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A comparative bone surface
modification database for
revealing the origins and
evolution of human carnivory
Trevor L. Keevil1*, Alex J. Pelissero1, Tewabe Negash1,
Emily R. Orlikoff2, Isabell Osborne1, April M. Tolley1,
Briana Pobiner3 and Michael C. Pante1

1Department of Anthropology and Geography, Colorado State University, Fort Collins, CO, United States,
2Department of Anthropology, University of Michigan, Ann Arbor, MI, United States, 3Human Origins
Program, Department of Anthropology, Smithsonian Institution, Washington, DC, United States
Fossilized trace marks left by our ancestors as they processed animals for food are

important clues to the emergence and intensification of human carnivory and tool

use. When studied in tandem with fossilized tooth marks made by carnivorous

predators, butchery marks also help reconstruct the larger ecological framework

and trophic dynamics of paleoecosystems. However, some taphonomic processes

produce bone surface modifications that mimic the morphology of butchery marks,

introducing the potential for misclassification when relying on imprecise criteria. The

implementation of digital modeling techniques that allow the collection of

microscopic quantitative data has begun to improve the reliability of mark

identification. Although many digital taphonomy methods appear promising, their

broader applications are limited by a lack of replicable methods, unpublished and

closed-source databases, and statistical methodologies that violate core assumptions

for accurate model inference. In this paper, we present an open-source database of

experimentally generated cut, percussion, tooth, and trample marks measured and

analyzed using high-resolution confocal profilometry and a replicable quantification

protocol. Statistical classificatory models using our taphonomic measurement

database can distinguish between experimentally generated bone surface

modifications with 74% to 83% accuracy, depending on the comparative

groupings. Our aim for these classification models is to facilitate accurate

identification of the processes that created fossilized bone surface modifications,

which is the first step to resolving long-standing debates surrounding the origins and

evolution of human carnivory. Additionally, we hope that publishing our open-source

data and code underscores the need for more replicable, collaborative, and

transparent methods in paleoanthropological research.
KEYWORDS

butchery marks, confocal profilometry, digital taphonomy, equifinality, experimental
archaeology, feeding trace, tooth marks, trampling marks
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1 Introduction

Fossilized feeding traces left by hominins and carnivores are

evidence of the biotic ecological dynamics that made up a

paleoecosystem. Assemblage-wide cut, percussion, and tooth

mark frequencies can reveal the amount and type of animal foods

our ancestors consumed and their ecological interactions with prey

and predator species (Selvaggio, 1994; Blumenschine, 1995;

Capaldo, 1997; Domıńguez-Rodrigo and Barba, 2006; Pante et al.,

2012, 2015; Domı ́nguez-Rodrigo et al., 2014). These mark

frequencies are empirical data that can be used to understand the

conditions that led to key events in the evolutionary history of our

lineage, especially as it relates to the morphological and

technological evolution that led to the appearance of modern

humans (Blumenschine, 1989; Bunn and Ezzo, 1993; Domıńguez-

Rodrigo and Pickering, 2003; Blumenschine and Pobiner, 2007;

Bunn, 2007; Pante et al., 2018; Pobiner, 2020). However, the validity

of these ecological models and broader evolutionary implications

rest on the assumption that researchers can accurately identify

who or what created fossilized bone surface modifications (BSMs)

representative of different feeding traces. As James and Thompson

(2015) emphasize, consensus on a standardized BSM identification

methodology for relating fossilized BSMs to prehistoric and

unobservable actions has yet to be achieved.

Accurately identifying whether a stone-tool-wielding butcher or

non-hominin predator created a fossilized mark is complicated

because many taphonomic processes create similarly shaped marks

that researchers may mistake as a cut or tooth mark (e.g., rodent

gnawing, ungulate trampling, and rockfall in caves) (Behrensmeyer

et al., 1986; Olsen and Shipman, 1988; Domıńguez-Rodrigo et al.,

2009; Litynski and Pante, 2023; Marginedas et al., 2023). This

morphological overlap in BSM shape, defined as taphonomic

equifinality, has given rise to prominent, long-standing debates

about the creators of many BSMs, including the earliest potential

evidence of hominin carnivory on 3.4-million-year-old fossils from

Dikika, Ethiopia (McPherron et al., 2010; Domıńguez-Rodrigo

et al., 2012; Thompson et al., 2015) and also on 2.5-million-year-

old fossils from Bouri Hata, Ethiopia (de Heinzelin et al., 1999;

Sahle et al., 2017). Similar debates about fossilized BSMs undermine

efforts to establish consensus about the meat-eating behaviors of

early hominins at the FLK 22 (Zinjanthropus level) site in Olduvai

Gorge, Tanzania (Domı ́nguez-Rodrigo and Barba, 2006;

Blumenschine et al., 2007; Pante et al., 2012, 2015; Parkinson, 2018).

