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1 Introduction

Red meranti is considered a primary commercial product in the timber trade, recognized
as the leading roundwood commodity with a total volume of 653.49 thousand m? in 2020
(BPS, 2021). This type of wood is characterized by its straight, cylindrical trunk and is
primarily sourced from natural forests. There are also efforts to cultivate red meranti through
sustainable forest management practices (Wistara et al., 2016). Previous reports indicated that
the survival rate of the red meranti exceeds 67%, with a Mean Annual Diameter Increment
(MADI) above 1.7 cm/year (Widiyatno et al., 2020).

As a member of the Dipterocarpaceae family, red meranti comprises approximately 75
species found in the lowland tropical rainforests of the Indo-Malayan region (van Steenis, 1983).
Rubroshorea leprosula (Miq.) P. S. Ashton and J. Heck, a synonym for Shorea leprosula Miq
(Ashton and Heckenhauer, 2022), is locally known as meranti tembaga. It is also internationally
traded as part of the light red meranti timber group (Ng et al., 2021). Typically, R. leprosula
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grows up to 1.000 m above sea level and has an estimated extent of
occurrence (EOO) of over 2 million km? This species is native to
Southeast Asia, with a natural distribution that includes Singapore,
Peninsular Malaysia, Peninsular Thailand, the Indonesian islands of
Java, Sumatra, and Borneo (Kalimantan, Brunei Darussalam, Sabah,
and Sarawak) (Pooma and Newman, 2024).

R. leprosula is a timber tree known for its high economic value
and significant presence in both regional and international tropical
timber markets (Harahap et al,, 2018). It is traded and utilized as
raw material for various applications, including light and heavy
construction, furniture, flooring, and plywood (Purwaningsih and
Kintamani, 2018; Alex et al., 2023). This species is a key product of
lowland tropical rainforests and serves as symbols of these
ecosystems (Yu et al., 2021). The harvested timber of R. leprosula
shows promising prospects, as it is classified as commercial wood
class 1 (Djarwanto et al., 2017), with a strength class of III (Wahyudi
and Sitanggang, 2016) and durability class of III-IV (Kartasujana
and Martawijaya, 1973). However, the high value of R. leprosula
has led to overexploitation and unsustainable harvesting under the
Timber Forest Product Utilization Permit (Izin Usaha Pemanfaatan
Hasil Hutan Kayu - Hutan Alam, IUPHHK-HA), as well as illegal
logging and trade. Logging activity continues to be reported in
Gunung Leuser National Park, where loggers specifically target R.
leprosula due to its accessibility and ease of processing compared to
other species (Harnelly et al., 2016). Moreover, R. leprosula typically
occurs in late successional stages and is considered a climax species
in lowland dipterocarp forests, characterized by low regeneration
rates (Nurfatma et al., 2017). It also shows low natural regeneration
in degraded habitats such as Tesso Nilo National Park (Kusumo
et al,, 2016). Consequently, it has low dominance in protected
forests like Bukit Barisan Selatan National Park (Prayoga et al,
2019). These ecological characteristics render the species highly
vulnerable to habitat disturbance and overexploitation, especially in
concentrated areas such as the now-abandoned PT. Patriadi
concession. As a result, the population of R. leprosula has been
declining due to the conversion of forest land into agricultural and
industrial plantation areas (Gaveau et al., 2016; Harahap et al,
2018), which has contributed to a continuous decrease in its global
population. According to the International Union for Conservation
of Nature (IUCN) Red List of Threatened Species, this species is
globally classified as Near Threatened (NT) and has undergone a
20-29% reduction over the past three generations (approximately
210 years) (Pooma and Newman, 2024). Indonesia is known as a
wood-producing country that exported timber products, including
those from illegal logging, to partner countries such as China and
Japan from 2001 to 2010, with volumes estimated at 11,000 m* and
12,000 m*> Roundwood Equivalent (RWE), respectively (Ji et al.,
2018). In 2013, about 80 million m* of RWE was illegally produced
across nine countries, with approximately 50% of this illegal supply
originating from Indonesia (Hoare, 2015). However, only 3,829 m?
of illegal wood was seized in 2017 (Ministry of Environment and
Forestry, 2019). This situation highlights the urgent need for
conservation efforts to protect and sustain the existing
populations of R. leprosula. Identifying the species and origin of

