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Fossilized trace marks left by our ancestors as they processed animals for food are
important clues to the emergence and intensification of human carnivory and tool
use. When studied in tandem with fossilized tooth marks made by carnivorous
predators, butchery marks also help reconstruct the larger ecological framework
and trophic dynamics of paleocecosystems. However, some taphonomic processes
produce bone surface modifications that mimic the morphology of butchery marks,
introducing the potential for misclassification when relying on imprecise criteria. The
implementation of digital modeling techniques that allow the collection of
microscopic quantitative data has begun to improve the reliability of mark
identification. Although many digital taphonomy methods appear promising, their
broader applications are limited by a lack of replicable methods, unpublished and
closed-source databases, and statistical methodologies that violate core assumptions
for accurate model inference. In this paper, we present an open-source database of
experimentally generated cut, percussion, tooth, and trample marks measured and
analyzed using high-resolution confocal profilometry and a replicable quantification
protocol. Statistical classificatory models using our taphonomic measurement
database can distinguish between experimentally generated bone surface
modifications with 74% to 83% accuracy, depending on the comparative
groupings. Our aim for these classification models is to facilitate accurate
identification of the processes that created fossilized bone surface modifications,
which is the first step to resolving long-standing debates surrounding the origins and
evolution of human carnivory. Additionally, we hope that publishing our open-source
data and code underscores the need for more replicable, collaborative, and
transparent methods in paleocanthropological research.
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butchery marks, confocal profilometry, digital taphonomy, equifinality, experimental
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1 Introduction

Fossilized feeding traces left by hominins and carnivores are
evidence of the biotic ecological dynamics that made up a
paleoecosystem. Assemblage-wide cut, percussion, and tooth
mark frequencies can reveal the amount and type of animal foods
our ancestors consumed and their ecological interactions with prey
and predator species (Selvaggio, 1994; Blumenschine, 1995;
Capaldo, 1997; Dominguez-Rodrigo and Barba, 2006; Pante et al.,
2012, 2015; Dominguez-Rodrigo et al., 2014). These mark
frequencies are empirical data that can be used to understand the
conditions that led to key events in the evolutionary history of our
lineage, especially as it relates to the morphological and
technological evolution that led to the appearance of modern
humans (Blumenschine, 1989; Bunn and Ezzo, 1993; Dominguez-
Rodrigo and Pickering, 2003; Blumenschine and Pobiner, 2007;
Bunn, 2007; Pante et al., 2018; Pobiner, 2020). However, the validity
of these ecological models and broader evolutionary implications
rest on the assumption that researchers can accurately identify
who or what created fossilized bone surface modifications (BSMs)
representative of different feeding traces. As James and Thompson
(2015) emphasize, consensus on a standardized BSM identification
methodology for relating fossilized BSMs to prehistoric and
unobservable actions has yet to be achieved.

Accurately identifying whether a stone-tool-wielding butcher or
non-hominin predator created a fossilized mark is complicated
because many taphonomic processes create similarly shaped marks
that researchers may mistake as a cut or tooth mark (e.g., rodent
gnawing, ungulate trampling, and rockfall in caves) (Behrensmeyer
et al., 1986; Olsen and Shipman, 1988; Dominguez-Rodrigo et al.,
2009; Litynski and Pante, 2023; Marginedas et al., 2023). This
morphological overlap in BSM shape, defined as taphonomic
equifinality, has given rise to prominent, long-standing debates
about the creators of many BSMs, including the earliest potential
evidence of hominin carnivory on 3.4-million-year-old fossils from
Dikika, Ethiopia (McPherron et al, 2010; Dominguez-Rodrigo
et al,, 2012; Thompson et al., 2015) and also on 2.5-million-year-
old fossils from Bouri Hata, Ethiopia (de Heinzelin et al., 1999;
Sahle et al., 2017). Similar debates about fossilized BSMs undermine
efforts to establish consensus about the meat-eating behaviors of
early hominins at the FLK 22 (Zinjanthropus level) site in Olduvai
Gorge, Tanzania (Dominguez-Rodrigo and Barba, 2006;
Blumenschine et al., 2007; Pante et al., 2012, 2015; Parkinson, 2018).

To overcome issues of equifinality, some researchers
qualitatively compare macromorphological BSM characteristics to
determine who or what created a mark (Bunn, 1981; Shipman and
Rose, 1983; Andrews and Cook, 1985; Blumenschine and Selvaggio,
1988; Blumenschine, 1995; Blumenschine et al., 1996; Njau and
Blumenschine, 2006; Dominguez-Rodrigo et al., 2009; Galan et al.,
2009; de Juana et al., 2010). In experimental settings, Blumenschine
et al. (1996) demonstrated that qualitative BSM identification
methods can be effective for differentiating between cut,
percussion, and mammalian carnivore tooth marks. However, the
real-world applicability of these results is complicated by the many
other processes impacting the surfaces of fossils over thousands to

Frontiers in Ecology and Evolution

10.3389/fevo.2026.1681814

millions of years and recent realizations that trained analysts are not
capable of replicating each other’s results despite being trained in
the same research tradition (Dominguez-Rodrigo et al., 2017). The
latter is almost certainly the result of the subjective nature
of qualitative criteria, which are often ambiguously defined
(Dominguez-Rodrigo et al., 2017).

Recognizing that qualitative BSM assessments may be
insufficiently equipped to discern morphologically ambiguous
marks, some researchers now use computational methods to
analyze and measure BSMs. Typically, quantitative BSM studies
use a two-step approach. First, BSMs are digitally reconstructed in
3D using either digital or optical microscopy (Bello and Soligo,
2008; Bello et al., 2011; Boschin and Crezzini, 2012; Dominguez-
Rodrigo et al., 2024, 2025b), confocal profilometry (Braun et al.,
2016; Pante et al., 2017; Otarola-Castillo et al., 2018), structured
light scanning (Mate-Gonzalez et al., 2017; Yravedra et al., 2018;
Courtenay et al, 2019¢, 2021), or micro-photogrammetry (Mate
Gonzalez et al.,, 2015; Arriaza et al., 2017; Yravedra et al., 2017;
Mate-Gonzalez et al., 2018). Then, BSMs are measured to estimate
the most likely action or agent that created the mark using either
landmark-based geometric morphometrics (Arriaza et al., 2017,
2017; Otarola-Castillo et al., 2018; Yravedra et al., 2018; Courtenay
et al., 2020a), Elliptic Fourier analysis (Arriaza et al.,, 2023),
computer vision convolutional neural networks (Courtenay et al.,
2020a; Jimenez-Garcia et al., 2020), or traditional measurement and
angle-based morphometrics (Bello and Soligo, 2008; Bello et al.,
2011; Pante et al., 2017).

Despite the availability of different quantitative BSM modeling
methods, these approaches lack widespread adoption for two
reasons addressed by this paper. First, computational approaches
inherently require a comparative database of experimentally
generated BSMs replicative of potential prehistoric BSM-creating
actions (e.g., carnivore feeding trials or simulated stone tool
butchery) to compare to the shape of fossilized BSMs created by
unknown and prehistoric actions. However, curating and digitizing
experimental BSM databases is both time-consuming and can
require expensive instruments. Second, with the exception of
Pante et al. (2017), BSM modeling techniques have not tested for
inter-observer replicability throughout the entire process of
scanning, measuring, and analyzing a singular BSM. Scientific
replicability is a key step in validating results, facilitating
collaborations, and encouraging methodological acceptance.
Without such tests, it is unclear if these BSM modeling methods
are creating highly precise but, ultimately, inaccurate depictions of
the actions that created fossilized marks.

In this paper, we present measurement data collected from 946
BSMs produced by simulated stone tool and percussive butchery,
captive and wild carnivore feeding trials, and ungulate trampling
experiments. We digitally scanned and measured all 946 of these
marks following the experimental protocol developed in Pante et al.
(2017), which was previously shown to be replicable in
experimental settings. We will continue to add to this database as
our experimental samples increase. Ultimately, we hope that by
publishing the results of our experimental BSM measurement
database, other researchers can use our data to analyze the shape

frontiersin.org


https://doi.org/10.3389/fevo.2026.1681814
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Keevil et al.

of their fossilized BSMs without needing to create their own
experimental databases.