To overcome issues of equifinality, some researchers

qualitatively compare macromorphological BSM characteristics to

determine who or what created a mark (Bunn, 1981; Shipman and

Rose, 1983; Andrews and Cook, 1985; Blumenschine and Selvaggio,

1988; Blumenschine, 1995; Blumenschine et al., 1996; Njau and

Blumenschine, 2006; Domıńguez-Rodrigo et al., 2009; Galán et al.,

2009; de Juana et al., 2010). In experimental settings, Blumenschine

et al. (1996) demonstrated that qualitative BSM identification

methods can be effective for differentiating between cut,

percussion, and mammalian carnivore tooth marks. However, the

real-world applicability of these results is complicated by the many

other processes impacting the surfaces of fossils over thousands to
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millions of years and recent realizations that trained analysts are not

capable of replicating each other’s results despite being trained in

the same research tradition (Domıńguez-Rodrigo et al., 2017). The

latter is almost certainly the result of the subjective nature

of qualitative criteria, which are often ambiguously defined

(Domıńguez-Rodrigo et al., 2017).

Recognizing that qualitative BSM assessments may be

insufficiently equipped to discern morphologically ambiguous

marks, some researchers now use computational methods to

analyze and measure BSMs. Typically, quantitative BSM studies

use a two-step approach. First, BSMs are digitally reconstructed in

3D using either digital or optical microscopy (Bello and Soligo,

2008; Bello et al., 2011; Boschin and Crezzini, 2012; Domıńguez-

Rodrigo et al., 2024, 2025b), confocal profilometry (Braun et al.,

2016; Pante et al., 2017; Otárola-Castillo et al., 2018), structured

light scanning (Maté-González et al., 2017; Yravedra et al., 2018;

Courtenay et al., 2019c, 2021), or micro-photogrammetry (Maté

González et al., 2015; Arriaza et al., 2017; Yravedra et al., 2017;

Maté-González et al., 2018). Then, BSMs are measured to estimate

the most likely action or agent that created the mark using either

landmark-based geometric morphometrics (Arriaza et al., 2017,

2017; Otárola-Castillo et al., 2018; Yravedra et al., 2018; Courtenay

et al., 2020a), Elliptic Fourier analysis (Arriaza et al., 2023),

computer vision convolutional neural networks (Courtenay et al.,

2020a; Jiménez-Garcıá et al., 2020), or traditional measurement and

angle-based morphometrics (Bello and Soligo, 2008; Bello et al.,

2011; Pante et al., 2017).

Despite the availability of different quantitative BSM modeling

methods, these approaches lack widespread adoption for two

reasons addressed by this paper. First, computational approaches

inherently require a comparative database of experimentally

generated BSMs replicative of potential prehistoric BSM-creating

actions (e.g., carnivore feeding trials or simulated stone tool

butchery) to compare to the shape of fossilized BSMs created by

unknown and prehistoric actions. However, curating and digitizing

experimental BSM databases is both time-consuming and can

require expensive instruments. Second, with the exception of

Pante et al. (2017), BSM modeling techniques have not tested for

inter-observer replicability throughout the entire process of

scanning, measuring, and analyzing a singular BSM. Scientific

replicability is a key step in validating results, facilitating

collaborations, and encouraging methodological acceptance.

Without such tests, it is unclear if these BSM modeling methods

are creating highly precise but, ultimately, inaccurate depictions of

the actions that created fossilized marks.

In this paper, we present measurement data collected from 946

BSMs produced by simulated stone tool and percussive butchery,

captive and wild carnivore feeding trials, and ungulate trampling

experiments. We digitally scanned and measured all 946 of these

marks following the experimental protocol developed in Pante et al.

