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Advances in the management

of Drosophila suzukii population:
from olfactory and visual

stimuli to development

of push—pull systems

Samuel Cruz-Esteban*

Independent Researcher, Tapachula, Chiapas, Mexico

Drosophila suzukii (Matsumura) is an invasive pest of major concern because of
its ability to lay eggs in immature or thin-skinned ripening fruits, leading to
substantial economic losses in berry production. This review examines recent
advances in ethological control strategies—those that exploit pest behavior—
including olfactory attractants, visual stimuli, trap density and spacing for mass
trapping, and push-pull systems incorporating oviposition deterrents. Original
data from Mexico and other countries are included, along with a discussion of
current limitations, knowledge gaps, and future research directions aimed at
improving practical effectiveness.
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1 Introduction

The spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae),
is an invasive pest affecting berries and other soft-skinned fruits and has become established
in various regions worldwide. This species is native to Southeast Asia and was first described
from infested cherries in Japan by Kanzawa in 1916 (Kanzawa, 1935; Walsh et al., 2011). The
species is now established across multiple regions worldwide, including Europe (Cini et al.,
2012), Oceania (Garcia, 2021), North Africa (Ouantar et al., 2020), North America (Hauser,
2011), Central America (Chacon-Cerdas et al., 2024), and South America (Andreazza et al.,
2017). In North America, it was first collected specifically in California (USA), in 2008 and
has rapidly spread through several states of the USA, reaching parts of Canada by 2010 (Lee
et al, 2011; Asplen et al., 2015; Funes et al., 2018). In Mexico, the pest was first reported in
2011 in Los Reyes, Michoacan, and its current distribution includes the states where cherries
(Prunus spp.: Rosaceae) (Walsh et al., 2011), blackberry (Rubus ulmifolius Schott: Rosaceae),
raspberry (Rubus idaeus L., Rosaceae), strawberry (Fragaria spp.. Rosaceae), blueberries
(Vaccinium corymbosum L.: Ericaceae) (Cruz-Esteban et al., 2021a, 2021b; Cruz-Esteban,

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fevo.2026.1746696/full
https://www.frontiersin.org/articles/10.3389/fevo.2026.1746696/full
https://www.frontiersin.org/articles/10.3389/fevo.2026.1746696/full
https://www.frontiersin.org/articles/10.3389/fevo.2026.1746696/full
https://www.frontiersin.org/articles/10.3389/fevo.2026.1746696/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2026.1746696&domain=pdf&date_stamp=2026-01-29
mailto:cruzestebansam@gmail.com
https://doi.org/10.3389/fevo.2026.1746696
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2026.1746696
https://www.frontiersin.org/journals/ecology-and-evolution

Cruz-Esteban

2021; Cruz-Esteban et al., 2024a, 2024b), guava (Psidium guajava L.:
Myrtaceae) (De los Santos Ramos et al., 2014; Lasa and Tadeo, 2015),
and fig (Ficus carica L.) are cultivated (Bautista-Martinez et al., 2017).
In addition, it is also associated with wild or non-cultivated soft-
skinned fruits such as Rubus adenotrichos Schltdl. (tropical
blackberry), Spondias mombin L. (yellow mombin), Prunus serotina
subsp. capuli (capulin cherry), Muntingia calabura L. (tropical
capulin), and Psidium guajava (guava) (Lasa and Tadeo, 2015;
Bautista-Martinez et al., 2017; Castro-Sosa et al., 2017; SENASICA
(Servicio Nacional de Sanidad, Inocuidad y Calidad
Agroalimentaria), 2019; Garcia et al., 2022; Franco-Valbuena et al.,
2025). Its broad geographic spread is linked to its strong dispersal
capacity (Hauser, 2011), its ability to tolerate a wide range of climatic
conditions (Cini et al,, 2012), and its extensive host range. Asplen
et al. (2015) and Morales-Abeijon et al. (2025), along with several
subsequent reviews, reported that D. suzukii exploits more than 50
plant species belonging to diverse botanical clades. The family
Rosaceae is the most heavily represented and includes many of its
main cultivated hosts; however, the fly also infests species within
Ericaceae, Myrtaceae, Grossulariaceae, Actinidiaceae, and Vitaceae,
among others. This broad host range underscores the species’” high
ecological plasticity and its capacity to exploit both cultivated and
wild fruits throughout the season. Ecological distribution models and
recent sampling confirm its expansion into the central and
southeastern regions of the country, including Guanajuato,
Querétaro, Chiapas, and Oaxaca, where its presence has been
documented across various tropical and temperate agroecosystems
(Tait et al.,, 2018; Cruz-Esteban et al., 2022; Franco-Valbuena et al.,
2025). Niche modelling predicts that suitable habitats for this species
in Mexico include the temperate and subtropical highlands of the
Trans-Mexican Volcanic Belt and the humid regions of the southeast
(Calabria et al., 2012; Asplen et al., 2015; Castro-Sosa et al., 2017;
Little et al., 2020a; Franco-Valbuena et al., 2025).

Unlike most Drosophila species, female D. suzukii possess a
serrated ovipositor that enables them to puncture the skin of
healthy fruit, and once the larvae emerge, they feed on the fruit’s
mesocarp, causing substantial economic damage (Walsh et al., 2011;
Atallah et al., 2014; Asplen et al., 2015; Lee et al., 2015; Kirschbaum
etal., 2021; Dreves et al., 2023; De Ros, 2024). Its rapid reproduction
and spread pose challenges for pest management, particularly as
chemical control faces limitations related to insecticide resistance
(Rossi-Stacconi et al.,, 2020; Liburd and Rhodes, 2021; Shawer,
2021), concerns regarding residues, and environmental impact
(Asplen et al., 2015; Kirschbaum et al., 2021; Shawer, 2021; Tait
et al., 2021). However, Morales-Abeijon et al. (2025) highlight an
even more alarming scenario compared with earlier studies,
summarizing substantial economic losses attributed to this pest
and the high expenses associated with its management. For
instance, in California, Oregon, and Washington (USA),
estimated losses for strawberries, blueberries, raspberries,
blackberries, and cherries could reach USD 511.3 million (Bolda
etal,, 2010). Reported impacts also include yield reductions of up to
20% in raspberry production in Minnesota (USA) (DiGiacomo
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et al., 2019), losses of approximately €3.3 million in Trento (Italy)
(De Ros et al., 2013), between USD 5,000 and 17,550 per hectare for
cherries and around USD 4,000 for blueberries in Nuble (Chile)
(Buzzetti Morales, 2020), and up to USD 21.4 million for peaches
and USD 7.8 million for figs in Brazil (Benito et al., 2016). Beyond
yield losses, pest management costs have risen sharply; for example,
raspberry revenues in California (USA) decreased by 37% and
strawberry revenues by 20% due to increased expenditures on
insecticides (Goodhue et al, 2011). Therefore, in recent years,
there has been increased interest in behavioral control strategies—
based on the insect’s behavior—that include the use of attractants as
homemade ferments and fermentation products (Cha et al., 2014,
2018; Tonina et al.,, 2018; Cruz-Esteban et al., 2024b),
microorganisms such as yeast (Becher et al, 2012; Cha et al,
2017; Spitaler et al., 2020), optimized traps commercial and
home-made (Renkema et al., 2017; Cha et al., 2018; Cruz-Esteban
et al,, 2021a; Cruz-Esteban, 2021), visual stimuli as colored traps
and cards placed inside traps (Kirkpatrick et al., 2016; Little et al.,
2018, 2019, 2020b; Cruz-Esteban, 2021, 2024a; Lasa et al., 2024),
repellents, and oviposition inhibitors that manipulate the
orientation and reproductive activity of the species (Revadi et al.,
2015; Renkema et al., 2016, 2017; Tonina et al., 2020; Tait et al.,
2021; Roh et al, 2023). These studies have been conducted by
evaluating individual variables as well as the synergistic effects or
combinations among them.