2 Materials and methods
2.1 Experimental BSM sample

Our BSM sample was generated through experiments replicating
the actions of prehistoric agents that have created fossilized BSMs.
Table 1 summarizes BSM data. Below, we outline the experimental
protocols for generating these marks, and if relevant, include a
reference to the original experimental publication.

2.1.1 Cut marks

Cut marks created by intentional bone cutting and actualistic
butchery experiments are included in the measurement database.

Intentionally created cut marks come from two sources. First,
207 cut marks were produced using quartzite, basalt, phonolite, and
chert simple flakes and Acheulean handaxes attached to a
motorized cutting machine [see Keevil (2018) for experimental
protocols]. Second, 50 cut marks were created using chert handaxe
and flake tools and 22 using unmodified stone tools by a single
butcher moving the tools at a 90° angle across the surface of a
defleshed bone with constant pressure.

Cut marks created through actualistic butchery experiments
come from two sources. First, 111 marks come from two butchers
processing skinned, but fully fleshed, deer limbs using chert and
obsidian flakes. An additional 21 cut marks were created by
butchers using chert and quartzite flake and core tools to process
skinned adult goat hindlimbs.

While many digital taphonomy studies analyze intentional or
actualistic cut marks (e.g., Bello and Soligo, 2008; Mate Gonzalez
et al., 2015; Pante et al., 2017; Courtenay et al., 2020a), they rarely
include both types within a single analysis. To evaluate the practical
relevance of treating intentional and actualistic cut marks as a single
population, we assessed group equivalence between the 132
actualistic and 279 intentional cut marks described above using
permutational multivariate analysis of variance (PERMANOVA;
Appendix A.1). Given the large sample sizes, we emphasized effect
size over statistical significance to determine methodological
relevance. As detailed in Appendix A.1, this analysis supports
treating both cut mark types as a single analytical group.
Nonetheless, intentional and actualistic group labels are retained
as supplementary information to allow future analyses to explicitly
compare differences if warranted.

2.1.2 Percussion marks

We include 90 percussion marks from marrow extraction
experiments described in Benito-Calvo et al. (2018). Percussion
marks were produced from a quartzite anvil and a combination of
quartzite and basalt cobblestone hammerstones on cow limb bones.
Following the methodology outlined in Blumenschine (1988), bones
were placed on stone anvils before being struck with hammerstones
to split the bones longitudinally along the axis and extract marrow.
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2.1.3 Tooth marks

A total of 313 carnivore tooth marks created by mammalian and
crocodilian predators were obtained from bones collected during
naturalistic and captive feeding experiments.

Tooth marks created during actualistic feeding trials come from
two studies, and detailed experimental protocols can be found
within their respective publications. First, we include 29 tooth
marks created by free-ranging lions described in Pobiner (2007).
Second, we include 31 tooth marks created by free-ranging spotted
hyenas described by Blumenschine (1988).

Captive feeding trials were conducted at three locations, as
described in Muttart (2017) and Njau and Blumenschine (2006).
First, we include a total of 143 tooth marks from African wild dogs,
lions, spotted and striped hyenas, and North American brown bears
at the Denver Zoo, Colorado, USA. We also include 32 grey wolf
tooth marks from captive wolves at the Rist Canyon, W.O.L.F.
Sanctuary, Colorado, USA. Finally, we also include 78 tooth marks
produced during experimental feeding trials with Nile crocodiles
(Njau and Blumenschine, 2006).

2.1.4 Trample marks

A total of 132 trample marks were measured on bones created
during experimental cow trampling trials. To simulate actualistic
trampling actions, we placed transversely sectioned cow femur
midshafts that had their periosteum, meat, and marrow removed
in empty animal corrals at a local farm in Colorado, USA. Sectioned
femurs were used for this study because they were readily available
from a local butcher and could easily be partially buried in the
different corral sediments. Before each trampling experiment, we
thoroughly inspected the cleaned bones for any butchery marks or
protrusions using low magnification methods. Any marks found
were subsequently highlighted with clear nail polish and marked to
ensure they were not confused with marks created during
the experiment.

After scattering the cleaned bones around the ground and
partially burying some in the corral, we let 25-30 heifers
weighing between 350 and 550 kgs into the corrals for 30 minutes
of trampling with gentle prodding to encourage movement. To
capture a larger array of potential trampling mark shape variation,
we conducted experiments using three sediment types, including
fine-grained sand, gravel, and coarse-grained soil. Bones were
collected after each 30-minute trampling trial and inspected for
evidence of trampling.

2.2 Profilometry methodology

3D models of BSMs were produced using either a Nanovea
ST400 white-light non-contact profilometer or a Sensofar S-Neox
3D optical profiler. The Nanovea 3D models were produced with a 3
mm optical pen that has a z-axis resolution of 40 nm. The spatial
resolution was set to 5 um in the x-axis and 10 pm in the y-axis. 3D
models produced with the Sensofar S-Neox were made using a 5x
lens that has a z-axis resolution of 75 nm. The 5x lens has a
numerical aperture of 0.15, a working distance of 23.5 mm, a field of

frontiersin.org


https://doi.org/10.3389/fevo.2026.1681814
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Keevil et al.

10.3389/fevo.2026.1681814

TABLE 1 Experimental BSM sources for the 411 cut marks, 90 percussion marks, 313 carnivore tooth marks, and 132 trample marks included in this

study.
Experimental Effector
Mark type P o Reference
context characteristic
Human butcher Chert Flake 50 This paper
Human butcher Unmodified Stone 22 This paper
Cutting Machine Basalt Biface 27 (Keevil, 2018)
Cutting Machine Basalt Flake 27 (Keevil, 2018)
Cutting Machine Chert Biface 25 (Keevil, 2018)
Intentional Marking
Cutting Machine Chert Flake 26 (Keevil, 2018)
Cut
Cutting Machine Phonolite Biface 25 (Keevil, 2018)
Cutting Machine Phonolite Flake 25 (Keevil, 2018)
Cutting Machine Quartzite Biface 26 (Keevil, 2018)
Cutting Machine Quartzite Flake 26 (Keevil, 2018)
Human butcher Obsidian & Chert Flake 111 This paper
Actualistic Butchery
Human butcher Chert & Quartzite Flake 21 This paper
Benito-Calvo et al.,
Human butcher Quartzite Anvil 31 (Benito-Calvo et a
2018)
Benito-Calvo et al.,
Percussion Marrow Extraction Human butcher Basalt Hammerstone 29 (Benito-Calvo 260;8)
Benito-Calvo et al.,
Human butcher Quartzite Hammerstone 30 (Benito-Calvo et a
2018)
African Wild Dog Tooth 28 (Muttart, 2017)
Brown Bear Tooth 28 (Muttart, 2017)
African Lion Tooth 37 (Muttart, 2017)
Spotted H Tooth 28 Muttart, 2017
Captive Feeding potted Hyena 00 (Muttar )
Tooth Striped Hyena Tooth 30 (Muttart, 2017)
Grey Wolf Tooth 32 (Muttart, 2017)
Nj d
Nile Crocodile Tooth 78 ( jau an
Blumenschine, 2006)
Spotted Hyena Tooth 31 (Blumenschine, 1988)
Wild Feeding
African Lion Tooth 21 (Pobiner, 2007)
Cow Soil sediment 65 This Paper
Trample Corralled Trampling Cow Gravel sediment 46 This Paper
Cow Sand sediment 21 This Paper

References are included for previously described BSM experiments.

view of 3400 pum x 2837 um, a spatial sampling of 2.76 ym, and an
optical resolution of 0.93 pum. The scale of these resolution
differences does not significantly impact our analysis because they
are orders of magnitude smaller than the scale of the measured
differences between mark types. Further, these differences are
smaller than the reported variability in measurements taken from
a single mark using the same instrument (Pante et al., 2017;
Appendix A.2).

Processing and analysis of 3D models were carried out using
Digital Surf’s Mountains® following Pante et al. (2017). Model
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processing included removing outliers, filling in missing data
points, and removing the underlying form of the bone with the
mark excluded from the form removal process (see Pante et al., 2017
for further detail). Data collected through the analysis from the
entire 3D model of the experimental mark were volume, surface
area, maximum depth, mean depth, maximum length, and
maximum width. Additional data were collected from a profile
taken from the deepest point of the mark, including area of the hole,
depth of the profile, width, roughness (R,), opening angle, and
radius of the hole. Collection of profile data from percussion marks
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that occur on the edge of a bone fragment (approximately half of the
90 marks in the present study) follow a different protocol than was
described by Pante et al. (2017) for other mark types because it is
not possible to take a complete profile through the deepest part of
the mark when it has been split due to its location across the point
of fracture. In these cases, the deepest profile was taken parallel to
the crack across the width of the mark instead of the length.

