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Resolving resistance adaptations:
an integrated, evolutionary
perspective across

taxonomic borders

Andre Nogueira Alves*, Mark Elgar' and Nina Wedell

School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia

Resistance to xenobiotic compounds—including insecticides, herbicides,
antibiotics, fungicides, and chemotherapies — is a pervasive and intensifying
problem across agriculture, medicine, and public health. Billions are invested
each year into creating new compounds to combat pests, pathogens, and cancer
cells, yet resistance evolves swiftly and repeatedly. This recurring failure stems
not from a lack of innovation but from a lack of integration. Current strategies are
predominantly developed within disciplinary and taxonomic silos, and often
ignore the evolutionary nature of resistance. This topic is extremely relevant
and contemporary as the emergence of resistance is an evolutionary inevitability
whenever a population is exposed to strong selection pressures such as
xenobiotic compounds. Despite this, resistance management remains reactive
and compound-specific, relying on successive chemical innovations rather than
long-term strategies. In this piece, the authors argue that resistance is not a
domain-specific phenomenon, but a general evolutionary process. Drawing
together research across insects, bacteria, fungi, plants, and cancer biology,
this Perspective outlines how comparative insights and integrative strategies can
reshape the way we approach resistance in both agricultural and biomedical
systems. To confront this pressing and pervasive issue — where evolution
outpaces our interventions — we must adopt an integrative evolutionary
perspective that is anticipatory, not reactive. Resistance to xenobiotics is a
shared evolutionary outcome across life forms, and so too should be our
approach to solving it. This Perspective will serve as a conceptual bridge for
researchers across domains, encouraging coordinated, evolutionary-informed
solutions to one of the most pressing challenges of our time.
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Introduction

Organismal resistance to anthropocentric, xenobiotic
interventions, such as insecticides and antibiotics, is of pressing
health and financial global concern that requires rapid and
sustainable solutions. Billions of dollars are spent every year on
existing chemicals, or to find new alternatives to eradicate
organisms that negatively impact our health and well-being,
including plants, insects, bacterial and fungal parasites, viruses
and coronaviruses, and even cancer cells. Yet all these organisms
have evolved mechanisms to thwart the drugs, chemicals and
transgenic interventions designed to eliminate them (Ahmad
and Khan, 2019; Grochtdreis et al., 2018; Pimentel, 2010;
Alyokhin et al., 2025). This response is predicted by evolutionary
theory: changes in the environment, including the introduction of
xenobiotics, will create a selection pressure favouring the evolution
of counter-adaptations in the species we wish to eliminate. New
interventions are unlikely to be more successful but rather
encourage an ongoing escalation of interventions and counter-
adaptations, with no net gain for either antagonist, a process
dubbed the Red Queen Hypothesis by Van Valen, 1977. Despite
decades of research investigating the mechanisms of organismal
resistance, this thorny issue persists because the interventions,
developed by isolated fields of research, fail to eliminate the entire
population or species. It is timely to recognise that this approach is
not sustainable, and raises the question: should the research
community take a step back and analyse the problem from a
broader perspective to develop different approaches? Here we
outline some advances in disparate fields of xenobiotic resistance,
as well as identify some taxonomic silos, and suggest potential
strategies to combat this pervasive issue of resistance.

The active and continuous emergence of resistance to
xenobiotic compounds reflect the rich history of the evolution of
life (Wedell and Hosken, 2017). More than three billion years of
natural selection has driven the evolution of extraordinary
adaptations that ensure the persistence of populations in diverse
environments. Whilst we have tinkered with evolutionary
processes, including the remarkable success of plant and animal
domestication, we have barely scratched the surface of the potential
nature has to solve anthropocentric problems (Ng et al., 2021). For
example, gene editing techniques such as CRISPR-Cas9, which were
developed a decade ago, leverage an immune response mechanism
in bacteria that has existed for billions of years (Jinek et al., 2012).
Similarly, the potential of utilising the innate metabolism of bacteria
to breakdown pollutants or harvest rare metals from mine waste
was only discovered in the last two decades (Bryan et al., 2006). And
whilst we have been using insecticides to fight pests in agriculture
since the 1940s, most insecticides are still based on compounds
naturally produced by plants (e.g. caffeine and nicotine), which have
evolved for millions of years to prevent the attack of insects
(Matthews, 2018).