This review aims to synthesize recent advances (2015-2025) in
behavioral strategies for managing D. suzukii, with an emphasis on
their practical application in berry production systems in Mexico
and other regions worldwide, and to propose applied research
directions for the development of sustainable monitoring and
control tools.

2 Methods of literature search

A comprehensive literature review was conducted using the Web
of Science, Scopus, and Google Scholar databases, covering the period
from 2015 to 2025. Combinations of keywords in both English and
Spanish were utilized, including D. suzukii, attractant, bait, trap
design, visual cues, oviposition deterrent, repellent, mass trapping,
push-pull, ethological control, and behavioral manipulation.

The search included experimental articles, reviews, and field
reports focused on ethological management strategies, which
encompass olfactory attractants (Renkema et al.,, 2017; Cha et al,,
2018a; Tonina et al., 2020; Beers et al., 2022; Cruz-Esteban et al.,
2024b; Brilinger, 2024), visual cues and traps design (Kirkpatrick
et al., 2018a; Cruz-Esteban, 2021; Little et al., 2021; Cruz-Esteban
et al,, 2024a), mass trapping: density, spacing, and trap interference
(Hamby et al., 2016) push-pull oviposition deterrents, and
repellents (Hamby et al., 2016; Iglesias and Liburd, 2017).
Additionally, studies examining interactions with parasitoids and
natural enemies were reviewed (Wang et al., 2016; Girod et al., 2018;
Renkema et al.,, 2020). Some studies published prior to the period
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defined for the systematic search were incorporated in order to
strengthen the contextualization of certain topics, particularly
within the conceptual framework of the review.

The selected articles were filtered based on their relevance to the
ethological control of D. suzukii, experimental validity,
demonstration in field or semi-field conditions, and their
contribution to the development of sustainable management
methods (Cha et al,, 2018; Alkema et al.,, 2019; Morales-Abeijon
et al., 2025).

3 Results
3.1 Olfactory attractants

Olfactory attractants constitute the foundation of monitoring and
control strategies for D. suzukii. However, this section focuses
exclusively on the odors emitted by fruits at different developmental
stages—ripening, mature, and decaying—and by the microorganisms
associated with them. The underlying premise is that flies seek host
fruits at various stages for feeding, mating, and oviposition (Tochen
et al,, 2016; Cloonan et al., 2018; Young et al., 2018; Clymans et al.,
2019; Galland et al., 2020; Pifiero et al., 2022; Elsensohn and Burrack,
2023; Kim et al., 2023). Traditional attractants, including apple cider
vinegar (ACV), rice vinegar, wine vinegar, acetoin, octanoate, acetic
acid, ethanol, and isoamyl acetate compounds alone or in mixtures,
have long been used as reference or control (Cloonan et al.,, 2018;
Renkema et al.,, 2018; Lasa et al,, 2020; Cruz-Esteban et al., 2021a,
2024a, 2024b). However, their efficacy varies depending on the
composition and ratio of volatile compounds (Abraham et al., 2015;
Cha et al., 2015; Mazzetto et al., 2015, 2016a; Akasaka et al., 2017;
Cloonan et al., 2018; Feng et al., 2018; Jaffe et al., 2018; Kirkpatrick
et al,, 2018a; Lasa et al., 2019; Willbrand and Pfeiffer, 2019; Lasa et al.,
2020; Toledo-Hernandez et al., 2021a, 2021b; Urbaneja-Bernat et al.,
2021; Keene-Snickers et al., 2025). In Mexico, several commercial
products are available that are based on the four most attractive
compounds—acetoin, methionol, acetic acid, and ethanol—previously
reported by Cha et al. (2014, 2015, 2017, 2018). One such product is Z-
Kinol® (Squid Biological and Pheromones S.A. de C.V., Texcoco,
Mexico) (Cruz-Esteban et al., 2021a), which uses water with 5% soap
as the retention solution. Another commercially available product
manufactured outside Mexico is Pherocon® SWD (Tréce Inc., Adair,
OK, USA) (Burrack et al., 2015; Frewin et al., 2017; Tonina et al.,
2018), as well as Scentry® (Scentry Biologicals Inc., USA), which uses
ACYV as the retention solution (Kirkpatrick et al., 2017; Lethmayer and
Egartner, 2017; Briem et al., 2018; Whitener et al., 2022). These four
volatile organic compounds (VOCs), identified as highly attractive and
incorporated into the formulation of these commercial attractants,
have also been detected and confirmed in homemade fermentations
evaluated in Mexico (Cruz-Esteban et al., 2024b; Alavez-Rosas et al.,
2024). Other food-based attractants, such as SuzukiiTrap® (Bioibeérica,
Barcelona, Spain) (Tonina et al,, 2018; Cruz-Esteban et al.,, 2021a),
Fruit Fly Attractant (Koppert), and SuzukiilLURE-Max (Dinusa,
Oaxaca, Mexico), also employ these components as retention
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solutions and claim to be effective for monitoring D. suzukii.
However, these products should be evaluated under local
conditions, as not all of them were specifically developed for
Mexican populations. Furthermore, some products are described as
scientifically developed, yet the supporting references demonstrating
their efficacy are often not available, possibly due to geographical
variation in D. suzukii populations (Jaffe et al., 2018; Wollmann et al.,
2019; Larson et al., 2021; Whitener et al., 2022). Another
important factor is their relatively high cost, which highlights the
need to identify and develop formulations that are more effective,
affordable, long-lasting, and environmentally friendly—safe for
pollinators and, above all, for farmers—and that can be readily
adapted to local populations.