2.3 Statistical methodology

Statistical analyses were carried out using R (Version 4.4.3;
R Core Team, 2024) and the associated R packages described below.
Code and data are included as supplementary information.

First, we calculated group-level summary statistics (mean,
median, and standard deviation) for the 12 measurement
variables. We also performed a Principal Components Analysis
(PCA) using the prcomp function from the base stats package to
assess measurement variance among these 12 variables. Second, we
use two statistical classification methods - k-fold cross-validated
discriminant analysis (DA) and random forest (RF) - to evaluate
whether our experimental measurement dataset can recognize
specific behaviors from a multivariate analysis of mark shape.

Before generating a DA model, we assessed underlying
assumptions of correlation, normality, and homogeneity of
covariance matrices. Anderson-Darling Tests of univariate
normality and Royston’s test of multivariate normality,
implemented using the MVN package (Korkmaz et al, 2014),
were used to determine necessary data transformations. For
variables that violated normality assumptions, Box-Cox tests
identified an appropriate power or logarithmic transformation.
To prevent data leakage, Box-Cox transformations were
independently performed on the training dataset within each DA
fold and those values were used to transform the testing dataset. All
measurements were log-transformed, except 3D maximum depth
and mean depth, which were transformed by taking the inverse
square root, and angle, which was cubed. Additionally, the mean
depth was transformed using a logarithmic transformation in
two folds.

Pooled within-group tests of correlation on the transformed
dataset, using the “statsBy” function from the Psych package
(Revelle, 2024), indicated that volume was highly correlated with
3D surface area (r = 0.95). Similarly, maximum profile depth was
correlated with 3D maximum depth (r = -0.92) and profile area (r =
0.92). Profile width was also correlated with profile area (r = 0.91).
Based on these exploratory results, we removed volume, profile
width, and maximum depth of the cross-sectional profile from the
DA model.

A Box’s M test, conducted using the “boxM” function from the
heplots package (Friendly, 2010), indicated that our data do not
satisfy the assumption of equal covariance matrices. Based on these
results, we performed a 10-fold cross-validated quadratic
discriminant analysis (QDA) using the “qda” function from the
MASS package (Venables and Ripley, 2002) to assess the accuracy
with which our four experimental mark types could be
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discriminated based on a multivariate analysis of mark shape.
Prior group probabilities were set to be uninformative and
uniform across groups to mitigate the influence of experimental
BSM class imbalances on classification precision.

Following the QDA, we generated one-vs-rest (OVR) receiver
operating characteristic (ROC) curves for each group by averaging
the ROC curves generated across the 10 cross-validation folds. ROC
curves were calculated using the “roc” function in the pROC
package (Robin et al.,, 2011). We also calculated the average area
under the curve (AUC) across the ten OVR ROC curves for each
mark type. These steps allowed us to evaluate the discriminatory
performance of the QDA model for each mark type against the
other three mark types.

We employed RF analysis using the “randomForest” function
from the randomPForest package (Liaw and Wiener, 2002). RF
models are robust to non-normal data and multicollinearity, so
each RF model includes all 12 untransformed measurements.
Because the accuracy and interoperability of RF models are
reduced when group sample sizes are imbalanced (Chen et al,
2004), we use a stratified per-tree downsampling approach with the
minimum sample size set to 90, the smallest group size.

Due to the out-of-bag (OOB) error estimation in RF methods,
we also do not use cross-validation. Furthermore, because our
dataset is not high-dimensional and preliminary testing has not
shown major increases in model performance, we choose not to
tune hyperparameters using a train/validate split, which is more
necessary for high-dimensional or noisy data (Probst et al., 2019).
Therefore, we opted to use the default hyperparameter settings with
the number of trees tested set to 1000, which are likely sufficient for
our low-dimensional measurement dataset.

We generated three RF models for the present study. The first
model included all four mark types. Based on previous qualitative
observations that percussion and tooth marks are commonly
misclassified as each other and that cut and trample marks
exhibit a similar pattern, we generated two additional RF models
that include only marks representative of these two commonly
misclassified relationships.

3 Results
3.1 Summary statistics and PCA

The first three principal component (PC) axes explain
approximately 67%, 13%, and 12% of the variance in our
measurement data, respectively (Figure 1). In total, these three
axes contribute over 92% of the variation in our dataset.

Measurements contributing to data variance along the first axis
include volume, maximum and mean depth, width, and profile area.
In general, these measurements are largest in percussion marks,
followed by tooth marks. Trample marks and cut marks are both
smaller in these dimensions and more similar to each other than
tooth or percussion marks (Table 2). These trends are reflected
along the first PC axes in Figure 1, where there is significant overlap
in the confidence ellipse of cut and trample marks as well as tooth
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PC2 (12.79%)

PC3 (12.14%)

0
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FIGURE 1

Principal component analysis of the BSM measurement dataset. The left scatterplot shows the distribution of measurement variance along the first
two principal components (PC1 and PC2). The right scatterplot shows the distribution of measurement variance along the first and third principal
components (PC1 and PC3). Normal data ellipses and data points are colored by mark type: red for cut marks, yellow for percussion marks, green

for tooth marks, and purple for trample marks.

0
PC1 (67.32%)

and percussion marks, marginal overlap between trample,
tooth, and percussion marks, and the least amount of overlap
between cut and percussion marks.

Variation in data on the second PC axis is primarily driven by
angle, radius, and mark length measurements (Figure 1). In general,
cut and trample marks are both relatively long; however, cut marks
tend to be significantly more acute with a slimmer cross-sectional
profile (Table 2). Tooth marks have the most obtuse opening angle
and broad cross-sectional profile shape, with trample marks being
only slightly more acute and slimmer on average (Table 2). Like
tooth marks, percussion marks tend to be short with broad opening
angles; however, these marks are also characterized by their very
large profile radius values.

Variation in data on the third PC axis reflects a combination of
mark surface area and length, which influenced variance on the
second PC axis. In general, these features are highly similar between
cut and trample marks, as well as between tooth and percussion
marks, as shown by the overlapping cut and trample mark ellipses
and tooth and percussion cut and trample mark ellipses in Figure 1.

3.2 Discriminant analysis

A 10-fold cross-validated QDA including the nine uncorrelated
and transformed measurement variables could discriminate
between our four taphonomic actions with approximately 76%
classification accuracy (Table 3). In general, cut marks most
frequently misclassify as trample marks (64 of the 89 misclassified
cut marks), and trample marks misclassify as cut marks (40 of
the 58 misclassified trample marks). Similarly, tooth marks
most frequently misclassify as percussion marks (27 of the
60 misclassified tooth marks), and percussion marks most
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frequently misclassify as tooth marks (17 of the 21 misclassified
percussion marks).

Cut, percussion, and tooth OVR ROC curves demonstrate
excellent discriminatory power (AUCs of 0.94, 0.96, and 0.94,
respectively), confirming the strong classificatory powers of our
QDA model when classifying these mark types (Figure 2). Similarly,
the OVR ROC curve for trample marks demonstrates very good but
slightly lower discriminatory power (AUC of 0.85). ROC curves and
AUC values illustrate how well our model separates different marks
by testing model performance across all possible decision thresholds
(Fawcett, 2006). In the context of QDA, these decision boundaries
are varied by changing the necessary posterior probability threshold
required to classify a data point into a particular group, and AUC
values above 0.85 indicate excellent model performance. Overall,
these high AUC values attest to the reliability and robustness of the
classification precision obtained in the QDA model.

3.3 Random forests

A RF model including all 12 measurement variables and the
four taphonomic actions studied in this paper produced an OOB
error rate estimate of 25.8% or a predictive classification accuracy of
approximately 74% (Table 4). Among the input measurement
variables, importance analysis of mean GINI decrease shows that
profile width, length, and profile area contributed most significantly
to the predictive power of the RF model (Figure 3). In general, tooth
and percussion marks tend to be shorter, wider, and have greater
cross-sectional profile areas compared to cut and trample marks. All
other variables showed slightly lower importance to the predictive
powers of this RF mode (Figure 3). However, because the mean
GINI decreases are greater than 10 for all measurements, it shows
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TABLE 3 Confusion matrix for quadratic discriminant analysis (QDA).