Nonetheless, our approach to resolving the challenges of
resistance too often ignores underlying evolutionary processes,
judging each situation as insular and resolved with a single
cellular compound to target. Our history is of sledge-hammer
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solutions in the form of developing and applying new, “last
resort” synthetic poisons. Yet one thing is certain: new methods
of controlling unwanted organisms will generate strong selective
pressures favouring effective counter measures — adaptations that
rapidly evolve in the target population and allow these unwanted
organisms to persist. In this context, it is unsurprising
that resistance has evolved against almost all insecticides (Bass
et al,, 2015), and that antibiotic resistance is a globally pervasive
challenge in our health and agricultural systems (Selvarajan et al.,
2022). Many studies have, in fact, shown that an increased use of
antibiotics is directly linked with an increase in antibiotic
resistance prevalence in medical wards (Goossens et al., 2005;
Willemsen et al., 2009). Clearly, we require a smarter, more
nuanced approach.

An evolutionary process requires an
evolutionary perspective

Perhaps the first step is to recognise that emerging resistance is
an evolutionary process, which requires an appreciation of how
resistance to xenobiotic compounds arises and recognising that
resistance to xenobiotic compounds does not necessarily carry
a cost.

It is widely believed that resistance to human-made compounds
arises from de novo mutations (Bass, 2017). This is a misconception
- in most cases, the evolution of resistance involves the recruitment
or repurposing and/or enhancement of existing genetic
detoxification machinery (Bass, 2017). As such, most adaptations
to detoxify xenobiotic compounds are not necessarily associated
with costs, even though the notion of costly resistance is pervasive
across the scientific fields. For example, the cytochrome P450 gene
Cypg6gl in Drosophila melanogaster was originally involved in the
hydroxylation and detoxification of metabolic compounds (Daborn
et al., 2002). Less than a century ago, Cyp6gl was recruited to
metabolise insecticides such as DDT and imidacloprid (Ffrench-
Constant, 2013). The Cyp6gI ‘resistance’ allele existed prior to the
application of insecticides (Harrop et al., 2014) and became a key
element in driving the evolution of insecticide resistance. This
pattern is not isolated: the same molecular machinery is utilised
in the related species D. simulans, where the orthologue of Cyp6gl
also confer resistance to insecticides by increased expression
(Schlenke and Begun, 2004). The history of resistance adaptations
to anthropocentric compounds is replete with similar cases. Wild
populations of the Australian sheep blowfly, Lucilia cuprina, have
high frequencies of resistance to malathion, an insecticide used
briefly in the 1950s. Resistance to malathion predates the use of this
insecticide, and is most likely associated with standing genetic
variation that already existed in wild populations. Human activity
is responsible for the increase in frequency of these existing rare
variants within natural populations (Ffrench-Constant, 2007).

It is frequently assumed that resistance mechanisms are costly,
and that natural selection will eliminate them in the absence of
exposure to xenobiotic compounds. However, these genetic
detoxification mechanisms that allow insects to manage naturally
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occurring toxins in their environment have been shaped by billions
of years of evolution resulting in minimised or optimised fitness
costs (Wedell and Hosken, 2017). Hence, we should not assume that
these detoxification mechanisms inherently are costly. To
understand this misconception, we must look at cases across taxa
and understand the commonalities between them.

Taxonomic silos

Antibiotic resistance is perhaps more widely recognised in the
public domain due to its dramatic impacts on human lives
(Dadgostar, 2019). However, resistance to xenobiotic compounds
has evolved across all taxonomic groups: insecticide resistance among
insects; plant resistance to herbicides, and resistance to fungicides by
fungi, are globally pervasive and each is of concern (Bass et al., 2015;
Lucas et al., 2015; Owen and Zelaya, 2005). The United Nations has
recently highlighted the urgency of examining these phenomena with
sustainability in mind and an emphasis on research cooperation
amongst countries and institutes (Figueras, 2024). Resistance across
these diverse taxa directly impacts human health and wellbeing, yet
we found there is remarkably uneven research activity across these
taxonomic boundaries and, unfortunately, very little evidence of
engagement between them.

