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1 Introduction

Red meranti is considered a primary commercial product in the timber trade, recognized

as the leading roundwood commodity with a total volume of 653.49 thousand m³ in 2020

(BPS, 2021). This type of wood is characterized by its straight, cylindrical trunk and is

primarily sourced from natural forests. There are also efforts to cultivate red meranti through

sustainable forest management practices (Wistara et al., 2016). Previous reports indicated that

the survival rate of the red meranti exceeds 67%, with a Mean Annual Diameter Increment

(MADI) above 1.7 cm/year (Widiyatno et al., 2020).

As a member of the Dipterocarpaceae family, red meranti comprises approximately 75

species found in the lowland tropical rainforests of the Indo-Malayan region (van Steenis, 1983).

Rubroshorea leprosula (Miq.) P. S. Ashton and J. Heck, a synonym for Shorea leprosula Miq

(Ashton and Heckenhauer, 2022), is locally known as meranti tembaga. It is also internationally

traded as part of the light red meranti timber group (Ng et al., 2021). Typically, R. leprosula
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grows up to 1.000 m above sea level and has an estimated extent of

occurrence (EOO) of over 2 million km2. This species is native to

Southeast Asia, with a natural distribution that includes Singapore,

Peninsular Malaysia, Peninsular Thailand, the Indonesian islands of

Java, Sumatra, and Borneo (Kalimantan, Brunei Darussalam, Sabah,

and Sarawak) (Pooma and Newman, 2024).

R. leprosula is a timber tree known for its high economic value

and significant presence in both regional and international tropical

timber markets (Harahap et al., 2018). It is traded and utilized as

raw material for various applications, including light and heavy

construction, furniture, flooring, and plywood (Purwaningsih and

Kintamani, 2018; Alex et al., 2023). This species is a key product of

lowland tropical rainforests and serves as symbols of these

ecosystems (Yu et al., 2021). The harvested timber of R. leprosula

shows promising prospects, as it is classified as commercial wood

class 1 (Djarwanto et al., 2017), with a strength class of III (Wahyudi

and Sitanggang, 2016) and durability class of III-IV (Kartasujana

and Martawijaya, 1973). However, the high value of R. leprosula

has led to overexploitation and unsustainable harvesting under the

Timber Forest Product Utilization Permit (Izin Usaha Pemanfaatan

Hasil Hutan Kayu – Hutan Alam, IUPHHK-HA), as well as illegal

logging and trade. Logging activity continues to be reported in

Gunung Leuser National Park, where loggers specifically target R.

leprosula due to its accessibility and ease of processing compared to

other species (Harnelly et al., 2016). Moreover, R. leprosula typically

occurs in late successional stages and is considered a climax species

in lowland dipterocarp forests, characterized by low regeneration

rates (Nurfatma et al., 2017). It also shows low natural regeneration

in degraded habitats such as Tesso Nilo National Park (Kusumo

et al., 2016). Consequently, it has low dominance in protected

forests like Bukit Barisan Selatan National Park (Prayoga et al.,

2019). These ecological characteristics render the species highly

vulnerable to habitat disturbance and overexploitation, especially in

concentrated areas such as the now-abandoned PT. Patriadi

concession. As a result, the population of R. leprosula has been

declining due to the conversion of forest land into agricultural and

industrial plantation areas (Gaveau et al., 2016; Harahap et al.,

2018), which has contributed to a continuous decrease in its global

population. According to the International Union for Conservation

of Nature (IUCN) Red List of Threatened Species, this species is

globally classified as Near Threatened (NT) and has undergone a

20–29% reduction over the past three generations (approximately

210 years) (Pooma and Newman, 2024). Indonesia is known as a

wood-producing country that exported timber products, including

those from illegal logging, to partner countries such as China and

Japan from 2001 to 2010, with volumes estimated at 11,000 m³ and

12,000 m³ Roundwood Equivalent (RWE), respectively (Ji et al.,

2018). In 2013, about 80 million m³ of RWE was illegally produced

across nine countries, with approximately 50% of this illegal supply

originating from Indonesia (Hoare, 2015). However, only 3,829 m³

of illegal wood was seized in 2017 (Ministry of Environment and

Forestry, 2019). This situation highlights the urgent need for

conservation efforts to protect and sustain the existing

populations of R. leprosula. Identifying the species and origin of
Frontiers in Ecology and Evolution 02
illegal wood is challenging without reliable identification methods.

