evidence can demonstrate that
changes in teaching practice translate to improved
student learning?

4. Sustainability: How do changes in teaching practice persist
over time? What ongoing support is needed to maintain
reform-oriented instruction, and how do teachers continue
developing their mathematical meanings for teaching beyond
formal professional development?

5. Measurement and Assessment: How can the development of
teachers’ mathematical meanings for teaching be measured
reliably? What tools are needed to assess both the mathematical
and pedagogical dimensions of teacher knowledge in this
framework? [See Thompson (2016)] for the foundations of one
possible approach to addressing this question.
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