

OPEN ACCESS

EDITED BY

John Abraham,
University of Cape Coast, Ghana

REVIEWED BY

Claire Dumenil,
University of Padua, Italy
Flavia Cerasti,
Centro Ricerche Casaccia, Italy

*CORRESPONDENCE

Samuel Cruz-Esteban
✉ cruzestebansam@gmail.com

RECEIVED 14 November 2025

REVISED 30 December 2025

ACCEPTED 07 January 2026

PUBLISHED 29 January 2026

CITATION

Cruz-Esteban S (2026) Advances in the management of *Drosophila suzukii* population: from olfactory and visual stimuli to development of push–pull systems. *Front. Ecol. Evol.* 14:1746696. doi: 10.3389/fevo.2026.1746696

COPYRIGHT

© 2026 Cruz-Esteban. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Advances in the management of *Drosophila suzukii* population: from olfactory and visual stimuli to development of push–pull systems

Samuel Cruz-Esteban*

Independent Researcher, Tapachula, Chiapas, Mexico

Drosophila suzukii (Matsumura) is an invasive pest of major concern because of its ability to lay eggs in immature or thin-skinned ripening fruits, leading to substantial economic losses in berry production. This review examines recent advances in ethological control strategies—those that exploit pest behavior—including olfactory attractants, visual stimuli, trap density and spacing for mass trapping, and push–pull systems incorporating oviposition deterrents. Original data from Mexico and other countries are included, along with a discussion of current limitations, knowledge gaps, and future research directions aimed at improving practical effectiveness.

KEYWORDS

Drosophila suzukii, ethological control, fermentative attractant, integrated management, mass trapping, oviposition deterrent, visual stimulus

1 Introduction

The spotted wing drosophila, *Drosophila suzukii* (Matsumura) (Diptera: Drosophilidae), is an invasive pest affecting berries and other soft-skinned fruits and has become established in various regions worldwide. This species is native to Southeast Asia and was first described from infested cherries in Japan by Kanzawa in 1916 (Kanzawa, 1935; Walsh et al., 2011). The species is now established across multiple regions worldwide, including Europe (Cini et al., 2012), Oceania (Garcia, 2021), North Africa (Ouantar et al., 2020), North America (Hauser, 2011), Central America (Chacón-Cerdas et al., 2024), and South America (Andreazza et al., 2017). In North America, it was first collected specifically in California (USA), in 2008 and has rapidly spread through several states of the USA, reaching parts of Canada by 2010 (Lee et al., 2011; Asplen et al., 2015; Funes et al., 2018). In Mexico, the pest was first reported in 2011 in Los Reyes, Michoacán, and its current distribution includes the states where cherries (*Prunus* spp.: Rosaceae) (Walsh et al., 2011), blackberry (*Rubus ulmifolius* Schott: Rosaceae), raspberry (*Rubus idaeus* L., Rosaceae), strawberry (*Fragaria* spp.: Rosaceae), blueberries (*Vaccinium corymbosum* L.: Ericaceae) (Cruz-Esteban et al., 2021a, 2021b; Cruz-Esteban,

2021; Cruz-Esteban et al., 2024a, 2024b), guava (*Psidium guajava* L.: Myrtaceae) (De los Santos Ramos et al., 2014; Lasa and Tadeo, 2015), and fig (*Ficus carica* L.) are cultivated (Bautista-Martínez et al., 2017). In addition, it is also associated with wild or non-cultivated soft-skinned fruits such as *Rubus adenotrichos* Schltdl. (tropical blackberry), *Spondias mombin* L. (yellow mombin), *Prunus serotina* subsp. *capuli* (capulín cherry), *Muntingia calabura* L. (tropical capulín), and *Psidium guajava* (guava) (Lasa and Tadeo, 2015; Bautista-Martínez et al., 2017; Castro-Sosa et al., 2017; SENASICA (Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria), 2019; Garcia et al., 2022; Franco-Valbuena et al., 2025). Its broad geographic spread is linked to its strong dispersal capacity (Hauser, 2011), its ability to tolerate a wide range of climatic conditions (Cini et al., 2012), and its extensive host range. Asplen et al. (2015) and Morales-Abeijon et al. (2025), along with several subsequent reviews, reported that *D. suzukii* exploits more than 50 plant species belonging to diverse botanical clades. The family Rosaceae is the most heavily represented and includes many of its main cultivated hosts; however, the fly also infests species within Ericaceae, Myrtaceae, Grossulariaceae, Actinidiaceae, and Vitaceae, among others. This broad host range underscores the species' high ecological plasticity and its capacity to exploit both cultivated and wild fruits throughout the season. Ecological distribution models and recent sampling confirm its expansion into the central and southeastern regions of the country, including Guanajuato, Querétaro, Chiapas, and Oaxaca, where its presence has been documented across various tropical and temperate agroecosystems (Tait et al., 2018; Cruz-Esteban et al., 2022; Franco-Valbuena et al., 2025). Niche modelling predicts that suitable habitats for this species in Mexico include the temperate and subtropical highlands of the Trans-Mexican Volcanic Belt and the humid regions of the southeast (Calabria et al., 2012; Asplen et al., 2015; Castro-Sosa et al., 2017; Little et al., 2020a; Franco-Valbuena et al., 2025).

Unlike most *Drosophila* species, female *D. suzukii* possess a serrated ovipositor that enables them to puncture the skin of healthy fruit, and once the larvae emerge, they feed on the fruit's mesocarp, causing substantial economic damage (Walsh et al., 2011; Atallah et al., 2014; Asplen et al., 2015; Lee et al., 2015; Kirschbaum et al., 2021; Dreves et al., 2023; De Ros, 2024). Its rapid reproduction and spread pose challenges for pest management, particularly as chemical control faces limitations related to insecticide resistance (Rossi-Stacconi et al., 2020; Liburd and Rhodes, 2021; Shawer, 2021), concerns regarding residues, and environmental impact (Asplen et al., 2015; Kirschbaum et al., 2021; Shawer, 2021; Tait et al., 2021). However, Morales-Abeijon et al. (2025) highlight an even more alarming scenario compared with earlier studies, summarizing substantial economic losses attributed to this pest and the high expenses associated with its management. For instance, in California, Oregon, and Washington (USA), estimated losses for strawberries, blueberries, raspberries, blackberries, and cherries could reach USD 511.3 million (Bolda et al., 2010). Reported impacts also include yield reductions of up to 20% in raspberry production in Minnesota (USA) (DiGiacomo

et al., 2019), losses of approximately €3.3 million in Trento (Italy) (De Ros et al., 2013), between USD 5,000 and 17,550 per hectare for cherries and around USD 4,000 for blueberries in Ñuble (Chile) (Buzzetti Morales, 2020), and up to USD 21.4 million for peaches and USD 7.8 million for figs in Brazil (Benito et al., 2016). Beyond yield losses, pest management costs have risen sharply; for example, raspberry revenues in California (USA) decreased by 37% and strawberry revenues by 20% due to increased expenditures on insecticides (Goodhue et al., 2011). Therefore, in recent years, there has been increased interest in behavioral control strategies—based on the insect's behavior—that include the use of attractants as homemade ferments and fermentation products (Cha et al., 2014, 2018; Tonina et al., 2018; Cruz-Esteban et al., 2024b), microorganisms such as yeast (Becher et al., 2012; Cha et al., 2017; Spitaler et al., 2020), optimized traps commercial and home-made (Renkema et al., 2017; Cha et al., 2018; Cruz-Esteban et al., 2021a; Cruz-Esteban, 2021), visual stimuli as colored traps and cards placed inside traps (Kirkpatrick et al., 2016; Little et al., 2018, 2019, 2020b; Cruz-Esteban, 2021, 2024a; Lasa et al., 2024), repellents, and oviposition inhibitors that manipulate the orientation and reproductive activity of the species (Revadi et al., 2015; Renkema et al., 2016, 2017; Tonina et al., 2020; Tait et al., 2021; Roh et al., 2023). These studies have been conducted by evaluating individual variables as well as the synergistic effects or combinations among them.

This review aims to synthesize recent advances (2015–2025) in behavioral strategies for managing *D. suzukii*, with an emphasis on their practical application in berry production systems in Mexico and other regions worldwide, and to propose applied research directions for the development of sustainable monitoring and control tools.

2 Methods of literature search

A comprehensive literature review was conducted using the Web of Science, Scopus, and Google Scholar databases, covering the period from 2015 to 2025. Combinations of keywords in both English and Spanish were utilized, including *D. suzukii*, attractant, bait, trap design, visual cues, oviposition deterrent, repellent, mass trapping, push-pull, ethological control, and behavioral manipulation.

The search included experimental articles, reviews, and field reports focused on ethological management strategies, which encompass olfactory attractants (Renkema et al., 2017; Cha et al., 2018a; Tonina et al., 2020; Beers et al., 2022; Cruz-Esteban et al., 2024b; Brilinger, 2024), visual cues and traps design (Kirkpatrick et al., 2018a; Cruz-Esteban, 2021; Little et al., 2021; Cruz-Esteban et al., 2024a), mass trapping: density, spacing, and trap interference (Hamby et al., 2016) push-pull oviposition deterrents, and repellents (Hamby et al., 2016; Iglesias and Liburd, 2017). Additionally, studies examining interactions with parasitoids and natural enemies were reviewed (Wang et al., 2016; Girod et al., 2018; Renkema et al., 2020). Some studies published prior to the period

defined for the systematic search were incorporated in order to strengthen the contextualization of certain topics, particularly within the conceptual framework of the review.

The selected articles were filtered based on their relevance to the ethological control of *D. suzukii*, experimental validity, demonstration in field or semi-field conditions, and their contribution to the development of sustainable management methods (Cha et al., 2018; Alkema et al., 2019; Morales-Abeijon et al., 2025).

3 Results

3.1 Olfactory attractants

Olfactory attractants constitute the foundation of monitoring and control strategies for *D. suzukii*. However, this section focuses exclusively on the odors emitted by fruits at different developmental stages—ripening, mature, and decaying—and by the microorganisms associated with them. The underlying premise is that flies seek host fruits at various stages for feeding, mating, and oviposition (Tochen et al., 2016; Cloonan et al., 2018; Young et al., 2018; Clymans et al., 2019; Galland et al., 2020; Piñero et al., 2022; Elsensohn and Burrack, 2023; Kim et al., 2023). Traditional attractants, including apple cider vinegar (ACV), rice vinegar, wine vinegar, acetoin, octanoate, acetic acid, ethanol, and isoamyl acetate compounds alone or in mixtures, have long been used as reference or control (Cloonan et al., 2018; Renkema et al., 2018; Lasa et al., 2020; Cruz-Esteban et al., 2021a, 2024a, 2024b). However, their efficacy varies depending on the composition and ratio of volatile compounds (Abraham et al., 2015; Cha et al., 2015; Mazzetto et al., 2015, 2016a; Akasaka et al., 2017; Cloonan et al., 2018; Feng et al., 2018; Jaffe et al., 2018; Kirkpatrick et al., 2018a; Lasa et al., 2019; Willbrand and Pfeiffer, 2019; Lasa et al., 2020; Toledo-Hernández et al., 2021a, 2021b; Urbaneja-Bernat et al., 2021; Keene-Snickers et al., 2025). In Mexico, several commercial products are available that are based on the four most attractive compounds—acetoin, methionol, acetic acid, and ethanol—previously reported by Cha et al. (2014, 2015, 2017, 2018). One such product is Z-Kinol® (Squid Biological and Pheromones S.A. de C.V., Texcoco, Mexico) (Cruz-Esteban et al., 2021a), which uses water with 5% soap as the retention solution. Another commercially available product manufactured outside Mexico is Pherocon® SWD (Trécé Inc., Adair, OK, USA) (Burrack et al., 2015; Frewin et al., 2017; Tonina et al., 2018), as well as Scentry® (Scentry Biologicals Inc., USA), which uses ACV as the retention solution (Kirkpatrick et al., 2017; Lethmayer and Egartner, 2017; Briem et al., 2018; Whitener et al., 2022). These four volatile organic compounds (VOCs), identified as highly attractive and incorporated into the formulation of these commercial attractants, have also been detected and confirmed in homemade fermentations evaluated in Mexico (Cruz-Esteban et al., 2024b; Alavez-Rosas et al., 2024). Other food-based attractants, such as SuzukiTrap® (Bioibérica, Barcelona, Spain) (Tonina et al., 2018; Cruz-Esteban et al., 2021a), Fruit Fly Attractant (Koppert), and SuzukiLURE-Max (Dinusa, Oaxaca, Mexico), also employ these components as retention

solutions and claim to be effective for monitoring *D. suzukii*. However, these products should be evaluated under local conditions, as not all of them were specifically developed for Mexican populations. Furthermore, some products are described as scientifically developed, yet the supporting references demonstrating their efficacy are often not available, possibly due to geographical variation in *D. suzukii* populations (Jaffe et al., 2018; Wollmann et al., 2019; Larson et al., 2021; Whitener et al., 2022). Another important factor is their relatively high cost, which highlights the need to identify and develop formulations that are more effective, affordable, long-lasting, and environmentally friendly—safe for pollinators and, above all, for farmers—and that can be readily adapted to local populations.

When discussing fermented products, it is essential to consider another group of VOCs produced and emitted by microorganisms, such as bacteria, fungi, and yeasts, that are associated with fruits (Hamby and Becher, 2016). These organisms participate directly or indirectly in the fermentation process. Among symbiotic bacteria, the most common species found in microbial communities associated with *Drosophila suzukii* are *Tatumella* spp. (Enterobacteriaceae) (Chandler et al., 2014), *Gluconobacter* spp (Chandler et al., 2014; Mazzetto et al., 2016a; Bueno et al., 2020), *Komagataeibacter* spp (Mazzetto et al., 2016a), and *Acetobacter* spp. (Acetobacteraceae) (Chandler et al., 2014; Mazzetto et al., 2016a; Bueno et al., 2020). Other bacteria, such as *Oenococcus oeni*, commonly involved in malolactic fermentation during wine production (Alawamleh, 2021; Đurović et al., 2021; Maddalena, 2016, 2021), and *Lactobacillus kunkeei* and other lactic acid bacteria strains (Alawamleh, 2021; Alawamleh et al., 2021), have also been associated with *D. suzukii*. Yeasts are particularly important because they play a key role in the attraction of *D. suzukii* (Barata et al., 2012; Scheidler et al., 2015). The most studied species include *Saccharomyces cerevisiae*, a yeast widely used in baking (Batista et al., 2017; Lasa et al., 2017; Spitaler et al., 2020); *Saccharomycopsis vini* (Spitaler et al., 2020; Castellan et al., 2024); *Hanseniaspora uvarum* (Scheidler et al., 2015; Batista et al., 2017; Mori et al., 2017; Noble et al., 2019; Bianchi et al., 2020; Bueno et al., 2020; Spitaler et al., 2020; Huang and Gut, 2021; Kleman et al., 2022; Rehermann et al., 2022; Castellan et al., 2024); *H. opuntiae* (Bueno et al., 2020); *Issatchenka terricola*; *Metschnikowia*; *Metschnikowia pulcherrima* (Spitaler et al., 2020; Jones et al., 2021); *Candida zemplinina* (Scheidler et al., 2015; Spitaler et al., 2020; Jones et al., 2021); *Clavispora santalucae*; *Saccharomycopsis vini*; *Issatchenka terricola*; *Metschnikowia pulcherrima* (Castellan et al., 2024), and *Pichia pijperi* (Jones et al., 2021), a yeast frequently found in the alimentary canals of flies and in larval excreta (Hamby et al., 2012; Solomon et al., 2019; Bellutti et al., 2018). These species are highly attractive to *D. suzukii*, enhance fecundity, and often exhibit positive synergistic effects when combined (Jones et al., 2025), as well as with commercial or homemade attractants, and with bioinsecticides or conventional insecticides (Jones et al., 2022; Barone and Hartbauer, 2024; Duménil et al., 2025; Molokwu et al., 2025). Gas chromatography-electroantennographic detection (GC-EAD) analyses have identified isobutyl acetate and

isoamyl acetate emitted by *H. uvarum* as key volatiles perceived by *D. suzukii* antennae (Scheidler et al., 2015). Isoamyl acetate is also found in several attractive fruits, including strawberries and blueberries (Dekker et al., 2015). Studies have shown that mated females are more strongly attracted to *H. uvarum* and fruit odors but may reduce oviposition when feeding on yeast, suggesting a trade-off between feeding and reproduction (Mori et al., 2017). Yeast-associated volatiles can also enhance oviposition in other fruits, such as cherries (Bellutti et al., 2018), although their effects appear to depend on the background fruit odors (Cloonan et al., 2019). Furthermore, acetic acid bacteria such as *Gluconobacter* spp. emit volatiles including ethanol, acetic acid, and aldehydes, which also elicit antennal responses in *D. suzukii* (Mazzetto et al., 2016a). More recently, Castellan et al. (2024) and Duménil et al. (2025) reported that in electrophysiological assays, antennae of *D. suzukii* responded to ethyl acetate, propanoate, isoamyl acetate, β -myrcene, benzaldehyde, and linalool, compounds that may underlie the strong attractiveness of *S. vini* and *H. uvarum* to this species.