The most established method for wood identification is the study of

wood anatomy, which characterizes species based on their internal

structure. However, this method can sometimes be challenging in

distinguishing wood species, particularly within meranti species,

leading to the development of other methods, such as chemical and

genetic methods. However, genetic methods are currently

considered more accurate for identifying wood species and their

origins (Finkeldey et al., 2009; Lowe and Cross, 2011) through

genomic information.

Unlocking genomic data for R. leprosula is vital for enhancing

wood identification and developing genetic conservation strategies.

Among various genomic resources, the chloroplast genome is

particularly valuable, as it provides crucial insights into genetic

variation among closely related species. In plants, the chloroplast

genome or plastome is a semi-autonomous structure enclosed in

double membranes, housing independent genetic material

(Dobrogojski et al., 2020; Daniell et al., 2021). These organelles

possess molecular machinery that regulates gene expression

(Chevigny et al., 2020) and play a vital role in various

physiological processes within plants (Mahapatra et al., 2021).

The chloroplast genome is a valuable tool for genetic studies due

to its slow evolutionary rate, maternal inheritance in most

angiosperms, and its conserved structure and gene sequences

(Zulfahmi et al., 2015; Song et al., 2019). In angiosperms, the

chloroplast genome typically ranges from 107 kb to 218 kb and

encodes 120 to 130 genes crucial for transcription, translation, and

photosynthesis (Daniell et al., 2016; Li et al., 2024). Due to its

conservation, the chloroplast genome serves as a reliable resource

for molecular identification, genetic diversity assessment, and

phylogenetic studies (Chew et al., 2023; Kim et al., 2024). The

genome of Rubroshorea leprosula from Malaysia has been

sequenced using the Illumina HiSeq platform to study

comparative genomics and molecular dating of the evolution of

the Dipterocarpaceae family, highlighting the role of drought in a

seasonal tropical rainforests (Ng et al., 2021). Another Rubroshorea

leprosula genome from China was sequenced by Yu et al. (2021)