When discussing fermented products, it is essential to consider
another group of VOCs produced and emitted by microorganisms,
such as bacteria, fungi, and yeasts, that are associated with fruits
(Hamby and Becher, 2016). These organisms participate directly or
indirectly in the fermentation process. Among symbiotic bacteria,
the most common species found in microbial communities
associated with Drosophila suzukii are Tatumella spp.
(Enterobacteriaceae) (Chandler et al., 2014), Gluconobacter spp
(Chandler et al., 2014; Mazzetto et al., 2016a; Bueno et al., 2020),
Komagataeibacter spp (Mazzetto et al., 2016a), and Acetobacter spp.
(Acetobacteraceae) (Chandler et al., 2014; Mazzetto et al., 2016a;
Bueno et al., 2020). Other bacteria, such as Oenococcus oeni,
commonly involved in malolactic fermentation during wine
production (Alawamleh, 2021; Purovic et al, 2021; Maddalena,
2016, 2021), and Lactobacillus kunkeei and other lactic acid bacteria
strains (Alawamleh, 2021; Alawamleh et al., 2021), have also been
associated with D. suzukii. Yeasts are particularly important
because they play a key role in the attraction of D. suzukii (Barata
et al,, 2012; Scheidler et al., 2015). The most studied species include
Saccharomyces cerevisiae, a yeast widely used in baking (Batista
etal., 2017; Lasa et al., 2017; Spitaler et al., 2020); Saccharomycopsis
vini (Spitaler et al., 2020; Castellan et al., 2024); Hanseniaspora
uvarum (Scheidler et al., 2015; Batista et al., 2017; Mori et al., 2017;
Noble et al., 2019; Bianchi et al., 2020; Bueno et al., 2020; Spitaler
et al,, 2020; Huang and Gut, 2021; Kleman et al., 2022; Rehermann
et al,, 2022; Castellan et al., 2024); H. opuntiae (Bueno et al., 2020);
Issatchenkia terricola; Metschnikowia; Metschnikowia pulcherrima
(Spitaler et al., 2020; Jones et al., 2021); Candida zemplinina
(Scheidler et al., 2015; Spitaler et al., 2020; Jones et al.,, 2021);
Clavispora santaluciae; Saccharomycopsis vini; Issatchenkia
terricola; Metschnikowia pulcherrima (Castellan et al., 2024), and
Pichia pijperi (Jones et al., 2021), a yeast frequently found in the
alimentary canals of flies and in larval excreta (Hamby et al,, 2012;
Solomon et al., 2019; Bellutti et al., 2018). These species are highly
attractive to D. suzukii, enhance fecundity, and often exhibit
positive synergistic effects when combined (Jones et al., 2025), as
well as with commercial or homemade attractants, and with
bioinsecticides or conventional insecticides (Jones et al., 2022;
Barone and Hartbauer, 2024; Dumenil et al., 2025; Molokwu
et al., 2025). Gas chromatography-electroantennographic
detection (GC-EAD) analyses have identified isobutyl acetate and
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isoamyl acetate emitted by H. uvarum as key volatiles perceived by
D. suzukii antennae (Scheidler et al., 2015). Isoamyl acetate is also
found in several attractive fruits, including strawberries and
blueberries (Dekker et al., 2015). Studies have shown that mated
females are more strongly attracted to H. uvarum and fruit odors
but may reduce oviposition when feeding on yeast, suggesting a
trade-off between feeding and reproduction (Mori et al, 2017).
Yeast-associated volatiles can also enhance oviposition in other
fruits, such as cherries (Bellutti et al., 2018), although their effects
appear to depend on the background fruit odors (Cloonan et al.,
2019). Furthermore, acetic acid bacteria such as Gluconobacter spp.
emit volatiles including ethanol, acetic acid, and aldehydes, which
also elicit antennal responses in D. suzukii (Mazzetto et al., 2016a).
More recently, Castellan et al. (2024) and Dumenil et al. (2025)
reported that in electrophysiological assays, antennae of D. suzukii
responded to ethyl acetate, propanoate, isoamyl acetate, 3-myrcene,
benzaldehyde, and linalool, compounds that may underlie the
strong attractiveness of S. vini and H. uvarum to this species.
Another important group of VOCs that influence the attraction
of D. suzukii are produced and emitted by fruits, particularly across
different developmental stages. For instance, it has been reported
that virgin or protein-deficient females, as well as males, are
attracted to fermented food sources, where females can feed and
wait for egg maturation. These same sites also serve as mating
grounds, where a possible pheromone and numerous co-occurring
compounds are likely involved (Revadi et al., 2015; Tochen et al.,
2016; Clymans et al., 2019; Khan et al., 2019). Once mated, females
are guided by VOCs emitted from ripening or fully ripe fruits in
good condition to locate suitable oviposition sites and ensure
offspring survival (Tochen et al., 2016; Cloonan et al., 2018;
Young et al.,, 2018; Clymans et al., 2019). However, this behavior
in gravid females has also been shown to vary with seasonal
conditions (Clymans et al., 2019). Several studies have
demonstrated host preferences for economically important fruits,
classifying them according to attraction levels observed in
laboratory bioassays. For example, Abraham et al. (2015) found
that D. suzukii exhibited the strongest preference for raspberry,
followed by strawberry, blueberry, and cherry—consistent with the
findings of Cai et al. (2019). These results align with field
observations by Cruz-Esteban et al. (2021a), who reported higher
fly captures in raspberry crops, followed by blackberry, strawberry,
and blueberry. However, when cultivated alone, any of these fruits
can be highly susceptible to D. suzukii infestation (Little et al., 2017;
Cruz-Esteban et al., 2021a). Analyses of VOCs from these mature
fruits, both intact (healthy) and mechanically damaged, revealed
that alcohols, aldehydes, and ketones are the predominant
compounds (Abraham et al.,, 2015; Revadi et al., 2015; Cloonan
etal., 2018). Gas chromatography-electroantennographic detection
(GC-EAD) analyses have shown that D. suzukii antennae respond
to several volatiles from raspberry and strawberry, including esters,
alcohols, and ketones. An eleven-compound blend identified from
raspberry was attractive to both sexes, although less so than the
natural fruit extract (Abraham et al., 2015; Keesey et al., 2015). The
volatile profile of apples consists mainly of esters, alcohols, and
ketones, among which acetoin and octanoate have been identified as
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the most attractive compounds to D. suzukii (Feng et al., 2018).
Similarly, four volatile compounds from bayberry—methyl (E)-3-
hexenoate, methyl (E)-2-hexenoate, ethyl (E)-2-hexenoate, and o-
humulene, in a ratio of 1:1.3:1:6.4—were reported to be attractive
under field conditions (Liu et al, 2018). Approximately 33
compounds have been identified from blackberry, with
acetaldehyde, hexyl acetate, linalool, and myrtenol being the most
attractive (Dewitte et al., 2021). Overall, VOCs emitted by host
fruits are highly attractive to this invasive fly species, as confirmed
by recent studies comparing natural fruit odors with various
commercial attractants (Babu et al., 2022). Therefore, ongoing
research efforts remain focused on identifying and developing
volatile blends that are more attractive under field conditions.

In Mexico, Cruz-Esteban et al. (2021a) demonstrated that the
type of attractant, rather than the trap design, significantly
influences the capture efficiency of D. suzukii in berry crops. In
their study, two commercial attractants—Z-Kinol® and
SuzukiiTrap®—as well as apple cider vinegar (ACV) and a
previously reported highly attractive blend (ACV + EtOH + CO,)
(Lasa et al., 2017) were compared under a factorial design that
included raspberry, blackberry, strawberry, and blueberry crops.
Significant differences in capture efficiency were observed among
attractants but not between trap designs, highlighting the
importance of selecting appropriate baits for effective monitoring
and population control. Recent studies conducted outside Mexico
support these findings. Larson et al. (2021) evaluated various
attractant blends for early detection and monitoring, identifying
specific compounds such as acetoin that enhance selectivity and
detection sensitivity. The recent work of Cruz-Esteban et al. (2024b)
further advanced this field by testing fermented baits formulated
from blueberries, raspberries, baker’s yeast, and sugar. In field trials,
these baits showed superior attractiveness compared to commercial
ACV or homemade vinegar blends, resulting in higher capture rates
of D. suzukii adults in both blueberry and blackberry crops.
Notably, these fermentative blends also demonstrated consistent
performance across multiple harvests, high attractiveness to
Zaprionus indianus (Gupta) (Diptera: Drosophilidae)—
particularly during seasons when both pests overlap—and low
attraction of non-target drosophilids, thereby improving
selectivity while maintaining cost-effectiveness and local
producibility. Similar findings were reported in Michigan, where a
mixture of wine, vinegar, and yeast proved more attractive in the
field than each component alone (Huang et al, 2017). Likewise,
in the United States, laboratory assays revealed that fruit
VOCs became more attractive when combined with B-cyclocitral
or a blend of B-cyclocitral, isoamyl acetate, and methyl butyrate
(Bolton et al., 2019; Pifiero et al., 2019; Bolton et al., 2022). Despite
their advantages, fermentative attractants present several
challenges, including variable duration of efficacy, sensitivity to
environmental conditions, and the potential to attract non-target
species. In contrast, synthetic baits with controlled release offer
longer persistence, greater selectivity when properly formulated,
and reduced maintenance requirements, although they are generally
more expensive. Another critical aspect is the capture threshold, as
trap detections often occur when populations have already reached
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levels capable of causing economic damage. For instance,
monitoring in Michigan estimated that capturing a single
individual in a trap corresponded to approximately 192 flies
within a 2.7 ha area, underscoring the need for prompt action
upon first detection (Larson et al., 2021).

