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Resolving resistance adaptations:
an integrated, evolutionary
perspective across
taxonomic borders
Andre Nogueira Alves*, Mark Elgar † and Nina Wedell

School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
Resistance to xenobiotic compounds—including insecticides, herbicides,

antibiotics, fungicides, and chemotherapies — is a pervasive and intensifying

problem across agriculture, medicine, and public health. Billions are invested

each year into creating new compounds to combat pests, pathogens, and cancer

cells, yet resistance evolves swiftly and repeatedly. This recurring failure stems

not from a lack of innovation but from a lack of integration. Current strategies are

predominantly developed within disciplinary and taxonomic silos, and often

ignore the evolutionary nature of resistance. This topic is extremely relevant

and contemporary as the emergence of resistance is an evolutionary inevitability

whenever a population is exposed to strong selection pressures such as

xenobiotic compounds. Despite this, resistance management remains reactive

and compound-specific, relying on successive chemical innovations rather than

long-term strategies. In this piece, the authors argue that resistance is not a

domain-specific phenomenon, but a general evolutionary process. Drawing

together research across insects, bacteria, fungi, plants, and cancer biology,

this Perspective outlines how comparative insights and integrative strategies can

reshape the way we approach resistance in both agricultural and biomedical

systems. To confront this pressing and pervasive issue — where evolution

outpaces our interventions — we must adopt an integrative evolutionary

perspective that is anticipatory, not reactive. Resistance to xenobiotics is a

shared evolutionary outcome across life forms, and so too should be our

approach to solving it. This Perspective will serve as a conceptual bridge for

researchers across domains, encouraging coordinated, evolutionary-informed

solutions to one of the most pressing challenges of our time.
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Introduction

Organismal resistance to anthropocentric, xenobiotic

interventions, such as insecticides and antibiotics, is of pressing

health and financial global concern that requires rapid and

sustainable solutions. Billions of dollars are spent every year on

existing chemicals, or to find new alternatives to eradicate

organisms that negatively impact our health and well-being,

including plants, insects, bacterial and fungal parasites, viruses

and coronaviruses, and even cancer cells. Yet all these organisms

have evolved mechanisms to thwart the drugs, chemicals and

transgenic interventions designed to eliminate them (Ahmad

and Khan, 2019; Grochtdreis et al., 2018; Pimentel, 2010;

Alyokhin et al., 2025). This response is predicted by evolutionary

theory: changes in the environment, including the introduction of

xenobiotics, will create a selection pressure favouring the evolution

of counter-adaptations in the species we wish to eliminate. New

interventions are unlikely to be more successful but rather

encourage an ongoing escalation of interventions and counter-

adaptations, with no net gain for either antagonist, a process

dubbed the Red Queen Hypothesis by Van Valen, 1977. Despite

decades of research investigating the mechanisms of organismal

resistance, this thorny issue persists because the interventions,

developed by isolated fields of research, fail to eliminate the entire

population or species. It is timely to recognise that this approach is

not sustainable, and raises the question: should the research

community take a step back and analyse the problem from a

broader perspective to develop different approaches? Here we

outline some advances in disparate fields of xenobiotic resistance,

as well as identify some taxonomic silos, and suggest potential

strategies to combat this pervasive issue of resistance.

The active and continuous emergence of resistance to

xenobiotic compounds reflect the rich history of the evolution of

life (Wedell and Hosken, 2017). More than three billion years of

natural selection has driven the evolution of extraordinary

adaptations that ensure the persistence of populations in diverse

environments. Whilst we have tinkered with evolutionary

processes, including the remarkable success of plant and animal

domestication, we have barely scratched the surface of the potential

nature has to solve anthropocentric problems (Ng et al., 2021). For

example, gene editing techniques such as CRISPR-Cas9, which were

developed a decade ago, leverage an immune response mechanism

in bacteria that has existed for billions of years (Jinek et al., 2012).

Similarly, the potential of utilising the innate metabolism of bacteria

to breakdown pollutants or harvest rare metals from mine waste

was only discovered in the last two decades (Bryan et al., 2006). And

whilst we have been using insecticides to fight pests in agriculture

since the 1940s, most insecticides are still based on compounds

naturally produced by plants (e.g. caffeine and nicotine), which have

evolved for millions of years to prevent the attack of insects

(Matthews, 2018).