using the Illumina NovoSeq 6000 platform to conduct a

comprehensive evolutionary analysis of chloroplast genomes from

20 species of Dipterocapoideae and to identify barcoding loci for

species identification. However, data on the genomic resources for

R. leprosula from Indonesia are still limited, as the Indonesian

population may harbor unique genetic characteristics. This lack

of information poses a significant challenge to advancing research

on developing chloroplast DNA (cpDNA) markers, which are

essential for genetic conservation efforts. Therefore, this study

aims to assemble and characterize the complete chloroplast

genome of Rubroshorea leprosula from Indonesia, generated from

short-read sequencing, and to analyze its phylogenetic relationship

with other species. This study enhances understanding of the

genetics of R. leprosula from Indonesia and contributes to wood

identification and conservation efforts. It represents a vital step

toward preserving this species and enriching the knowledge of

plant genetics.
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2 Method

2.1 Plant material, DNA extraction, and
sequencing

The plant material used in this study consisted of silica-gel dried

cambium sample collected from Rubroshorea leprosula from Bukit

Tigapuluh National Park, Riau Province on Sumatra Island, Indonesia

(-0.814669° S, 102.528702° E), specifically from one individual mature

tree with a stem diameter at the breast height of 50.8 cm and total

height approximately 21 m with straight stem (Figure 1) to ensure the

quality and consistency of the samples obtained. The cambium

sample was scraped with a stainless-steel scalpel blade to form a

sawdust-like material. The sawdust was then ground again with a

Qiagen TissueLyser II. A total of 100 mg of the cambium powder

sample was used for genomic DNA extraction and isolation following

the modified Cetyltrimethylammonium Bromide (CTAB) protocol

(Doyle and Doyle, 1990). Specifically, the modifications involve two

incubations: 65°C for 60 min and 37°C for 30 min, with an additional

20 μL of Proteinase K before the first incubation and 20 μL of RNase A

before the second. The initial quantification and assessment of

genomic DNA purity were conducted using a Nanodrop 2000

spectrophotometer (Thermo Scientific), which exhibited a

concentration of 300.3 ng/mL, A260/280 of 1.81, and A260/230 of

1.18, and was visualized via 1% Tris-Borate-EDTA (TBE) agarose gel

electrophoresis. To achieve accurate DNA quantification, Qubit

dsDNA HS Assay Kits (Thermo Scientific) were utilized. The

genomic DNA samples of R. leprosula exhibited a concentration of
Frontiers in Ecology and Evolution 03
13.1 ng/mL and a total amount of 458.5 mg. The high-molecular-

weight genomic DNA extracted from R. leprosula was subsequently

used for library preparation to facilitate subsequent short-read

sequencing. Libraries were prepared according to the protocol

provided by Novogen AIT, Singapore, for the Illumina NovaSeq

6000. The sequencing was done through PT. Genetika Science

Indonesia, resulting in a data output of 3 GB. Short-read

sequencing has been selected for this study due to its well-

established application in the reconstruction of chloroplast

genomes. Its high accuracy and coverage facilitate reliable assembly

and annotation of the chloroplast genome, while also offering cost-

effective solutions for study purposes (Wang et al., 2018). All

data analysis was conducted at the Forest Genetics and Molecular

Forestry Laboratory within the Department of Silviculture, Faculty of

Forestry and Environment at Institut Pertanian Bogor (IPB)

University in Bogor, West Java, Indonesia.
2.2 Chloroplast genome assembly and
annotation

Raw reads of the Rubroshorea leprosula from Illumina NovaSeq

6000 sequencing (Fastq) were uploaded to the Galaxy web platform,

specifically the public server at usegalaxy.org v25.0.4.dev0 (https://

usegalaxy.eu/) for analysis (Afgan et al., 2016). Quality control was

conducted to evaluate the quality of reads. The quality of raw short-

reads was assessed using FastQC v0.12.1 (Andrews, 2010), and

clean reads were filtered with Fastp v0.24.0 (Chen et al., 2018) using
FIGURE 1

The Rubroshorea leprosula tree studied in Bukit Tigapuluh National Park, characterized by its (A) bark and (B) upright trunk.
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default parameters. Clean reads were assembled using SPAdes

v3.15.3 (Bankevich et al., 2012) and GetOrganelle v1.7.7.1 (Jin

et al., 2020), both with default parameters. SPAdes v3.15.3 uses

an adaptive multi–k-mer strategy by default. This approach was

considered appropriate for the high-quality Illumina short-read

data employed in this study and has been widely applied in

chloroplast genome assembly. To improve accuracy, the

assembled contigs were polished using Pilon v1.20.1 (Walker

et al., 2014). These contigs were then mapped to the reference

plastome of Shorea leprosula, a synonym of Rubroshorea leprosula

(GenBank accession: MZ160997.1). The assembly results were then

annotated using GeSeq (https://chlorobox.mpimp-golm.mpg.de/

geseq.html) (Tillich et al., 2017). The fully annotated circular

genome was visualized using OrganellarGenomeDRAW

(OGDRAW) v1.3.1 accessible through the MPI-MP Chlorobox

platform (Greiner et al., 2019).
2.3 Phylogenetic tree construction

In order to evaluate the phylogenetic position of the

reconstructed chloroplast relative to those of closely related

organisms and to assess the possible effects of these differences, a

phylogenetic analysis was conducted. A total of 20 chloroplast

genomes of taxa closely related to Rubroshorea leprosula (from

the Dipterocarpaceae family) were downloaded from GenBank (the

National Center for Biotechnology Information/NCBI) and aligned

with the obtained plastomes. A complete list of the accessions used

is given in Supplementary Table 1. Neolamackia cadamba

(NC_041149.1) was included and used as an outgroup. The

sequences were processed in Mega X v12.1.1 (Kumar et al., 2018)

and aligned with MAFFT v7.526 (Katoh and Standley, 2013) using

default parameters. A maximum likelihood (ML) phylogenetic tree
Frontiers in Ecology and Evolution 04
was inferred with the IQ-TREE Web Server (Trifinopoulos et al.,

2016), applying 1,000 bootstrap replicates. The phylogenetic tree

was visualized using iTOL (Letunic and Bork, 2024).
3 Result

Short-read sequencing of Rubroshorea leprosula generated a total

of 20,499,674 reads, equivalent to 3 gigabase pairs (Gbp) of raw data.