Frontiers in Ecology and Evolution

10.3389/fevo.2026.1751419

illegal wood is challenging without reliable identification methods.
The most established method for wood identification is the study of
wood anatomy, which characterizes species based on their internal
structure. However, this method can sometimes be challenging in
distinguishing wood species, particularly within meranti species,
leading to the development of other methods, such as chemical and
genetic methods. However, genetic methods are currently
considered more accurate for identifying wood species and their
origins (Finkeldey et al., 2009; Lowe and Cross, 2011) through
genomic information.

Unlocking genomic data for R. leprosula is vital for enhancing
wood identification and developing genetic conservation strategies.
Among various genomic resources, the chloroplast genome is
particularly valuable, as it provides crucial insights into genetic
variation among closely related species. In plants, the chloroplast
genome or plastome is a semi-autonomous structure enclosed in
double membranes, housing independent genetic material
(Dobrogojski et al., 2020; Daniell et al.,, 2021). These organelles
possess molecular machinery that regulates gene expression
(Chevigny et al., 2020) and play a vital role in various
physiological processes within plants (Mahapatra et al., 2021).
The chloroplast genome is a valuable tool for genetic studies due
to its slow evolutionary rate, maternal inheritance in most
angiosperms, and its conserved structure and gene sequences
(Zulfahmi et al., 2015; Song et al, 2019). In angiosperms, the
chloroplast genome typically ranges from 107 kb to 218 kb and
encodes 120 to 130 genes crucial for transcription, translation, and
photosynthesis (Daniell et al., 2016; Li et al.,, 2024). Due to its
conservation, the chloroplast genome serves as a reliable resource
for molecular identification, genetic diversity assessment, and
phylogenetic studies (Chew et al., 2023; Kim et al,, 2024). The
genome of Rubroshorea leprosula from Malaysia has been
sequenced using the Illumina HiSeq platform to study
comparative genomics and molecular dating of the evolution of
the Dipterocarpaceae family, highlighting the role of drought in a
seasonal tropical rainforests (Ng et al., 2021). Another Rubroshorea
leprosula genome from China was sequenced by Yu et al. (2021)
using the Illumina NovoSeq 6000 platform to conduct a
comprehensive evolutionary analysis of chloroplast genomes from
20 species of Dipterocapoideae and to identify barcoding loci for
species identification. However, data on the genomic resources for
R. leprosula from Indonesia are still limited, as the Indonesian
population may harbor unique genetic characteristics. This lack
of information poses a significant challenge to advancing research
on developing chloroplast DNA (cpDNA) markers, which are
essential for genetic conservation efforts. Therefore, this study
aims to assemble and characterize the complete chloroplast
genome of Rubroshorea leprosula from Indonesia, generated from
short-read sequencing, and to analyze its phylogenetic relationship
with other species. This study enhances understanding of the
genetics of R. leprosula from Indonesia and contributes to wood
identification and conservation efforts. It represents a vital step
toward preserving this species and enriching the knowledge of
plant genetics.
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2 Method