Nonetheless, our approach to resolving the challenges of

resistance too often ignores underlying evolutionary processes,

judging each situation as insular and resolved with a single

cellular compound to target. Our history is of sledge-hammer
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solutions in the form of developing and applying new, “last

resort” synthetic poisons. Yet one thing is certain: new methods

of controlling unwanted organisms will generate strong selective

pressures favouring effective counter measures – adaptations that

rapidly evolve in the target population and allow these unwanted

organisms to persist. In this context, it is unsurprising

that resistance has evolved against almost all insecticides (Bass

et al., 2015), and that antibiotic resistance is a globally pervasive

challenge in our health and agricultural systems (Selvarajan et al.,

2022). Many studies have, in fact, shown that an increased use of

antibiotics is directly linked with an increase in antibiotic

resistance prevalence in medical wards (Goossens et al., 2005;

Willemsen et al., 2009). Clearly, we require a smarter, more

nuanced approach.
An evolutionary process requires an
evolutionary perspective

Perhaps the first step is to recognise that emerging resistance is

an evolutionary process, which requires an appreciation of how

resistance to xenobiotic compounds arises and recognising that

resistance to xenobiotic compounds does not necessarily carry

a cost.

It is widely believed that resistance to human-made compounds

arises from de novomutations (Bass, 2017). This is a misconception

– in most cases, the evolution of resistance involves the recruitment

or repurposing and/or enhancement of existing genetic

detoxification machinery (Bass, 2017). As such, most adaptations

to detoxify xenobiotic compounds are not necessarily associated

with costs, even though the notion of costly resistance is pervasive

across the scientific fields. For example, the cytochrome P450 gene

Cypg6g1 in Drosophila melanogaster was originally involved in the

hydroxylation and detoxification of metabolic compounds (Daborn

et al., 2002). Less than a century ago, Cyp6g1 was recruited to

metabolise insecticides such as DDT and imidacloprid (Ffrench-

Constant, 2013). The Cyp6g1 ‘resistance’ allele existed prior to the

application of insecticides (Harrop et al., 2014) and became a key

element in driving the evolution of insecticide resistance. This

pattern is not isolated: the same molecular machinery is utilised

in the related species D. simulans, where the orthologue of Cyp6g1

also confer resistance to insecticides by increased expression

(Schlenke and Begun, 2004). The history of resistance adaptations

to anthropocentric compounds is replete with similar cases. Wild

populations of the Australian sheep blowfly, Lucilia cuprina, have

high frequencies of resistance to malathion, an insecticide used

briefly in the 1950s. Resistance to malathion predates the use of this

insecticide, and is most likely associated with standing genetic

variation that already existed in wild populations. Human activity

is responsible for the increase in frequency of these existing rare

variants within natural populations (Ffrench-Constant, 2007).

It is frequently assumed that resistance mechanisms are costly,

and that natural selection will eliminate them in the absence of

exposure to xenobiotic compounds. However, these genetic

detoxification mechanisms that allow insects to manage naturally
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occurring toxins in their environment have been shaped by billions

of years of evolution resulting in minimised or optimised fitness

costs (Wedell and Hosken, 2017). Hence, we should not assume that

these detoxification mechanisms inherently are costly. To

understand this misconception, we must look at cases across taxa

and understand the commonalities between them.
Taxonomic silos

Antibiotic resistance is perhaps more widely recognised in the

public domain due to its dramatic impacts on human lives

(Dadgostar, 2019). However, resistance to xenobiotic compounds

has evolved across all taxonomic groups: insecticide resistance among

insects; plant resistance to herbicides, and resistance to fungicides by

fungi, are globally pervasive and each is of concern (Bass et al., 2015;

Lucas et al., 2015; Owen and Zelaya, 2005). The United Nations has

recently highlighted the urgency of examining these phenomena with

sustainability in mind and an emphasis on research cooperation

amongst countries and institutes (Figueras, 2024). Resistance across

these diverse taxa directly impacts human health and wellbeing, yet

we found there is remarkably uneven research activity across these

taxonomic boundaries and, unfortunately, very little evidence of

engagement between them.