Another important group of VOCs that influence the attraction of *D. suzukii* are produced and emitted by fruits, particularly across different developmental stages. For instance, it has been reported that virgin or protein-deficient females, as well as males, are attracted to fermented food sources, where females can feed and wait for egg maturation. These same sites also serve as mating grounds, where a possible pheromone and numerous co-occurring compounds are likely involved (Revadi et al., 2015; Tochen et al., 2016; Clymans et al., 2019; Khan et al., 2019). Once mated, females are guided by VOCs emitted from ripening or fully ripe fruits in good condition to locate suitable oviposition sites and ensure offspring survival (Tochen et al., 2016; Cloonan et al., 2018; Young et al., 2018; Clymans et al., 2019). However, this behavior in gravid females has also been shown to vary with seasonal conditions (Clymans et al., 2019). Several studies have demonstrated host preferences for economically important fruits, classifying them according to attraction levels observed in laboratory bioassays. For example, Abraham et al. (2015) found that *D. suzukii* exhibited the strongest preference for raspberry, followed by strawberry, blueberry, and cherry—consistent with the findings of Cai et al. (2019). These results align with field observations by Cruz-Esteban et al. (2021a), who reported higher fly captures in raspberry crops, followed by blackberry, strawberry, and blueberry. However, when cultivated alone, any of these fruits can be highly susceptible to *D. suzukii* infestation (Little et al., 2017; Cruz-Esteban et al., 2021a). Analyses of VOCs from these mature fruits, both intact (healthy) and mechanically damaged, revealed that alcohols, aldehydes, and ketones are the predominant compounds (Abraham et al., 2015; Revadi et al., 2015; Cloonan et al., 2018). Gas chromatography-electroantennographic detection (GC-EAD) analyses have shown that *D. suzukii* antennae respond to several volatiles from raspberry and strawberry, including esters, alcohols, and ketones. An eleven-compound blend identified from raspberry was attractive to both sexes, although less so than the natural fruit extract (Abraham et al., 2015; Keesey et al., 2015). The volatile profile of apples consists mainly of esters, alcohols, and ketones, among which acetoin and octanoate have been identified as

the most attractive compounds to *D. suzukii* (Feng et al., 2018). Similarly, four volatile compounds from bayberry—methyl (E)-3-hexenoate, methyl (E)-2-hexenoate, ethyl (E)-2-hexenoate, and α -humulene, in a ratio of 1:1.3:1:6.4—were reported to be attractive under field conditions (Liu et al., 2018). Approximately 33 compounds have been identified from blackberry, with acetaldehyde, hexyl acetate, linalool, and myrtenol being the most attractive (Dewitte et al., 2021). Overall, VOCs emitted by host fruits are highly attractive to this invasive fly species, as confirmed by recent studies comparing natural fruit odors with various commercial attractants (Babu et al., 2022). Therefore, ongoing research efforts remain focused on identifying and developing volatile blends that are more attractive under field conditions.

In Mexico, Cruz-Esteban et al. (2021a) demonstrated that the type of attractant, rather than the trap design, significantly influences the capture efficiency of *D. suzukii* in berry crops. In their study, two commercial attractants—Z-Kinol® and SuzukiiTrap®—as well as apple cider vinegar (ACV) and a previously reported highly attractive blend (ACV + EtOH + CO₂) (Lasa et al., 2017) were compared under a factorial design that included raspberry, blackberry, strawberry, and blueberry crops. Significant differences in capture efficiency were observed among attractants but not between trap designs, highlighting the importance of selecting appropriate baits for effective monitoring and population control. Recent studies conducted outside Mexico support these findings. Larson et al. (2021) evaluated various attractant blends for early detection and monitoring, identifying specific compounds such as acetoin that enhance selectivity and detection sensitivity. The recent work of Cruz-Esteban et al. (2024b) further advanced this field by testing fermented baits formulated from blueberries, raspberries, baker's yeast, and sugar. In field trials, these baits showed superior attractiveness compared to commercial ACV or homemade vinegar blends, resulting in higher capture rates of *D. suzukii* adults in both blueberry and blackberry crops. Notably, these fermentative blends also demonstrated consistent performance across multiple harvests, high attractiveness to *Zaprionus indianus* (Gupta) (Diptera: Drosophilidae)—particularly during seasons when both pests overlap—and low attraction of non-target drosophilids, thereby improving selectivity while maintaining cost-effectiveness and local producibility. Similar findings were reported in Michigan, where a mixture of wine, vinegar, and yeast proved more attractive in the field than each component alone (Huang et al., 2017). Likewise, in the United States, laboratory assays revealed that fruit VOCs became more attractive when combined with β -cyclocitral or a blend of β -cyclocitral, isoamyl acetate, and methyl butyrate (Bolton et al., 2019; Piñero et al., 2019; Bolton et al., 2022). Despite their advantages, fermentative attractants present several challenges, including variable duration of efficacy, sensitivity to environmental conditions, and the potential to attract non-target species. In contrast, synthetic baits with controlled release offer longer persistence, greater selectivity when properly formulated, and reduced maintenance requirements, although they are generally more expensive. Another critical aspect is the capture threshold, as trap detections often occur when populations have already reached

levels capable of causing economic damage. For instance, monitoring in Michigan estimated that capturing a single individual in a trap corresponded to approximately 192 flies within a 2.7 ha area, underscoring the need for prompt action upon first detection (Larson et al., 2021).

3.2 Visual cues and trap design

Results regarding the use of visual cues (i.e., attractive colors) and trap designs obtained from laboratory and field studies have been quite contradictory. For instance, Rice et al. (2016) reported that black and red spheres captured significantly more *D. suzukii* than purple, blue, yellow, or white spheres in laboratory assays, and semi-field raspberry trials. Similarly, several studies have concluded that red and black traps are among the most effective for attracting and capturing this invasive fly (Basoalto et al., 2013; Lee et al., 2013; Renkema et al., 2014; Kirkpatrick et al., 2016, 2017; Lasa et al., 2017; Rice et al., 2017). The effectiveness of these visual cues is further enhanced when they act in synergy with food-based attractants (Bolton et al., 2021; Lasa et al., 2024). In contrast, Cahenzli et al. (2018) found that transparent traps fitted with a black lid captured more *D. suzukii* than traps equipped with a red lid. Similarly, other studies have shown that transparent and yellow traps perform comparably to red and black traps (Lee et al., 2013; Iglesias et al., 2014; Briem et al., 2018; Marjanović and Tanasković, 2019). Overall, these differences were primarily numerical and often not statistically significant. In addition, background color contrast has been shown to influence *D. suzukii* attraction (Antignus, 2000; Little et al., 2019). For example, under laboratory conditions, Little et al. (2019) found that black, purple, red, or yellow objects

presented against a green background did not differ significantly in attractiveness. However, purple objects against a green background were more attractive than red objects against a black background, black objects against a red background, or blue objects against a yellow background. Similar context-dependent effects of visual cues have been reported by Barone and Hartbauer (2024), who demonstrated that Petri dishes covered with red mesh but containing yellow gels attracted more *D. suzukii* than transparent controls, highlighting the importance of the visual properties of the stimulus itself rather than the external background alone. However, recent studies conducted in Mexico have demonstrated that capture success is not determined by the external color of the trap, but rather by chemical communication and short-range visual stimuli—such as colored cards and reflective surfaces placed inside the trap—which significantly increase the likelihood of fly entry (Cruz-Esteban et al., 2021a, 2021b; Cruz-Esteban, 2021; Figure 1). For example, comparative evaluations of attractants and trap designs showed that chemical cues, particularly fermentation-related compounds, are the primary drivers of *D. suzukii* attraction. No significant differences among trap designs were detected when all were baited with the same chemical stimulus, indicating that capture efficiency was largely independent of trap architecture under these conditions (Cruz-Esteban et al., 2021a; Figure 1a). However, the potential contribution of visual cues at short range could not be excluded. Subsequent experiments incorporating previously untested colors and transparent traps with internal yellow or violet cards—colors reported as attractive in laboratory assays (Little et al., 2019)—revealed a strong effect of internal visual stimuli. Transparent traps equipped with an internal yellow card captured approximately 400% more *D. suzukii* than other designs (Cruz-Esteban, 2021; Figure 1b). Further tests using single colors

FIGURE 1
(A) Trap designs and **(B)** color contrasts evaluated for monitoring *Drosophila suzukii* in berry crops in Michoacán, Mexico (Cruz-Esteban et al., 2021a; Cruz-Esteban, 2021).

and color combinations inside transparent traps, all baited with the same attractant, confirmed this pattern: yellow cards, alone or combined with green, consistently produced the highest captures ($\approx 350\%$ increase) relative to other colors (Cruz-Esteban et al., 2021b; Figure 2). More recently, variation in yellow reflectance was shown to influence trap performance, with a yellow card exhibiting 67% reflectance and a dominant wavelength of 549.74 nm outperforming higher-reflectance yellow cards in apple cider vinegar-baited traps (Cruz-Esteban et al., 2024a, Figure 2).

Therefore, advances in trap design now emphasize optimizing internal visual stimuli rather than focusing solely on external color (Little et al., 2018, 2019, 2020b; Cruz-Esteban, 2021; Cruz-Esteban et al., 2024a, Figure 2). These findings underscore the importance of integrating visual cues into trap design as complementary components of ethological control strategies, ensuring that adult

flies are efficiently guided into traps even when olfactory plumes have a limited range (Figure 2). Overall, visual stimuli represent a critical factor in the performance of monitoring and mass-trapping programs. Optimizing trap color, internal reflectance, and brightness—when combined with high-quality attractants—can maximize capture efficiency and contribute to the sustainable management of *D. suzukii* in commercial berry systems. When tailored to local crop conditions and fly behavior, these strategies enhance early detection, population suppression, and reduction of crop damage. At the same time, olfactory attractants remain indispensable for both monitoring and population suppression of *D. suzukii*, particularly when integrated with visual stimuli, mass-trapping strategies, and oviposition deterrents. Moreover, these studies have greatly advanced our understanding of the chemical ecology of *D. suzukii*, providing a foundation for targeted research aimed at elucidating behavioral responses under field conditions, including host-seeking activity, oviposition site selection, and multimodal sensory integration (Figure 3). Recent advances in bait formulation, including the evaluation of fermentative blends reported by Cruz-Esteban et al. (2024b), provide evidence that locally formulated baits can function as effective tools within integrated management programs for *D. suzukii* in commercial berry production systems, particularly when cost, accessibility, and sustainability are considered.

3.3 Mass-trapping: Density, spacing, and trap interference

Mass trapping is a key strategy for the suppression of *D. suzukii* populations, going beyond its traditional role in monitoring. This approach relies on deploying attractant-baited traps to capture adults, thereby reducing reproductive output and limiting dispersal. The effectiveness of mass trapping is strongly influenced by trap density and spacing, as closely spaced traps can experience overlapping attraction radii, leading to intra-trap competition and potential saturation of the target area (Clymans et al., 2022). Based on this study, recommended trap densities range from 75 to 200 traps ha^{-1} in spring and 90 to 300 traps ha^{-1} in summer, depending on bait type and environmental conditions. Controlled-release synthetic baits, which maintain attractiveness over longer periods, can allow reductions to approximately 25 traps ha^{-1} without compromising population suppression (Clymans et al., 2022). Trap spacing can range between 3 and 5.5 m (Hampton et al., 2014; Kirkpatrick et al., 2018a; Spies and Liburd, 2019; Clymans et al., 2022).

Field trials in cherry orchards have further demonstrated the utility of mass trapping. The Decis™ Trap, which combines a persistent attractant with an insecticide-treated interior, was highly effective at reducing *D. suzukii* populations when deployed at 100 traps ha^{-1} , particularly when placed early in the growing season, resulting in significant reductions in fruit damage (De Maeyer et al., 2018). These findings highlight that the timing of trap placement is as critical as trap density in maximizing suppression and preventing early-season infestations.

FIGURE 2
Transparent multi-hole trap used for the mass capture of *Drosophila suzukii* in berry crops. The trap consists of a transparent plastic container (1 L capacity) perforated with multiple 5-mm holes in the upper half of its wall to allow fly entry. Inside the trap, a yellow card (67% reflectance at a dominant wavelength of 549.74 nm) serves as a visual stimulus to enhance attraction, while the lower section contains a fermented bait composed of blueberries, raspberries, yeast (*Saccharomyces cerevisiae*), and sugar as a nutrient source for yeast fermentation. Optionally, a central wick dispenser can be inserted to release additional volatile compounds and increase bait efficacy. The trap is suspended from the plant canopy, positioned approximately 1.2–1.5 m above the ground, with a spacing of 6 m (equivalent to 289 traps ha^{-1}) in blueberry and blackberry orchards in Tlalpujahua, Michoacán, Mexico. This configuration has proven highly effective for population suppression, maintaining infestation levels below 5%, and in some cases, completely eliminating pest presence (Cruz-Esteban et al., 2024b).

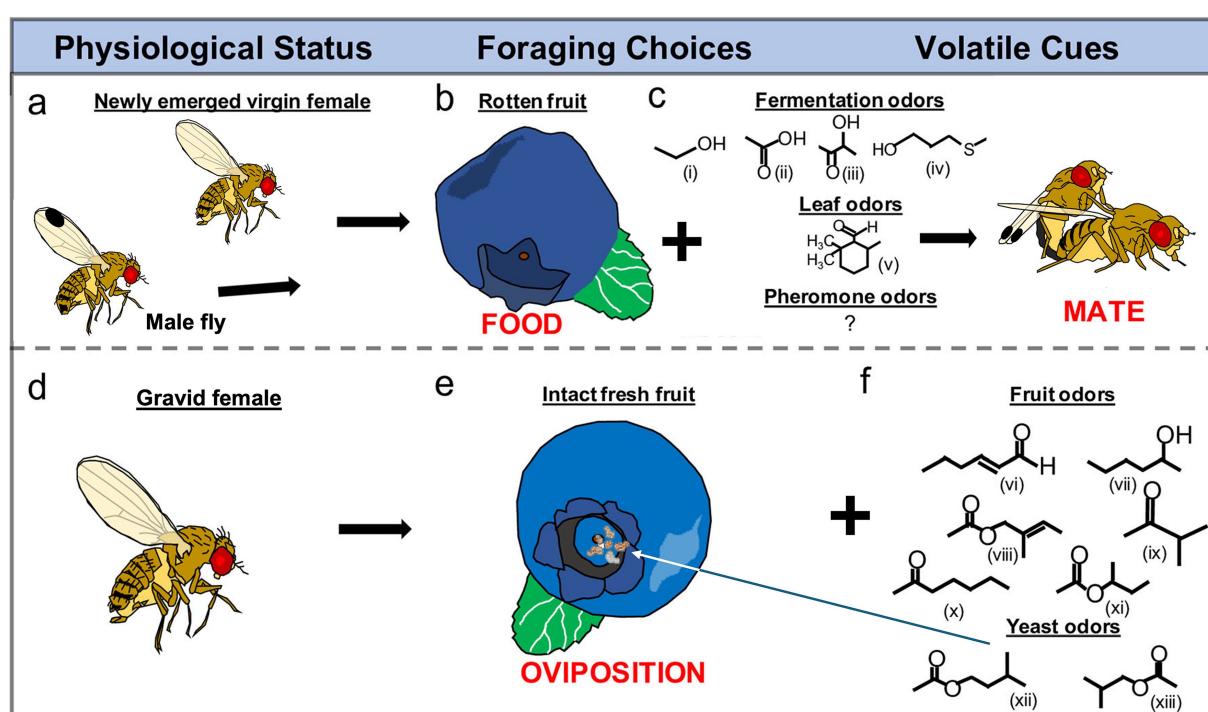


FIGURE 3

Schematic representation of the host-search strategies used by virgin and mated female *Drosophila suzukii* for feeding, mating, and oviposition (adapted from Cha et al., 2018). (A) Newly emerged females primarily orient toward decaying fruit as a source of sugars and proteins, relying on long-range olfactory cues and short-range visual and tactile stimuli. (B) During this phase, females are likely attracted to fermentation-related volatiles—such as (i) ethanol, (ii) acetic acid, (iii) acetoin, and (iv) methionol—produced and released by fruits and associated microorganisms, including fungi and yeasts, enabling the localization of overripe or decomposing substrates. (C) Leaf-emitted odors, such as (v) β -cyclocitral, may further contribute to long-range orientation, whereas tactile cues from foliage may operate at close range. Visual stimuli also play an important role, as *D. suzukii* responds to fruit reflectance and contrast against the surrounding plant canopy. These feeding sites may also function as mating arenas, since males must similarly locate food resources to survive, potentially using comparable sensory mechanisms; however, the involvement of a species-specific sex pheromone has not yet been clearly established. (D) In contrast, mated and gravid females shift their search behavior toward fresh, intact fruit suitable for oviposition. (E) At this stage, females likely integrate a more specific set of fruit- and microbe-derived volatiles, including those associated with yeasts—(F) such as (vi) trans-2-hexenal, (vii) hexanol, (viii) 3-methyl-2-butenyl acetate, (ix) 3-methyl-2-butanone, (x) 2-heptanone, (xi) butyl acetate, (xii) isoamyl acetate, and (xiii) isobutyl acetate—acting at both long and short distances. To locate healthy or ripening fruit, visual and tactile cues become increasingly important, particularly fruit reflectance and contrast against the green background of the crop, as well as physical assessment of the fruit surface, to ensure offspring survival (Bartelt et al., 1985; Lebreton et al., 2017; Kwadha, 2022; Lima et al., 2023).