(2017), which was previously shown to be replicable in

experimental settings. We will continue to add to this database as

our experimental samples increase. Ultimately, we hope that by

publishing the results of our experimental BSM measurement

database, other researchers can use our data to analyze the shape
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of their fossilized BSMs without needing to create their own

experimental databases.
2 Materials and methods

2.1 Experimental BSM sample

Our BSM sample was generated through experiments replicating

the actions of prehistoric agents that have created fossilized BSMs.

Table 1 summarizes BSM data. Below, we outline the experimental

protocols for generating these marks, and if relevant, include a

reference to the original experimental publication.

2.1.1 Cut marks
Cut marks created by intentional bone cutting and actualistic

butchery experiments are included in the measurement database.

Intentionally created cut marks come from two sources. First,

207 cut marks were produced using quartzite, basalt, phonolite, and

chert simple flakes and Acheulean handaxes attached to a

motorized cutting machine [see Keevil (2018) for experimental

protocols]. Second, 50 cut marks were created using chert handaxe

and flake tools and 22 using unmodified stone tools by a single

butcher moving the tools at a 90° angle across the surface of a

defleshed bone with constant pressure.

Cut marks created through actualistic butchery experiments

come from two sources. First, 111 marks come from two butchers

processing skinned, but fully fleshed, deer limbs using chert and

obsidian flakes. An additional 21 cut marks were created by

butchers using chert and quartzite flake and core tools to process

skinned adult goat hindlimbs.

While many digital taphonomy studies analyze intentional or

actualistic cut marks (e.g., Bello and Soligo, 2008; Maté González

et al., 2015; Pante et al., 2017; Courtenay et al., 2020a), they rarely

include both types within a single analysis. To evaluate the practical

relevance of treating intentional and actualistic cut marks as a single

population, we assessed group equivalence between the 132

actualistic and 279 intentional cut marks described above using

permutational multivariate analysis of variance (PERMANOVA;

Appendix A.1). Given the large sample sizes, we emphasized effect

size over statistical significance to determine methodological

relevance. As detailed in Appendix A.1, this analysis supports

treating both cut mark types as a single analytical group.

Nonetheless, intentional and actualistic group labels are retained

as supplementary information to allow future analyses to explicitly

compare differences if warranted.

2.1.2 Percussion marks
We include 90 percussion marks from marrow extraction

experiments described in Benito-Calvo et al. (2018). Percussion

marks were produced from a quartzite anvil and a combination of

quartzite and basalt cobblestone hammerstones on cow limb bones.

Following the methodology outlined in Blumenschine (1988), bones

were placed on stone anvils before being struck with hammerstones

to split the bones longitudinally along the axis and extract marrow.
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2.1.3 Tooth marks
A total of 313 carnivore tooth marks created by mammalian and

crocodilian predators were obtained from bones collected during

naturalistic and captive feeding experiments.

Tooth marks created during actualistic feeding trials come from

two studies, and detailed experimental protocols can be found

within their respective publications. First, we include 29 tooth

marks created by free-ranging lions described in Pobiner (2007).

Second, we include 31 tooth marks created by free-ranging spotted

hyenas described by Blumenschine (1988).

Captive feeding trials were conducted at three locations, as

described in Muttart (2017) and Njau and Blumenschine (2006).

First, we include a total of 143 tooth marks from African wild dogs,

lions, spotted and striped hyenas, and North American brown bears

at the Denver Zoo, Colorado, USA. We also include 32 grey wolf

tooth marks from captive wolves at the Rist Canyon, W.O.L.F.

Sanctuary, Colorado, USA. Finally, we also include 78 tooth marks

produced during experimental feeding trials with Nile crocodiles

(Njau and Blumenschine, 2006).

2.1.4 Trample marks
A total of 132 trample marks were measured on bones created

during experimental cow trampling trials. To simulate actualistic

trampling actions, we placed transversely sectioned cow femur

midshafts that had their periosteum, meat, and marrow removed

in empty animal corrals at a local farm in Colorado, USA. Sectioned

femurs were used for this study because they were readily available

from a local butcher and could easily be partially buried in the

different corral sediments. Before each trampling experiment, we

thoroughly inspected the cleaned bones for any butchery marks or

protrusions using low magnification methods. Any marks found

were subsequently highlighted with clear nail polish and marked to

ensure they were not confused with marks created during

the experiment.