We quantified the number of scientific articles that examined

the evolution of resistance by pairing the terms “evolution” and

“natural selection” with the different types of compound resistance

and searching through the Web of Science’s repository for scientific

articles that mention these terms [20/07/2024]. Over 11,000 articles

were identified with antibiotic/antimicrobial resistance, which is

close to five times more frequent than that identified for insecticide,

herbicide or chemotherapy/radiotherapy resistance (Figure 1A).

The least studied, with five times fewer articles mentioning these

terms, was fungicide resistance (Figure 1A).

A simple way to assess the degree of engagement of research

across these different taxonomic groups is to count the number of

articles that mention more than one type of resistance.

We investigated this possibility by pairing different terms of

resistance and searching through the same repository for scientific

articles. Less than 4% of the 19,165 articles mention the evolution of

resistance in multiple taxa/systems (Figure 1A), and chemotherapy/

radiotherapy resistance research is reported the least in conjunction

with any other type of resistance beyond antibiotic/antimicrobial

resistance. Although this search does not take into account terms

mentioned in sections of an article such as discussion, this search

provides a broader and more conservative snapshot of a pattern

consistent with earlier observations that research into organismal

resistance is segregated into two major groups (REX Consortium,

2007), comprising the medical and the agricultural (and related)

sciences. The chasm between the fields is remarkable, given the

pervasive commonality of resistance to xenobiotics across taxa.

Furthermore, the separation of research on resistance into

taxonomic silos is both historical and contemporary. Confining

this literature to the last 5 years, reveals remarkably similar patterns.
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Antibiotic/antimicrobial resistance is still the most reported

resistance, followed by insecticide, herbicide, and chemotherapy/

radiotherapy resistance. Fungicide resistance remains as the least

reported resistance across the fields (Figure 1B). Most strikingly, the

lack of engagement between fields remains unchanged, with less

than 4% of articles mentioning the evolution of resistance in

multiple taxa/systems (Figure 1B).

This pattern may arise because research on resistance places a

strong focus on resolving proximate questions: how to rapidly

eliminate resistant individuals, and which molecule(s) should be

produced next to target the resistance mechanism? While resolving

these questions may provide short-term solutions, they are not

sustainable in the long term because resistance to anthropomorphic

compounds is not a short-term or transient problem. Natural

selection cannot be eliminated except by extinguishing the

population or species. Nevertheless, it is rarely acknowledged that

across taxa, the resistance mechanisms we observe arise from the

evolutionary recruitment of an existing molecular machinery that

often have low fitness costs (Ffrench-Constant and Bass, 2017). The

lack of sustainable success in controlling unwanted organisms

means we require a different approach that incorporates

evolutionary knowledge and insights from across the traditional

taxonomic boundaries.
Universal approaches for global
problems

The evolutionary problem of resistance has been investigated for

many decades (Futuyma, 1995; Mayr, 1961; Palumbi, 2001), and it is

acknowledged that research in both the medical and agricultural (and

related) fields would benefit from identifying the selective pressures

created by xenobiotics, thereby determining the mechanistic and

evolutionary strategies that will minimise the impact and rise of

xenobiotic resistance. There is an increasing need for adoption of a

holistic approach to control insects and weeds, which aims to

incorporate genetic tools and evolutionary theory to develop

strategies that mitigate resistance emergence and its costs to society.

An early attempt at a holistic approach was made in the 1990s

through the use of Transgenic Insecticidal Cultivars (TICs). TICs

are crops that are genetically modified to incorporate genes from

other organisms that code for compounds that are toxic to pests

(Carozzi and Koziel, 1997). The use of TICs aims to incorporate

chemical strategies by harnessing naturally produced insecticide- or

herbicide-chemicals with biological approaches. However, TICs

require heavy regulation worldwide, and like many other

strategies, it only works in a short timeframe due to adaptation

by the pests to these chemical compounds, which ultimately leads to

an increase in resistance (Gould, 1998).

The Integrated Pest Management (IPM) approach is, however, a

combination of chemical, biological, and cultural strategies to

prevent significant economic loss and reduce the frequency of

xenobiotic resistance (Figure 2, Barzman et al., 2015). While

chemical strategies are most common, integrating cultural
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changes at the agricultural level may achieve better outcomes in the

longer term (Figure 2). Biological strategies can add further value by

using natural predators such as mites and parasitic wasps to reduce

pest populations, or by harnessing gene drives capable of reducing

populations of resistant conspecific insects (Barzman et al., 2015).