10.3389/fevo.2026.1681814

Predicted
Percussion Tooth Trample
Cut 322 1 24 64 411
Percussion 3 69 17 1 90
Actual
Tooth 11 27 253 22 313
Trample 40 2 16 74 132
Total 376 99 310 161 946

Bolded values indicate correctly identified BSMs.

misidentifications also generate doubt about the anthropogenic
origin of marks on Late Pleistocene fossils that could rewrite
the timing of humans in the Americas, including marks on the
130,000-year-old Cerutti Mastodon in California (Haynes, 2017;
Holen et al., 2017a; Ferrell, 2019), 30,000-year-old fossils in Arroyo
del Vizcaino, Uruguay (Farina et al., 2014; Holcomb et al., 2022),
and 24,000-year-old fossils in Bluefish Caves, Canada (Bourgeon
et al,, 2017; Krasinski and Blong, 2020; Litynski and Pante, 2023).

Because BSMs are often the only direct evidence of hominin
carnivory and interactions with carnivores and prey animals in
Plio-Pleistocene sites (e.g., Pobiner et al., 2008; McPherron et al.,
2010; Curran et al.,, 2025), misclassifications of these marks stymie
palaeoecological models that are necessary to understand the
evolution of hominin subsistence strategies (Gifford-Gonzalez,
1991; James and Thompson, 2015). Therefore, establishing

methods to precisely identify the ancient actions that created
fossilized BSMs is critical to understanding ecological and
evolutionary trends in the hominin lineage. Despite the potential
for quantitative and computational BSM modeling methods to clear
up these long-standing debates, the widespread adoption of these
methods is obstructed by a lack of open-source measurement
databases investigating experimental BSM shape and methods
that lack tests of reliability.

The present study addresses problems in quantitative BSM
modeling by publishing measurement data for nearly 1, 000
experimental tooth, cut, percussion, and trample marks generated
by replicating actions that may have resulted in fossilized BSMs. As
described below, our goal in publishing these marks is primarily to
gain further insight into the morphological complexities and shape
variation present in BSMs created by different actions. However, we
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TABLE 4 Confusion matrix for the random forest (RF) classifying the four BSM categories.

10.3389/fevo.2026.1681814

Predicted
Percussion Tooth Trample
Cut 318 2 23 68 411
Percussion 1 68 21 0 90
Actual
Tooth 13 41 241 18 313
Trample 39 3 15 75 132
Total 371 114 300 161 946

Bolded values indicate correctly identified BSMs.

also hope that other researchers find use in this now open-source
database of 12 computationally measured features when analyzing
their own fossilized BSMs.

4.1 Univariate descriptors of BSM
morphology

Quantitative evaluations of mark shape provide context to
appreciate the challenges researchers face when employing less
precise qualitative techniques, that is, misidentifying the causal
action behind a feeding trace. While this remains possible when
using quantitative techniques, the known likelihood of error and
posterior probabilities provided for individual classifications allow
assessment of the reliability of mark identifications on fossils that
are not possible with qualitative methods.

Results from our quantitative analysis of butchery, carnivore
tooth, and trampling BSM morphology are consistent with
qualitative descriptions of mark shape. Namely, we show that cut
marks, on average, are the longest mark type, while also having the
smallest cross-mark widths and most acute opening angles. These
measurement data also emphasize the considerable degree of
morphological overlap between trample and cut marks, as
trample marks are often long with intermediary width

measurements. However, our data also shows that trample marks
can be morphologically diverse, having many features intermediate
to and overlapping with cut, tooth, and percussion marks. This
analysis underscores the complexity of qualitative trample mark
identifications and the potential of misdiagnosing these marks as
another BSM type.

Many measured characteristics of percussion and tooth marks
morphologically overlap. The present quantitative assessment of
mark shape corroborates qualitative assessments that tooth and
percussion marks have more equal length:width ratios while also
being deeper than other BSM types. Although quantitative
descriptions highlight the many similarities between tooth and
percussion marks, they also reveal that percussion marks are
characterized by rougher, more complex cross-sectional profile
shapes and larger mean depths. Still, all measurements overlap
between these mark types, which could complicate attempts to
determine whether stone tool percussion or carnivore feeding
produced some fossilized BSMs.

It is well established that different actions and behaviors can
create BSMs with overlapping morphologies, meaning that no
individual morphological feature can serve as a definitive
discriminator. Dominguez-Rodrigo et al. (2009) demonstrate this
concept by showing that, among 14 qualitative criteria now used to
distinguish cut and trample marks, no single characteristic is unique

Width (Profile)
Profile Area

Length (3D)

Mean Depth (3D)
Maximum Depth (3D)

Surface Area (3D)
Profile Radius
Width (3D)
Roughness
Opening Angle
Volume (3D)

A)

FIGURE 3

Cut VS Trample VS Tooth VS Percussion

Maximum Depth (Profile) |-

MeanDecreaseGini

Cut VS Trample

Width (3D)
Maximum Depth (Profile)
Opening Angle
Roughness

Profile Area

Profile Radius

Length (3D)

Width (Profile)

Mean Depth (3D)
Maximum Depth (3D)
Volume (3D)

Surface Area (3D)

B)

6 8 10 12 14

MeanDecreaseGini

Tooth VS Percussion

Mean Depth (3D)
Maximum Depth (3D)
Profile Area

Surface Area (3D)

Width (Profile)

Maximum Depth (Profile)
Profile Radius
Roughness

Length (3D)

Width (3D)

Volume (3D)

Opening Angle

C) o 2

MeanDecreaseGini

Variable importance chart based on mean decrease in Gini from the random forest analysis discriminating cut, percussion, trample, and tooth marks
(A), cut and trample marks (B), and tooth and percussion marks (C).

Frontiers in Ecology and Evolution

09

frontiersin.org



https://doi.org/10.3389/fevo.2026.1681814
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Keevil et al.

TABLE 5 Confusion matrix for the random forest (RF) classifying cut and
trample marks.

Predicted
Cut Trample
Cut 343 68 411
Actual
Trample 46 86 132
Total 389 154 543

Bolded values indicate correctly identified BSMs.

to either mark type. However, the use of binary or nominal scales to
evaluate these qualitative criteria (e.g., U- vs V-shaped cross-
sectional profile shape) obscures subtle differences between mark
types that quantitative methods can more precisely measure. For
example, our quantitative method described can use a combination
of cross-sectional profile opening angle and radius measurements to
describe BSM cross-sectional shape previously described as U- or
V-shaped. The use of ratio-scale measurements can enhance the
precision with which we capture morphological variation between
mark types.

In addition to more thoroughly capturing microscopic details in
BSM shape variability, our analytical methodology quantifies
previously unconsidered, unobservable, and unmeasurable BSM
shapes that might help determine what behaviors and actions
created a mark. For example, we directly quantify the degree of
cross-sectional profile “roughness” and the total mark surface area.
While these new morphological criteria provide a more holistic
representation of BSM shape, they also show that no single variable
can reliably differentiate BSMs in experimental settings. This
observation motivates the subsequent multivariate analysis of
BSM shape.

4.2 Evaluating ML methods for BSM
identification

Machine learning (ML) methods possess immense power to
analyze vast amounts of multivariate data at scales inaccessible to
individual analysts who rely on qualitative criteria. Consequently,
these analytical tools are increasingly common in archaeological
inquiry to classify artifact features using large geospatial, imaging,
or microscopic datasets with complex and hidden variance patterns
(Mantovan and Nanni, 2020; Bickler, 2021; Bellat et al., 2025). The

TABLE 6 Confusion matrix for the random forest (RF) classifying tooth
and percussion marks.

Predicted
Total
Tooth Percussion
Tooth 268 45 313
Actual
Percussion 22 68 90
Total 290 113 403

Bolded values indicate correctly identified BSMs.
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expanded use of complex ML tools can likely, in part, be attributed
to the introduction of “point-and-click” software that makes their
application in analyses of large and complex datasets easy without
the need to understand underlying statistical and methodological
processes (Calder et al., 2022). Below, we demonstrate one
application of ML methods for identifying prehistoric actions
from fossilized BSM shape. However, we also show that, because
ML tools exist within a statistical and analytical “black-box”, there is
a high risk that researchers will misapply these high-powered tools,
which parallels current debates about the limitations of deep
learning methods in resolving taphonomic equifinality associated
with fossilized BSM identifications (Courtenay et al., 2024;
Dominguez-Rodrigo et al., 2025a).