We quantified the number of scientific articles that examined
the evolution of resistance by pairing the terms “evolution” and
“natural selection” with the different types of compound resistance
and searching through the Web of Science’s repository for scientific
articles that mention these terms [20/07/2024]. Over 11,000 articles
were identified with antibiotic/antimicrobial resistance, which is
close to five times more frequent than that identified for insecticide,
herbicide or chemotherapy/radiotherapy resistance (Figure 1A).
The least studied, with five times fewer articles mentioning these
terms, was fungicide resistance (Figure 1A).

A simple way to assess the degree of engagement of research
across these different taxonomic groups is to count the number of
articles that mention more than one type of resistance.
We investigated this possibility by pairing different terms of
resistance and searching through the same repository for scientific
articles. Less than 4% of the 19,165 articles mention the evolution of
resistance in multiple taxa/systems (Figure 1A), and chemotherapy/
radiotherapy resistance research is reported the least in conjunction
with any other type of resistance beyond antibiotic/antimicrobial
resistance. Although this search does not take into account terms
mentioned in sections of an article such as discussion, this search
provides a broader and more conservative snapshot of a pattern
consistent with earlier observations that research into organismal
resistance is segregated into two major groups (REX Consortium,
2007), comprising the medical and the agricultural (and related)
sciences. The chasm between the fields is remarkable, given the
pervasive commonality of resistance to xenobiotics across taxa.

Furthermore, the separation of research on resistance into
taxonomic silos is both historical and contemporary. Confining
this literature to the last 5 years, reveals remarkably similar patterns.
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Antibiotic/antimicrobial resistance is still the most reported
resistance, followed by insecticide, herbicide, and chemotherapy/
radiotherapy resistance. Fungicide resistance remains as the least
reported resistance across the fields (Figure 1B). Most strikingly, the
lack of engagement between fields remains unchanged, with less
than 4% of articles mentioning the evolution of resistance in
multiple taxa/systems (Figure 1B).

This pattern may arise because research on resistance places a
strong focus on resolving proximate questions: how to rapidly
eliminate resistant individuals, and which molecule(s) should be
produced next to target the resistance mechanism? While resolving
these questions may provide short-term solutions, they are not
sustainable in the long term because resistance to anthropomorphic
compounds is not a short-term or transient problem. Natural
selection cannot be eliminated except by extinguishing the
population or species. Nevertheless, it is rarely acknowledged that
across taxa, the resistance mechanisms we observe arise from the
evolutionary recruitment of an existing molecular machinery that
often have low fitness costs (Ffrench-Constant and Bass, 2017). The
lack of sustainable success in controlling unwanted organisms
means we require a different approach that incorporates
evolutionary knowledge and insights from across the traditional
taxonomic boundaries.

Universal approaches for global
problems

The evolutionary problem of resistance has been investigated for
many decades (Futuyma, 1995; Mayr, 1961; Palumbi, 2001), and it is
acknowledged that research in both the medical and agricultural (and
related) fields would benefit from identifying the selective pressures
created by xenobiotics, thereby determining the mechanistic and
evolutionary strategies that will minimise the impact and rise of
xenobiotic resistance. There is an increasing need for adoption of a
holistic approach to control insects and weeds, which aims to
incorporate genetic tools and evolutionary theory to develop
strategies that mitigate resistance emergence and its costs to society.

An early attempt at a holistic approach was made in the 1990s
through the use of Transgenic Insecticidal Cultivars (TICs). TICs
are crops that are genetically modified to incorporate genes from
other organisms that code for compounds that are toxic to pests
(Carozzi and Koziel, 1997). The use of TICs aims to incorporate
chemical strategies by harnessing naturally produced insecticide- or
herbicide-chemicals with biological approaches. However, TICs
require heavy regulation worldwide, and like many other
strategies, it only works in a short timeframe due to adaptation
by the pests to these chemical compounds, which ultimately leads to
an increase in resistance (Gould, 1998).