2.1 Plant material, DNA extraction, and
sequencing

The plant material used in this study consisted of silica-gel dried
cambium sample collected from Rubroshorea leprosula from Bukit
Tigapuluh National Park, Riau Province on Sumatra Island, Indonesia
(-0.814669° S, 102.528702° E), specifically from one individual mature
tree with a stem diameter at the breast height of 50.8 cm and total
height approximately 21 m with straight stem (Figure 1) to ensure the
quality and consistency of the samples obtained. The cambium
sample was scraped with a stainless-steel scalpel blade to form a
sawdust-like material. The sawdust was then ground again with a
Qiagen TissueLyser II. A total of 100 mg of the cambium powder
sample was used for genomic DNA extraction and isolation following
the modified Cetyltrimethylammonium Bromide (CTAB) protocol
(Doyle and Doyle, 1990). Specifically, the modifications involve two
incubations: 65°C for 60 min and 37°C for 30 min, with an additional
20 uL of Proteinase K before the first incubation and 20 L of RNase A
before the second. The initial quantification and assessment of
genomic DNA purity were conducted using a Nanodrop 2000
spectrophotometer (Thermo Scientific), which exhibited a
concentration of 300.3 ng/uL, A260/280 of 1.81, and A260/230 of
1.18, and was visualized via 1% Tris-Borate-EDTA (TBE) agarose gel
electrophoresis. To achieve accurate DNA quantification, Qubit
dsDNA HS Assay Kits (Thermo Scientific) were utilized. The
genomic DNA samples of R. leprosula exhibited a concentration of
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13.1 ng/uL and a total amount of 458.5 pg. The high-molecular-
weight genomic DNA extracted from R. leprosula was subsequently
used for library preparation to facilitate subsequent short-read
sequencing. Libraries were prepared according to the protocol
provided by Novogen AIT, Singapore, for the Illumina NovaSeq
6000. The sequencing was done through PT. Genetika Science
Indonesia, resulting in a data output of 3 GB. Short-read
sequencing has been selected for this study due to its well-
established application in the reconstruction of chloroplast
genomes. Its high accuracy and coverage facilitate reliable assembly
and annotation of the chloroplast genome, while also offering cost-
effective solutions for study purposes (Wang et al., 2018). All
data analysis was conducted at the Forest Genetics and Molecular
Forestry Laboratory within the Department of Silviculture, Faculty of
Forestry and Environment at Institut Pertanian Bogor (IPB)
University in Bogor, West Java, Indonesia.

2.2 Chloroplast genome assembly and
annotation

Raw reads of the Rubroshorea leprosula from Illumina NovaSeq
6000 sequencing (Fastq) were uploaded to the Galaxy web platform,
specifically the public server at usegalaxy.org v25.0.4.dev0 (https://
usegalaxy.eu/) for analysis (Afgan et al., 2016). Quality control was
conducted to evaluate the quality of reads. The quality of raw short-
reads was assessed using FastQC v0.12.1 (Andrews, 2010), and
clean reads were filtered with Fastp v0.24.0 (Chen et al., 2018) using

FIGURE 1

The Rubroshorea leprosula tree studied in Bukit Tigapuluh National Park, characterized by its (A) bark and (B) upright trunk.
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default parameters. Clean reads were assembled using SPAdes
v3.15.3 (Bankevich et al., 2012) and GetOrganelle v1.7.7.1 (Jin
et al., 2020), both with default parameters. SPAdes v3.15.3 uses
an adaptive multi-k-mer strategy by default. This approach was
considered appropriate for the high-quality Illumina short-read
data employed in this study and has been widely applied in
chloroplast genome assembly. To improve accuracy, the
assembled contigs were polished using Pilon v1.20.1 (Walker
et al, 2014). These contigs were then mapped to the reference
plastome of Shorea leprosula, a synonym of Rubroshorea leprosula
(GenBank accession: MZ160997.1). The assembly results were then
annotated using GeSeq (https://chlorobox.mpimp-golm.mpg.de/
geseq.html) (Tillich et al, 2017). The fully annotated circular
genome was visualized using OrganellarGenomeDRAW
(OGDRAW) v1.3.1 accessible through the MPI-MP Chlorobox
platform (Greiner et al., 2019).

2.3 Phylogenetic tree construction

In order to evaluate the phylogenetic position of the
reconstructed chloroplast relative to those of closely related
organisms and to assess the possible effects of these differences, a
phylogenetic analysis was conducted. A total of 20 chloroplast
genomes of taxa closely related to Rubroshorea leprosula (from
the Dipterocarpaceae family) were downloaded from GenBank (the
National Center for Biotechnology Information/NCBI) and aligned
with the obtained plastomes. A complete list of the accessions used
is given in Supplementary Table 1. Neolamackia cadamba
(NC_041149.1) was included and used as an outgroup. The
sequences were processed in Mega X v12.1.1 (Kumar et al,, 2018)
and aligned with MAFFT v7.526 (Katoh and Standley, 2013) using
default parameters. A maximum likelihood (ML) phylogenetic tree

10.3389/fevo.2026.1751419

was inferred with the IQ-TREE Web Server (Trifinopoulos et al.,
2016), applying 1,000 bootstrap replicates. The phylogenetic tree
was visualized using iTOL (Letunic and Bork, 2024).