Gene drive is a phenomenon where a particular heritable element

enjoys a biased transmission, resulting in a higher prevalence in the

population across generations (Alphey et al., 2020). This

mechanism was first observed in nature in the form of active

transposable elements in Zea maize (Hoffmann et al., 2017).

Naturally occurring segregation distorters can be harnessed and

used to drive detrimental genes or constructing entirely synthetic

gene drives to manage and suppress pest or vector populations

(Wedell et al., 2019).Wolbachia has been used as an endosymbiont
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capable of reducing mosquito populations, whilst also reducing

these insects’ vector competence to dengue (Dorigatti et al., 2018).

The combination of these approaches will allow for a drastic

reduction in the use of xenobiotic compounds to eliminate these

organisms and hence eliminating strong selection for

emerging resistance.

Although highly effective and beneficial, IPM strategies are yet

to be widely adopted. One inherent barrier to the wider take up of

this strategy is its complexity and knowledge-heavy nature, which

requires an investment in education, and experimentation by

farmers (Deguine et al., 2021). But other barriers such as

economic, cultural, or social also need to be addressed to ensure

this strategy can be more efficiently adopted in agriculture (Zhou

et al., 2024).
FIGURE 1

Number of scientific articles exploring the evolution of resistance to human-made compounds across all time (A) or within the last 5 years (B). A
search containing the terms “evolution”, “natural selection” and either of the resistances shown was performed to count the number of scientific
articles in the Web of Science repository that fit these criteria. The dots in the x axis show which terms were searched, connecting lines symbolize
multiple terms searched concurrently. The y axis shows the number of articles that contain the terms searched.
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While IPM has been seen as an efficient approach in the

agricultural sciences, an analogous strategy is yet to be developed

in the context of population health. The closest strategy to date is

One Health, an integrated, unifying approach that aims to optimize

the health of humans, animals, plants, and ecosystems and

recognises that these are closely linked and interdependent (FAO

et al., 2022). This strategy integrates multiple sectors, disciplines

and communities at various levels in society to promote

collaboration and to tackle threats to health and ecosystems

whilst addressing the collective need for clean resources, taking

action on climate change, and contributing to sustainable

development (FAO et al., 2022). However, there is still a lack of

evolutionary theory integration into these plans. Ultimately, this

omission will lead to a resurgence of xenobiotic resistance, incurring

millions of dollars in costs and losses, as well as negatively

impacting ecosystems around the world.

Bacteriophage therapy to combat antibiotic resistance is an

example of an emerging strategy to reduce antibiotic resistance

(Gordillo Altamirano and Barr, 2019). Bacteriophage (or

just phage) therapy has been revived recently and involves

bacteriophages that are absorbed by a specific host-bacterium and

that can be targeted with great precision, resulting in lysis and death
Frontiers in Ecology and Evolution 05
of the antibiotic-resistant bacterium (Gordillo Altamirano and Barr,

2019). However, continually implementing this strategy will simply

favour phage-resistance bacteria as readily as antibiotic-resistant

bacteria. Nevertheless, a holistic approach that uses a combination

of antibiotics, phages, and other strategies may act to control the

rate of evolution of “super resistant” bacteria.

Prophylactic treatments have a higher chance of success at

eradicating the targeted organism and reducing insurgence of

resistance compared with therapeutic treatments (Kennedy and

Read, 2017). Vaccine development and antiretroviral treatments are

exemplary cases. The wide use of vaccines for many decades against

various microorganisms, imposes strong selection for resistance to

emerge. However, vaccine resistance is rarely observed (Kennedy

and Read, 2017, 2018). This is due to the prophylactic nature of

vaccines combined with the fact that vaccines tend to induce

immune responses against multiple targets on a single

pathogen, increasing the difficulty to evolve resistance (Kennedy

and Read, 2017). Prophylactic measures ensure the immune system

retains memory of the measures against pathogens, which increases

efficiency for future incursions. Prophylactic measures also induce

population bottlenecks, prior the use of xenobiotics, which

drastically reduce genetic diversity, and hinders the capacity

microorganisms have to develop resistance to the xenobiotics in

question (Alyokhin et al., 2025). Antibiotics in contrast, do not

create this memory response, and act post-invasion when genetic

diversity is higher, and resistant individuals can be selected for

(Alyokhin et al., 2025). HIV pre-exposure prophylaxis (PrEP) is

another successful approach that has been implemented globally for

more than a decade without a rise in resistance (Gibas et al., 2019).