The Integrated Pest Management (IPM) approach is, however, a
combination of chemical, biological, and cultural strategies to
prevent significant economic loss and reduce the frequency of
xenobiotic resistance (Figure 2, Barzman et al, 2015). While
chemical strategies are most common, integrating cultural
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changes at the agricultural level may achieve better outcomes in the
longer term (Figure 2). Biological strategies can add further value by
using natural predators such as mites and parasitic wasps to reduce
pest populations, or by harnessing gene drives capable of reducing
populations of resistant conspecific insects (Barzman et al., 2015).
Gene drive is a phenomenon where a particular heritable element
enjoys a biased transmission, resulting in a higher prevalence in the
population across generations (Alphey et al., 2020). This
mechanism was first observed in nature in the form of active
transposable elements in Zea maize (Hoffmann et al., 2017).
Naturally occurring segregation distorters can be harnessed and
used to drive detrimental genes or constructing entirely synthetic
gene drives to manage and suppress pest or vector populations
(Wedell et al., 2019). Wolbachia has been used as an endosymbiont
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capable of reducing mosquito populations, whilst also reducing
these insects’ vector competence to dengue (Dorigatti et al., 2018).
The combination of these approaches will allow for a drastic
reduction in the use of xenobiotic compounds to eliminate these
organisms and hence eliminating strong selection for
emerging resistance.

Although highly effective and beneficial, IPM strategies are yet
to be widely adopted. One inherent barrier to the wider take up of
this strategy is its complexity and knowledge-heavy nature, which
requires an investment in education, and experimentation by
farmers (Deguine et al., 2021). But other barriers such as
economic, cultural, or social also need to be addressed to ensure
this strategy can be more efficiently adopted in agriculture (Zhou
et al., 2024).
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FIGURE 2

Integrated Pest Management (IPM) as a holistic approach to
xenobiotic resistance. Beckie et al.,, 2021 showed through
bioeconomic modelling that with the reduction in available herbicides,
strategies like soil tillage or livestock husbandry may become key to
prevent weeds from ruining crops while simultaneously reducing the
frequency of herbicide resistance. While chemical strategies are the
most used, integrated cultural changes at the agricultural level may
achieve better outcomes. Such changes might include better crop
hygiene, crop rotation, livestock husbandry, soil tillage, and many
other interventions (Beckie et al., 2021).

While IPM has been seen as an efficient approach in the
agricultural sciences, an analogous strategy is yet to be developed
in the context of population health. The closest strategy to date is
One Health, an integrated, unifying approach that aims to optimize
the health of humans, animals, plants, and ecosystems and
recognises that these are closely linked and interdependent (FAO
et al,, 2022). This strategy integrates multiple sectors, disciplines
and communities at various levels in society to promote
collaboration and to tackle threats to health and ecosystems
whilst addressing the collective need for clean resources, taking
action on climate change, and contributing to sustainable
development (FAO et al., 2022). However, there is still a lack of
evolutionary theory integration into these plans. Ultimately, this
omission will lead to a resurgence of xenobiotic resistance, incurring
millions of dollars in costs and losses, as well as negatively
impacting ecosystems around the world.

Bacteriophage therapy to combat antibiotic resistance is an
example of an emerging strategy to reduce antibiotic resistance
(Gordillo Altamirano and Barr, 2019). Bacteriophage (or
just phage) therapy has been revived recently and involves
bacteriophages that are absorbed by a specific host-bacterium and
that can be targeted with great precision, resulting in lysis and death
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of the antibiotic-resistant bacterium (Gordillo Altamirano and Barr,
2019). However, continually implementing this strategy will simply
favour phage-resistance bacteria as readily as antibiotic-resistant
bacteria. Nevertheless, a holistic approach that uses a combination
of antibiotics, phages, and other strategies may act to control the
rate of evolution of “super resistant” bacteria.