Mass-trapping strategies have been successfully applied in berry crops. For example, in Tiripetío, municipality of Morelia, Michoacán, Mexico ($19^{\circ}31'55''$ N, $101^{\circ}22'10''$ W), transparent multi-hole traps equipped with yellow cards (67% reflectance at 549.74 nm) and baited with a fermented solution containing blueberries, raspberries, baker's yeast, and sugar have been deployed during 2023–2024 in blueberry and blackberry crops (Cruz-Esteban et al., 2024b; Figure 2). Traps were installed 6 m apart, totaling 289 traps ha^{-1} . This approach proved highly effective, maintaining infestation levels below 5% and enabling all harvest lots to meet export standards. It has been observed that when fruits in ripening, mature, and overripe stages are abundant, fly captures decrease, as previously reported by other authors (Harris et al., 2014; Burrack et al., 2015; Joshi et al., 2017). However, we have found a way to stimulate fly activity so that they leave the host fruit and are attracted to and captured by the traps. Applications of garlic extract (an insect repellent, 1 kg/100 L H_2O) have been made every 15 days in the center of each crop row, raising the sprayer half a meter above the ground (Allium, AGROARSA, Mexico). For

monitoring purposes, random samples of approximately 100 fruits per hectare per crop are collected, placed in a Ziploc bag, and gently macerated by hand to avoid damaging the larvae. The fruits are then submerged in a sugar-water solution (180–200 g/L) to facilitate larval detection by flotation (SENASICA (Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria), 2014; Shaw et al., 2019; Babu et al., 2023). This information is complemented with a direct physical inspection of each fruit using a magnifying glass or a stereomicroscope (Van Timmeren et al., 2021).

Several critical factors influence the success of mass-trapping programs. Optimizing trap spacing is essential to avoid intra-trap competition caused by overlapping attraction radii. Bait selection also plays a major role, as controlled-release synthetic baits provide longer-lasting attraction and greater selectivity compared to traditional fermentative baits such as apple cider vinegar. Additionally, environmental factors—including temperature, crop phenology, and pest population density—strongly affect trap performance and must be considered when planning deployment.

The integration of mass trapping with visual stimuli, oviposition deterrents, and complementary biological control can further enhance population suppression, highlighting the importance of multi-tactic approaches for sustainable management of *D. suzukii* in commercial berry production.

3.4 Push–pull and oviposition deterrents

Push–pull strategies and oviposition deterrents are designed to reduce egg laying on host crops while simultaneously attracting adults to traps or non-crop buffer zones (Figure 4). Recent studies have demonstrated the potential of both chemical and biological signals to manipulate *D. suzukii* behavior under field conditions. For instance, the presence of live *Drosophila melanogaster* (Meigen) (Diptera: Drosophilidae) larvae has been shown to reduce oviposition by *D. suzukii* on artificial substrates, with the live larvae acting as deterrent cues, whereas eggs and adults of *D. melanogaster* did not elicit the same response (Tungadi et al., 2022). The mechanism is not fully explained by cuticular hydrocarbon cues, suggesting the involvement of volatile signals,

microbial interactions, or physical cues. Chemical deterrents have also been evaluated as key components of push–pull systems. Roh et al. (2023) demonstrated that a two-component deterrent blend—ethyl antranilate and methyl salicylate—applied to raspberry fruits significantly reduced *D. suzukii* infestation in field trials, confirming its practical potential. Other studies have identified volatile organic compounds (VOCs) such as ethyl antranilate, methyl salicylate, green leaf volatiles, and monoterpenes as oviposition deterrents that signal unsuitable or previously occupied substrates (Burrack et al., 2015; Iglesias and Liburd, 2017; Tonina et al., 2020). These compounds can be applied via coatings, sprays, or controlled-release dispensers, offering versatility in field applications. Particle films, including kaolin, diatomaceous earth, and mica, have also been tested as oviposition deterrents, particularly in vineyards and berry crops. These films act as physical barriers, reducing ovipositor penetration and altering surface properties such as reflectance, which further discourages egg-laying (Rossi-Stacconi et al., 2016; Tonina et al., 2020). Field evaluations in Austria and other regions demonstrated substantial reductions in oviposition, especially when applied during early fruit developmental stages. Essential oils such as

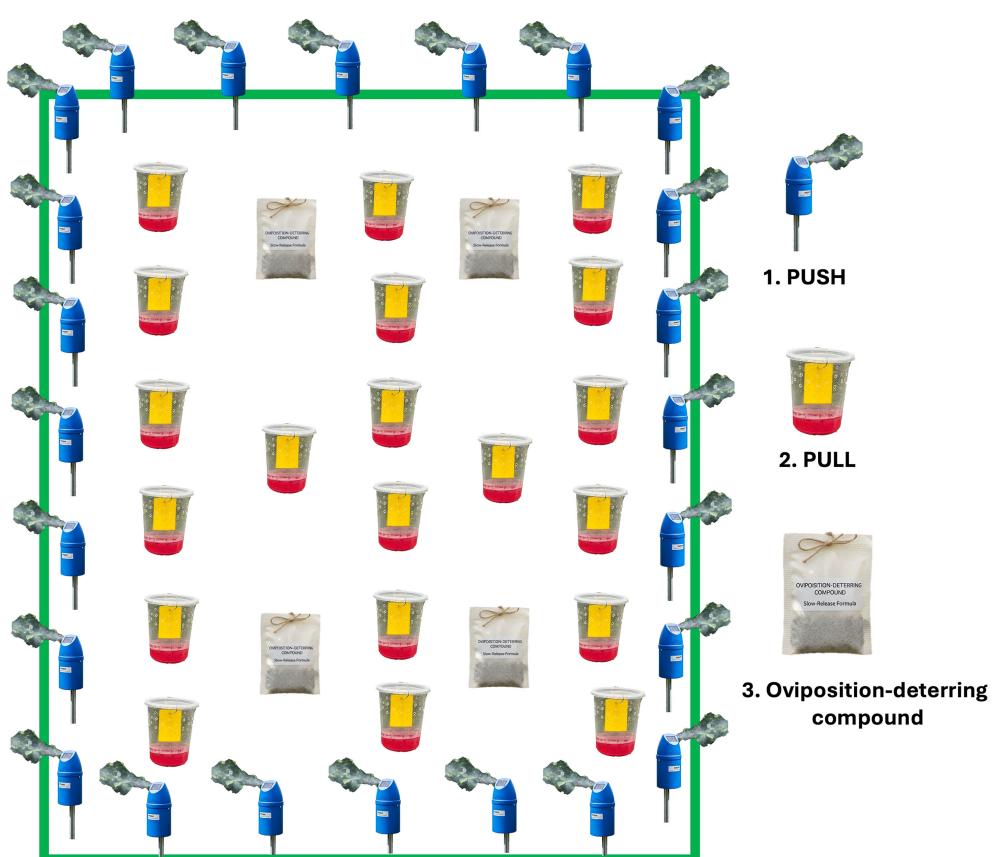


FIGURE 4

Schematic representation of the integrated “push–pull and mass trapping” strategy for the management of *Drosophila suzukii* in blackberry crops (aerial view). The system combines: (1) Repellent volatiles (PUSH) released from blue dispensers placed around the crop perimeter, which deter adult entry into the crop interior and mask volatiles emitted by the fruit and the crop as a whole. (2) Attractant-based mass trapping devices (PULL)—traps baited with a red food attractant and containing a yellow card as a visual stimulus—installed within and around the crop to capture adults. This dual-action approach aims to prevent fruit infestation while simultaneously reducing adult population density in the field, thereby contributing to the sustainable suppression of the pest. (3) Oviposition-deterring compounds could also be dispersed within the crop interior.

geranium, ginger, peppermint (menthol), thyme (thymol), clove (eugenol), citronella (citronellol, geraniol), lavender, 2-pentylfuran and neem, among others, have shown repellent, oviposition-deterring, and even lethal effects against *D. suzukii* (Renkema et al., 2016, 2017; Gowton, 2019; Galland et al., 2020; Wernicke et al., 2020; Wang Q, et al., 2021; Baleba et al., 2025; Shrestha et al., 2025). Moreover, mixtures of these oils are commercially available under the names KeyPlex Ecotrol® PLUS (rosemary, geraniol, and mint oils) and KeyPlex Sporan® EC2 (rosemary, clove, thyme, and mint oils), which have been evaluated and shown promising results in raspberry and blueberry crops in Forest Lake, MN, USA (Gullickson et al., 2020). Compounds including 1-octen-3-ol (Wallingford et al., 2016, 2017), 2-n-pentylfuran (Cha et al., 2021; Stockton et al., 2021), thymol (Reher et al., 2019), p-menthane-3,8-diol (Wernicke et al., 2020), ethyl butanoate, and ethyl (E)-but-2-enoate (Quadrel et al., 2025), appear to be promising repellents and oviposition deterrents for future field evaluation. One of the promising plants as a repellent, although currently available only commercially, is hop (*Humulus lupulus* L.), which also deserves consideration in future studies (Reher et al., 2019). In contrast, geosmin has shown inconsistent results (Stockton et al., 2021). These active ingredients have been formulated in a slow-release SPLAT® matrix (Specialized Pheromone & Lure Application Technology, ISCA Technologies, Inc.), which does not require water or adjuvants. The SPLAT matrix allows for controlled release of labile semiochemicals (Stelinski et al., 2005) and has been used in formulations for mating disruption, attract-and-kill, and repellency systems targeting both pest insects and pollinators (e.g., Vargas et al., 2008; Rodriguez-Saona et al., 2010; Mafra-Neto et al., 2013). Another formulation, HOOK SWD®, a sprayable attract-and-eliminate (A&E) bait, was evaluated over three growing seasons in raspberry and other small fruit crops in New Jersey and California. Residual activity trials showed adult mortality rates exceeding 78–93% after 35 days of field aging under plastic tunnels (Klick et al., 2019). Under laboratory conditions, lavender oil, Ecotrol®, and Sporan® deterred SWD from diet substrates, while field trials indicated that Ecotrol® reduced infestation in raspberries, though not in blueberries (Gullickson et al., 2020). Recently, a two-component deterrent blend consisting of octanoic and decanoic acids was developed as an alternative to spatial repellents for the behavioral control of *D. suzukii* infestations (Movva et al., 2025). Other promising natural extracts include attract-and-eliminate formulations derived from mandarin (*Citrus reticulata*) and tea tree (*Melaleuca alternifolia*) oils, though fruits treated with the latter were classified as non-edible (Bedini et al., 2020). Integration of push–pull systems with mass trapping and attractant-baited devices enhances overall suppression of *D. suzukii* (Figure 3). By redirecting adult flies away from crops while simultaneously removing them from the population, these tactics reduce both current and future infestations. However, effective deployment requires careful consideration of compound selection, timing, and spatial configuration to maximize deterrent efficacy without reducing trap attractiveness. Future research should focus on identifying synergistic effects among chemical, visual, and biological deterrents to optimize multi-tactic management

programs, ensuring sustainable and practical implementation in commercial berry production. For example, in the United States, methyl benzoate was tested as an in-crop repellent in blueberries, while attractant-baited traps were deployed along the field perimeters. However, these compounds alone showed limited synergistic efficiency (Gale et al., 2024). Conversely, mass trapping using RIGA® AG traps (Zürich, Switzerland) baited with 80 mL of RIGA® AG lure (apple cider vinegar, red wine, sugar, and cranberry juice) (Figure 2), combined with perimeter insecticide applications, proved effective for *D. suzukii* control in blueberry fields (Spies and Liburd, 2019; Kehrl et al., 2022).

3.5 Complementary biological control

Although ethological strategies primarily aim to manipulate pest behavior, the integration of complementary biological control has become an essential component for the sustainable management of *D. suzukii*, given the compatibility of both approaches (Daane et al., 2016; Becher et al., 2017; Koźbala and Lewandowski, 2025).

A recent systematic review found that biological-control research for *D. suzukii* is heavily dominated by parasitoids (64% of publications) compared to entomopathogens (26%) and predators (7%) (Morales-Abeijon et al., 2025). Within parasitoids, the families Figitidae (46%; n = 21), Braconidae (33%; n = 15) and Pteromalidae (13%; n = 6) were most frequently studied (Morales-Abeijon et al., 2025). Among the ten most investigated species are the pupal parasitoids *Trichopria drosophilae* (Perkins) (Kremmer et al., 2017; Rossi-Stacconi et al., 2018, 2019; Gonzalez-Cabrera et al., 2019; Trivellone et al., 2020; Wolf et al., 2020; Collatz and Romeis, 2021; Wang X, et al., 2021; Daane et al., 2025; Morales-Abeijon et al., 2025; Sun et al., 2025), *Trichopria anastrephae* (Lima) (Hymenoptera: Diapriidae) (Krüger et al., 2019; Vieira et al., 2020; da Costa Oliveira et al., 2021; Wang X, et al., 2021; Krüger et al., 2024), *Pachycrepoideus vindemmiae* (Rondani) (Kremmer et al., 2017; Collatz and Romeis, 2021; da Costa Oliveira et al., 2021; Wang X, et al., 2021; Daane et al., 2025; Morales-Abeijon et al., 2025), and *Spalangia erythromera* (Förster) (Hymenoptera: Pteromalidae) (Trivellone et al., 2020), along with the larval parasitoids *Ganaspis kimonorum* Buffington formerly also known as *Ganaspis brasiliensis* (Ilhering) (Daane et al., 2016; Girod et al., 2018; Stahl et al., 2024; Morales-Abeijon et al., 2025), *Leptopilina japonica* (Girod et al., 2018; Morales-Abeijon et al., 2025; Rossi-Stacconi et al., 2025), *L. japonica japonica*, *L. j. formosana* (Novković and Kimura), *L. boulardi* (Barbotin) (Hymenoptera: Figitidae) (Daane et al., 2016; Mazzetto et al., 2016b; Daane et al., 2025), *L. heterotoma* (Thomson) (Hymenoptera: Eucoilidae) (Beckwith et al., 2025; Daane et al., 2025; Schöfer et al., 2025), Carton and Keiner-Pillault (Hymenoptera: Figitidae) (Huang et al., 2023), *Asobara japonica* (Belokobylskij) (Girod et al., 2018), *A. rufescens* (Förster), *A. brevicauda* (Guerrero & van Achterberg), and *A. leveri* (Nixon) (Hymenoptera: Braconidae) (Daane et al., 2016; Mazzetto et al., 2016b). These species have demonstrated significant parasitism potential under laboratory and field conditions, particularly *G. brasiliensis* and *L. japonica*, which have established naturally in

several regions of Europe and North America with parasitism rates reaching up to 30% (Girod et al., 2018; Sanchez-Gonzalez et al., 2020; Morales-Abeijon et al., 2025).

Beyond parasitoids, several other biological control agents (BCAs) have been identified targeting *D. suzukii*, including 23 bacterial species, viruses spanning eight families, nine entomopathogenic nematodes and three major entomopathogenic fungi—*Beauveria bassiana* Bals. (Vuill.), *Metarhizium anisopliae* (Metschn.) Sorokin and *Isaria fumosorosea* Wize (Alnajjar et al., 2017; Hiebert et al., 2020; Bing et al., 2021; Galland et al., 2023; Morales-Abeijon et al., 2025). Among bacterial agents, *Xenorhabdus nematophila* (Poinar and Thomas), *Bacillus thuringiensis* Berliner (Bt) and *Brevibacillus laterosporus* (Laubach) have shown promising pathogenicity, while the La Jolla virus (Iflaviridae) was one of the most frequently reported viral agents (Linscheid et al., 2022; Bruner-Montero et al., 2023; Garriga et al., 2023; Morales-Abeijon et al., 2025). Although these findings demonstrate a rich potential of microbial and entomopathogenic resources for *D. suzukii* control, field efficacy remains variable, often depending on environmental conditions, formulation stability, and the developmental stage of the pest (Sial et al., 2019; Morales-Abeijon et al., 2025). Field evaluations indicate that *B. bassiana* and *M. anisopliae* achieve moderate reductions of adult populations when applied in shaded, humid environments, while *B. thuringiensis* and *B. laterosporus* are more effective against larvae inside fruits or substrates (Cuthbertson and Audsley, 2016; Gutierrez-Palomares et al., 2021; Mastore et al., 2021; Morales-Abeijon et al., 2025). Combining these agents with attractant-based systems—such as bait stations or attract-and-kill traps—enhances exposure and infection rates, thereby increasing overall pest suppression. Furthermore, integrating microbial control with semiochemical-based strategies (e.g., pheromone traps, kairomone lures, or oviposition deterrents) enables more targeted control while reducing reliance on synthetic insecticides (Wallingford et al., 2017; Durović, 2021; Morales-Abeijon et al., 2025). Such integrated approaches not only improve management efficiency but also promote the long-term sustainability of berry production systems by preserving beneficial organisms and minimizing ecological risks.