In the present study, we use two ML algorithms to investigate
the potential for multivariate, quantitative descriptions of BSM
shape to determine whether a hominin butcher, carnivore predator,
or ungulate trampler created fossilized marks. In recent years, the
“No Free Lunch” theorem, as described by Wolpert and Macready
(1997), has been interpreted by some researchers as “one should use
as many techniques as possible and determine which one(s) is (are)
the best for the problem at hand” (Dominguez-Rodrigo, 2019,
p. 2714), to justify applying upwards of ten different ML
algorithms to a single dataset. However, this interpretation
overlooks the spirit of this theorem. Model selection should not
be done through brute-force experimentation but, instead, by
familiarity with the variance in your dataset coupled with domain
experience and statistical expertise. For example, bootstrapping a
small sample of only a few hundred datapoints to create thousands
of synthetic samples, solely to justify using ML algorithms like
neural networks, does not resolve the fundamental limitations of
small sample sizes that cause overfitting (Van Der Ploeg et al., 2014;
Lones, 2021). Pursuing complex, data-hungry ML models is
particularly questionable given the availability of many simpler
algorithms that do not require data manipulation. Below, we
explain our reasoning behind the two methods used in this study
and explain model results in light of other BSM studies.

The first method we use to analyze BSM measurements is DA,
as it handles multiple continuous predictor variables simultaneously
to classify unknown datapoints while also being less prone to
overfitting than many other ML methods (McLachlan, 2005;
Khondoker et al.,, 2016; Nikita and Nikitas, 2020). A further
motivator in adopting a DA approach is its long history in
experimental studies of fossilized BSMs (e.g., de Juana et al., 2010;
Bonney, 2014; Pante et al., 2017; Courtenay et al., 2018; Giimriik¢ii
and Pante, 2018; Dominguez-Rodrigo, 2019) and archaeological
inquiry (Kovarovic et al., 2011), facilitating discipline-wide
accessibility of our results. The ubiquity of this method likely
stems from its interpretability, as both input and output data are
straightforward to understand. A further benefit of DA is its
Bayesian framework that allows for the inclusion of prior
qualitative information (Solberg, 1978; Srivastava et al., 2007).
While we do not include qualitative information in our current
model, we foresee Bayesian prior information being included in
future DA models of BSMs using data derived from the past 50
years of qualitative BSM studies.
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The second ML algorithm we use is RF. Given the structure of
our dataset, RF algorithms present a useful ML method because
they can produce precise classificatory models without needing data
normalization or significant preprocessing (Breiman, 2001; Jiang
et al,, 2008). RF methods are also becoming increasingly frequent in
BSM studies (e.g., Courtenay et al., 2019b; Dominguez-Rodrigo,
2019; Dominguez-Rodrigo et al., 2020), making broader
dissemination and interpretation of results easier. However,
downsides of RF models are their black-box programming,
reducing data interpretability, problems with imbalanced datasets,
and overfitting noisy datasets (Chen et al., 2004; Barrenada et al.,
2024; Halabaku and Bytygi, 2024). After accounting for these issues,
we do not see them negatively impacting our analysis. However, we
highlight them as a caution when interpreting the results of past and
future BSM studies using RF methods without knowledge of the
underlying algorithms.

ML results show that DA and RF algorithms can discriminate
between cut, percussion, tooth, and trample marks using 3D and
cross-sectional profile measurements with 76% and 74% accuracy,
respectively. These classification accuracies are comparable to other
ML BSM studies, which frequently report accuracies between 70
and 90% depending on the studied mark-creating actions (Yravedra
etal, 2017, 2018; Courtenay et al., 2019b; Linares-Matas et al., 2019;
Dominguez-Rodrigo et al., 2020). However, considering
classification accuracy alone does not provide a meaningful
assessment of a model’s utility, as differences in the number of
comparative groups or experimental procedures can influence
classification accuracy, as described below.

Classification accuracy can decrease as the number of compared
groups increases, which corresponds to a lower chance level of
accuracy in the classificatory problem (Lones, 2021). Multi-class
discrimination problems with four groups, as in the current study,
have a baseline classification of 25% accuracy. This value represents
the expected value when a dataset has zero underlying structure and
the model, instead, relies on random sorting. Alternatively, two-
class discrimination models with equal group sizes, which are
common in BSM studies (e.g., Pante et al., 2017; Otarola-Castillo
et al,, 2018; Courtenay et al., 2020a, 2020b; Mate-Gonzalez et al.,
2023), have a higher uniform baseline accuracy of 50%. Therefore,
achieving similarly high accuracies becomes more challenging when
dealing with multi-class classification problems.

Experimental procedures also influence ML classification
accuracy. Most algorithms can easily separate datapoints when
there is either low intra-group or high inter-group variance.
When considering BSM shape, low intra-group measurement
variation can occur if experimental protocols generate identical or
very similarly shaped marks that only capture a subset of total real-
world variation. For example, Courtenay et al. (2020a) achieve high
classification accuracies by comparing trample marks to cut marks
intentionally created “by a single right-handed individual,
perpendicular to the bone while the bone was fresh and the meat
intact”. From our experience, we anticipate this experimental
procedure will produce uniformly shaped marks unreflective of
the full spectrum of cut mark morphology.
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In contrast to studies primarily focused on intentionally created
BSMs, we study marks from actualistic experiments mimicking the
real-world actions and behaviors that create bone surface markings
(e.g., replicative stone tool butchery). This does not diminish the
utility of intentionally made BSMs, as we include some of these
marks in our database, but instead advocates for incorporating both
intentional and actualistic marks. In general, this will increase intra-
group variation, leading to lower expected classification accuracy.
However, this protocol will, in turn, produce an ML model more
reflective of real-world variability in mark morphology and have
broader efficacy when identifying what created fossilized BSMs.

A further concern when comparing classification accuracies
across BSM studies is a frequent misapplication of statistical
models, combined with a lack of statistical literacy. This problem
may be demonstrated by the multiple studies reporting 100%
classification accuracies when identifying taphonomic actions
using mark shape (Courtenay et al., 2019b; Dominguez-Rodrigo,
2019; Courtenay et al., 2020a; Dominguez-Rodrigo et al., 2022).
While perfect discriminatory precision may not be entirely
impossible, we view its repeated occurrence across multiple
studies comparing microscopic and characteristically overlapping
details with skepticism. Such consistency in precision across
independent analyses may suggest that shared sampling biases,
measurement constraints, or improper analytical frameworks
influenced outcomes (McPherron et al., 2022; Courtenay et al.,
2024). Therefore, rather than interpreting these reported BSM
identification accuracies as methodologically superior to the
method in the present study, we instead view it as indicative that
further scrutiny is required to ensure reported precisions are not the
artifacts of misapplied analyses.

Below, we discuss three major statistical and analytical issues in
quantitative BSM studies that can artificially inflate experimental
classification rates and, therefore, produce misinformed
interpretations of what prehistoric actions created fossilized
BSMs. We primarily comment on the recent publications by
Dominguez-Rodrigo and Baquedano (2018; 2025) as examples of
ongoing issues in BSM research. However, we emphasize these
issues not to criticize any one research group, but to highlight why
claims of 100% accuracy warrant further scrutiny, as such results
may be more attributable to statistical bias than genuine
discriminatory power.

McPherron et al. (2022) demonstrate that the 100%
classification accuracy reported by Dominguez-Rodrigo and
Baquedano (2018) when distinguishing cut, trample, and tooth
marks likely stemmed from improper bootstrapping methods.
Additionally, it seems likely that this high classification accuracy
is due to data leakage caused by bootstrapping data before
separating the testing and training datasets. Unfortunately, data
leakage is common in ML studies of BSM shape, which may be
creating over optimistic classification accuracies. For example,
multiple geometric-morphometric studies follow nearly identical
analytical protocols by reducing data dimensionality using PCA,
then, often, bootstrapping the data, before, finally, separating it
into testing and training datasets (e.g., Aramendi et al.,, 2019;
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Courtenay et al., 2019b, 2020a, 2020b; Yravedra et al., 2022; Mate-
Gonzalez et al., 2023). As such, the testing and training data both
inform the PC scores, leading to the training data in the model
having direct knowledge of the test set and, potentially, biasing
results (Moscovich and Rosset, 2022). It is difficult to fully assess the
limitations of these studies because the statistical methods are rarely
explained in detail. However, improper bootstrapping methods
resulting in duplicated data in testing and training sets, alongside
other issues of data leakage, almost certainly compromise model
accuracy and create poorly informed interpretations of the
fossil record.