Prophylactic treatments have a higher chance of success at
eradicating the targeted organism and reducing insurgence of
resistance compared with therapeutic treatments (Kennedy and
Read, 2017). Vaccine development and antiretroviral treatments are
exemplary cases. The wide use of vaccines for many decades against
various microorganisms, imposes strong selection for resistance to
emerge. However, vaccine resistance is rarely observed (Kennedy
and Read, 2017, 2018). This is due to the prophylactic nature of
vaccines combined with the fact that vaccines tend to induce
immune responses against multiple targets on a single
pathogen, increasing the difficulty to evolve resistance (Kennedy
and Read, 2017). Prophylactic measures ensure the immune system
retains memory of the measures against pathogens, which increases
efficiency for future incursions. Prophylactic measures also induce
population bottlenecks, prior the use of xenobiotics, which
drastically reduce genetic diversity, and hinders the capacity
microorganisms have to develop resistance to the xenobiotics in
question (Alyokhin et al., 2025). Antibiotics in contrast, do not
create this memory response, and act post-invasion when genetic
diversity is higher, and resistant individuals can be selected for
(Alyokhin et al., 2025). HIV pre-exposure prophylaxis (PrEP) is
another successful approach that has been implemented globally for
more than a decade without a rise in resistance (Gibas et al., 2019).
This antiretroviral strategy, similar to vaccines, relies on its
prophylactic nature and induction of the immune response to
eradicate the virus, creating population bottlenecks, which
reduces genetic diversity and hence the scope for resistance to be
selected for (Gibas et al., 2019).

Other more novel, but not as effective, strategies are the use of
anti-antibiotics, which are compounds that inactivate intravenous
antibiotics that reach the gastrointestinal tract in humans
(LaJeunesse, 2020). The precise deployment prevents resistance in
off-target bacteria while maintaining the effectiveness of antibiotics
in the rest of the body (Morley et al., 2019). Pairing strategies such
as the use of anti-antibiotics with the use of bacteriophages, when
prophylactic strategies such as vaccines are not available, may
potentially reduce the emergence of antibiotic-resistant bacteria,
as these compounds will reduce the selective pressure stemming
from antibiotic usage. Furthermore, these strategies can be
informed by components of evolutionary concepts, including kin
selection theory. Bacteria can adjust their virulence based on their
social and abiotic environment (Kiimmerli, 2015). Social
interactions between bacteria are also important in antibiotic-
resistant scenarios, since resistance to xenobiotics can change
dramatically depending on the bacterial community structure
(Denk-Lobnig and Wood, 2023, 2025). In some contexts,
resistance can rapidly evolve through the community when
endogenous bacteria protect the pathogenic bacteria by
metabolising antibiotics before they reach the pathogenic strains.
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And social interactions can, inversely, reduce the prevalence of
resistant strains if the microbial communities exhibit mutualistic
cross-feeding interactions. In these cases, the most antibiotic
susceptible strain will determine the antibiotic susceptibility for
the whole community, since without this strain the whole
community collapses. Pearl Mizrahi et al. (2023) also showed that
strains of susceptible bacteria can evolve tolerance to antibiotic
compounds if they cohabit with resistant strains of the same
bacterial species. Applying these evolutionary insights may allow
us to predict the emergence of antibiotic resistance and may prove
helpful in understanding the population dynamics of
xenobiotic resistance.

Research into cancer is an exemplary case of how pairing
chemical with evolutionary approaches create a more effective
strategy against xenobiotic resistance. Many types of cancer cells
develop resistance to chemo- and radiotherapy (Hickman, 1996),
and an evolutionary perspective, together with the use of holistic
strategies, has had some success in controlling emerging resistance.
Evolutionary theory predicting how natural populations evolve can
provide insight into how to avoid the emergence of chemo/
radiotherapy resistance in cancer populations (Natterson-
Horowitz et al.,, 2023). Strategies such as adaptive and extinction
therapies are currently being used in test trials with great success for
some cancers (Zhang et al., 2017). These therapies rely on extinction
biology principles that state that reducing population size (in this
case, cancer cells), while the population is still susceptible to the
stressor (in this case chemo- or radiotherapy) and introducing a
new ecological perturbation (here, a new drug), is often associated
with the extinction of the cancer (Gatenby and Brown, 2020;
Walther et al., 2015). This approach has been driven by the fact
that a cancer is a genetically diverse population, with a highly
sensitive environment (the human host). Strong stressors might
cause too much harm to the environment where the cancer resides,
and genetic tools, such as xenobiotic compounds, are most effective
when targeting specific cell receptors common across the whole
population, and therefore, are not as effective in a genetically
diverse population.