In addition to parasitoids and pathogens, predatory arthropods contribute to the natural regulation of *D. suzukii* populations. Fifteen predatory species across eight families have been reported (Morales-Abeijon et al., 2025). The families Anthocoridae (Hemiptera) and Carabidae (Coleoptera) are the most represented, each with four species. Among them, the rove beetle *Dalotia coriaria* (Kraatz) (Coleoptera: Staphylinidae) has been the most extensively studied due to its capacity to prey upon both *D. suzukii* eggs and larvae in the soil or fruit substrate. Other notable predators include the pirate bug *Orius insidiosus* (Say) (Hemiptera: Anthocoridae), the green lacewing *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae), and the European earwig *Forficula auricularia* L. (Dermaptera: Forficulidae), which exhibit opportunistic predation on eggs and early larval stages (Renkema et al., 2015; Englert and Herz, 2019; Morales-Abeijon et al., 2025). Less frequently studied but potentially valuable species include the ground beetles *Bembidion quadrimaculatum* (L.), *Limodromus*

assimilis (Paykull), *Poecilus cupreus* (L.), and *Pterostichus melanarius* (Illiger) (Coleoptera: Carabidae); the true bugs *Dicyphus hesperus* Knight, *Macrolophus pygmaeus* (Rambur), and *Nesidiocoris tenuis* (Reuter) (Hemiptera: Miridae); *Orius laevigatus* (Fieber) and *O. majusculus* (Reuter) (Hemiptera: Anthocoridae); as well as the predatory stink bug *Podisus maculiventris* (Say) (Hemiptera: Pentatomidae) and the field cricket *Gryllus pennsylvanicus* Burmeister (Orthoptera: Gryllidae). Although these species have shown low specificity toward *D. suzukii*, their presence in fruit ecosystems suggests a relevant role within broader functional guilds of natural enemies, contributing indirectly to pest suppression through intraguild interactions and disturbance of oviposition behavior (Ballman et al., 2017; Bonneau et al., 2019; Siffert et al., 2021; Wang X et al., 2021; Morales-Abeijon et al., 2025).

Overall, the synergistic integration of parasitoids, entomopathogens, and generalist predators—combined with behavioral manipulation and habitat management—represents one of the most promising directions for ecologically sustainable suppression of *D. suzukii*. Future research should focus on optimizing the spatiotemporal compatibility among these natural enemies, developing formulations for microclimatic stability, and designing multi-trophic attract-and-kill systems that maximize contact and infection rates in the field.

In Mexico, pupal parasitoids such as *Pachycrepoideus vindemmiae* and *Trichopria drosophilae* have been evaluated, with *T. drosophilae* showing a higher intrinsic rate of increase and a shorter development time, making it a promising agent for natural control, particularly during pupal stages (Garcia-Cancino et al., 2020). Field and semi-field studies in Europe and North America have demonstrated that these pupal parasitoids can significantly reduce adult emergence from infested fruits, especially when integrated with habitat management practices that provide refuges or alternative hosts for parasitoid persistence (Wang et al., 2016; Girod et al., 2018; Renkema et al., 2020; Rehmann et al., 2022; Hogg and Daane, 2025).

The integration of biological control with mass trapping and push–pull systems can enhance suppression by reducing adult emergence while simultaneously disrupting host-seeking and oviposition through the use of attractants, visual cues, and deterrent elements. Furthermore, the combination of parasitoid releases with selective, low-risk insecticides has shown potential to control *D. suzukii* effectively while preserving beneficial arthropod populations (Hamby et al., 2016; Van Timmeren et al., 2025). However, the field efficacy of parasitoids is strongly influenced by environmental conditions, crop structure, and synchronization between parasitoid release and pest population dynamics. Interactions with other drosophilid species, such as *Z. indianus*, may also affect host preference and parasitism success. Consequently, optimizing release strategies, habitat modifications, and compatibility with other tactics remains a priority for improving biological control outcomes within integrated pest management frameworks.

To fully exploit the synergistic potential of behavioral and biological control, further field-scale evaluations under diverse

climatic and cropping systems are needed. Future research should focus on refining parasitoid deployment timing, enhancing formulation stability, and assessing multitrophic interactions among parasitoids, entomopathogens, and semiochemical-based tools. Such integration will strengthen eco-efficient management strategies for *D. suzukii*, ensuring sustainable protection of commercial berry crops.

4 Discussion

The integration of ethological and complementary control strategies is fundamental for the effective management of *D. suzukii* in commercial berry crops. Evidence from recent studies consistently indicates that no single tactic can reliably suppress populations or prevent fruit damage. Therefore, the coordinated implementation of mass trapping, attractant optimization, visual stimuli, oviposition deterrents, and biological control is required to achieve meaningful and sustainable reductions in pest pressure.

Crop phenology strongly influences the performance of ethological tactics. Fermentative baits are generally more effective during early crop stages or at lower fly densities, while synthetic or dry attractants maintain efficacy during peak adult activity (Larson et al., 2021; Cruz-Esteban et al., 2024b). Likewise, internal visual cues—such as colored panels and reflective surfaces—enhance captures when combined with olfactory attractants, particularly under conditions where the odor plume disperses weakly (Kirkpatrick et al., 2018a; 2018b).

Trap density and spatial arrangement are critical parameters influencing mass-trapping efficiency, as overlapping attraction radii may generate intra-trap competition and reduce overall capture rates (Clymans et al., 2022). Optimal deployment varies seasonally, with higher densities recommended during spring and early summer, when populations begin to expand. Controlled-release synthetic baits can maintain trap performance while reducing the number of traps needed for effective suppression.

Push–pull strategies and oviposition deterrents complement trapping by discouraging egg laying on fruits and redirecting females toward attractant sources or buffer zones. Compounds such as ethyl anthranilate, methyl salicylate, monoterpenes, and green leaf volatiles have demonstrated deterrent effects under field conditions (Burrack et al., 2015; Roh et al., 2023). Biological cues, including the presence of *D. melanogaster* larvae, may also reduce oviposition through volatile or microbial signaling. Additionally, particle films such as kaolin and diatomaceous earth provide physical barriers and modify surface reflectance, improving the efficacy of deterrent approaches (Rossi-Stacconi et al., 2016).

Complementary biological control using pupal parasitoids, particularly *Trichopria drosophilae*, has proven promising for reducing population growth by targeting pupal stages. This species exhibits a higher intrinsic rate of increase and shorter development time than *Pachycyrepoideus vindemmiae*, making it a suitable candidate for integration within ethological control programs (Garcia-Cancino et al., 2020). Combining biological

control with attractant-based tactics increases pupal exposure to parasitism and enhances overall suppression efficiency (Wang et al., 2016; Renkema et al., 2020; Rehmann et al., 2022).

One of the main operational challenges is trap selectivity. Non-target species, including *Z. indianus*, are frequently captured, complicating monitoring and increasing management costs (Cruz-Esteban et al., 2022; Franco-Valbuena et al., 2025). Refining bait composition, trap design, and deployment protocols is therefore necessary to improve specificity and minimize unintended captures. Economic and practical aspects, such as trap maintenance, bait replacement, labor requirements, and grower acceptance, are also crucial for sustainable adoption. Cost-effective options, including homemade traps and locally sourced fermentative baits, have shown promise; however, formal cost-benefit evaluations under commercial conditions remain scarce (Clymans et al., 2022).

Despite these advances, several knowledge gaps persist. Most research has focused on adult captures rather than quantifying actual reductions in fruit damage across different berry crops and management systems (Beers et al., 2022; Tonina et al., 2022; Brilinger, 2024). The mechanisms underlying oviposition deterrence—including chemical, physical, and biological cues—require further elucidation (Roh et al., 2023). Likewise, optimization of visual stimuli such as color, brightness, reflectance, and shape under varying environmental conditions remains necessary to design universally effective or locally adapted traps (Little et al., 2021; Cruz-Esteban et al., 2024a). Understanding the synergistic interactions between ethological tactics, low-risk insecticides, growth regulators, and parasitoids will be essential to improve IPM outcomes while minimizing resistance development (Wang et al., 2016). Moreover, socioeconomic studies addressing grower adoption, maintenance logistics, and operational scalability are vital for achieving long-term implementation in commercial berry systems (Beers et al., 2022; Brilinger, 2024).

Overall, the integration of ethological tools with biological and physical control tactics represents one of the most promising avenues for the sustainable management of *D. suzukii*. Continued interdisciplinary research and validation under field conditions will be essential to bridge the gap between experimental advances and their practical application in commercial production systems.

5 Future perspectives

Despite significant advances in understanding the behavioral ecology of *D. suzukii* and in developing ethological control tools, several critical knowledge gaps and practical challenges remain. Addressing these gaps will require interdisciplinary approaches that integrate entomology, chemical ecology, microbiology, engineering, and agroecology. These include the development of a highly effective attract-and-kill system, which continues to require optimization of trap designs, the use of attractive colors, the identification of more specific and longer-lasting attractants, as well as the search for a potential sex pheromone. Addressing these

limitations is essential for the design of effective, economically viable, and environmentally sustainable management strategies.

Although numerous volatile organic compounds (VOCs) have been identified from fruits, microorganisms, and synthetic sources (Abraham et al., 2015; Akasaka et al., 2017; Bolton et al., 2019, 2021), behavioral responses of *D. suzukii* remain highly variable depending on environmental context, geographic population, and physiological state (Asplen et al., 2015). Future studies should focus on standardizing bioassay methodologies and validating candidate compounds under diverse agroecological conditions. Future studies should therefore adopt standardized yet flexible bioassay methodologies that combine chemical, electrophysiological, and behavioral analyses, and validate compound under diverse agroecological conditions. Electrophysiological, chemical, and behavioral analytical techniques have been highly valuable in advancing current knowledge, and their integration will undoubtedly facilitate the identification of key semiochemicals that remain unknown and that mediate attraction, deterrence, and oviposition stimulation. Moreover, further interdisciplinary research is needed to characterize how these responses are modulated by abiotic factors, fruit developmental stages, and host–microbe interactions (Alawamleh et al., 2021).

The optimization of mass-trapping systems continues to be a major research priority. This presents a clear interface between entomology, engineering, and spatial ecology. Future efforts should determine the ideal trap density, spatial distribution, and deployment timing according to pest phenology, crop structure, and landscape heterogeneity (Babu et al., 2023). In this context, the incorporation of smart trap technologies—such as sensors, image recognition, and remote data transmission—illustrates how engineering and data science can enhance biological monitoring, improving accuracy and real-time decision-making within integrated pest management (IPM) programs. These innovations may also enable predictive modeling of pest population dynamics and the early detection of population outbreaks, thereby enhancing management precision.

Push–pull systems represent a promising complementary approach but require further field validation and refinement. This will benefit from collaborative efforts among chemists, entomologists, and formulation specialists. Deterrent compounds such as ethyl anthranilate and methyl salicylate should be incorporated into slow-release formulations that are stable and compatible with local climatic conditions (Babu et al., 2022). The use of attractant-baited traps along crop borders could help prevent oviposition in fruit while simultaneously maintaining population suppression pressure. Moreover, linking behavioral manipulation with biological control—for instance, using olfactory cues to enhance parasitoid host-finding or to protect natural enemies from insecticide exposure—remains an underexplored but potentially transformative direction for sustainable pest suppression (Morales-Abeijon et al., 2025).

Microbial communities associated with fruits and *Drosophila* species play a fundamental role in the emission of attractive or deterrent volatiles. This highlights the importance of microbiology–chemical ecology interactions. The exploration microbial-derived

attractants or repellents from yeasts and bacteria has led, and may continue to lead, to the development of new bioformulations for the management of *D. suzukii* (Alawamleh et al., 2021; Alavez-Rosas et al., 2024). Research conducted worldwide should focus on identifying native microbial strains that can be cultured through controlled fermentation processes to produce consistent volatile profiles. Although many microbial species associated with fruits are already known, it remains unclear whether all of them are necessary for attraction, or whether specific strains emit volatile compounds that are particularly relevant to *Drosophila suzukii*. Additionally, interdisciplinary studies are needed to determine whether certain microorganisms interfere with fruit maturation and fermentation processes in ways that promote the production of volatile compounds specifically involved in attracting this species. Understanding microbe–host–insect interactions may also provide insights into the development of low-cost, locally adapted products suitable for smallholder growers.

Environmental heterogeneity and climate change pose additional challenges for behavioral control strategies. These challenges require the integration of climatology, landscape ecology, and pest biology. Variations in temperature, humidity, and host plant availability influence the activity and reproductive behavior of *D. suzukii*, potentially altering the effectiveness of attractant blends (Asplen et al., 2015). Incorporating these variables into predictive models will allow dynamic adjustment of monitoring and control efforts according to local phenology and climatic patterns. This approach could support decision-support systems that integrate weather data, trap captures, and pest thresholds to guide IPM implementation at the landscape scale.

In addition, field experience in Mexico indicates that ethological and biological control tactics are consistently implemented in combination with cultural management practices. These practices are grounded in applied agronomy and grower knowledge. These include orchard sanitation, the removal of overripe or decaying fruits, the destruction of infested material, and the use of physical barriers such as exclusion nets and mulches, as well as protective structures like shade tunnels. Such cultural practices have been shown to significantly reduce *D. suzukii* population pressure by limiting suitable oviposition sites, minimizing larval development, and restricting adult access to host fruits (Rendon et al., 2020; Liburd and Rhodes, 2021; Schöneberg et al., 2021; Tait et al., 2021; Garcia et al., 2022; Parkins et al., 2022). When combined with behavioral tools (e.g., attract-and-kill systems, mass trapping) or biological control agents, these measures contribute to an integrated, robust, and sustainable management framework for *D. suzukii* in small-fruit production systems.

The future of ethological control of *D. suzukii* depends on multidisciplinary collaboration among entomologists, chemists, microbiologists, engineers, and growers. This collaboration should also include data scientists and technology developers. Progress in the coming decade should prioritize the development of standardized and affordable attractant–repellent formulations adapted to regional pest populations, the integration of behavioral manipulation within holistic IPM frameworks that combine cultural, biological, and physical methods, and the validation of field efficacy and cost-

benefit scenarios under commercial production conditions. Additionally, promoting participatory research and technology transfer will be crucial to ensure the practical adoption of these innovations by growers and cooperatives.

In conclusion, future research on the behavioral control of *D. suzukii* should emphasize field-oriented, integrative, and interdisciplinary strategies that combine olfactory and visual cues, microbial interactions, engineering innovations, and environmentally safe deterrents. Such approaches will reinforce the sustainability and resilience of berry production systems against *D. suzukii* and related drosophilid pests while reducing dependence on chemical insecticides.

Author contributions

SC-E: Software, Investigation, Writing – review & editing, Data curation, Resources, Funding acquisition, Methodology, Project administration, Validation, Supervision, Formal analysis, Writing – original draft, Visualization, Conceptualization.

Funding

The author(s) declared that financial support was not received for this work and/or its publication.

References

Abraham, J., Zhang, A., Angeli, S., Abubeker, S., Michel, C., Feng, Y., et al. (2015). Behavioral and antennal responses of spotted wing drosophila, *Drosophila suzukii*, to volatiles from fruit extracts. *Environ. Entomol.* 44, 356–367. doi: 10.1093/ee/nvv013

Akasaki, N., Higashikubo, H., Ishii, Y., Sakoda, H., and Fujiwara, S. (2017). Polyamines in brown rice vinegar function as potent attractants for the spotted wing drosophila. *J. Biosci. Bioeng.* 123, 78–83. doi: 10.1016/j.jbiosc.2016.06.014

Alavez-Rosas, D., Flores-Jiménez, J. E., Gutierrez-Cabrera, A. E., Cruz-Esteban, S., Córdoba-Aguilar, A., and Cruz-López, L. (2024). Controlling a kiss: fermented products and commercial insects' lures as attractants of kissing bugs. *Bull. Entomol. Res.* 114, 803–811. doi: 10.1017/S0007485324000634

Alawamleh, A., Đurović, G., Maddalena, G., Guzzon, R., Ganassi, S., Hashmi, M. M., et al. (2021). Selection of lactic acid bacteria species and strains for efficient trapping of *Drosophila suzukii*. *Insects* 12, 153. doi: 10.3390/insects12020153

Alawamleh, A. M. A. (2021). Selection of microorganisms to develop new tools for the management of *Drosophila suzukii*. Available online at: <https://iris.unimol.it/handle/11695/100491> (Accessed November 12, 2025).