While it is occasionally possible to trace methodological
problems and identify statistical and analytical shortcomings in
BSM studies, most studies do not report code, data, or explain their
methodological design in sufficient detail to identify such problems.
One recent exception is Dominguez-Rodrigo and Baquedano
(2025), who publish their dataset and statistical code in response
to McPherron et al’s (2022) earlier criticisms. This renewed
analysis shows that, when controlling for data leakage, their ML
method can distinguish cut, tooth, and trample marks with up to
100% accuracy. While we applaud their open distribution of the
dataset and code, we believe this dataset and code contain more
fundamental issues in the data collection and statistical design that
likely permeate most high-accuracy BSM identification studies
without openly published data and code.

At a fundamental level, the dataset in Dominguez-Rodrigo and
Baquedano (2025), published nearly a decade after their original
2018 paper and used in other studies (Dominguez-Rodrigo, 2019;
Abellan et al., 2022), appears to contain typographical errors.
Specifically, their binary present/absent “microstriation” variable
has three levels.

A further concern with the dataset in Dominguez-Rodrigo and
Baquedano (2025) is that it contains variable criteria that are not
fully explained in either the original or this paper. For example,
groove trajectories were originally coded as being straight, curvy, or
sinuous by Dominguez-Rodrigo et al. (2009). However, a fourth
category exists in the published dataset, which is potentially
explained by Abellan et al. (2022, p.14) as being “variable”. How
a “variable” groove trajectory differs from sinuous grooves is
unclear. The addition of new variates that are ambiguously
defined further reduces replicability between analysts, which
Dominguez-Rodrigo et al. (2017) showed was already an issue
when coding for the 14 qualitative variables that Dominguez-
Rodrigo et al. (2009) introduced for BSM identification.

Even if these structural dataset issues are overlooked, issues
permeate how Dominguez-Rodrigo and Baquedano (2025) apply
ML algorithms. After generating 1,000 RF models using three
variables and randomized training/testing data splits, Dominguez-
Rodrigo and Baquedano (2025) report a mean classification
accuracy of 100% with a standard deviation of 0%. These values
indicate that all 1,000 RF models could perfectly separate the cut,
trample, and tooth marks in the randomized testing datasets every
single time. However, inspection of their code reveals that they
inadvertently included the label category (coded as “croc”, “tramp”,
“rf”, and “sf” for crocodile, trample, retouched cut marks, and
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simple cut marks, respectively) as a variable in the RF model,
allowing their model to achieve perfect discrimination in the test
dataset by using this single “variable”. After correcting for this issue,
the accuracy of this model decreases substantially to
approximately 85%.

We do not presume that Dominguez-Rodrigo and Baquedano
(2025) included the label variable in their openly published code
intentionally, but we raise this issue as a cautionary tale that using
ML methods without understanding the underlying algorithmic
principles can easily lead to their misapplication. Researchers
familiar with ML methods should recognize that 1,000 RF models
reporting perfect classification accuracy is implausible, barring
perfectly separable datasets. Here, domain knowledge also plays
an important role in constructing ML models, as taphonomic
researchers should also recognize that there will always be
morphological overlap between these types of BSMs that would
reduce model accuracy.

Ultimately, issues plaguing studies of fossilized butchery marks
stem from a lack of transparent data and methods, as well as a lack
of understanding of how to properly apply statistical methods. The
present study overcomes these issues by publishing our raw BSM
measurement dataset as well as the associated analytical code
necessary to analyze this dataset. Additionally, we hope that our
critique highlights that the goal of taphonomic research should not
be 100% classification accuracy in experimental models. Instead,
research should understand the past as precisely as possible while
acknowledging that BSM shape can and will overlap, meaning
models with realistic data will likely never achieve perfect
discrimination. When ML models are constructed correctly, we
can simultaneously assess the experimental precision of the model
and the confidence levels for individual classifications of fossilized
BSMs providing quantitative assessments of the probability that a
specific action produced each mark.

4.3 Misclassification patterns in BSM
identification

Our classification models reveal three trends about the shape of
bone markings created by different actions. First, following
qualitative observations (Behrensmeyer et al., 1986; Olsen and
Shipman, 1988; Dominguez-Rodrigo et al., 2009), our model
frequently misidentifies cut and trample marks for each other.
Second, we show a similar trend of misclassifying carnivore tooth
marks and percussion marks, which is also consistent with previous
qualitative descriptions (Blumenschine and Selvaggio, 1988;
Blumenschine et al., 1996; Galan et al., 2009). A third, and
somewhat surprising, trend in our models is that a non-
insignificant number of tooth marks are misclassified as cut and
trample marks and vice versa. Below, we describe the relevance of
these trends considering previous experimental work.

4.3.1 Cut & trample marks
Qualitatively, there is disagreement about what morphological
criteria are diagnostic of trample marks. Trampling BSMs occur as
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animals kick, walk on, or otherwise move a bone against sediment
above, below, or along the ground (Olsen and Shipman, 1988).
Generally, this process produces large patches of microscopic
and easily identifiable abrasion marks (Dominguez-Rodrigo et al.,
2009). However, in some instances, trampling moves bones against
rocks or a surface that produces BSMs that macromorphologically
mimic cut marks (Behrensmeyer et al., 1986; Dominguez-Rodrigo
et al., 2009; Courtenay et al., 2020a).

Dominguez-Rodrigo et al. (2009) show that, compared to many
cut marks, some but not all trample marks have sinuous groove
trajectories without shoulder flaking. However, Dominguez-Rodrigo
et al. (2017) also show that there is limited inter-observer agreement
when qualitatively identifying these features. Furthermore, some
criteria Dominguez-Rodrigo et al. (2009) use to define trample
marks, such as shoulder flaking, are absent on fossils that have
undergone weathering and other post-depositional processes.
Further confusion surrounding what features are diagnostic of
trampling is highlighted by descriptions in Behrensmeyer et al.

FIGURE 4

Example of a trample (A) and cut (B) mark with overlapping 3D characteristics, including length, width, and maximum depth

10.3389/fevo.2026.1681814

(1986) and Olsen and Shipman (1988), who disagree whether
trample marks have or lack internal microstriations.

Our quantitative assessment of trample and cut marks also
reveals many overlapping morphological features between these
mark types, as shown in Figure 4. Mean 3D depth and profile depth
measurements are nearly equal between cut and trample marks
(Table 2). Similarly, profile roughness as a proxy measurement for
the presence and extent of microstriations is only slightly smaller in
cut marks compared to trample marks (Table 2). Because these
variables are measured on a microscopic scale, the quantitative
measurements in the present study highlight nuances that were only
previously qualitatively described, providing a more objective
description of mark similarities.

Nonetheless, the same analysis demonstrates that there is some
unique variation between cut and trample mark shape. These
distinct measurements appear to reflect that trampling tends to
produce broader marks than stone tool butchery. This is reflected
by trample marks having an average radius almost four times
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greater than cut marks and almost double 3D and profile widths
(Table 2). Despite these differences in cut and trample mark
measurements, the standard deviations reported in Table 2 reveal
that all measurement variables overlap to some degree, meaning
that no one measurement variable can perfectly discriminate
between these marks. Consequently, we consider a multivariate
approach to capture the combined discriminatory power of
multiple variables in identifying cut and trample marks.

The capacity for a multivariate approach to discriminate cut
and trample marks is shown by three of the discriminatory models
produced in the present study. First, we consider a QDA model and
a RF model comparing cut, trample, percussion, and carnivore
tooth marks, showing that even when jointly considering all
measurement variables, cut and trample marks can overlap in
shape. The extent of multivariate morphological overlap between
cut and trample marks is shown by the QDA confusion matrix,
where 104 out of the 228 misclassified marks occur between cut and
trample marks, and the RF confusion matrix, with 107 out of the
244 misclassified marks (Tables 3, 4).

A follow-up RF model comparing only cut and trample marks
reveals the multivariate features that help differentiate these two
mark categories. This two-mark RF model was able to discriminate
between cut and trample marks with approximately 79% accuracy.
In general, the most important variables in this RF model, as
depicted by a variable importance plot (VIP) (Figure 3), align
with our univariate analysis of cut and trample mark
characteristics, specifically that measurements associated with
mark breadth and broadness are informative when separating
these classes.