This antiretroviral strategy, similar to vaccines, relies on its

prophylactic nature and induction of the immune response to

eradicate the virus, creating population bottlenecks, which

reduces genetic diversity and hence the scope for resistance to be

selected for (Gibas et al., 2019).

Other more novel, but not as effective, strategies are the use of

anti-antibiotics, which are compounds that inactivate intravenous

antibiotics that reach the gastrointestinal tract in humans

(LaJeunesse, 2020). The precise deployment prevents resistance in

off-target bacteria while maintaining the effectiveness of antibiotics

in the rest of the body (Morley et al., 2019). Pairing strategies such

as the use of anti-antibiotics with the use of bacteriophages, when

prophylactic strategies such as vaccines are not available, may

potentially reduce the emergence of antibiotic-resistant bacteria,

as these compounds will reduce the selective pressure stemming

from antibiotic usage. Furthermore, these strategies can be

informed by components of evolutionary concepts, including kin

selection theory. Bacteria can adjust their virulence based on their

social and abiotic environment (Kümmerli, 2015). Social

interactions between bacteria are also important in antibiotic-

resistant scenarios, since resistance to xenobiotics can change

dramatically depending on the bacterial community structure

(Denk-Lobnig and Wood, 2023, 2025). In some contexts,

resistance can rapidly evolve through the community when

endogenous bacteria protect the pathogenic bacteria by

metabolising antibiotics before they reach the pathogenic strains.
FIGURE 2

Integrated Pest Management (IPM) as a holistic approach to
xenobiotic resistance. Beckie et al., 2021 showed through
bioeconomic modelling that with the reduction in available herbicides,
strategies like soil tillage or livestock husbandry may become key to
prevent weeds from ruining crops while simultaneously reducing the
frequency of herbicide resistance. While chemical strategies are the
most used, integrated cultural changes at the agricultural level may
achieve better outcomes. Such changes might include better crop
hygiene, crop rotation, livestock husbandry, soil tillage, and many
other interventions (Beckie et al., 2021).
frontiersin.org

https://doi.org/10.3389/fevo.2026.1719781
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Nogueira Alves et al. 10.3389/fevo.2026.1719781
And social interactions can, inversely, reduce the prevalence of

resistant strains if the microbial communities exhibit mutualistic

cross-feeding interactions. In these cases, the most antibiotic

susceptible strain will determine the antibiotic susceptibility for

the whole community, since without this strain the whole

community collapses. Pearl Mizrahi et al. (2023) also showed that

strains of susceptible bacteria can evolve tolerance to antibiotic

compounds if they cohabit with resistant strains of the same

bacterial species. Applying these evolutionary insights may allow

us to predict the emergence of antibiotic resistance and may prove

helpful in understanding the population dynamics of

xenobiotic resistance.

Research into cancer is an exemplary case of how pairing

chemical with evolutionary approaches create a more effective

strategy against xenobiotic resistance. Many types of cancer cells

develop resistance to chemo- and radiotherapy (Hickman, 1996),

and an evolutionary perspective, together with the use of holistic

strategies, has had some success in controlling emerging resistance.

Evolutionary theory predicting how natural populations evolve can

provide insight into how to avoid the emergence of chemo/

radiotherapy resistance in cancer populations (Natterson-

Horowitz et al., 2023). Strategies such as adaptive and extinction

therapies are currently being used in test trials with great success for

some cancers (Zhang et al., 2017). These therapies rely on extinction

biology principles that state that reducing population size (in this

case, cancer cells), while the population is still susceptible to the

stressor (in this case chemo- or radiotherapy) and introducing a

new ecological perturbation (here, a new drug), is often associated

with the extinction of the cancer (Gatenby and Brown, 2020;

Walther et al., 2015). This approach has been driven by the fact

that a cancer is a genetically diverse population, with a highly

sensitive environment (the human host). Strong stressors might

cause too much harm to the environment where the cancer resides,

and genetic tools, such as xenobiotic compounds, are most effective

when targeting specific cell receptors common across the whole

population, and therefore, are not as effective in a genetically

diverse population.