After scattering the cleaned bones around the ground and

partially burying some in the corral, we let 25–30 heifers

weighing between 350 and 550 kgs into the corrals for 30 minutes

of trampling with gentle prodding to encourage movement. To

capture a larger array of potential trampling mark shape variation,

we conducted experiments using three sediment types, including

fine-grained sand, gravel, and coarse-grained soil. Bones were

collected after each 30-minute trampling trial and inspected for

evidence of trampling.
2.2 Profilometry methodology

3D models of BSMs were produced using either a Nanovea

ST400 white-light non-contact profilometer or a Sensofar S-Neox

3D optical profiler. The Nanovea 3Dmodels were produced with a 3

mm optical pen that has a z-axis resolution of 40 nm. The spatial

resolution was set to 5 µm in the x-axis and 10 µm in the y-axis. 3D

models produced with the Sensofar S-Neox were made using a 5x

lens that has a z-axis resolution of 75 nm. The 5x lens has a

numerical aperture of 0.15, a working distance of 23.5 mm, a field of
frontiersin.org

https://doi.org/10.3389/fevo.2026.1681814
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Keevil et al. 10.3389/fevo.2026.1681814
view of 3400 µm x 2837 µm, a spatial sampling of 2.76 µm, and an

optical resolution of 0.93 µm. The scale of these resolution

differences does not significantly impact our analysis because they

are orders of magnitude smaller than the scale of the measured

differences between mark types. Further, these differences are

smaller than the reported variability in measurements taken from

a single mark using the same instrument (Pante et al., 2017;

Appendix A.2).

Processing and analysis of 3D models were carried out using

Digital Surf’s Mountains® following Pante et al. (2017). Model
Frontiers in Ecology and Evolution 04
processing included removing outliers, filling in missing data

points, and removing the underlying form of the bone with the

mark excluded from the form removal process (see Pante et al., 2017

for further detail). Data collected through the analysis from the

entire 3D model of the experimental mark were volume, surface

area, maximum depth, mean depth, maximum length, and

maximum width. Additional data were collected from a profile

taken from the deepest point of the mark, including area of the hole,

depth of the profile, width, roughness (Ra), opening angle, and

radius of the hole. Collection of profile data from percussion marks
TABLE 1 Experimental BSM sources for the 411 cut marks, 90 percussion marks, 313 carnivore tooth marks, and 132 trample marks included in this
study.

Mark type
Experimental

context
Actor

Effector
characteristic

Count Reference

Cut

Intentional Marking

Human butcher Chert Flake 50 This paper

Human butcher Unmodified Stone 22 This paper

Cutting Machine Basalt Biface 27 (Keevil, 2018)

Cutting Machine Basalt Flake 27 (Keevil, 2018)

Cutting Machine Chert Biface 25 (Keevil, 2018)

Cutting Machine Chert Flake 26 (Keevil, 2018)

Cutting Machine Phonolite Biface 25 (Keevil, 2018)

Cutting Machine Phonolite Flake 25 (Keevil, 2018)

Cutting Machine Quartzite Biface 26 (Keevil, 2018)

Cutting Machine Quartzite Flake 26 (Keevil, 2018)

Actualistic Butchery
Human butcher Obsidian & Chert Flake 111 This paper

Human butcher Chert & Quartzite Flake 21 This paper

Percussion Marrow Extraction

Human butcher Quartzite Anvil 31
(Benito-Calvo et al.,

2018)

Human butcher Basalt Hammerstone 29
(Benito-Calvo et al.,

2018)

Human butcher Quartzite Hammerstone 30
(Benito-Calvo et al.,

2018)

Tooth

Captive Feeding

African Wild Dog Tooth 28 (Muttart, 2017)

Brown Bear Tooth 28 (Muttart, 2017)

African Lion Tooth 37 (Muttart, 2017)

Spotted Hyena Tooth 28 (Muttart, 2017)

Striped Hyena Tooth 30 (Muttart, 2017)

Grey Wolf Tooth 32 (Muttart, 2017)

Nile Crocodile Tooth 78
(Njau and

Blumenschine, 2006)