3.2 Visual cues and trap design

Results regarding the use of visual cues (i.e., attractive colors)
and trap designs obtained from laboratory and field studies have
been quite contradictory. For instance, Rice et al. (2016) reported
that black and red spheres captured significantly more D. suzukii
than purple, blue, yellow, or white spheres in laboratory assays, and
semi-field raspberry trials. Similarly, several studies have concluded
that red and black traps are among the most effective for attracting
and capturing this invasive fly (Basoalto et al., 2013; Lee et al., 2013;
Renkema et al., 2014; Kirkpatrick et al., 2016, 2017; Lasa et al., 2017;
Rice et al., 2017). The effectiveness of these visual cues is further
enhanced when they act in synergy with food-based attractants
(Bolton et al., 2021; Lasa et al., 2024). In contrast, Cahenzli et al.
(2018) found that transparent traps fitted with a black lid captured
more D. suzukii than traps equipped with a red lid. Similarly, other
studies have shown that transparent and yellow traps perform
comparably to red and black traps (Lee et al., 2013; Iglesias et al.,
2014; Briem et al., 2018; Marjanovic and Tanaskovic, 2019). Overall,
these differences were primarily numerical and often not
statistically significant. In addition, background color contrast has
been shown to influence D. suzukii attraction (Antignus, 2000;
Little et al., 2019). For example, under laboratory conditions, Little
et al. (2019) found that black, purple, red, or yellow objects

10.3389/fevo.2026.1746696

presented against a green background did not differ significantly
in attractiveness. However, purple objects against a green
background were more attractive than red objects against a black
background, black objects against a red background, or blue objects
against a yellow background. Similar context-dependent effects of
visual cues have been reported by Barone and Hartbauer (2024),
who demonstrated that Petri dishes covered with red mesh but
containing yellow gels attracted more D. suzukii than transparent
controls, highlighting the importance of the visual properties of the
stimulus itself rather than the external background alone. However,
recent studies conducted in Mexico have demonstrated that capture
success is not determined by the external color of the trap, but
rather by chemical communication and short-range visual stimuli—
such as colored cards and reflective surfaces placed inside the trap—
which significantly increase the likelihood of fly entry (Cruz-
Esteban et al., 2021a, 2021b; Cruz-Esteban, 2021; Figure 1). For
example, comparative evaluations of attractants and trap designs
showed that chemical cues, particularly fermentation-related
compounds, are the primary drivers of D. suzukii attraction. No
significant differences among trap designs were detected when all
were baited with the same chemical stimulus, indicating that
capture efficiency was largely independent of trap architecture
under these conditions (Cruz-Esteban et al., 2021a; Figure la).
However, the potential contribution of visual cues at short range
could not be excluded. Subsequent experiments incorporating
previously untested colors and transparent traps with internal
yellow or violet cards—colors reported as attractive in laboratory
assays (Little et al., 2019)—revealed a strong effect of internal visual
stimuli. Transparent traps equipped with an internal yellow card
captured approximately 400% more D. suzukii than other designs
(Cruz-Esteban, 2021; Figure 1b). Further tests using single colors

FIGURE 1

Cruz-Esteban, 2021).

(A) Trap designs and (B) color contrasts evaluated for monitoring Drosophila suzukii in berry crops in Michoacan, Mexico (Cruz-Esteban et al.,, 2021a;
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and color combinations inside transparent traps, all baited with the
same attractant, confirmed this pattern: yellow cards, alone or
combined with green, consistently produced the highest captures
(=350% increase) relative to other colors (Cruz-Esteban et al.,
2021b; Figure 2). More recently, variation in yellow reflectance
was shown to influence trap performance, with a yellow card
exhibiting 67% reflectance and a dominant wavelength of 549.74
nm outperforming higher-reflectance yellow cards in apple cider
vinegar-baited traps (Cruz-Esteban et al., 2024a, Figure 2).
Therefore, advances in trap design now emphasize optimizing
internal visual stimuli rather than focusing solely on external color
(Little et al., 2018, 2019, 2020b; Cruz-Esteban, 2021; Cruz-Esteban
etal., 2024a, Figure 2). These findings underscore the importance of
integrating visual cues into trap design as complementary
components of ethological control strategies, ensuring that adult

FIGURE 2

Transparent multi-hole trap used for the mass capture of Drosophila
suzukii in berry crops. The trap consists of a transparent plastic
container (1 L capacity) perforated with multiple 5-mm holes in the
upper half of its wall to allow fly entry. Inside the trap, a yellow card
(67% reflectance at a dominant wavelength of 549.74 nm) serves as
a visual stimulus to enhance attraction, while the lower section
contains a fermented bait composed of blueberries, raspberries,
yeast (Saccharomyces cerevisiae), and sugar as a nutrient source for
yeast fermentation. Optionally, a central wick dispenser can be
inserted to release additional volatile compounds and increase bait
efficacy. The trap is suspended from the plant canopy, positioned
approximately 1.2-1.5 m above the ground, with a spacing of 6 m
(equivalent to 289 traps per ha™!) in blueberry and blackberry
orchards in Tiripetio, Michoacan, Mexico. This configuration has
proven highly effective for population suppression, maintaining
infestation levels below 5%, and in some cases, completely
eliminating pest presence (Cruz-Esteban et al,, 2024b).
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flies are efficiently guided into traps even when olfactory plumes
have a limited range (Figure 2). Overall, visual stimuli represent a
critical factor in the performance of monitoring and mass-trapping
programs. Optimizing trap color, internal reflectance, and
brightness—when combined with high-quality attractants—can
maximize capture efficiency and contribute to the sustainable
management of D. suzukii in commercial berry systems. When
tailored to local crop conditions and fly behavior, these strategies
enhance early detection, population suppression, and reduction of
crop damage. At the same time, olfactory attractants remain
indispensable for both monitoring and population suppression of
D. suzukii, particularly when integrated with visual stimuli, mass-
trapping strategies, and oviposition deterrents. Moreover, these
studies have greatly advanced our understanding of the chemical
ecology of D. suzukii, providing a foundation for targeted research
aimed at elucidating behavioral responses under field conditions,
including host-seeking activity, oviposition site selection, and
multimodal sensory integration (Figure 3). Recent advances in
bait formulation, including the evaluation of fermentative blends
reported by Cruz-Esteban et al. (2024b), provide evidence that
locally formulated baits can function as effective tools within
integrated management programs for D. suzukii in commercial
berry production systems, particularly when cost, accessibility, and
sustainability are considered.

3.3 Mass-trapping: Density, spacing, and
trap interference

Mass trapping is a key strategy for the suppression of D. suzukii
populations, going beyond its traditional role in monitoring. This
approach relies on deploying attractant-baited traps to capture
adults, thereby reducing reproductive output and limiting
dispersal. The effectiveness of mass trapping is strongly influenced
by trap density and spacing, as closely spaced traps can experience
overlapping attraction radii, leading to intra-trap competition and
potential saturation of the target area (Clymans et al., 2022). Based
on this study, recommended trap densities range from 75 to 200
traps ha™ in spring and 90 to 300 traps ha™* in summer, depending
on bait type and environmental conditions. Controlled-release
synthetic baits, which maintain attractiveness over longer periods,
can allow reductions to approximately 25 traps ha™ without
compromising population suppression (Clymans et al,, 2022).
Trap spacing can range between 3 and 5.5 m (Hampton et al,
2014; Kirkpatrick et al., 2018a; Spies and Liburd, 2019; Clymans et
al,, 2022).