Alkema, J. T., Dicke, M., and Wertheim, B. (2019). Context-dependence and the development of push-pull approaches for integrated management of *Drosophila suzukii*. *Insects*, 10, 454. doi: 10.3390/insects10120454

Alnajjar, G., Drummond, F. A., and Groden, E. (2017). Laboratory and field susceptibility of *Drosophila suzukii* Matsumura (Diptera: Drosophilidae) to entomopathogenic fungal mycoses. *J. Agric. Urban Entomol.* 33, 111–132. doi: 10.3954/1523-5475-33.1.111

Andreazza, F., Bernardi, D., dos Santos, R. S. S., Garcia, F. R. M., Oliveira, E. E., Botton, M., et al. (2017). *Drosophila suzukii* in southern neotropical region: current status and future perspectives. *Neotrop. Entomol.* 46, 591–605. doi: 10.1007/s13744-017-0547-0

Antignus, Y., Lapidot, M., and Cohen, S. (2000). Interference with UV vision of insects: an IPM tool to impede epidemics of insect pests and insect associated virus diseases. In: Book: *Virus-Insect-Plant Interactions*, 331–347. doi: 10.1016/B978-012327681-0/50020-0

Asplen, M. K., Anfora, G., Biondi, A., Choi, D. S., Chu, D., Daane, K. M., et al. (2015). Invasion biology of spotted wing Drosophila (*Drosophila suzukii*): a global perspective and future priorities. *J. Pest Sci.* 88, 469–494. doi: 10.1007/s10340-015-0681-z

Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G., and Kopp, A. (2014). The making of a pest: the evolution of a fruit-penetrating ovipositor in *Drosophila suzukii* and related species. *Proc. R. Soc. B Proc. Biol. Sci.* 281, 20132840. doi: 10.1098/rspb.2013.2840

Babu, A., Adhikari, R., and Sial, A. A. (2023). Vacuum extraction: an effective larval sampling method for spotted-wing drosophila in small fruit crops. *J. Econ. Entomol.* 116, 1750–1759. doi: 10.1093/jee/toad160

Babu, A., Rodriguez-Saona, C., and Sial, A. A. (2022). Factors influencing the efficacy of novel attract-and-kill (ACTTRA SWD) formulations against *Drosophila suzukii*. *J. Econ. Entomol.* 115, 981–989. doi: 10.1093/jee/toab273

Baleba, S. B., Omondi, V. O., Mohamed, S. A., Getahun, M. N., Jiang, N. J., and Diallo, S. (2025). Clove-derived eugenol induces strong avoidance behaviour in the invasive fruit fly, *Drosophila suzukii*. *bioRxiv*. doi: 10.1101/2025.10.24.684488

Ballman, E. S., Collins, J. A., and Drummond, F. A. (2017). Pupation behavior and predation on *Drosophila suzukii* (Diptera: Drosophilidae) pupae in Maine wild blueberry fields. *J. Econ. Entomol.* 110, 2308–2317. doi: 10.1093/jee/tox233

Barone, G. D., and Hartbauer, M. (2024). A novel sustainable biocide against the fruit fly *Drosophila suzukii* made from orange peels. *Sci. Rep.* 14, 27948. doi: 10.1038/s41598-024-75365-6

Bartelt, R. J., Schaner, A. M., and Jackson, L. L. (1985). cis-Vaccenyl acetate as an aggregation pheromone in *Drosophila melanogaster*. *J. Chem. Ecol.* 11, 1747–1756. doi: 10.1007/BF01012124

Basoalto, E., Hilton, R., and Knight, A. (2013). Factors affecting the efficacy of a vinegar trap for *Drosophila suzukii* (Diptera: Drosophilidae). *J. App. Entomol.* 137, 561–570. doi: 10.1111/jen.12053

Batista, M. R., Uno, F., Chaves, R. D., Tidon, R., Rosa, C. A., and Klaczko, L. B. (2017). Differential attraction of drosophilids to banana baits inoculated with *Saccharomyces cerevisiae* and *Hanseniaspora uvarum* within a Neotropical forest remnant. *PeerJ* 5, e3063. doi: 10.7717/peerj.3063

Bautista-Martínez, N., Riquelme, C. P. I., Bautista, E. L., Moreno, L. J. V., and Ávila, C. D. J. G. (2017). Presence of Drosophilidae (Diptera: Ephydriodea) flies associated with fig fruits in Morelos, Mexico. *Fla. Entomol.* 100, 813–816. doi: 10.1653/024.100.0409

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Barata, A., Santos, S. C., Malfeito-Ferreira, M., and Loureiro, V. (2012). New insights into the ecological interaction between grape berry microorganisms and *Drosophila* flies during the development of sour rot. *Microb. Ecol.* 64, 416–430. doi: 10.1007/s00248-012-0041-y

Becher, P. G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., et al. (2012). Yeast, not fruit volatiles mediate *Drosophila melanogaster* attraction, oviposition and development. *Funct. Ecol.* 26, 822–828. doi: 10.1111/j.1365-2435.2012.02006.x

Becher, P., Jensen, R., Natsopoulou, M., Verschut, V., and De Fine, L. H. (2017). Infection of *Drosophila suzukii* with the obligate insect-pathogenic fungus *Entomophthora muscae*. *J. Pest Sci.* 91, 781–787. doi: 10.1007/s10340-017-0915-3

Beckwith, K. M., Burrack, H. J., Flanagan, M., Wiggins, G., and Levenson, H. K. (2025). Temporal fluctuations and geographic distributions of Leptopilina (Hymenoptera: Figitidae) species in North Carolina: implications for biological control of *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 118, 2032–2041. doi: 10.1093/jee/toaf152

Bedini, S., Cosci, F., Tani, C., Pierattini, E. C., Venturi, F., Lucchi, A., et al. (2020). Essential oils as post-harvest crop protectants against the fruit fly *Drosophila suzukii*: Bioactivity and organoleptic profile. *Insects* 11, 508. doi: 10.3390/insects11080508

Beers, E. H., Beal, D., Smytheman, P., Abram, P. K., Schmidt-Jeffris, R., Moretti, E., et al. (2022). First records of adventive populations of the parasitoids *Ganaspis brasiliensis* and *Leptopilina japonica* in the United States. *J. Hymenopt. Res.* 91, 11–25. doi: 10.3897/jhr.91.82812

Bellutti, N., Gallmetzer, A., Innerebner, G., Schmidt, S., Zelger, R., and Dalla Via, J. (2018). Dietary yeast affects preference and performance in *Drosophila suzukii*. *J. Pest Sci.* 91, 651–660. doi: 10.1007/s10340-017-0932-2

Benito, N. P., Lopes-da-Silva, M., and Santos, R. S. S. (2016). Dos potential spread and economic impact of Invasive *Drosophila suzukii* in Brazil. *Pesqui. Agropecu. Bras.* 51, 571–578. doi: 10.1590/S0100-204X2016000500018

Bianchi, F., Spitaler, U., Castellan, I., Cossu, C. S., Brigadói, T., Duménil, C., et al. (2020). Persistence of a yeast-based (*Hanseniaspora uvarum*) attract-and-kill formulation against *Drosophila suzukii* on grape leaves. *Insects* 11, 810. doi: 10.3390/insects11110810

Bing, X. L., Winkler, J., Gerlach, J., Loeb, G., and Buchon, N. (2021). Identification of natural pathogens from wild *Drosophila suzukii*. *Pest Manage. Sci.* 77, 1594–1606. doi: 10.1002/ps.6235

Bolda, M., Goodhue, R., and Zalom, F. G. (2010). Spotted wing drosophila: potential economic impact of a newly established pest. *Agric Resour Econ Update, Univ Calif, Giannini Found* 13, 5–8.

Bolton, L. G., Piñero, J. C., and Barrett, B. A. (2019). Electrophysiological and behavioral responses of *Drosophila suzukii* (Diptera: Drosophilidae) towards the leaf volatile β -cyclocitral and selected fruit-ripening volatiles. *Environ. Entomol.* 48, 1049–1055. doi: 10.1093/ee/nvz092

Bolton, L. G., Piñero, J. C., and Barrett, B. A. (2021). Olfactory cues from host-and non-host plant odor influence the behavioral responses of adult *Drosophila suzukii* (Diptera: Drosophilidae) to visual cues. *Environ. Entomol.* 50, 571–579. doi: 10.1093/ee/nvz004

Bolton, L. G., Piñero, J. C., and Barrett, B. A. (2022). Behavioral responses of *Drosophila suzukii* (Diptera: Drosophilidae) to blends of synthetic fruit volatiles combined with isoamyl acetate and β -cyclocitral. *Front. Ecol. Evol.* 10. doi: 10.3389/fevo.2022.825653

Bonneau, P., Renkema, J., Fournier, V., and Firlej, A. (2019). Ability of Muscidifurax raptorellus and other parasitoids and predators to control *Drosophila suzukii* populations in raspberries in the laboratory. *Insects* 10, 68. doi: 10.3390/insects10030068

Briem, F., Dominic, A. R., Golla, B., Hoffmann, C., Englert, C., Herz, A., et al. (2018). Explorative data analysis of *Drosophila suzukii* trap catches from a seven-year monitoring program in Southwest Germany. *Insects* 9, 125. doi: 10.3390/insects9040125

Brilinger, D. (2024). Integrated management of *Drosophila suzukii*: Monitoring and management strategies. [Thesis fully internal (D1V), University of Groningen]. University of Groningen. doi: 10.33612/diss.979214933

Bruner-Montero, G., Luque, C. M., Cesar, C. S., Ding, S. D., Day, J. P., and Jiggins, F. M. (2023). Hunting *Drosophila* viruses from wild populations: A novel isolation approach and characterisation of viruses. *PLoS Pathog.* 19, e1010883. doi: 10.1371/journal.ppat.1010883

Bueno, E., Martin, K. R., Raguso, R. A., McMullen, J. G., Hesler, S. P., Loeb, G. M., et al. (2020). Response of wild spotted wing drosophila (*Drosophila suzukii*) to microbial volatiles. *J. Chem. Ecol.* 46, 688–698. doi: 10.1007/s10886-019-01139-4

Burrack, H. J., Asplen, M., Bahder, L., Collins, J., Drummond, F. A., Guédot, C., et al. (2015). Multistate comparison of attractants for monitoring *Drosophila suzukii* (Diptera: Drosophilidae) in blueberries and caneberries. *Environ. Entomol.* 44, 704–712. doi: 10.1093/ee/nvv022

Buzzetti Morales, K. (2020). “The spotted wing *Drosophila* in the South of the world: Chilean case and its first productive impacts,” in *Invasive species—Introduction pathways, economic impact, and possible management options* (IntechOpen, London, UK).

Cahenzli, F., Bühlmann, I., Daniel, C., and Fahrentrap, J. (2018). The distance between forests and crops affects the abundance of *Drosophila suzukii* during fruit ripening, but not during harvest. *Environ. Entomol.* 47, 1274–1279. doi: 10.1093/ee/nyv116

Cai, P., Song, Y., Yi, C., Zhang, Q., Xia, H., Lin, J., et al. (2019). Potential host fruits for *Drosophila suzukii*: olfactory and oviposition preferences and suitability for development. *Entomol. Exp. Appl.* 167, 880–890. doi: 10.1111/eea.12840

Calabria, G., Máca, J., Bächli, G., Serra, L., and Pascual, M. (2012). First records of the potential pest species *Drosophila suzukii* (Diptera: Drosophilidae) in Europe. *J. Appl. Entomol.* 136, 139–147. doi: 10.1111/j.1439-0418.2010.01583.x

Castellan, I., Duménil, C., Rehmann, G., Eisenstecken, D., Bianchi, F., Robatscher, P., et al. (2024). Chemical and electrophysiological characterisation of headspace volatiles from yeasts attractive to *Drosophila suzukii*. *J. Chem. Ecol.* 50, 830–846. doi: 10.1007/s10886-024-01494-x

Castro-Sosa, R., Castillo-Peralta, M. D. R., Monterroso-Rivas, A. I., Gomez-Díaz, J. D., Flores-González, E., and Rebollar-Alviter, A. (2017). Potential distribution of *Drosophila suzukii* (Diptera: Drosophilidae) in relation to alternate hosts in Mexico. *Fla. Entomol.* 100, 787–794. doi: 10.1653/024.100.0403

Cha, D. H., Adams, T., Werle, C. T., Sampson, B. J., Adamczyk, J. J. Jr., Rogg, H., et al. (2014). A four-component synthetic attractant for *Drosophila suzukii* (Diptera: Drosophilidae) isolated from fermented bait headspace. *Pest Manage. Sci.* 70, 324–331. doi: 10.1002/ps.3568

Cha, D. H., Hesler, S. P., Park, S., Adams, T. B., Zack, R. S., Rogg, H., et al. (2015). Simpler is better: fewer non-target insects trapped with a four-component chemical lure vs. a chemically more complex food-type bait for *Drosophila suzukii*. *Entomol. Exp. Appl.* 154, 251–260. doi: 10.1111/eea.12276

Cha, D. H., Hesler, S. P., Wallingford, A. K., Zaman, F., Jentsch, P., Nyrop, J., et al. (2018). Comparison of commercial lures and food baits for early detection of fruit infestation risk by *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 111, 645–652. doi: 10.1093/jeet/tox369

Cha, D. H., Landolt, P. J., and Adams, T. B. (2017). Effect of chemical ratios of a microbial-based feeding attractant on trap catch of *Drosophila suzukii* (Diptera: Drosophilidae). *Environ. Entomol.* 46, 907–915. doi: 10.1093/ee/nvx079

Cha, D. H., Roh, G. H., Hesler, S. P., Wallingford, A., Stockton, D. G., Park, S. K., et al. (2021). 2-Pentylfuran: a novel repellent of *Drosophila suzukii*. *Pest Manage. Sci.* 77, 1757–1764. doi: 10.1002/ps.6196

Chacón-Cerdas, R., Gonzalez-Herrera, A., Alvarado-Marchena, L., and González-Fuentes, F. (2024). Report of the establishment of *drosophila suzukii* (Matsumura 1931) (Diptera: drosophilidae) in central america. *Entomol. Commun.* 6, ec06003. doi: 10.37486/2675-1305.ec06003

Chandler, J. A., James, P. M., Jospin, G., and Lang, J. M. (2014). The bacterial communities of *Drosophila suzukii* collected from undamaged cherries. *PeerJ* 2, e474. doi: 10.7717/peerj.474

Cini, A., Ioriatti, C., and Anfora, G. (2012). A review of the invasion of *Drosophila suzukii* in Europe and a draft research agenda for integrated pest management. *Bull. Insectol.* 65, 149–160.

Cloonan, K. R., Abraham, J., Angeli, S., Syed, Z., and Rodriguez-Saona, C. (2018). Advances in the chemical ecology of the spotted wing drosophila (*Drosophila suzukii*) and its applications. *J. Chem. Ecol.* 44, 922–939. doi: 10.1007/s10886-018-1000-y

Cloonan, K. R., Hernández-Cumplido, J., De Sousa, A. L. V., Ramalho, D. G., Burrack, H. J., Della Rosa, L., et al. (2019). Laboratory and field evaluation of host-related foraging odor-cue combinations to attract *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 112, 2850–2860. doi: 10.1093/jeet/toz224

Clymans, R., Van Kerckvoorde, V., Bangels, E., Akkermans, W., Alhmedi, A., De Clercq, P., et al. (2019). Olfactory preference of *Drosophila suzukii* shifts between fruit and fermentation cues over the season: Effects of physiological status. *Insects* 10, 200. doi: 10.3390/insects10070200

Clymans, R., Van Kerckvoorde, V., Thys, T., De Clercq, P., Bylemans, D., and Belien, T. (2022). Mass trapping *Drosophila suzukii*, what would it take? A two-year field study on trap interference. *Insects* 13, 240. doi: 10.3390/insects13030240

Collatz, J., and Romeis, J. (2021). Flowers and fruits prolong survival of *Drosophila* pupal parasitoids. *J. Appl. Entomol.* 145, 629–634. doi: 10.1111/jen.12881

Cruz-Esteban, S. (2021). It is not the color of the trap, but the color as a close-range stimulus inside the trap that increases capture of *Drosophila suzukii* and *Zaprionus* *Indianus* (Diptera: Drosophilidae) in berry crops. *Crop Prot.* 141, 105449. doi: 10.1016/j.cropro.2020.105449

Cruz-Esteban, S., Garay-Serrano, E., González, F. J., and Rojas, J. C. (2024a). Visual stimulus brightness influences the efficiency of attractant-baited traps for catching *Drosophila suzukii* Matsumura (Diptera: Drosophilidae). *Bull. Entomol. Res.*, 114, 180–189. doi: 10.1017/S0007485323000706

Cruz-Esteban, S., Garay-Serrano, E., Rodríguez, C., and Rojas, J. C. (2021a). The attractant, but not the trap design, affects the capture of spotted-wing drosophila in berry crops. *Bull. Entomol. Res.* 111, 138–145. doi: 10.1017/S0007485320000401

Cruz-Esteban, S., Garay-Serrano, E., and Rojas, J. C. (2021b). Effect of visual cues and a fermentation-based attractant blend on trap catch of two invasive *Drosophila* flies in berry crops in Mexico. *J. Econ. Entomol.* 114, 152–160. doi: 10.1093/jeet/toa296

Cruz-Esteban, S., Hernández-Ledesma, P., and Cultid-Medina, C. (2022). Presence of Economically Important *Drosophila* Flies in Tropical Landscapes of Mexico. *Proc. Zool. Soc.* 75, 391–393. doi: 10.1007/s12595-022-00445-2

Cruz-Esteban, S., Rojas-Sánchez, M. L., Soto-Cuellar, E., Alavez-Rosas, D., and Rojas, J. C. (2024b). Comparison of home-made and commercial baits for trapping *Drosophila suzukii* (Diptera: Drosophilidae) in blueberry crops. *Flo. Entomol.* 107, 20240003. doi: 10.1515/lafla-2024-0003

Cuthbertson, A. G., and Audsley, N. (2016). Further screening of entomopathogenic fungi and nematodes as control agents for *Drosophila suzukii*. *Insects* 7, 24. doi: 10.3390/insects7020024

Daane, K. M., Hogg, B. N., Stahl, J. M., Haviland, D. R., and Wang, X. (2025). Naturally occurring parasitoids of *Drosophila suzukii* (Diptera: Drosophilidae) and other drosophilids in California fruit regions. *J. Econ. Entomol.* 118, 2102–2111. doi: 10.1093/jeec/taaf132

Daane, K. M., Wang, X. G., Biondi, A., Miller, B., Miller, J. C., Riedl, H., et al. (2016). First exploration of parasitoids of *Drosophila suzukii* in South Korea as potential classical biological agents. *J. Pest Sci.* 89, 823–835. doi: 10.1007/s10340-016-0740-0

da Costa Oliveira, D., Stupp, P., Martins, L. N., Wollmann, J., Geisler, F. C. S., Cardoso, T. D. N., et al. (2021). Interspecific competition in *Trichopria anastrephae* parasitism (Hymenoptera: Diapriidae) and *Pachycycrepoideus vindemmiae* (Hymenoptera: Pteromalidae) parasitism on pupae of *Drosophila suzukii* (Diptera: Drosophilidae). *Phytoparasitica* 49, 207–215. doi: 10.1007/s12600-020-00843-2

Dekker, T., Revadi, S., Mansourian, S., Ramasamy, S., Lebreton, S., Becher, P. G., et al. (2015). Loss of *Drosophila* pheromone reverses its role in sexual communication in *Drosophila suzukii*. *Proc. R. Soc. B: Biological Sciences*, 282, 20143018. doi: 10.1098/rspb.2014.3018

De los Santos Ramos, M., Rivera, A. B., Pauza, R. G., Pérez, R. H., and Ríos, T. I. (2014). Monitoring of spotted wing drosophila (*Drosophila suzukii* Mats.) and assessment of the new attractant SuzukiTrap® in Tijuana, Baja California, Mexico. *J. Food Agric. Environ.* 12, 349–355.