Although a holistic approach is an improved direction for
future resistance research, it may not necessarily provide a
panacea. From an evolutionary perspective, IPM strategies to
combat insecticide resistance involve prevention of the invasion
of resistant insects, and/or reduction of the selective pressure. This
can be achieved by reducing pesticide usage and creating
opportunities to increase the proportion of susceptible individuals
into the population, typically by creating adjacent, insecticide-free
crops (Barzman et al, 2015). While a similar strategy has been
suggested in a hospital context (Cole et al., 2019; Kim et al., 2014), it
is unlikely to garner much traction: hospital administrators would
be reluctant to encourage free movement of patients infected by
bacteria with variable levels of antibiotic resistance across different
wards to reduce levels of antibiotic resistance across the hospital.
Hence the usage of prophylactic measures, such as vaccines and
PrEP-like compounds, might become the best strategy to combat
resistant organisms. And just as the number of effective antibiotics
is decreasing, the number of effective pesticides is also shrinking:
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this number reduced in Europe by 64% between 1999 and 2009
(Moss, 2010). With fewer xenobiotic compounds available, new and
different strategies are required to combat resistance, notably
because the overuse of available human-made compounds will
lead to a further increase in resistance. A correlation between
xenobiotic compound usage and an increase in insecticide
resistance is common across insect taxa, suggesting a causal
relationship (Bass et al., 2015; Bell et al., 2014; Chantziaras et al.,
2014; Reid et al., 2016). This pattern is also true of antibiotic
resistance, and thus, emphasises the commonality of processes
(Ventola, 2015). This emergence in resistance across taxa
underscores why a holistic approach is vital for a multi-levelled
issue, for both human-focused and crop-focused scenarios.

The consistent and taxonomically widespread increase in the
frequency of emerging resistance to xenobiotic compounds
indicates that persisting with current strategies is simply not
sustainable. Changes in the environment, such as the introduction
of xenobiotic interventions, will inevitably create a selection
pressure favouring the evolution of counter-adaptations in the
populations we wish to eliminate. As Raymond (2019) puts it:
“some humility in the face of natural selection can ensure that
human creativity keeps pace with evolutionary innovation”. This
collective creativity will benefit not only from an evolutionary
perspective, but also from collaboration across disciplines and
taxonomic silos. Initial steps within this framework are promising
and show positive outcomes in both agricultural systems and in
cancer therapy (Beckie et al, 2021; Zhang et al., 2017). These
successes encourage a holistic approach more generally to
understand the process of resistance in other taxa, including
fungi, plants and bacteria, thereby allowing us to at least keep
pace with the Red Queen.

To rise to the challenge posed by the Red Queen Hypothesis, the
research community must embrace a paradigm shift—one that unites
the medical and agricultural fields under a shared evolutionary
framework. Resistance across taxa stems from the same evolutionary
principles, yet our responses remain fragmented along taxonomic lines.
Despite society already having the necessary tools at hand, success at
implementing these strategies is rare. To move forward, we must
prioritize four key steps: first, embed evolutionary principles into the
design of all interventions, ensuring strategies are anticipatory rather
than reactive to resistance adaptations. Without evolutionary theory
integrated in our strategies, resistance will keep evolving and
circumventing our efforts. Second, we should foster cross-disciplinary
collaborations that dismantle taxonomic silos, enabling researchers in
agriculture, medicine, and beyond to share data, methods, and lessons
learned. By integrating cross-disciplinary knowledge, we will evolve
beyond focussing on proximate approaches such as developing new
chemical compounds, to broaden the scientific fields’ views to holistic
strategies. Third, we need to expand and harmonize existing
approaches, such as Integrated Pest Management, One Health,
prophylactic measures such as vaccines, and resistance-informed
cancer therapies, to address resistance across taxa. Fourth, enable
individuals such as farmers, nurses, and doctors, who will ultimately
make use of these strategies by educating and funding them. These
steps will require coordinated funding initiatives, global research

frontiersin.org


https://doi.org/10.3389/fevo.2026.1719781
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Nogueira Alves et al.

networks, and a willingness to rethink traditional research boundaries.
Only through these actions can we hope to develop and successfully
implement sustainable, long-term solutions that keep pace with the
relentless innovations of natural selection.
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