Field trials in cherry orchards have further demonstrated the
utility of mass trapping. The Decis' " Trap, which combines a
persistent attractant with an insecticide-treated interior, was highly
effective at reducing D. suzukii populations when deployed at 100
traps ha™, particularly when placed early in the growing season,
resulting in significant reductions in fruit damage (De Maeyer et al.,
2018). These findings highlight that the timing of trap placement is
as critical as trap density in maximizing suppression and preventing
early-season infestations.
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FIGURE 3

Schematic representation of the host-search strategies used by virgin and mated female Drosophila suzukii for feeding, mating, and oviposition
(adapted from Cha et al., 2018). (A) Newly emerged females primarily orient toward decaying fruit as a source of sugars and proteins, relying on
long-range olfactory cues and short-range visual and tactile stimuli. (B) During this phase, females are likely attracted to fermentation-related
volatiles—such as (i) ethanol, (ii) acetic acid, (iii) acetoin, and (iv) methionol—produced and released by fruits and associated microorganisms,
including fungi and yeasts, enabling the localization of overripe or decomposing substrates. (C) Leaf-emitted odors, such as (v) B-cyclocitral, may
further contribute to long-range orientation, whereas tactile cues from foliage may operate at close range. Visual stimuli also play an important
role, as D. suzukii responds to fruit reflectance and contrast against the surrounding plant canopy. These feeding sites may also function as mating
arenas, since males must similarly locate food resources to survive, potentially using comparable sensory mechanisms; however, the involvement
of a species-specific sex pheromone has not yet been clearly established. (D) In contrast, mated and gravid females shift their search behavior
toward fresh, intact fruit suitable for oviposition. (E) At this stage, females likely integrate a more specific set of fruit- and microbe-derived volatiles,
including those associated with yeasts—(F) such as (vi) trans-2-hexenal, (vii) hexanol, (viii) 3-methyl-2-butenyl acetate, (ix) 3-methyl-2-butanone,
(x) 2-heptanone, (xi) butyl acetate, (xii) isoamyl acetate, and (xiii) isobutyl acetate—acting at both long and short distances. To locate healthy or
ripening fruit, visual and tactile cues become increasingly important, particularly fruit reflectance and contrast against the green background of
the crop, as well as physical assessment of the fruit surface, to ensure offspring survival (Bartelt et al., 1985; Lebreton et al., 2017; Kwadha, 2022;
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OVIPOSITION

(xiil)

10.3389/fevo.2026.1746696

Lima et al., 2023).

Mass-trapping strategies have been successfully applied in berry
crops. For example, in Tiripetio, municipality of Morelia,
Michoacan, Mexico (19°31'55” N, 101°22'10” W), transparent
multi-hole traps equipped with yellow cards (67% reflectance at
549.74 nm) and baited with a fermented solution containing
blueberries, raspberries, baker’s yeast, and sugar have been
deployed during 2023-2024 in blueberry and blackberry crops
(Cruz-Esteban et al., 2024b; Figure 2). Traps were installed 6 m
apart, totaling 289 traps ha™. This approach proved highly effective,
maintaining infestation levels below 5% and enabling all harvest lots
to meet export standards. It has been observed that when fruits in
ripening, mature, and overripe stages are abundant, fly captures
decrease, as previously reported by other authors (Harris et al.,
2014; Burrack et al., 2015; Joshi et al., 2017). However, we have
found a way to stimulate fly activity so that they leave the host fruit
and are attracted to and captured by the traps. Applications of garlic
extract (an insect repellent, 1 kg/100 L H,O) have been made every
15 days in the center of each crop row, raising the sprayer half a
meter above the ground (Allium, AGROARSA, Mexico). For
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monitoring purposes, random samples of approximately 100
fruits per hectare per crop are collected, placed in a Ziploc bag,
and gently macerated by hand to avoid damaging the larvae. The
fruits are then submerged in a sugar-water solution (180-200 g/L)
to facilitate larval detection by flotation (SENASICA (Servicio
Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria),
2014; Shaw et al., 2019; Babu et al., 2023). This information is
complemented with a direct physical inspection of each fruit using a
magnifying glass or a stereomicroscope (Van Timmeren
et al,, 2021).

Several critical factors influence the success of mass-trapping
programs. Optimizing trap spacing is essential to avoid intra-trap
competition caused by overlapping attraction radii. Bait selection
also plays a major role, as controlled-release synthetic baits provide
longer-lasting attraction and greater selectivity compared to
traditional fermentative baits such as apple cider vinegar.
Additionally, environmental factors—including temperature, crop
phenology, and pest population density—strongly affect trap
performance and must be considered when planning deployment.
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The integration of mass trapping with visual stimuli, oviposition
deterrents, and complementary biological control can further
enhance population suppression, highlighting the importance of
multi-tactic approaches for sustainable management of D. suzukii
in commercial berry production.

3.4 Push—pull and oviposition deterrents

Push-pull strategies and oviposition deterrents are designed to
reduce egg laying on host crops while simultaneously attracting
adults to traps or non-crop buffer zones (Figure 4). Recent studies
have demonstrated the potential of both chemical and biological
signals to manipulate D. suzukii behavior under field conditions.
For instance, the presence of live Drosophila melanogaster (Meigen)
(Diptera: Drosophilidae) larvae has been shown to reduce
oviposition by D. suzukii on artificial substrates, with the live
larvae acting as deterrent cues, whereas eggs and adults of D.
melanogaster did not elicit the same response (Tungadi et al,
2022). The mechanism is not fully explained by cuticular
hydrocarbon cues, suggesting the involvement of volatile signals,

10.3389/fevo0.2026.1746696

microbial interactions, or physical cues. Chemical deterrents have
also been evaluated as key components of push-pull systems.
Roh et al. (2023) demonstrated that a two-component deterrent
blend—ethyl anthranilate and methyl salicylate—applied to
raspberry fruits significantly reduced D. suzukii infestation in field
trials, confirming its practical potential. Other studies have
identified volatile organic compounds (VOCs) such as ethyl
anthranilate, methyl salicylate, green leaf volatiles, and
monoterpenes as oviposition deterrents that signal unsuitable or
previously occupied substrates (Burrack et al., 2015; Iglesias and
Liburd, 2017; Tonina et al., 2020). These compounds can be applied
via coatings, sprays, or controlled-release dispensers, offering
versatility in field applications. Particle films, including kaolin,
diatomaceous earth, and mica, have also been tested as
oviposition deterrents, particularly in vineyards and berry crops.
These films act as physical barriers, reducing ovipositor penetration
and altering surface properties such as reflectance, which further
discourages egg-laying (Rossi-Stacconi et al.,, 2016; Tonina et al,,
2020). Field evaluations in Austria and other regions demonstrated
substantial reductions in oviposition, especially when applied
during early fruit developmental stages. Essential oils such as

FIGURE 4

Schematic representation of the integrated “push—pull and mass trapping” strategy for the management of Drosophila suzukii in blackberry crops
(aerial view). The system combines: (1) Repellent volatiles (PUSH) released from blue dispensers placed around the crop perimeter, which deter adult
entry into the crop interior and mask volatiles emitted by the fruit and the crop as a whole. (2) Attractant-based mass trapping devices (PULL)—traps
baited with a red food attractant and containing a yellow card as a visual stimulus—installed within and around the crop to capture adults. This dual-
action approach aims to prevent fruit infestation while simultaneously reducing adult population density in the field, thereby contributing to the
sustainable suppression of the pest. (3) Oviposition-deterrent compounds could also be dispersed within the crop interior.