De Maeyer, L., Hyzy, N., Companys, V., Ricci, M., Izquierdo Casas, J., Abts, W., et al. (2018). Mass trapping with Decis™ Trap to manage fly control of *Rhagoletis cerasi* and *Drosophila suzukii* in IPM cherry orchards. In *XXX International Horticultural Congress IHC2018: II International Symposium on Organic Horticulture for Wellbeing of the 1286* (pp. 219–226).

De Ros, G. (2024). The economic analyses of the *drosophila suzukii*'s invasions: A mini-review. *Neotrop. Entomol.* 53, 244–253. doi: 10.1007/s13744-024-01127-8

De Ros, G., Anfora, G., Grassi, A., and Ioriatti, C. (2013). The potential economic impact of *Drosophila suzukii* on small fruits production in Trentino (Italy). IOBC-WPRS Bull, 91, 317–321.

Dewitte, P., Van Kerckvoorde, V., Beliën, T., Bylemans, D., and Wenseleers, T. (2021). Identification of blackberry (*Rubus fruticosus*) volatiles as *Drosophila suzukii* attractants. *Insects* 12, 417. doi: 10.3390/insects12050417

DiGiocomo, G., Hadrich, J., Hutchison, W. D., Peterson, H., and Rogers, M. (2019). Economic impact of spotted wing *Drosophila* (Diptera: Drosophilidae) yield loss on Minnesota raspberry farms: A grower survey. *J. Integr. Pest Manage.* 10, 11. doi: 10.1093/jipm/pmw006

Drevets, A. J., Walton, V., and Fisher, G. A. (2023). A new pest attacking healthy ripening fruit in Oregon: spotted wing drosophila. Available online at: <https://catalog.extension.oregonstate.edu/em8991> (Accessed December 12, 2025).

Duménil, C., Spitaler, U., Rehermann, G., Bianchi, F., Favaro, R., Castellan, I., et al. (2025). Yeast-based attract-and-kill strategies for *Drosophila suzukii* management without disrupting honey bee activity. *PloS One* 20, e0323653. doi: 10.1371/journal.pone.0323653

Durović, G. (2021). The exploitation of microbial volatiles for integrated pest management of spotted wing drosophila *Drosophila suzukii* Matsumura (Diptera: Drosophilidae). Available online at: <https://iris.unimol.it/handle/11695/100490> (Accessed November 12, 2025).

Durović, G., Alawamleh, A., Carlin, S., Maddalena, G., Guzzon, R., Mazzoni, V., et al. (2021). Liquid baits with *Oenococcus oeni* increase captures of *Drosophila suzukii*. *Insects* 12, 66. doi: 10.3390/insects12010066

Elsensohn, J. E., and Burrack, H. J. (2023). Plasticity in oviposition and foraging behavior in the invasive pest *Drosophila suzukii* across natural and agricultural landscapes. *Ecol. Evol.* 13, e9713. doi: 10.1002/ece3.9713

Englert, C., and Herz, A. (2019). Acceptability of *Drosophila suzukii* as prey for common predators occurring in cherries and berries. *J. Appl. Entomol.* 143, 387–396. doi: 10.1111/jen.12613

Feng, Y., Bruton, R., Park, A., and Zhang, A. (2018). Identification of attractive blend for spotted wing drosophila, *Drosophila suzukii*, from apple juice. *J. Pest Sci.* 91, 1251–1267. doi: 10.1007/s10340-018-1006-9

Franco-Valbuena, L., Cruz-Esteban, S., Reyes-Prado, H., and García-Sosa, P. R. (2025). Co-infestation with *Drosophila suzukii* and *Zaprionus indianus* (Diptera: Drosophilidae): a threat for berry crops in Morelos, Mexico. *Flo. Entomol.* 108, 20240089. doi: 10.1515/lafla-2024-0089

Frewin, A. J., Renkema, J., Fraser, H., and Hallett, R. H. (2017). Evaluation of attractants for monitoring *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 110, 1156–1163. doi: 10.1093/jeec/tox081

Funes, C. F., Kirschbaum, D. S., Escobar, L. I., and Heredia, A. M. (2018). La mosca de las alas manChadas, *Drosophila suzukii* (Matsamura) (Tucumán, Argentina: Nueva plaga de las frutas finas en Argentina. Libro digital, Ediciones INTA, Famaillá). Available online at: https://cdn.portalfruticola.com/2019/04/6b3f61e9-inta-drosophila_suzukii.pdf.

Gale, C. C., Ferguson, B., Rodriguez-Saona, C., Shields, V. D. C., and Zhang, A. (2024). Evaluation of a push-pull strategy for spotted-wing drosophila management in highbush blueberry. *Insects* 15, 47. doi: 10.3390/insects1510047

Galland, C. D., Glesner, V., and Verheggen, F. (2020). Laboratory and field evaluation of a combination of attractants and repellents to control *Drosophila suzukii*. *Entomol. Gen.* 40, 3. doi: 10.1127/entomologia/2020/1035

Galland, C., Lalaymia, I., Declerck, S., and Verheggen, F. (2023). Efficacy of entomopathogenic fungi against the fruit fly *Drosophila suzukii* and their side effects on predator and pollinator insects. *Entomol. Gen.* 43, 1203–1210. doi: 10.1127/entomologia/2023/2192

Garcia, F. R. M. (2021). “Basis for area-wide management of *Drosophila suzukii* in Latin America,” in *Drosophila suzukii management* (Springer International Publishing, Cham), 93–110. doi: 10.1007/978-3-030-62692-1_5

Garcia, F. R. M., Lasa, R., Funes, C. F., and Buzzetti, K. (2022). *Drosophila suzukii* management in Latin America: current status and perspectives. *J. Econ. Entomol.* 115, 1008–1023. doi: 10.1093/jeec/toac052

Garcia-Cancino, M. D., Gonzalez-Cabrera, J., Sanchez-Gonzalez, J. A., and Arredondo-Bernal, H. C. (2020). Biological and population parameters, as well as oviposition preference, of two pupal parasitoids of *Drosophila suzukii* (Diptera: Drosophilidae) in Mexico. *J. Entomol. Sci.* 55, 87–97. doi: 10.18474/0749-8004-55.1.87

Garriga, A., Toubarro, D., Simões, N., Morton, A., and García-del-Pino, F. (2024). The modulation effect of the *Steinernerma carpocapsae*-*Xenorhabdus* nematophila complex on immune-related genes in *Drosophila suzukii* larvae. *J. Invertebr. Pathol.* 196, 107870. doi: 10.1016/j.jip.2022.107870

Girod, P., Lierhmann, O., Urvois, T., Turlings, T. C., Kenis, M., and Haye, T. (2018). Host specificity of Asian parasitoids for potential classical biological control of *Drosophila suzukii*. *J. Pest Sci.* 91, 1241–1250. doi: 10.1007/s10340-018-1003-z

Gonzalez-Cabrera, J., Moreno-Carrillo, G., Sanchez-Gonzalez, J. A., Mendoza-Ceballos, M. Y., and Arredondo-Bernal, H. C. (2019). Single and combined release of *Trichopria drosophilae* (Hymenoptera: Diapriidae) to control *Drosophila suzukii* (Diptera: Drosophilidae). *Neotrop. Entomol.* 48, 949–956. doi: 10.1007/s13744-019-00707-3

Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C., and Zalom, F. G. (2011). Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. *Pest Manage. Sci.* 67, 1396–1402. doi: 10.1002/ps.2259

Gowton, C. M. (2019). Exposure to volatile organic compounds from peppermint as a management strategy for *Drosophila suzukii* (Doctoral dissertation, University of British Columbia). *Canadá*. Retrieved from <https://open.library.ubc.ca/collections/ubctheses/24/items/1.0380560>

Gullickson, M., Flavin Hodge, C., Hegeman, A., and Rogers, M. (2020). Deterrent effects of essential oils on spotted-wing drosophila (*Drosophila suzukii*): Implications for organic management in berry crops. *Insects* 11, 536. doi: 10.3390/insects11080536

Gutierrez-Palomares, V. M., Paulino-Alonso, L., Gutierrez, J. Z., and Alatorre-Rosas, R. (2021). Pathogenicity and virulence of *Isaria javanica*, *Metarhizium anisopliae*, and *Beauveria bassiana* strains for control of *Drosophila suzukii* (Matsumura). *Southwest. Entomol.* 46, 853–860. doi: 10.3958/059.046.0406

Hamby, K., and Becher, P. (2016). Current knowledge of interactions between *Drosophila suzukii* and microbes, and their potential utility for pest management. *J. Pest Sci.* 89, 621–630. doi: 10.1007/s10340-016-0768-1

Hamby, K. A., Bellamy, E. D., Chiu, J. C., Lee, J. C., Walton, V. M., Wiman, N. G., et al. (2016). Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of *Drosophila suzukii*. *J. Pest Sci.* 89, 605–619. doi: 10.1007/s10340-016-0756-5

Hamby, K. A., Hernández, A., Boundy-Mills, K., and Zalom, F. G. (2012). Associations of yeasts with spotted-wing *Drosophila* (*Drosophila suzukii*; Diptera: Drosophilidae) in cherries and raspberries. *Appl. Environ. Microbiol.* 78, 4869–4873. doi: 10.1128/AEM.00841-12

Hampton, E., Koski, C., Barsoian, O., Faubert, H., Cowles, R. S., Alm, S. R., et al. (2014). Use of early ripening cultivars to avoid infestation and mass trapping to manage *Drosophila suzukii* (Diptera: Drosophilidae) in *Vaccinium corymbosum* (Ericales: Ericaceae). *J. Econ. Entomol.* 107, 1849–1857. doi: 10.1603/EC14232

Harris, D. W., Hamby, K. A., Wilson, H. E., and Zalom, F. G. (2014). Seasonal monitoring of *Drosophila suzukii* (Diptera: Drosophilidae) in a mixed fruit production system. *J. Asia Pac. Entomol.* 17, 857–864. doi: 10.1016/j.aspen.2014.08.006

Hauser, M. (2011). A historic account of the invasion of *Drosophila suzukii* (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. *Pest Manage. Sci.* 67, 1352–1357. doi: 10.1002/ps.2265

Hiebert, N., Carrau, T., Bartling, M., Vilcinskas, A., and Lee, K. Z. (2020). Identification of entomopathogenic bacteria associated with the invasive pest *Drosophila suzukii* in infested areas of Germany. *J. Invertebr. Pathol.* 173, 107389. doi: 10.1016/j.jip.2020.107389

Hogg, B. N., and Daane, K. M. (2025). Semi-natural habitat as a source of *Drosophila* suzukii (Diptera: Drosophilidae) and its parasitoids in California cane berry fields. *J. Econ. Entomol.* 118, 2682–2691. doi: 10.1093/jee/toaf267

Huang, J., and Gut, L. J. (2021). Impact of background fruit odors on attraction of *Drosophila suzukii* (Diptera: Drosophilidae) to its symbiotic yeast. *J. Insect Sci.* 21, 4. doi: 10.1093/jisesa/ieab016

Huang, J., Gut, L., and Grieshop, M. (2017). Evaluation of food-based attractants for *Drosophila suzukii* (Diptera: Drosophilidae). *Environ. Entomol.* 46, 878–884. doi: 10.1093/ee/nvx097

Huang, J., Leach, H., Buffington, M., Rothwell, N., and Wilson, J. K. (2023). Resident parasitoids associated with Drosophilidae in Michigan tart cherry orchards and woodland edges. *J. Hymenopt. Res.* 96, 485–494. doi: 10.3897/jhr.96.103160

Iglesias, L. E., Nyoike, T. W., and Liburd, O. E. (2014). Effect of trap design, bait type, and age on captures of *Drosophila suzukii* (Diptera: Drosophilidae) in berry crops. *J. Econ. Entomol.* 107, 1508–1518. doi: 10.1603/EC13538

Iglesias, L. E., and Liburd, O. E. (2017). The effect of border sprays and between-row soil tillage on *Drosophila suzukii* in organic blackberry production. *J. Appl. Entomol.* 141, 19–27. doi: 10.1111/jen.12352

Jaffe, B. D., Avanesyan, A., Bal, H. K., Feng, Y., Grant, J., Grieshop, M. J., et al. (2018). Multistate comparison of attractants and the impact of fruit development stage on trapping *Drosophila suzukii* (Diptera: Drosophilidae) in raspberry and blueberry. *Environ. Entomol.* 47, 935–945. doi: 10.1093/ee/nvy052

Jones, R., Eady, P. E., Goddard, M. R., and Fountain, M. T. (2022). The efficacy of yeast phagostimulant baits in attract-and-kill strategies varies between summer-and winter-morphs of *Drosophila suzukii*. *Insects* 13, 995. doi: 10.3390/insects13110995

Jones, R., Fountain, M. T., Günther, C. S., Eady, P. E., and Goddard, M. R. (2021). Separate and combined *Hanseniaspora uvarum* and *Metschnikowia pulcherrima* metabolic volatiles are attractive to *Drosophila suzukii* in the laboratory and field. *Sci. Rep.* 11, 1201. doi: 10.1038/s41598-020-79691-3

Jones, R., Goddard, M. R., Eady, P. E., Hall, D. R., Bray, D. P., Farman, D. I., et al. (2025). Differential attraction of summer and winter morphs of spotted wing *Drosophila*, *Drosophila suzukii*, to yeasts. *J. Chem. Ecol.* 51, 23. doi: 10.1007/s10886-025-01561-x

Joshi, N. K., Butler, B., Demchak, K., and Biddinger, D. (2017). Seasonal occurrence of spotted wing drosophila in various small fruits and berries in Pennsylvania and Maryland. *J. Appl. Entomol.* 141, 156–160. doi: 10.1111/jen.12325

Kanzawa, T. (1935). Research into the fruit-fly *Drosophila suzukii* Matsumura (preliminary report). Yamanashi Prefecture Agricultural Experiment Station, Kofu, Japan.