One surprising observation in the VIP of the RF model
separating cut and trample marks is that maximum profile depth
contributes significantly to this model’s ability to discriminate
between marks. When considered univariately, mean maximum
profile depth is nearly equal between cut and trample marks. The
importance of this depth variable is likely due to its covariation with
another variable, or if it has a non-linear relationship that
contributes to discrimination in this model. This observation
underscores the broader utility of a multivariate approach in
revealing hidden patterns that may be missed when considering
only a singular variable.

In general, few quantitative BSM studies consider how
trampling marks differ from butchery marks. One exception is
Courtenay et al. (2020a), who use 3D microscopy, geometric
morphometrics, and deep learning neural networks to distinguish
trampling marks from cut marks with 100% accuracy. However, the
methodological design of this study only considers intentionally
created cut marks, while also suffering from data leakage problems
caused by using a PCA and bootstrapping before splitting testing
and training datasets. As such, the results reported in Courtenay
et al. (2020a) likely confirm our findings that there are
morphological differences between cut and trample marks.
However, we remain skeptical that any method can discriminate
these marks with 100% precision.

Other quantitative studies characterize the shape of trampling
marks; however, they do not consider how trampling BSMs
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compare to cut marks (Courtenay et al., 2019¢, 2020b) or they
use primarily descriptive statistical tests that do not assess data or
model discriminatory power (Souron et al, 2019). As such, the
application of quantitative BSM modeling techniques for
differentiating trampling marks from other taphonomic processes
remains unclear.

The results of our study, alongside other qualitative and
quantitative studies of trample and cut marks, indicate that cut
and trample marks overlap in morphological characteristics. These
similarities could easily lead to researchers misidentifying a
fossilized trample mark as a cut mark, and vice versa.

4.3.2 Tooth & percussion marks

Qualitative shape characteristics of percussion marks are known
to overlap with carnivore tooth marks (Blumenschine and
Selvaggio, 1988, 1991; Blumenschine, 1995; Blumenschine et al.,
1996; Galan et al., 2009). Both carnivore and percussive behaviors
can create pit-shaped marks with similarly high breadth:depth
ratios. Qualitative studies show that these marks often differ
based on the presence or absence of internal microstriations
(Blumenschine et al., 1996). However, Galan et al. (2009) show
that when butchers use non-modified hammerstones, they create
percussion marks lacking internal microstriations, which overlap
morphologically with carnivore tooth marks.

The present quantitative assessment of tooth and percussion
marks confirms qualitative observations that these mark types
overlap morphologically. Specifically, we confirm previous
qualitative results that the mean length and width of tooth marks
tend to resemble percussion marks (Table 2), as shown in Figure 5.
Additionally, our results show that both carnivore predation and
percussion behaviors produce pit-shaped marks with similarly
obtuse cross-sectional profiles (Table 2).

However, our results diverge from qualitative observations by
showing that percussion marks are, on average, twice as deep as
tooth marks (Table 2). These observations contrast previous
descriptions of both mark types having similarly high breadth:
depth ratios, as they have similar width values but differ in depth.
This observation can likely be attributed to the high resolution of
the confocal profilers used in this study, which can measure
micrometer-scale differences in mark size and shape. Similarly,
our technique shows that previously unconsidered features, such
as mark volume and profile radius, are nearly twice as large in
percussion marks compared to tooth marks (Table 2).

As in our analysis of cut and trample marks, this univariate
analysis shows that no single measurement variable perfectly
differentiates tooth and percussion marks. As such, we assess the
discriminatory powers of our multivariate measurement dataset
using three different classification models.

Confusion matrices produced by the four-mark QDA and RF
models show that tooth marks are most frequently mistaken as
percussion marks, and vice versa. In the QDA model, 27 of the 60
misclassified tooth marks are classified as percussion marks, and 17
of the 21 misclassified percussion marks are classified as tooth
marks (Table 3). We observe a similar trend in the RF model, where
41 of the 72 misclassified tooth marks classify as percussion marks,
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FIGURE 5
Example of a percussion (A), tooth (B), and trample (C) mark with
overlapping 3D characteristics.

and 21 of the 22 misclassified percussion marks classify as tooth
marks (Table 4).

We also generated a two-mark RF model comparing tooth and
percussion marks to further investigate the multivariate
classification powers of our dataset. This two-mark model was
able to discriminate tooth and percussion marks with

Frontiers in Ecology and Evolution

15

10.3389/fevo.2026.1681814

approximately 83% accuracy. A VIP of the RF model shows that
maximum and mean depth measurements contribute most to the
construction of this model, which aligns with our univariate
measurement descriptions (Figure 3). Length and width
measurements are less influential in our two-mark RF model,
which agrees with previous qualitative and our univariate
observations that these measurements tend to be similar.

In general, 3D studies of percussion marks have not received
significant attention compared to cut and tooth marks. Yravedra
et al. (2018) discriminate between carnivore tooth marks and
percussion marks using a geometric morphometric and structured
laser scanning approach with approximately 76% accuracy. This
result is slightly lower than the 83% classification accuracy shown in
our tooth and percussion RF model (Table 6).

In addition to providing a higher classification accuracy
compared to Yravedra et al. (2018), the methodology described in
the present study has several advantages. First, Yravedra et al.
(2018) use a DAVID structured light-scanner, which has a very
low reported maximum resolution of only 60,000 nm (Mate
Gonzalez et al,, 2015) compared to the scanner resolution of 45
or 70 nm used in this study. Despite structured-light scanning
methodologies being common in studies of BSMs (e.g., Arriaza
et al,, 2019; Courtenay et al., 2019d, 2019a; Mate-Gonzalez et al.,
2019), low-resolution data could easily impact mark classification
when considering microscopic mark features. The issue is even
more problematic when considering that in this study, the only
inter-analyst test of replicability was in the geometric-
morphometric landmarking procedure, not the scanning
procedure that creates the mark. Furthermore, Yravedra et al.
(2018) highlighted that their scanner is unable to capture
“inconspicuous marks whose main morphological exterior and
interior features could not be appreciated”, suggesting that this
method is not appropriate for studying many deep and/or wide
percussion or tooth marks. The inconspicuous marks are key to
accurately estimating hominin and carnivore involvement in the
accumulation of fossil assemblages but are also the most difficult to
distinguish from one another when using qualitative methods. Our
high-resolution technique is capable of measuring these shallow
and difficult to identify marks.

4.3.3 Trample and cut marks & tooth marks

An unanticipated trend in our quantitative BSM study is how
frequently tooth marks misclassify as both cut and trample marks,
and vice versa. Pante et al. (2017) demonstrate that cut and tooth
marks can have overlapping morphological features that, when
quantitatively measured in 3D, will lead to classificatory models
occasionally misclassifying one mark as the other (approximate
misclassification rate of 2.75%). Our results misclassify these marks
with an approximate 7% misclassification rate, which exceeds
previous misclassification estimations and could suggest that
some fossilized BSMs classified as cut, tooth, or trample marks
are misclassified.

The results of this study show that there is morphological
overlap between cut, trample, and tooth marks. Twenty-four out
of the 89 misclassified cut marks in the QDA model and 23 of the 93
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misclassified cut marks in the RF model are classified as tooth marks
(Tables 3, 4). Alternatively, of the 60 misclassified tooth marks in
the QDA model, 11 misclassify as a cut mark, while 13 of the 72
misclassified tooth marks in the RF model misclassify as a cut mark
(Tables 3, 4).

Previous qualitative studies primarily concern themselves with
cut and tooth mark morphological variability. In general, these
marks are considered relatively straightforward to distinguish. For
example, Blumenschine et al. (1996) show that qualitative mark
identification methods can reliably distinguish carnivore tooth
marks and cut marks made by metal knives in experimental
settings. However, Potts and Shipman (1981) show that fine tooth
scratches by carnivores can easily be mistaken for cut marks in both
microscopic and macroscopic features. In general, because of the
presumed ease in distinguishing cut and tooth marks, the
relationship between these marks is omitted from most
quantitative studies of BSM morphology, with some researchers
calling it unnecessary as the relationship is “relatively obvious and
less informative” (Courtenay et al., 2019a) and “[does] not respond
to any real archaeological questions” (Courtenay et al., 2019¢).