2. PULL

3. Oviposition-deterring
compound
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geranium, ginger, peppermint (menthol), thyme (thymol), clove
(eugenol), citronella (citronellol, geraniol), lavender, 2-pentylfuran
and neem, among others, have shown repellent, oviposition-
deterring, and even lethal effects against D. suzukii (Renkema
et al., 2016, 2017; Gowton, 2019; Galland et al., 2020; Wernicke
et al,, 2020; Wang Q, et al,, 2021; Baleba et al., 2025; Shrestha et al.,
2025). Moreover, mixtures of these oils are commercially available
under the names KeyPlex Ecotrol® PLUS (rosemary, geraniol, and
mint oils) and KeyPlex Sporan® EC2 (rosemary, clove, thyme, and
mint oils), which have been evaluated and shown promising results
in raspberry and blueberry crops in Forest Lake, MN, USA
(Gullickson et al., 2020). Compounds including 1-octen-3-ol
(Wallingford et al., 2016, 2017), 2-n-pentylfuran (Cha et al., 2021;
Stockton et al., 2021), thymol (Reher et al., 2019), p-menthane-3,8-
diol (Wernicke et al., 2020), ethyl butanoate, and ethyl (E)-but-2-
enoate (Quadrel et al., 2025), appear to be promising repellents and
oviposition deterrents for future field evaluation. One of the
promising plants as a repellent, although currently available only
commercially, is hop (Humulus lupulus L.), which also deserves
consideration in future studies (Reher et al., 2019). In contrast,
geosmin has shown inconsistent results (Stockton et al., 2021).
These active ingredients have been formulated in a slow-release
SPLAT® matrix (Specialized Pheromone & Lure Application
Technology, ISCA Technologies, Inc.), which does not require
water or adjuvants. The SPLAT matrix allows for controlled
release of labile semiochemicals (Stelinski et al., 2005) and has
been used in formulations for mating disruption, attract-and-kill,
and repellency systems targeting both pest insects and pollinators
(e.g., Vargas et al., 2008; Rodriguez-Saona et al., 2010; Mafra-Neto
et al, 2013). Another formulation, HOOK SWD®, a sprayable
attract-and-eliminate (A&E) bait, was evaluated over three
growing seasons in raspberry and other small fruit crops in New
Jersey and California. Residual activity trials showed adult mortality
rates exceeding 78-93% after 35 days of field aging under plastic
tunnels (Klick et al., 2019). Under laboratory conditions, lavender
oil, Ecotr01®, and Sporan® deterred SWD from diet substrates,
while field trials indicated that Ecotrol® reduced infestation in
raspberries, though not in blueberries (Gullickson et al., 2020).
Recently, a two-component deterrent blend consisting of octanoic
and decanoic acids was developed as an alternative to spatial
repellents for the behavioral control of D. suzukii infestations
(Movva et al,, 2025). Other promising natural extracts include
attract-and-eliminate formulations derived from mandarin (Citrus
reticulata) and tea tree (Melaleuca alternifolia) oils, though fruits
treated with the latter were classified as non-edible (Bedini et al.,
2020). Integration of push-pull systems with mass trapping and
attractant-baited devices enhances overall suppression of D. suzukii
(Figure 3). By redirecting adult flies away from crops while
simultaneously removing them from the population, these tactics
reduce both current and future infestations. However, effective
deployment requires careful consideration of compound selection,
timing, and spatial configuration to maximize deterrent efficacy
without reducing trap attractiveness. Future research should focus
on identifying synergistic effects among chemical, visual, and
biological deterrents to optimize multi-tactic management
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programs, ensuring sustainable and practical implementation in
commercial berry production. For example, in the United States,
methyl benzoate was tested as an in-crop repellent in blueberries,
while attractant-baited traps were deployed along the field
perimeters. However, these compounds alone showed limited
synergistic efficiency (Gale et al.,, 2024). Conversely, mass
trapping using RIGA® AG traps (Ziirich, Switzerland) baited with
80 mL of RIGA® AG lure (apple cider vinegar, red wine, sugar, and
cranberry juice) (Figure 2), combined with perimeter insecticide
applications, proved effective for D. suzukii control in blueberry
fields (Spies and Liburd, 2019; Kehrli et al., 2022).

3.5 Complementary biological control

Although ethological strategies primarily aim to manipulate pest
behavior, the integration of complementary biological control has
become an essential component for the sustainable management of
D. suzukii, given the compatibility of both approaches (Daane et al.,
2016; Becher et al., 2017; Kozbial and Lewandowski, 2025).

A recent systematic review found that biological-control
research for D. suzukii is heavily dominated by parasitoids (64%
of publications) compared to entomopathogens (26%) and
predators (7%) (Morales-Abeijon et al., 2025). Within parasitoids,
the families Figitidae (46%; n = 21), Braconidae (33%; n = 15) and
Pteromalidae (13%; n = 6) were most frequently studied (Morales-
Abeijon et al., 2025). Among the ten most investigated species are
the pupal parasitoids Trichopria drosophilae (Perkins) (Kremmer
et al., 2017; Rossi-Stacconi et al., 2018, 2019; Gonzalez-Cabrera
et al., 2019; Trivellone et al., 2020; Wolf et al., 2020; Collatz and
Romeis, 2021; Wang X, et al,, 2021; Daane et al., 2025; Morales-
Abeijon et al., 2025; Sun et al., 2025), Trichopria anastrephae (Lima)
(Hymenoptera: Diapriidae) (Kriiger et al., 2019; Vieira et al., 2020;
da Costa Oliveira et al.,, 2021; Wang X, et al.,, 2021; Kriiger et al.,
2024), Pachycrepoideus vindemmiae (Rondani) (Kremmer et al,
2017; Collatz and Romeis, 2021; da Costa Oliveira et al., 2021; Wang
X, et al,, 2021; Daane et al., 2025; Morales-Abeijon et al., 2025), and
Spalangia erythromera (Forster) (Hymenoptera: Pteromalidae)
(Trivellone et al., 2020), along with the larval parasitoids Ganaspis
kimorum Buffington formerly also known as Ganaspis brasiliensis
(Ilhering) (Daane et al., 2016; Girod et al., 2018; Stahl et al., 2024;
Morales-Abeijon et al.,, 2025), Leptopilina japonica (Girod et al.,
2018; Morales-Abeijon et al., 2025; Rossi-Stacconi et al., 2025), L.
japonica japonica, L. j. formosana (Novkovic and Kimura), L.
boulardi (Barbotin) (Hymenoptera: Figitidae) (Daane et al., 2016;
Mazzetto et al., 2016b; Daane et al., 2025), L. heterotoma
(Thomson) (Hymenoptera: Eucoilidae) (Beckwith et al.,, 2025;
Daane et al,, 2025; Schofer et al., 2025), Carton and Keiner-
Pillault (Hymenoptera: Figitidae) (Huang et al.,, 2023), Asobara
japonica (Belokobylskij) (Girod et al., 2018), A. rufescens (Forster),
A. brevicauda (Guerrieri & van Achterberg), and A. leveri (Nixon)
(Hymenoptera: Braconidae) (Daane et al., 2016; Mazzetto et al.,
2016b). These species have demonstrated significant parasitism
potential under laboratory and field conditions, particularly G.
brasiliensis and L. japonica, which have established naturally in
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several regions of Europe and North America with parasitism rates
reaching up to 30% (Girod et al., 2018; Sanchez-Gonzalez et al.,
2020; Morales-Abeijon et al., 2025).

Beyond parasitoids, several other biological control agents (BCAs)
have been identified targeting D. suzukii, including 23 bacterial
species, viruses spanning eight families, nine entomopathogenic
nematodes and three major entomopathogenic fungi—Beauveria
bassiana Bals. (Vuill.), Metarhizium anisopliae (Metschn.) Sorokin
and Isaria fumosorosea Wize (Alnajjar et al., 2017; Hiebert et al., 20205
Bing et al,, 2021; Galland et al., 2023; Morales-Abeijon et al., 2025).
Among bacterial agents, Xenorhabdus nematophila (Poinar and
Thomas), Bacillus thuringiensis Berliner (Bt) and Brevibacillus
laterosporus (Laubach) have shown promising pathogenicity, while
the La Jolla virus (Iflaviridae) was one of the most frequently reported
viral agents (Linscheid et al, 2022; Bruner-Montero et al., 2023;
Garriga et al, 2023; Morales-Abeijon et al., 2025). Although these
findings demonstrate a rich potential of microbial and
entomopathogenic resources for D. suzukii control, field efficacy
remains variable, often depending on environmental conditions,
formulation stability, and the developmental stage of the pest (Sial
et al., 2019; Morales-Abeijon et al., 2025). Field evaluations indicate
that B. bassiana and M. anisopliae achieve moderate reductions of
adult populations when applied in shaded, humid environments,
while B. thuringiensis and B. laterosporus are more effective against
larvae inside fruits or substrates (Cuthbertson and Audsley, 2016;
Gutierrez-Palomares et al., 2021; Mastore et al., 2021; Morales-
Abeijon et al., 2025). Combining these agents with attractant-based
systems—such as bait stations or attract-and-kill traps—enhances
exposure and infection rates, thereby increasing overall pest
suppression. Furthermore, integrating microbial control with
semiochemical-based strategies (e.g., pheromone traps, kairomone
lures, or oviposition deterrents) enables more targeted control while
reducing reliance on synthetic insecticides (Wallingford et al., 2017;
Durovic, 2021; Morales-Abeijon et al, 2025). Such integrated
approaches not only improve management efficiency but also
promote the long-term sustainability of berry production systems by
preserving beneficial organisms and minimizing ecological risks.