Keene-Snickers, A. H., Dunham, T. J., and Stenglein, M. D. (2025). Experimental assessment of 3D-printed traps and chemical attractants for the collection of wild *Drosophila melanogaster*. *Fly* 19, 2502184. doi: 10.1080/19336934.2025.2502184

Keesey, I. W., Knaden, M., and Hansson, B. S. (2015). Olfactory specialization in *Drosophila suzukii* supports an ecological shift in host preference from rotten to fresh fruit. *J. Chem. Ecol.* 41, 121–128. doi: 10.1007/s10886-015-0544-3

Kehrl, P., Monnier, J., Vonlanthen, O., Cara, C., Jelmini, L., Steiner, T., et al. (2022). Optimization of the sampling method to monitor *Drosophila suzukii* infestation in Vineyards. *J. Appl. Entomol.* 146, 408–414. doi: 10.1111/jen.12987

Khan, M. S., Ullah, F., Badshah, H., Ahmad, B., Shahjehan, I. A., and Calatayud, P. A. (2019). Bait attractants based on artificial fruit-essence for trapping and monitoring *Drosophila suzukii* (Diptera: Drosophilidae) females in Peshawar-Pakistan. *Phytoparasitica* 47, 179–184. doi: 10.1007/s12600-019-00724-3

Kim, H., Kim, Y., Roh, G. H., and Kim, Y. H. (2023). Comparison of preference for chemicals associated with fruit fermentation between *Drosophila melanogaster* and *Drosophila suzukii* and between virgin and mated *D. melanogaster*. *Insects* 14, 382. doi: 10.3390/insects14040382

Kirkpatrick, D. M., Gut, L. J., and Miller, J. R. (2018a). Estimating monitoring trap plume reach and trapping area for *Drosophila suzukii* (Diptera: Drosophilidae) in Michigan tart cherry. *J. Econ. Entomol.* 111, 1285–1289. doi: 10.1093/jee/toy062

Kirkpatrick, D. M., Leach, H. L., Xu, P., Dong, K., Isaacs, R., and Gut, L. J. (2018b). Comparative antennal and behavioral responses of summer and winter morph *Drosophila suzukii* (Diptera: Drosophilidae) to ecologically relevant volatiles. *Environ. Entomol.* 47, 700–706. doi: 10.1093/ee/nvy046

Kirkpatrick, D. M., McGhee, P. S., Gut, L. J., and Miller, J. R. (2017). Improving monitoring tools for spotted wing drosophila, *Drosophila suzukii*. *Entomol. Exp. Appl.* 164, 87–93. doi: 10.1111/eea.12602

Kirkpatrick, D. M., McGhee, P. S., Hermann, S. L., Gut, L. J., and Miller, J. R. (2016). Allignment of spotted wing drosophila (Diptera: Drosophilidae) on odorless disks varying in color. *Environ. Entomol.* 45, 185–191. doi: 10.1093/ee/nvv155

Kirschbaum, D. S., Funes, C. F., Buonocore-Biancheri, M. J., Suárez, L., and Ovruski, S. M. (2021). “The biology and ecology of *Drosophila suzukii* (Diptera: Drosophilidae),” in *Drosophila suzukii management* (Springer International Publishing, Cham), 41–91. doi: 10.1007/978-3-030-62692-1_4

Kleman, I., Rehmann, G., Kwadha, C. A., Witzgall, P., and Becher, P. G. (2022). *Hanseniaspora uvarum* attracts *Drosophila suzukii* (Diptera: Drosophilidae) with high specificity. *J. Econ. Entomol.* 115, 999–1007. doi: 10.1093/jee/toac029

Klick, J., Rodriguez-Saona, C. R., Cumplido, J. H., Holdcraft, R. J., Urrutia, W. H., Da Silva, R. O., et al. (2019). Testing a novel attract-and-kill strategy for *Drosophila suzukii* (Diptera: Drosophilidae) management. *J. Insect Sci.* 19, 3. doi: 10.1093/jisesa/iey132

Koźbiał, W., and Lewandowski, M. (2025). Hymenopteran parasitoids of *Drosophila suzukii* (Diptera: Drosophilidae). *Proc. Zool. Soc.* 78, 63–72. doi: 10.1007/s12595-025-00565-5

Kremmer, L., Thaon, M., Borowiec, N., David, J., Poirié, M., Gatti, J. L., et al. (2017). Field monitoring of *Drosophila suzukii* and associated communities in south eastern France as a pre-requisite for classical biological control. *Insects* 8, e124. doi: 10.3390/insects8040124

Krüger, A. P., Garcez, A. M., Scheunemann, T., Nava, D. E., and Garcia, F. R. (2024). *Trichopria anastrephae* as a biological control agent of *Drosophila suzukii* in strawberries. *Neotrop. Entomol.* 53, 216–224. doi: 10.1007/s13744-023-01113-6

Krüger, A. P., Scheunemann, T., Vieira, J. G. A., Morais, M. C., Bernardi, D., Nava, D. E., et al. (2019). Effects of extrinsic, intraspecific competition and host deprivation on the biology of *Trichopria anastrephae* (Hymenoptera: Diapriidae) reared on *Drosophila suzukii* (Diptera: Drosophilidae). *Neotrop. Entomol.* 48, 957–965. doi: 10.1007/s13744-019-00705-5

Kwadha, C. (2022). Out of and into Africa: Odour-mediated interaction and detection of the human commensal *Drosophila melanogaster* and the invasive fly *Drosophila suzukii* (No. 2022:41). Available online at: <https://res.slu.se/id/publ/118534> (Accessed November 12, 2025).

Larson, N. R., Strickland, J., Shields, V. D., Rodriguez-Saona, C., Cloonan, K., Short, B. D., et al. (2021). Field evaluation of different attractants for detecting and monitoring *Drosophila suzukii*. *Front. Ecol. Evol.* 9, doi: 10.3389/fevo.2021.620445

Lasa, R., Aguas-Lanzagorta, S., and Williams, T. (2020). Agricultural-grade apple cider vinegar is remarkably attractive to *Drosophila suzukii* (Diptera: Drosophilidae) in Mexico. *Insects* 11, 448. doi: 10.3390/insects11070448

Lasa, R., Aguas-Lanzagorta, S., and Williams, T. (2024). Fly responses to food colour, orientation and toxic bait composition in *Drosophila suzukii*. *J. Appl. Entomol.* 148, 339–350. doi: 10.1111/jen.13229

Lasa, R., and Tadeo, E. (2015). Invasive drosophilid pests *Drosophila suzukii* and *Zaprionus indianus* (Diptera: Drosophilidae) in Veracruz, Mexico. *Fla. Entomol.* 98, 987–988. doi: 10.1653/024.098.0332

Lasa, R., Tadeo, E., Toledo-Hernández, R. A., Carmona, L., Lima, I., and Williams, T. (2017). Improved capture of *Drosophila suzukii* by a trap baited with two attractants in the same device. *PLoS One* 12, e0188350. doi: 10.1371/journal.pone.0188350

Lasa, R., Toledo-Hernández, R. A., Rodriguez, D., and Williams, T. (2019). Raspberry as a source for the development of *Drosophila suzukii* attractants: Laboratory and commercial polytunnel trials. *Insects* 10, 137. doi: 10.3390/insects10050137

Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E. A., Hedenstrom, E., et al. (2017). A *Drosophila* female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. *BMC Biol.* 15, 88. doi: 10.1186/s12915-017-0427-x

Lee, J. C., Bruck, D. J., Curry, H., Edwards, D., Haviland, D. R., Van Steenwyk, R. A., et al. (2011). The susceptibility of small fruits and grapes to *Drosophila suzukii*. *Pest Manage. Sci.* 67, 1358–1367. doi: 10.1002/ps.2225

Lee, J. C., Shearer, P. W., Barrantes, L. D., Beers, E. H., Burrack, H. J., Dalton, D. T., et al. (2013). Trap designs for monitoring *Drosophila suzukii* (Diptera: Drosophilidae). *Environ. Entomol.* 42, 1348–1355. doi: 10.1603/EN13148

Lee, J. C., Dreves, A. J., Cave, A. M., Kawai, S., Isaacs, R., Miller, J. C., et al. (2015). Infestation of wild and ornamental noncrop fruits by *Drosophila suzukii* (Diptera: Drosophilidae). *Ann. Entomol. Soc. Am.* 108, 117–129. doi: 10.1093/aes/aau014

Lethmayer, C., and Egartner, A. (2017). Enhancement of *Drosophila suzukii* trapping. *IOBC/WPRS Bull.* 123, 143–149.

Liburd, O. E., and Rhodes, E. M. (2021). “Management of *Drosophila suzukii* in berry crops,” in *Drosophila suzukii management* (Springer International Publishing, Cham), 241–253. doi: 10.1007/978-3-030-62692-1_12

Lima, I., Tadeo, E., Remedios-Mendoza, M., Martínez-Hernández, M. D. J., and Ruiz-Montiel, C. (2023). Evidence of a pheromone involved in the behaviour of *Drosophila suzukii* Matsumura (Diptera: Drosophilidae). *J. Appl. Entomol.* 147, 990–1000. doi: 10.1111/jen.13195

Linscheid, Y., Kessel, T., Vilcinskas, A., and Lee, K. Z. (2022). Pathogenicity of La Jolla Virus in *Drosophila suzukii* following oral administration. *Viruses* 14, 2158. doi: 10.3390/v14102158

Little, C. M., Chapman, T. W., Moreau, D. L., and Hillier, N. K. (2017). Susceptibility of selected boreal fruits and berries to the invasive pest *Drosophila suzukii* (Diptera: Drosophilidae). *Pest Manag. Sci.* 73, 160–166. doi: 10.1002/ps.4366

Little, C. M., Chapman, T. W., and Hillier, N. K. (2020a). Plasticity is key to success of *Drosophila suzukii* (Diptera: Drosophilidae) invasion. *J. Insect Sci.* 20, 5. doi: 10.1093/jisesa/ieaa034

Little, C. M., Dixon, P. L., Chapman, T. W., and Hillier, N. K. (2020b). Role of fruit characters and colour on host selection of boreal fruits and berries by *Drosophila suzukii* (Diptera: Drosophilidae). *Can. Entomol.* 152, 546–562. doi: 10.4039/tce.2020.1

Little, C. M., Dixon, P. L., Moreau, D. L., Chapman, T. W., and Hillier, N. K. (2021). Assessment of attractant lures and monitoring traps for *Drosophila suzukii* (Diptera: Drosophilidae) using electrophysiology, laboratory choice assays, and field trials. *J. Econ. Entomol.* 114, 652–675. doi: 10.1093/jee/toab006

Little, C. M., Rizzato, A. R., Charbonneau, L., Chapman, T., and Hillier, N. K. (2019). Color preference of the spotted wing *Drosophila*, *Drosophila suzukii*. *Sci. Rep.* 9, 16051. doi: 10.1038/s41598-019-52425-w

Liu, Y., Dong, W., Zhang, F., Kenis, M., Griepink, F., Zhang, J., et al. (2018). Identification of active components from volatiles of Chinese bayberry, *Myrica rubra*, attractive to *Drosophila suzukii*. *Arthropod-Plant Interact.* 12, 435–442. doi: 10.1007/s11829-018-9595-z

Maddalena, G. (2016). Identification and evaluation of attractiveness of lactic acid bacteria as a bait for *Drosophila suzukii* Matsumura. Available online at: <https://iris.unimol.it/handle/11695/66264> (Accessed November 12, 2025).

Maddalena, G. (2021). Liquid baits with *Oenococcus oeni* increase captures of *Drosophila suzukii*. *Insects* 12, 66. doi: 10.3390/insects12010066

Mafra-Neto, A., de Lame, F. M., Fettig, C. J., Munson, A. S., Perring, T. M., Stelinski, L. L., et al. (2013). “Manipulation of insect behavior with specialized pheromone and lure application technology (SPLAT®),” in *Pest Management with natural products* (American Chemical Society, Washington, DC), 31–58. doi: 10.1021/bk-2013-1141.ch004

Marjanović, M., and Tanasković, S. (2019). Efficiency of different types of traps in mass trapping *Drosophila suzukii* (Diptera, Drosophilidae) in raspberry plantings. 27. Available online at: <https://scidar.kg.ac.rs/handle/123456789/9734>.

Mastore, M., Quadroni, S., and Brivio, M. F. (2021). Susceptibility of *Drosophila suzukii* larvae to the combined administration of the entomopathogens *Bacillus thuringiensis* and *Steinernema carpocapsae*. *Sci. Rep.* 11, 8149. doi: 10.1038/s41598-021-87469-4

Mazzetto, F., Gonella, E., Crotti, E., Vacchini, V., Syrpani, M., Pontini, M., et al. (2016a). Olfactory attraction of *Drosophila suzukii* by symbiotic acetic acid bacteria. *J. Pest Sci.* 89, 783–792. doi: 10.1007/s10340-016-0754-7

Mazzetto, F., Marchetti, E., Amiresmaeli, N., Sacco, D., Francati, S., Jucker, C., et al. (2016b). *Drosophila* parasitoids in northern Italy and their potential to attack the exotic pest *Drosophila suzukii*. *J. Pest Sci.* 89, 837–850. doi: 10.1007/s10340-016-0746-7

Mazzetto, F., Pansa, M. G., Ingegno, B. L., Tavella, L., and Alma, A. (2015). Monitoring of the exotic fly *Drosophila suzukii* in stone, pome and soft fruit orchards in NW Italy. *J. Asia Pac. Entomol.* 18, 321–329. doi: 10.1016/j.aspen.2015.04.001

Molokwu, C. I., Park, K., Shobe, A. J., Mermier, S., and Walton, V. (2025). Compatibility of behavioral disruptors in attract-and-kill formulations for sustainable control of *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* toaf271. doi: 10.1093/jee/toaf271

Morales-Abeijon, L., Birkhan, J., Lee, J. C., Ovruski, S. M., and Garcia, F. R. M. (2025). Global trends in research on biological control agents of *Drosophila suzukii*: a systematic review. *Insects* 16, 133. doi: 10.3390/insects16020133

Mori, B. A., Whitener, A. B., Leinweber, Y., Revadi, S., Beers, E. H., Witzgall, P., et al. (2017). Enhanced yeast feeding following mating facilitates control of the invasive fruit pest *Drosophila suzukii*. *J. Appl. Ecol.* 54, 170–177. doi: 10.1111/1365-2664.12688

Movva, V., Shrestha, B., Hesler, S. P., Sun, X., Zhu, J., Loeb, G. M., et al. (2025). Oviposition deterrent as a component of a push-pull management approach for *Drosophila suzukii*. *Environ. Entomol.* 54, 756–763. doi: 10.1093/ee/nvaf057

Noble, R., Dobrovin-Pennington, A., Phillips, A., Cannon, M. F., Shaw, B., and Fountain, M. T. (2019). Improved insecticidal control of spotted wing *drosophila* (*Drosophila suzukii*) using yeast and fermented strawberry juice baits. *Crop Prot.* 125, 104902. doi: 10.1016/j.cropro.2019.104902

Ouantar, M., Anfora, G., Boharoud, R., and Chebli, B. (2020). First Report of *Drosophila suzukii* (Diptera: Drosophilidae) in North Africa. *Moroc. J. Agric. Sci.* 1, 277–279. Available online: <https://www.techagro.org/index.php/MJAS/article/view/869> (Accessed January 21, 2026).

Parkins, A. J., Haseeb, M., Liburd, O. E., and Kanga, L. H. (2022). Effects of three cultural practices on *Drosophila suzukii* (Diptera: Drosophilidae) in open blueberry fields in Florida. *Insects* 13, 957. doi: 10.3390/insects13100957

Piñero, J. C., Barrett, B. A., Bolton, L. G., and Follett, P. A. (2019). β -cyclocitral synergizes the response of adult *Drosophila suzukii* (Diptera: Drosophilidae) to fruit juices and isoamyl acetate in a sex-dependent manner. *Sci. Rep.* 9, 10574. doi: 10.1038/s41598-019-47081-z

Piñero, J. C., Godoy-Hernandez, H., Giri, A., and Wen, X. (2022). Sodium chloride added to diluted concord grape juice prior to fermentation results in a highly attractive bait for *Drosophila suzukii* (Diptera: Drosophilidae). *Front. Ecol. Evol.* 9. doi: 10.3389/fevo.2021.813455

Quadrel, A., Ferguson, B., Rering, C. C., Urbaneja-Bernat, P., and Rodriguez-Saona, C. (2025). Two volatiles from anthracnose-infected blueberries trigger electrophysiological and aversive behavioral responses in *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 118, 2432–2442. doi: 10.1093/jee/toaf032

Reher, T., Van Kerckvoorde, V., Verheyden, L., Wenseleers, T., Beliën, T., Bylemans, D., et al. (2019). Evaluation of hop (*Humulus lupulus*) as a repellent for the management of *Drosophila suzukii*. *Crop Prot.* 124, 104839. doi: 10.1016/j.cropro.2019.05.033

Rehermann, G., Spitaler, U., Sahle, K., Cossu, C. S., Donne, L. D., Bianchi, F., et al. (2022). Behavioral manipulation of *Drosophila suzukii* for pest control: high attraction to yeast enhances insecticide efficacy when applied on leaves. *Pest Manage. Sci.* 78, 896–904. doi: 10.1002/ps.6699

Rendon, D., Hamby, K. A., Arsenault-Benoit, A. L., Taylor, C. M., Evans, R. K., Roubos, C. R., et al. (2020). Mulching as a cultural control strategy for *Drosophila suzukii* in blueberry. *Pest Manage. Sci.* 76, 55–66. doi: 10.1002/ps.5512

Renkema, J. M., Buitenhuis, R., and Hallett, R. H. (2014). Optimizing trap design and trapping protocols for *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 107, 2107–2118. doi: 10.1603/EC14254

Renkema, J. M., Buitenhuis, R., and Hallett, R. H. (2017). Reduced *Drosophila suzukii* infestation in berries using deterrent compounds and laminate polymer flakes. *Insects* 8, 117. doi: 10.3390/insects8040117

Renkema, J. M., Iglesias, L. E., Bonneau, P., and Liburd, O. E. (2018). Trapping system comparisons for and factors affecting populations of *Drosophila suzukii* and *Zaprionus indianus* in winter-grown strawberry. *Pest Manage. Sci.* 74, 2076–2088. doi: 10.1002/ps.4904

Renkema, J. M., Krey, K., Devkota, S., Liburd, O. E., and Funderburk, J. (2020). Efficacy of insecticides for season-long control of thrips (Thysanoptera: Thripidae) in winter strawberries in Florida. *Crop Prot.* 127, 104945. doi: 10.1016/j.cropro.2019.104945

Renkema, J. M., Telfer, Z., Gariepy, T., and Hallett, R. H. (2015). *Dalotia coraria* as a predator of *Drosophila suzukii*: Functional responses, reduced fruit infestation and molecular diagnostics. *Biol. Control* 89, 1–10. doi: 10.1016/j.biocntrol.2015.04.024