3 Result

Short-read sequencing of Rubroshorea leprosula generated a total
of 20,499,674 reads, equivalent to 3 gigabase pairs (Gbp) of raw data.
The mean read length was 150 bp, and the mean read quality score of
the raw data was recorded at 36. After filtering, all reads passed the
quality assessment with the same score. The complete chloroplast
genome of R. leprosula has been successfully assembled using short-
read (Illumina NovaSeq 6000) sequencing data to resolve structural
regions. The Rubroshorea leprosula chloroplast genome exhibits a
typical quadripartite structure (Figure 2a) with a total length of
150,691 bp. The genome consists of a Small Single-copy Region
(SSC: 19,917 bp) and a Large Single-copy Region (LSC: 83,740 bp),
separated by a pair of inverted repeat regions: Inverted Repeat A
(IRA: 23,517 bp) and Inverted Repeat B (IRB: 23,517 bp) (Figure 2a).
The GC content of the R. leprosula sequence is 34.2%. This finding is
nearly comparable in size to the Shorea leprosula syn. Rubroshorea
leprosula chloroplast genome reported by Yu et al. (2021), which is
152,100 bp. Furthermore, similar chloroplast genome sizes were also
found in Shorea macrophylla syn. Rubroshorea macrophylla, at
150,778 bp (Chew et al, 2023), and Rubroshorea johorensis, at
149,968 bp (Nugroho et al., 2025). These results indicate that the
chloroplast genome size in the Sumatran population of Rubroshorea
leprosula is relatively conserved and consistent within the
Rubroshorea or Shorea group, at around 150 kb. The Rubroshorea
leprosula chloroplast genome contains a total of 115 genes, including
80 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4
ribosomal RNA (rRNA) genes (Supplementary Table 2). These genes

Rubroshorea leprosula
chloroplast genome
150691 bp

FIGURE 2

Chloroplast genome and phylogenetic relationships of Rubroshorea leprosula: (A) Chloroplast genome map and (B) Phylogenetic tree based on

chloroplast genome.
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are categorized into four functional groups: self-replicating genes,
photosynthetic genes, genes with other functions, and genes of
unknown function (Supplementary Table 2). In the Rubroshorea
leprosula chloroplast genome, of the total identified genes, 19 contain
introns, suggesting that RNA processing events may play a crucial
role in gene expression and regulation, as further detailed in
Supplementary Table 2.

Similar to other plant chloroplasts, R. leprosula likely exhibits
high levels of recombination and structural rearrangements, traits
characteristic of plant chloroplast genomes that contribute to
genome plasticity. However, variations in gene content and intron
presence may indicate species-specific adaptations that could be
linked to environmental factors or evolutionary history. The results
of chloroplast genome sequencing of R. leprosula indicated
that, although the assembled genome remains limited, it can be
used for further population genetic studies, providing essential data
for designing conservation strategies for this species. This
underscores the need for further research in this area. Conducting
additional comparative genomic studies may provide deeper
insights into the functional implications of these genomic features
in R. leprosula.

The phylogenetic tree of R. leprosula based on the complete
chloroplast genome showed that the studied R. leprosula was in the
same clade as other species within the same genus, specifically
Shorea pachyphylla (NC_040966.1) syn. Rubroshorea pachyphylla,
with a bootstrap value of 100% (Figure 2b). Additionally, R.
leprosula forms a monophyletic clade with Parashorea chinensis
(NC_046579.1), Shorea zeylanica (NC_040965.1) syn. Doona
zeylanica, Hopea reticulata (NC_052744.1), and Hopea chinensis
(NC_053766.1), emphasizing the intricate evolutionary connections
among these taxa. This finding contrasts with the study by Yu et al.
(2021), which reported that the phylogenetic tree of the genus
Rubroshorea was not monophyletic. The present study provides an
updated phylogenetic analysis of R. leprosula, contributing to a
deeper understanding of the evolutionary dynamics that
characterize R. leprosula and its related species.
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