In addition to parasitoids and pathogens, predatory arthropods
contribute to the natural regulation of D. suzukii populations.
Fifteen predatory species across eight families have been reported
(Morales-Abeijon et al., 2025). The families Anthocoridae
(Hemiptera) and Carabidae (Coleoptera) are the most
represented, each with four species. Among them, the rove beetle
Dalotia coriaria (Kraatz) (Coleoptera: Staphylinidae) has been the
most extensively studied due to its capacity to prey upon both D.
suzukii eggs and larvae in the soil or fruit substrate. Other notable
predators include the pirate bug Orius insidiosus (Say) (Hemiptera:
Anthocoridae), the green lacewing Chrysoperla carnea (Stephens)
(Neuroptera: Chrysopidae), and the European earwig Forficula
auricularia L. (Dermaptera: Forficulidae), which exhibit
opportunistic predation on eggs and early larval stages (Renkema
et al., 2015; Englert and Herz, 2019; Morales-Abeijon et al., 2025).
Less frequently studied but potentially valuable species include the
ground beetles Bembidion quadrimaculatum (L.), Limodromus
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assimilis (Paykull), Poecilus cupreus (L.), and Pterostichus
melanarius (Illiger) (Coleoptera: Carabidae); the true bugs
Dicyphus hesperus Knight, Macrolophus pygmaeus (Rambur), and
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae); Orius laevigatus
(Fieber) and O. majusculus (Reuter) (Hemiptera: Anthocoridae); as
well as the predatory stink bug Podisus maculiventris (Say)
(Hemiptera: Pentatomidae) and the field cricket Gryllus
pennsylvanicus Burmeister (Orthoptera: Gryllidae). Although
these species have shown low specificity toward D. suzukii, their
presence in fruit ecosystems suggests a relevant role within broader
functional guilds of natural enemies, contributing indirectly to pest
suppression through intraguild interactions and disturbance of
oviposition behavior (Ballman et al.,, 2017; Bonneau et al., 2019;
Siffert et al., 2021; Wang X et al.,, 2021; Morales-Abeijon
et al., 2025).

Overall, the synergistic integration of parasitoids, entomopathogens,
and generalist predators—combined with behavioral manipulation and
habitat management—represents one of the most promising directions
for ecologically sustainable suppression of D. suzukii. Future research
should focus on optimizing the spatiotemporal compatibility among
these natural enemies, developing formulations for microclimatic
stability, and designing multi-trophic attract-and-kill systems that
maximize contact and infection rates in the field.

In Mexico, pupal parasitoids such as Pachycrepoideus
vindemmiae and Trichopria drosophilae have been evaluated, with
T. drosophilae showing a higher intrinsic rate of increase and a
shorter development time, making it a promising agent for natural
control, particularly during pupal stages (Garcia-Cancino et al.,
2020). Field and semi-field studies in Europe and North America
have demonstrated that these pupal parasitoids can significantly
reduce adult emergence from infested fruits, especially when
integrated with habitat management practices that provide
refuges or alternative hosts for parasitoid persistence (Wang et al.,
2016; Girod et al., 2018; Renkema et al., 2020; Rehermann et al.,
2022; Hogg and Daane, 2025).

The integration of biological control with mass trapping and
push-pull systems can enhance suppression by reducing adult
emergence while simultaneously disrupting host-seeking and
oviposition through the use of attractants, visual cues, and
deterrent elements. Furthermore, the combination of parasitoid
releases with selective, low-risk insecticides has shown potential to
control D. suzukii effectively while preserving beneficial arthropod
populations (Hamby et al, 2016; Van Timmeren et al., 2025).
However, the field efficacy of parasitoids is strongly influenced by
environmental conditions, crop structure, and synchronization
between parasitoid release and pest population dynamics.
Interactions with other drosophilid species, such as Z. indianus,
may also affect host preference and parasitism success.
Consequently, optimizing release strategies, habitat modifications,
and compatibility with other tactics remains a priority for
improving biological control outcomes within integrated pest
management frameworks.

To fully exploit the synergistic potential of behavioral and
biological control, further field-scale evaluations under diverse
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climatic and cropping systems are needed. Future research should
focus on refining parasitoid deployment timing, enhancing
formulation stability, and assessing multitrophic interactions
among parasitoids, entomopathogens, and semiochemical-based
tools. Such integration will strengthen eco-efficient management
strategies for D. suzukii, ensuring sustainable protection of
commercial berry crops.

4 Discussion

The integration of ethological and complementary control
strategies is fundamental for the effective management of D.
suzukii in commercial berry crops. Evidence from recent studies
consistently indicates that no single tactic can reliably suppress
populations or prevent fruit damage. Therefore, the coordinated
implementation of mass trapping, attractant optimization, visual
stimuli, oviposition deterrents, and biological control is required to
achieve meaningful and sustainable reductions in pest pressure.

Crop phenology strongly influences the performance of
ethological tactics. Fermentative baits are generally more effective
during early crop stages or at lower fly densities, while synthetic or
dry attractants maintain efficacy during peak adult activity (Larson
et al,, 2021; Cruz-Esteban et al., 2024b). Likewise, internal visual
cues—such as colored panels and reflective surfaces—enhance
captures when combined with olfactory attractants, particularly
under conditions where the odor plume disperses weakly
(Kirkpatrick et al., 2018a; 2018b).

Trap density and spatial arrangement are critical parameters
influencing mass-trapping efficiency, as overlapping attraction radii
may generate intra-trap competition and reduce overall capture
rates (Clymans et al., 2022). Optimal deployment varies seasonally,
with higher densities recommended during spring and early
summer, when populations begin to expand. Controlled-release
synthetic baits can maintain trap performance while reducing the
number of traps needed for effective suppression.

Push-pull strategies and oviposition deterrents complement
trapping by discouraging egg laying on fruits and redirecting
females toward attractant sources or buffer zones. Compounds
such as ethyl anthranilate, methyl salicylate, monoterpenes, and
green leaf volatiles have demonstrated deterrent effects under field
conditions (Burrack et al., 2015; Roh et al., 2023). Biological cues,
including the presence of D. melanogaster larvae, may also reduce
oviposition through volatile or microbial signaling. Additionally,
particle films such as kaolin and diatomaceous earth provide
physical barriers and modify surface reflectance, improving the
efficacy of deterrent approaches (Rossi-Stacconi et al., 2016).

Complementary biological control using pupal parasitoids,
particularly Trichopria drosophilae, has proven promising for
reducing population growth by targeting pupal stages. This
species exhibits a higher intrinsic rate of increase and shorter
development time than Pachycrepoideus vindemmiae, making it a
suitable candidate for integration within ethological control
programs (Garcia-Cancino et al, 2020). Combining biological
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control with attractant-based tactics increases pupal exposure to
parasitism and enhances overall suppression efficiency (Wang et al.,
2016; Renkema et al., 2020; Rehermann et al., 2022).

One of the main operational challenges is trap selectivity. Non-
target species, including Z. indianus, are frequently captured,
complicating monitoring and increasing management costs
(Cruz-Esteban et al., 2022; Franco-Valbuena et al., 2025). Refining
bait composition, trap design, and deployment protocols is
therefore necessary to improve specificity and minimize
unintended captures. Economic and practical aspects, such as trap
maintenance, bait replacement, labor requirements, and grower
acceptance, are also crucial for sustainable adoption. Cost-effective
options, including homemade traps and locally sourced
fermentative baits, have shown promise; however, formal cost-
benefit evaluations under commercial conditions remain scarce
(Clymans et al., 2022).