Renkema, J. M., Wright, D., Buitenhuis, R., and Hallett, R. H. (2016). Plant essential oils and potassium metabisulfite as repellents for *Drosophila suzukii* (Diptera: Drosophilidae). *Sci. Rep.* 6, 21432. doi: 10.1038/srep21432

Revadi, S., Vitagliano, S., Rossi Stacconi, M. V., Ramasamy, S., Mansourian, S., Carlin, S., et al. (2015). Olfactory responses of *Drosophila suzukii* females to host plant volatiles. *Physiol. Entomol.* 40, 54–64. doi: 10.1111/phen.12088

Rice, K. B., Short, B. D., Jones, S. K., and Leskey, T. C. (2016). Behavioral responses of *Drosophila suzukii* (Diptera: Drosophilidae) to visual stimuli under laboratory, semi-field, and field conditions. *Environ. Entomol.* 45, 1480–1488. doi: 10.1093/ee/nvw123

Rice, K. B., Short, B. D., and Leskey, T. C. (2017). Development of an attract-and-kill strategy for *Drosophila suzukii* (Diptera: Drosophilidae): evaluation of attracticidal spheres under laboratory and field conditions. *J. Econ. Entomol.* 110, 535–542. doi: 10.1093/jee/tow319

Rodriguez-Saona, C., Polk, D., Holdcraft, R., Chinnasamy, D., and Mafra-Neto, A. (2010). SPLAT-OrB reveals competitive attraction as a mechanism of mating disruption in oriental beetle (Coleoptera: Scarabaeidae). *Environ. Entomol.* 39, 1980–1989. doi: 10.1603/EN10062

Roh, G. H., Meier, L., Shrestha, B., Hesler, S. P., Zhu, J. J., Kendra, P. E., et al. (2023). A 2-component blend of coconut oil-derived fatty acids as an oviposition deterrent against *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 116, 1671–1678. doi: 10.1093/jee/toad092

Rossi-Stacconi, M. V., Abram, P. K., Anfora, G., Beers, E., Biondi, A., Borowiec, N., et al. (2025). Adventitiously established *Leptopilina japonica*: a new opportunity for augmentative biocontrol of *Drosophila suzukii*. *J. Pest Sci.* 98, 1863–1879. doi: 10.1007/s10340-025-01907-0

Rossi-Stacconi, M. V., Grassi, A., Ioriatti, C., and Anfora, G. (2019). Augmentative releases of *Trichopria drosophilae* for the suppression of early season *Drosophila suzukii* populations. *BioControl* 64, 9–19. doi: 10.1007/s10526-018-09914-0

Rossi-Stacconi, M. V., Kaur, R., Mazzoni, V., Ometto, L., Grassi, A., Gottardello, A., et al. (2016). Multiple lines of evidence for reproductive winter diapause in the invasive pest *Drosophila suzukii*: useful clues for control strategies. *J. Pest Sci.* 89, 689–700. doi: 10.1007/s10340-016-0753-8

Rossi-Stacconi, M. V., Tait, G., Rendon, D., Grassi, A., Boyer, G., Nieri, R., et al. (2020). Gummimg up the works: field tests of a new food-grade gum as behavioral disruptor for *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 113, 1872–1880. doi: 10.1093/jee/toaa072

Sanchez-Gonzalez, J. A., Lomeli-Flores, J. R., Rodriguez-Leyva, E., Arredondo-Bernal, H. C., and Gonzalez-Cabrera, J. (2020). *Drosophila suzukii* response to *Leptopilina boulardi* and *Ganaspis brasiliensis* parasitism. *B. Insectol.* 73, 209–215.

Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G., and Syed, Z. (2015). Volatile codes: correlation of olfactory signals and reception in *Drosophila*-yeast chemical communication. *Sci. Rep.* 5, 14059. doi: 10.1038/srep14059

Schöfer, N., Saxinger, N., Braumandl, K., and Ruther, J. (2025). Four neurotoxic insecticides impair partner and host finding in the parasitoid *Leptopilina heterotoma* and bioactive doses can be taken up via the host. *J. Chem. Ecol.* 51, 14. doi: 10.1007/s10886-025-01554-w

Schöneberg, T., Lewis, M. T., Burrack, H. J., Grieshop, M., Isaacs, R., Rendon, D., et al. (2021). Cultural control of *Drosophila suzukii* in small fruit—current and pending tactics in the US. *Insects* 12, 172. doi: 10.3390/insects12020172

SENASICA (Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria) (2014). Manual para el manejo fitosanitario de la mosca del vinagre de alas manChadas (*Drosophila suzukii* Matsumura). Available online at: https://www.gob.mx/cms/uploads/attachment/file/122073/Manual_operativo_para_su_manejo_fitosanitario.pdf (Accessed November 12, 2025).

SENASICA (Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria) (2019). *Mosca el vinagre de las alas manChadas Drosophila suzukii Matsumura, Ficha Técnica No. 7. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria* (Mexico: Secretaría de Agricultura y Desarrollo Rural), 21.

Shaw, B., Cannon, M. F., Buss, D. S., Cross, J. V., Brain, P., and Fountain, M. T. (2019). Comparison of extraction methods for quantifying *Drosophila suzukii* (Diptera: Drosophilidae) larvae in soft-and stone-fruits. *Crop Prot.* 124, 104868. doi: 10.1016/j.cropro.2019.104868

Shawer, R. (2021). "Chemical control of *Drosophila suzukii*," in *Drosophila suzukii management* (Springer Int. Publ, Cham), 133–142. doi: 10.1007/978-3-030-62692-1_7

Shrestha, B., Hesler, S. P., Meier, L., Cha, D. H., and Loeb, G. M. (2025). Field testing of 2-pentylfuran as a behavioural control tool for spotted-wing *Drosophila* in raspberries. *J. Appl. Entomol.* 149, 248–255. doi: 10.1111/jen.13366

Sial, A. A., Roubos, C. R., Gautam, B. K., Fanning, P. D., Van Timmeren, S., Spies, J., et al. (2019). Evaluation of organic insecticides for management of spotted-wing drosophila (*Drosophila suzukii*) in berry crops. *J. Appl. Entomol.* 143, 593–608. doi: 10.1111/jen.12629

Siffert, A., Cahenzli, F., Kehrli, P., Daniel, C., Dekumbis, V., Egger, B., et al. (2021). Predation on *Drosophila suzukii* within hedges in the agricultural landscape. *Insects* 12, 305. doi: 10.3390/insects12040305

Solomon, G. M., Dodangoda, H., McCarthy-Walker, T., Ntim-Gyakari, R., and Newell, P. D. (2019). The microbiota of *Drosophila suzukii* influences the larval development of *Drosophila melanogaster*. *PeerJ* 7, e8097. doi: 10.7717/peerj.8097

Spies, J. M., and Liburd, O. E. (2019). Comparison of attractants, insecticides, and mass trapping for managing *Drosophila suzukii* (Diptera: Drosophilidae) in blueberries. *Fla. Entomol.* 102, 315–321. doi: 10.1653/024.102.0205

Spitaler, U., Bianchi, F., Eisenstecken, D., Castellan, I., Angeli, S., Dordevic, N., et al. (2020). Yeast species affects feeding and fitness of *Drosophila suzukii* adults. *J. Pest Sci.* 93, 1295–1309. doi: 10.1007/s10340-020-01266-y

Rossi-Stacconi, M. V., Amiresmaeli, N., Biondi, A., Carli, C., Caruso, S., Dindo, M. L., et al. (2018). Host location and dispersal ability of the cosmopolitan parasitoid *Trichopria dorsophilae* released to control the invasive spotted wing *Drosophila*. *Biol. Control*, 117, 188–196. doi: 10.1016/j.biocontrol.2017.11.013

Stahl, J. M., Wang, X., Abram, P. K., Biondi, A., Buffington, M. L., Hoelmer, K. A., et al. (2024). *Ganaspis kinmorii* (Hymenoptera: Figitidae), a promising parasitoid for biological control of *Drosophila suzukii* (Diptera: Drosophilidae). *J. Integr. Pest Manage.* 15, 44. doi: 10.1093/jipm/pmae036

Stelinski, L. L., Gut, L. J., Mallinger, R. E., Epstein, D., Reed, T. P., and Miller, J. R. (2005). Small plot trials documenting effective mating disruption of oriental fruit moth by using high densities of wax-drop pheromone dispensers. *J. Econ. Entomol.* 98, 1267–1274. doi: 10.1603/0022-0493-98.4.1267

Stockton, D. G., Cha, D. H., and Loeb, G. M. (2021). Does habituation affect the efficacy of semiochemical oviposition repellents developed against *Drosophila suzukii*? *Environ. Entomol.* 50, 1322–1331. doi: 10.1093/ee/nvab099

Sun, H. K., Yang, F., Wang, Z. H., Li, R., Qiao, G. H., Li, Q. F., et al. (2026). Host-associated volatile cues drive foraging behavior of *Trichopria* drosophilae toward *Drosophila suzukii*-infested fruits. *J. Pest Sci.* 99, 24. doi: 10.1007/s10340-025-01987-y

Tait, G., Grassi, A., Pfab, F., Crava, C. M., Dalton, D. T., Magarey, R., et al. (2018). Large-scale spatial dynamics of *Drosophila suzukii* in Trentino, Italy. *J. Pest Sci.* 91, 1213–1224. doi: 10.1007/s10340-018-0985-x

Tait, G., Mermier, S., Stockton, D., Lee, J., Avosani, S., Abrieux, A., et al. (2021). *Drosophila suzukii* (Diptera: Drosophilidae): a decade of research towards a sustainable integrated pest management program. *J. Econ. Entomol.* 114, 1950–1974. doi: 10.1093/jee/toab158

Tochen, S., Walton, V. M., and Lee, J. C. (2016). Impact of floral feeding on adult *Drosophila suzukii* survival and nutrient status. *J. Pest Sci.* 89, 793–802. doi: 10.1007/s10340-016-0762-7

Toledo-Hernández, R. A., Lasa, R., Montoya, P., Lledo, P., Rodríguez, D., Sánchez, A., et al. (2021a). Efficacy of food-based attractants for monitoring *Drosophila suzukii* (Diptera: Drosophilidae) in berry crops. *Crop Prot.* 150, 105797. doi: 10.1016/j.cropro.2021.105797

Toledo-Hernández, R. A., Martínez, F., Ramírez-Ahuja, M. D. L., Sánchez, A., Rodríguez, D., Driskell, A., et al. (2021b). The description of an efficient trap for monitoring *Drosophila suzukii* parasitoids in organic soft fruit crops, and a new record of *Ganaspis brasiliensis* (Ihering) (Hymenoptera: Figitidae) from Michoacan, Mexico. *Proc. Entomol. Soc. Wash.* 123, 230–243. doi: 10.4289/0013-8797.123.1.230

Tonina, L., Giomi, F., Sancassani, M., Ajelli, M., Mori, N., and Giongo, L. (2020). Texture features explain the susceptibility of grapevine cultivars to *Drosophila suzukii* (Diptera: Drosophilidae) infestation in ripening and drying grapes. *Sci. Rep.* 10, 10245. doi: 10.1038/s41598-020-66567-9

Tonina, L., Grassi, A., Caruso, S., Mori, N., Gottardello, A., Anfora, G., et al. (2018). Comparison of attractants for monitoring *Drosophila suzukii* in sweet cherry orchards in Italy. *J. Appl. Entomol.* 142, 18–25. doi: 10.1111/jen.12416

Trivellone, V., Meier, M., Cara, C., Pollini Paltrinieri, L., Gugerli, F., Moretti, M., et al. (2020). Multiscale determinants drive parasitization of Drosophilidae by Hymenoptera parasitoids in agricultural landscapes. *Insects* 11, 334. doi: 10.3390/insects11060334

Tungadi, T. D., Shaw, B., Powell, G., Hall, D. R., Bray, D. P., Harte, S. J., et al. (2022). Live *Drosophila melanogaster* larvae deter oviposition by *Drosophila suzukii*. *Insects* 13, 688. doi: 10.3390/insects13080688

Urbaneja-Bernat, P., Cloonan, K., Zhang, A., Salazar-Mendoza, P., and Rodriguez-Saona, C. (2021). Fruit volatiles mediate differential attraction of *Drosophila suzukii* to wild and cultivated blueberries. *J. Pest Sci.* 94, 1249–1263. doi: 10.1007/s10340-021-01332-z

Van Timmeren, S., Brubaker Salcedo, M., Perkins, J. A., and Isaacs, R. (2025). Seasonal phenology and host plant use by *Leptopilina japonica* (Hymenoptera: Figitidae) attacking *Drosophila* (Diptera: Drosophilidae) in managed and unmanaged habitats, determined using a modified sticky trap collection method. *J. Econ. Entomol.* 118, 2078–2091. doi: 10.1093/jee/toaf053

Van Timmeren, S., Davis, A. R., and Isaacs, R. (2021). Optimization of a larval sampling method for monitoring *Drosophila suzukii* (Diptera: Drosophilidae) in blueberries. *J. Econ. Entomol.* 114, 1690–1700. doi: 10.1093/jee/toab096

Vargas, R. I., Stark, J. D., Hertlein, M., Mafra Neto, A., Coler, R., and Piñero, J. C. (2008). Evaluation of SPLAT with spinosad and methyl eugenol or cue-lure for "attract-and-kill" of oriental and melon fruit flies (Diptera: Tephritidae) in Hawaii. *J. Econ. Entomol.* 101, 759–768. doi: 10.1093/jee/101.3.759

Vieira, J. G., Krüger, A. P., Scheuneumann, T., Garcez, A. M., Morais, M. C., Garcia, F. R., et al. (2020). Effect of temperature on the development time and life-time fecundity of *Trichopria anastrephae* parasitizing *Drosophila suzukii*. *J. Appl. Entomol.* 144, 857–865. doi: 10.1111/jen.12799

Wallingford, A. K., Cha, D. H., Linn, C. E. Jr., Wolfin, M. S., and Loeb, G. M. (2017). Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management. *Environ. Entomol.* 46, 1041–1050. doi: 10.1093/ee/nvx125

Wallingford, A. K., Connelly, H. L., Dore Brind'Amour, G., Boucher, M. T., Mafra-Neto, A., and Loeb, G. M. (2016). Field evaluation of an oviposition deterrent for management of spotted-wing drosophila, *Drosophila suzukii*, and potential nontarget effects. *J. Econ. Entomol.* 109, 1779–1784. doi: 10.1093/jee/tow116

Walsh, D. B., Bolda, M. P., Goodhue, R. E., Dreves, A. J., Lee, J. C., Bruck, D. J., et al. (2011). *Drosophila suzukii* (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. *J. Integr. Pest Manag* 2, G1–G7. doi: 10.1603/IPM00100

Wang, X., Daane, K. M., Hoelmer, K. A., and Lee, J. C. (2020). Biological Control of Spotted-Wing Drosophila: An Update on Promising Agents. In: Garcia, F.R.M. (eds) *Drosophila suzukii Management*. Springer, Cham. doi: 10.1007/978-3-030-62692-1_8

Wang, X. G., Kaçar, G., Biondi, A., and Daane, K. M. (2016). Life-history and host preference of *Trichopria drosophilae*, a pupal parasitoid of spotted wing drosophila. *Biol. Control* 61, 387–397. doi: 10.1007/s10526-016-9720-9

Wang, Q., Xu, P., Sanchez, S., Duran, P., Andreazza, F., Isaacs, R., et al. (2021). Behavioral and physiological responses of *Drosophila melanogaster* and *D. suzukii* to volatiles from plant essential oils. *Pest Manag. Sci.* 77, 3698–3705. doi: 10.1002/ps.6282

Wernicke, M., Lethmayer, C., and Bluemel, S. (2020). Laboratory trials to investigate potential repellent/oviposition deterrent effects of selected substances on *Drosophila suzukii* adults. *Bull. Insectol.* 73, 249–255.

Whitener, A. B., Smytheman, P., and Beers, E. H. (2022). Efficacy and species specificity of baits and lures for spotted-wing drosophila, *Drosophila suzukii* (Diptera: Drosophilidae). *J. Econ. Entomol.* 115, 1036–1045. doi: 10.1093/jee/toac020

Willbrand, B. N., and Pfeiffer, D. G. (2019). Brown rice vinegar as an olfactory field attractant for *Drosophila suzukii* (Matsumura) and *Zaprionus Indianus* Gupta (Diptera: Drosophilidae) in Cherimoya in Maui, Hawaii, with implications for attractant specificity between species and estimation of relative abundance. *Insects* 10, 80. doi: 10.3390/insects10030080

Wolf, S., Boycheva-Woltering, S., Romeis, J., and Collatz, J. (2020). *Trichopria drosophilae* parasitizes *Drosophila suzukii* in seven common non-crop fruits. *J. Pest Sci.* 93, 627–638. doi: 10.1007/s10340-019-01180-y

Wollmann, J., Schlesener, D. C., Vieira, J. G., Bernardi, D., Garcia, M. S., and Garcia, F. R. (2019). Evaluation of food baits to capture *Drosophila suzukii* in the southern of Brazil. *An. Acad. Bras. Ciênc.* 91, e20180375. doi: 10.1590/0001-3765201920180375

Young, Y., Buckiewicz, N., and Long, T. A. F. (2018). Nutritional geometry and fitness consequences in *Drosophila suzukii*, the spotted-wing drosophila. *Ecol. Evol.* 8, 2842. doi: 10.1002/ece3.3849