We agree with the notion that qualitatively identifying cut
marks that are extremely long, narrow, and with a clear V-shaped
cross-sectional profile from some tooth scores or pits on bones that
are extremely short, round, and have a more U-shaped profile is not
problematic. However, many fossilized marks lack morphological
clarity, making their classification as a tooth, cut, or other BSM
problematic. For example, whether the 3.4-million-year-old marks
on the Dikika fossils were produced by a hominin butcher or a
different process has been the subject of intense debate for over a
decade (McPherron et al.,, 2010; Dominguez-Rodrigo et al., 2012;
Thompson et al, 2015), while some of the 2.5-million-year-old
Bouri Hata marks have also been questioned (Sahle et al., 2017).
These debates cloud our understanding of the origins of hominin
carnivory and its role in the evolutionary history of humans.

Further examination of the misclassified tooth and cut marks in
our QDA and RF models provides additional context for
understanding why long-standing debates persist for some fossilized
BSMs. In our QDA model, 16 of the 24 cut marks misclassified as
tooth marks were produced by unmodified stone tools. Similarly, 13 of
the 23 cut marks misclassified as tooth marks in the RF model were
made by unmodified stones used as tools (Appendix B.1 & B.2). In
their description of the 3.4-million-year-old Dikika marks, McPherron
etal. (2010) hypothesized that early hominin butchers could have used
naturally occurring and unmodified stones as tools to obtain animal
tissue. This suggests cut marks made by unmodified stones could
potentially be mistaken for crocodile tooth marks.

Our results also suggest there is potential for misclassification of
crocodile tooth marks as cut marks. Specifically, of the tooth marks
that were misclassified as cut marks, six of the 11 in the QDA model
and six of the 13 in the RF model were produced by crocodiles
(Appendix B.1, B.2). This point underscores the morphological
overlap of BSMs produced by unmodified stones used as tools and
crocodile teeth. Overall, the majority of crocodile tooth marks were
correctly classified by both models (72% and 71% in the QDA and
RF models, respectively), suggesting their potential for
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misclassification as cut marks on fossils is much lower after the
emergence of stone tool technologies. These findings highlight the
importance of applying more objective quantitative BSM modeling
methods, as described in the present study, to analyze
controversially identified BSMs.

The similarities between tooth marks and trample marks are
more or less unexplored in both qualitative and quantitative
experiments compared to trample and cut marks. As noted above,
this is likely because trample marks are qualitatively described as cut
mark mimics (Behrensmeyer et al., 1986; Olsen and Shipman,
1988). While the results of this study do support the qualitative
similarities between cut and trample marks, it also shows that
trample marks can share morphological features with tooth
marks, as evidenced by the digital tooth and trample mark
reconstructions in Figure 5. Some trample marks present width:
length relationships as great or greater than tooth marks and have
similarly shaped U-shaped cross-sectional profiles, as reflected in
their broad opening angle and large radii (Table 2).

We note a similar observation of trample marks misclassified as
tooth marks, with 16 of the 58 misclassified trample marks in the
QDA model and 15 of the 57 misclassified trample marks in the RF
model being classified as tooth marks (Tables 3, 4). Similarly, 22 of
the 60 misclassified tooth marks in the QDA model were classified
as trample marks, and 18 of the 72 misclassified tooth marks in the
RF model classified as trample marks (Tables 3, 4).

Our observation that tooth marks can look like cut and trample
marks and vice versa supports the data-centric approach we employ
in this study. Compared to model-centric studies that focus on
parameterizing and refining models, data-centric methods focus on
improving the quantity and quality of the data by accepting
redundancy or noise in the dataset (Jakubik et al, 2024). This
approach, which is fast becoming a standard in many ML studies,
allows for a broad understanding of the patterns in a dataset across
all groups (e.g., our model comparing the four experimental BSM
groups) before creating subset models to study relationships more
in-depth (e.g., our models comparing cut and trample marks). In
addition to finding and allowing for underlying and hidden
relationships to be discovered in a dataset, data-centric ML
methods do not necessarily focus on creating hyperparameterized
models that may not apply to real-world scenarios (Zha et al., 2025).

While not the primary focus of any model developed in the
present study, the observation that tooth marks, cut marks, and
trample marks have overlapping morphological characteristics has
important implications for using fossilized BSMs as a proxy for
understanding hominin carnivory. Namely, it may suggest that
qualitative observations of fossilized butchery BSMs previously
considered “relatively obvious” and unworthy of further
consideration may, in fact, be evidence of non-hominin-related
activities, such as carnivore consumption.

5 Conclusion

Numerous studies over the past two decades highlight the
potential of quantitative BSM identification methods for
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discerning the specific actions that created marks on fossils (e.g.,
Bello and Soligo, 2008; Bello, 2011; Bello et al., 2011; Boschin and
Crezzini, 2012; Mate Gonzalez et al., 2015; Pante et al., 2017;
Dominguez-Rodrigo and Baquedano, 2018; Otarola-Castillo et al.,
2018, 2022; Yravedra et al., 2018; Courtenay et al., 2019a, 2020a,
2020b; Linares-Matas et al., 2019; Jiménez-Garcia et al., 2020;
Pobiner et al., 2023; Curran et al., 2025). However, these methods
lack widespread adoption because most experimental procedures
are unstandardized, which generates a discipline suffering from
irreproducible experimental methodologies, data, and results
(James and Thompson, 2015). In the present study, we describe
the first open-source database of BSM measurements
experimentally generated through simulated stone-tool butchery
and percussion, carnivore feeding trials, and ungulate trampling
using a quantitative BSM identification method shown to be
replicable. Here, we also show how these data can be used to
precisely identify what specific taphonomic action created a mark
based on mark shape in experimental settings, which has
applications for identifying similarly shaped BSMs on
fossilized bones.

Our intention in publishing raw measurement values for the
largest sample of experimentally generated BSMs to date is to
facilitate scholarly collaborations and encourage the adoption of
quantitative BSM modeling methods. Data generated by this study
have the potential to assist researchers when analyzing
morphologically ambiguous fossilized BSMs, improving the
reliability and accuracy of our understanding of hominin carnivory.

While the results of this study are promising for discriminating
actions based on fossilized BSM shape, we also recognize that our
experimental BSM database is incomplete. No single experimental
procedure can fully capture the vast array of possible BSM shapes
produced by any taphonomic process. For example, the 411 cut
marks included in the present database likely capture a sizable
amount of morphological variation that could occur in all possible
cut marks. However, it is possible that different stone tool
technologies (e.g., blades) or raw materials, or even individual
butchers could produce morphologically distinct BSMs not
currently captured in our database. While it is important to
acknowledge such methodological and experimental restrictions,
this inherent limitation should not be viewed as a barrier to
scientific progress, nor should it impede the use of experimental
mark data to understand what effectors and actors (sensu Gifford-
Gonzalez, 1991) created fossilized BSMs.

The current study marks the beginning of an ongoing project
expanding and contributing additional marks to the BSM
measurement database presented in this paper. Expanded
versions of this BSM database will include larger samples of the
mark types presented in this paper, as well as previously unstudied
mark types, such as rodent gnawing, bone retoucher, and root
etching. As this database grows, so will our understanding of the
morphological variation that is possible for each BSM type.

While the primary aim of the present study is to introduce a
working measurement database following the analytical protocols
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established by Pante et al. (2017), we recognize that other
researchers may wish to analyze our experimental BSM database
using alternative measurement methods. Accordingly, forthcoming
publications will include the raw scanned files of our experimentally
generated BSM database as openly available 3D coordinate XYZ
text files.

An important aspect in presenting this dataset is that we do not
intend for our methodology to supplant qualitative BSM
identification methods, but instead, work in tandem with
such methods. Fossilized marks that researchers agree are
unambiguously created by a specific taphonomic action should not
require further analysis. However, BSMs that are morphologically
ambiguous or the subject of intense debate (e.g., Dominguez-Rodrigo
and Barba, 2006; Blumenschine et al., 2007; McPherron et al., 2010;
Dominguez-Rodrigo et al.,, 2012; Farifa et al., 2014; Thompson et al.,
2015; Holen et al., 2017b; Ferrell, 2019; Holcomb et al., 2022) should
be prioritized when modeling fossilized BSM morphology. Ultimately,
we hope that this database can help clear up long-standing
controversies about the origins of some marks on fossil bones that
researchers continue to debate.
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