Despite these advances, several knowledge gaps persist. Most
research has focused on adult captures rather than quantifying actual
reductions in fruit damage across different berry crops and
management systems (Beers et al, 2022; Tonina et al., 2022;
Brilinger, 2024). The mechanisms underlying oviposition
deterrence—including chemical, physical, and biological cues—
require further elucidation (Roh et al., 2023). Likewise,
optimization of visual stimuli such as color, brightness, reflectance,
and shape under varying environmental conditions remains
necessary to design universally effective or locally adapted traps
(Little et al.,, 2021; Cruz-Esteban et al., 2024a). Understanding the
synergistic interactions between ethological tactics, low-risk
insecticides, growth regulators, and parasitoids will be essential to
improve IPM outcomes while minimizing resistance development
(Wang et al., 2016). Moreover, socioeconomic studies addressing
grower adoption, maintenance logistics, and operational scalability
are vital for achieving long-term implementation in commercial berry
systems (Beers et al., 2022; Brilinger, 2024).

Overall, the integration of ethological tools with biological and
physical control tactics represents one of the most promising
avenues for the sustainable management of D. suzukii. Continued
interdisciplinary research and validation under field conditions will
be essential to bridge the gap between experimental advances and
their practical application in commercial production systems.

5 Future perspectives

Despite significant advances in understanding the behavioral
ecology of D. suzukii and in developing ethological control tools,
several critical knowledge gaps and practical challenges remain.
Addressing these gaps will require interdisciplinary approaches that
integrate entomology, chemical ecology, microbiology, engineering,
and agroecology. These include the development of a highly
effective attract-and-kill system, which continues to require
optimization of trap designs, the use of attractive colors, the
identification of more specific and longer-lasting attractants, as
well as the search for a potential sex pheromone. Addressing these
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limitations is essential for the design of effective, economically
viable, and environmentally sustainable management strategies.

Although numerous volatile organic compounds (VOCs) have
been identified from fruits, microorganisms, and synthetic sources
(Abraham et al., 2015; Akasaka et al.,, 2017; Bolton et al., 2019,
2021), behavioral responses of D. suzukii remain highly variable
depending on environmental context, geographic population, and
physiological state (Asplen et al., 2015). Future studies should focus
on standardizing bioassay methodologies and validating candidate
compounds under diverse agroecological conditions. Future studies
should therefore adopt standardized yet flexible bioassay
methodologies that combine chemical, electrophysiological, and
behavioral analyses, and validate compound under diverse
agroecological conditions. Electrophysiological, chemical, and
behavioral analytical techniques have been highly valuable in
advancing current knowledge, and their integration will
undoubtedly facilitate the identification of key semiochemicals
that remain unknown and that mediate attraction, deterrence,
and oviposition stimulation. Moreover, further interdisciplinary
research is needed to characterize how these responses are
modulated by abiotic factors, fruit developmental stages, and
host-microbe interactions (Alawamleh et al., 2021).

The optimization of mass-trapping systems continues to be a
major research priority. This presents a clear interface between
entomology, engineering, and spatial ecology. Future efforts should
determine the ideal trap density, spatial distribution, and
deployment timing according to pest phenology, crop structure,
and landscape heterogeneity (Babu et al., 2023). In this context, the
incorporation of smart trap technologies—such as sensors, image
recognition, and remote data transmission—illustrates how
engineering and data science can enhance biological monitoring,
improving accuracy and real-time decision-making within
integrated pest management (IPM) programs. These innovations
may also enable predictive modeling of pest population dynamics
and the early detection of population outbreaks, thereby enhancing
management precision.

Push-pull systems represent a promising complementary
approach but require further field validation and refinement. This
will benefit from collaborative efforts among chemists,
entomologists, and formulation specialists. Deterrent compounds
such as ethyl anthranilate and methyl salicylate should be
incorporated into slow-release formulations that are stable and
compatible with local climatic conditions (Babu et al., 2022). The
use of attractant-baited traps along crop borders could help prevent
oviposition in fruit while simultaneously maintaining population
suppression pressure. Moreover, linking behavioral manipulation
with biological control—for instance, using olfactory cues to
enhance parasitoid host-finding or to protect natural enemies
from insecticide exposure—remains an underexplored but
potentially transformative direction for sustainable pest
suppression (Morales-Abeijon et al., 2025).

Microbial communities associated with fruits and Drosophila
species play a fundamental role in the emission of attractive or
deterrent volatiles. This highlights the importance of microbiology-
chemical ecology interactions. The exploration microbial-derived
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attractants or repellents from yeasts and bacteria has led, and may
continue to lead, to the development of new bioformulations for the
management of D. suzukii (Alawamleh et al., 2021; Alavez-Rosas
et al., 2024). Research conducted worldwide should focus on
identifying native microbial strains that can be cultured through
controlled fermentation processes to produce consistent volatile
profiles. Although many microbial species associated with fruits are
already known, it remains unclear whether all of them are necessary
for attraction, or whether specific strains emit volatile compounds
that are particularly relevant to Drosophila suzukii. Additionally,
interdisciplinary studies are needed to determine whether certain
microorganisms interfere with fruit maturation and fermentation
processes in ways that promote the production of volatile
compounds specifically involved in attracting this species.
Understanding microbe-host-insect interactions may also
provide insights into the development of low-cost, locally adapted
products suitable for smallholder growers.

Environmental heterogeneity and climate change pose
additional challenges for behavioral control strategies. These
challenges require the integration of climatology, landscape
ecology, and pest biology. Variations in temperature, humidity,
and host plant availability influence the activity and reproductive
behavior of D. suzukii, potentially altering the effectiveness of
attractant blends (Asplen et al., 2015). Incorporating these
variables into predictive models will allow dynamic adjustment of
monitoring and control efforts according to local phenology and
climatic patterns. This approach could support decision-support
systems that integrate weather data, trap captures, and pest
thresholds to guide IPM implementation at the landscape scale.

In addition, field experience in Mexico indicates that ethological
and biological control tactics are consistently implemented in
combination with cultural management practices. These practices
are grounded in applied agronomy and grower knowledge. These
include orchard sanitation, the removal of overripe or decaying
fruits, the destruction of infested material, and the use of physical
barriers such as exclusion nets and mulches, as well as protective
structures like shade tunnels. Such cultural practices have been
shown to significantly reduce D. suzukii population pressure by
limiting suitable oviposition sites, minimizing larval development,
and restricting adult access to host fruits (Rendon et al., 2020;
Liburd and Rhodes, 2021; Schoneberg et al., 2021; Tait et al., 2021;
Garcia et al.,, 2022; Parkins et al., 2022). When combined with
behavioral tools (e.g., attract-and-kill systems, mass trapping) or
biological control agents, these measures contribute to an
integrated, robust, and sustainable management framework for
D. suzukii in small-fruit production systems.

The future of ethological control of D. suzukii depends on
multidisciplinary collaboration among entomologists, chemists,
microbiologists, engineers, and growers. This collaboration should
also include data scientists and technology developers. Progress in the
coming decade should prioritize the development of standardized
and affordable attractant-repellent formulations adapted to regional
pest populations, the integration of behavioral manipulation within
holistic IPM frameworks that combine cultural, biological, and
physical methods, and the validation of field efficacy and cost-
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benefit scenarios under commercial production conditions.
Additionally, promoting participatory research and technology
transfer will be crucial to ensure the practical adoption of these
innovations by growers and cooperatives.

In conclusion, future research on the behavioral control of D.
suzukii should emphasize field-oriented, integrative, and
interdisciplinary strategies that combine olfactory and visual cues,
microbial interactions, engineering innovations, and environmentally
safe deterrents. Such approaches will reinforce the sustainability and
resilience of berry production systems against D. suzukijand related
drosophilid pests while reducing dependence on chemical insecticides.
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