Although a holistic approach is an improved direction for

future resistance research, it may not necessarily provide a

panacea. From an evolutionary perspective, IPM strategies to

combat insecticide resistance involve prevention of the invasion

of resistant insects, and/or reduction of the selective pressure. This

can be achieved by reducing pesticide usage and creating

opportunities to increase the proportion of susceptible individuals

into the population, typically by creating adjacent, insecticide-free

crops (Barzman et al., 2015). While a similar strategy has been

suggested in a hospital context (Cole et al., 2019; Kim et al., 2014), it

is unlikely to garner much traction: hospital administrators would

be reluctant to encourage free movement of patients infected by

bacteria with variable levels of antibiotic resistance across different

wards to reduce levels of antibiotic resistance across the hospital.

Hence the usage of prophylactic measures, such as vaccines and

PrEP-like compounds, might become the best strategy to combat

resistant organisms. And just as the number of effective antibiotics

is decreasing, the number of effective pesticides is also shrinking:
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this number reduced in Europe by 64% between 1999 and 2009

(Moss, 2010). With fewer xenobiotic compounds available, new and

different strategies are required to combat resistance, notably

because the overuse of available human-made compounds will

lead to a further increase in resistance. A correlation between

xenobiotic compound usage and an increase in insecticide

resistance is common across insect taxa, suggesting a causal

relationship (Bass et al., 2015; Bell et al., 2014; Chantziaras et al.,

2014; Reid et al., 2016). This pattern is also true of antibiotic

resistance, and thus, emphasises the commonality of processes

(Ventola, 2015). This emergence in resistance across taxa

underscores why a holistic approach is vital for a multi-levelled

issue, for both human-focused and crop-focused scenarios.

The consistent and taxonomically widespread increase in the

frequency of emerging resistance to xenobiotic compounds

indicates that persisting with current strategies is simply not

sustainable. Changes in the environment, such as the introduction

of xenobiotic interventions, will inevitably create a selection

pressure favouring the evolution of counter-adaptations in the

populations we wish to eliminate. As Raymond (2019) puts it:

“some humility in the face of natural selection can ensure that

human creativity keeps pace with evolutionary innovation”. This

collective creativity will benefit not only from an evolutionary

perspective, but also from collaboration across disciplines and

taxonomic silos. Initial steps within this framework are promising

and show positive outcomes in both agricultural systems and in

cancer therapy (Beckie et al., 2021; Zhang et al., 2017). These

successes encourage a holistic approach more generally to

understand the process of resistance in other taxa, including

fungi, plants and bacteria, thereby allowing us to at least keep

pace with the Red Queen.

To rise to the challenge posed by the Red Queen Hypothesis, the

research community must embrace a paradigm shift—one that unites

the medical and agricultural fields under a shared evolutionary

framework. Resistance across taxa stems from the same evolutionary

principles, yet our responses remain fragmented along taxonomic lines.

Despite society already having the necessary tools at hand, success at

implementing these strategies is rare. To move forward, we must

prioritize four key steps: first, embed evolutionary principles into the

design of all interventions, ensuring strategies are anticipatory rather

than reactive to resistance adaptations. Without evolutionary theory

integrated in our strategies, resistance will keep evolving and

circumventing our efforts. Second, we should foster cross-disciplinary

collaborations that dismantle taxonomic silos, enabling researchers in

agriculture, medicine, and beyond to share data, methods, and lessons

learned. By integrating cross-disciplinary knowledge, we will evolve

beyond focussing on proximate approaches such as developing new

chemical compounds, to broaden the scientific fields’ views to holistic

strategies. Third, we need to expand and harmonize existing

approaches, such as Integrated Pest Management, One Health,

prophylactic measures such as vaccines, and resistance-informed

cancer therapies, to address resistance across taxa. Fourth, enable

individuals such as farmers, nurses, and doctors, who will ultimately

make use of these strategies by educating and funding them. These

steps will require coordinated funding initiatives, global research
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networks, and a willingness to rethink traditional research boundaries.

Only through these actions can we hope to develop and successfully

implement sustainable, long-term solutions that keep pace with the

relentless innovations of natural selection.
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