The mean read length was 150 bp, and the mean read quality score of

the raw data was recorded at 36. After filtering, all reads passed the

quality assessment with the same score. The complete chloroplast

genome of R. leprosula has been successfully assembled using short-

read (Illumina NovaSeq 6000) sequencing data to resolve structural

regions. The Rubroshorea leprosula chloroplast genome exhibits a

typical quadripartite structure (Figure 2a) with a total length of

150,691 bp. The genome consists of a Small Single-copy Region

(SSC: 19,917 bp) and a Large Single-copy Region (LSC: 83,740 bp),

separated by a pair of inverted repeat regions: Inverted Repeat A

(IRA: 23,517 bp) and Inverted Repeat B (IRB: 23,517 bp) (Figure 2a).

The GC content of the R. leprosula sequence is 34.2%. This finding is

nearly comparable in size to the Shorea leprosula syn. Rubroshorea

leprosula chloroplast genome reported by Yu et al. (2021), which is

152,100 bp. Furthermore, similar chloroplast genome sizes were also

found in Shorea macrophylla syn. Rubroshorea macrophylla, at

150,778 bp (Chew et al., 2023), and Rubroshorea johorensis, at

149,968 bp (Nugroho et al., 2025). These results indicate that the

chloroplast genome size in the Sumatran population of Rubroshorea

leprosula is relatively conserved and consistent within the

Rubroshorea or Shorea group, at around 150 kb. The Rubroshorea

leprosula chloroplast genome contains a total of 115 genes, including

80 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4

ribosomal RNA (rRNA) genes (Supplementary Table 2). These genes
FIGURE 2

Chloroplast genome and phylogenetic relationships of Rubroshorea leprosula: (A) Chloroplast genome map and (B) Phylogenetic tree based on
chloroplast genome.
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are categorized into four functional groups: self-replicating genes,

photosynthetic genes, genes with other functions, and genes of

unknown function (Supplementary Table 2). In the Rubroshorea

leprosula chloroplast genome, of the total identified genes, 19 contain

introns, suggesting that RNA processing events may play a crucial

role in gene expression and regulation, as further detailed in

Supplementary Table 2.

Similar to other plant chloroplasts, R. leprosula likely exhibits

high levels of recombination and structural rearrangements, traits

characteristic of plant chloroplast genomes that contribute to

genome plasticity. However, variations in gene content and intron

presence may indicate species-specific adaptations that could be

linked to environmental factors or evolutionary history. The results

of chloroplast genome sequencing of R. leprosula indicated

that, although the assembled genome remains limited, it can be

used for further population genetic studies, providing essential data

for designing conservation strategies for this species. This

underscores the need for further research in this area. Conducting

additional comparative genomic studies may provide deeper

insights into the functional implications of these genomic features

in R. leprosula.

The phylogenetic tree of R. leprosula based on the complete

chloroplast genome showed that the studied R. leprosula was in the

same clade as other species within the same genus, specifically

Shorea pachyphylla (NC_040966.1) syn. Rubroshorea pachyphylla,

with a bootstrap value of 100% (Figure 2b). Additionally, R.

leprosula forms a monophyletic clade with Parashorea chinensis

(NC_046579.1), Shorea zeylanica (NC_040965.1) syn. Doona

zeylanica, Hopea reticulata (NC_052744.1), and Hopea chinensis

(NC_053766.1), emphasizing the intricate evolutionary connections

among these taxa. This finding contrasts with the study by Yu et al.

(2021), which reported that the phylogenetic tree of the genus

Rubroshorea was not monophyletic. The present study provides an

updated phylogenetic analysis of R. leprosula, contributing to a

deeper understanding of the evolutionary dynamics that

characterize R. leprosula and its related species.
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