Wild Feeding
Spotted Hyena Tooth 31 (Blumenschine, 1988)

African Lion Tooth 21 (Pobiner, 2007)

Trample Corralled Trampling

Cow Soil sediment 65 This Paper

Cow Gravel sediment 46 This Paper

Cow Sand sediment 21 This Paper
References are included for previously described BSM experiments.
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that occur on the edge of a bone fragment (approximately half of the

90 marks in the present study) follow a different protocol than was

described by Pante et al. (2017) for other mark types because it is

not possible to take a complete profile through the deepest part of

the mark when it has been split due to its location across the point

of fracture. In these cases, the deepest profile was taken parallel to

the crack across the width of the mark instead of the length.
2.3 Statistical methodology

Statistical analyses were carried out using R (Version 4.4.3;

R Core Team, 2024) and the associated R packages described below.

Code and data are included as supplementary information.

First, we calculated group-level summary statistics (mean,

median, and standard deviation) for the 12 measurement

variables. We also performed a Principal Components Analysis

(PCA) using the prcomp function from the base stats package to

assess measurement variance among these 12 variables. Second, we

use two statistical classification methods – k-fold cross-validated

discriminant analysis (DA) and random forest (RF) – to evaluate

whether our experimental measurement dataset can recognize

specific behaviors from a multivariate analysis of mark shape.

Before generating a DA model, we assessed underlying

assumptions of correlation, normality, and homogeneity of

covariance matrices. Anderson-Darling Tests of univariate

normality and Royston’s test of multivariate normality,

implemented using the MVN package (Korkmaz et al., 2014),

were used to determine necessary data transformations. For

variables that violated normality assumptions, Box-Cox tests

identified an appropriate power or logarithmic transformation.

To prevent data leakage, Box-Cox transformations were

independently performed on the training dataset within each DA

fold and those values were used to transform the testing dataset. All

measurements were log-transformed, except 3D maximum depth

and mean depth, which were transformed by taking the inverse

square root, and angle, which was cubed. Additionally, the mean

depth was transformed using a logarithmic transformation in

two folds.

Pooled within-group tests of correlation on the transformed

dataset, using the “statsBy” function from the Psych package

(Revelle, 2024), indicated that volume was highly correlated with

3D surface area (r = 0.95). Similarly, maximum profile depth was

correlated with 3D maximum depth (r = -0.92) and profile area (r =

0.92). Profile width was also correlated with profile area (r = 0.91).

Based on these exploratory results, we removed volume, profile

width, and maximum depth of the cross-sectional profile from the

DA model.

A Box’s M test, conducted using the “boxM” function from the

heplots package (Friendly, 2010), indicated that our data do not

satisfy the assumption of equal covariance matrices. Based on these

results, we performed a 10-fold cross-validated quadratic

discriminant analysis (QDA) using the “qda” function from the

MASS package (Venables and Ripley, 2002) to assess the accuracy

with which our four experimental mark types could be
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discriminated based on a multivariate analysis of mark shape.

Prior group probabilities were set to be uninformative and

uniform across groups to mitigate the influence of experimental

BSM class imbalances on classification precision.

Following the QDA, we generated one-vs-rest (OVR) receiver

operating characteristic (ROC) curves for each group by averaging

the ROC curves generated across the 10 cross-validation folds. ROC

curves were calculated using the “roc” function in the pROC

package (Robin et al., 2011). We also calculated the average area

under the curve (AUC) across the ten OVR ROC curves for each

mark type. These steps allowed us to evaluate the discriminatory

performance of the QDA model for each mark type against the

other three mark types.

We employed RF analysis using the “randomForest” function

from the randomForest package (Liaw and Wiener, 2002). RF

models are robust to non-normal data and multicollinearity, so

each RF model includes all 12 untransformed measurements.

Because the accuracy and interoperability of RF models are

reduced when group sample sizes are imbalanced (Chen et al.,

2004), we use a stratified per-tree downsampling approach with the

minimum sample size set to 90, the smallest group size.

Due to the out-of-bag (OOB) error estimation in RF methods,

we also do not use cross-validation. Furthermore, because our

dataset is not high-dimensional and preliminary testing has not

shown major increases in model performance, we choose not to

tune hyperparameters using a train/validate split, which is more

necessary for high-dimensional or noisy data (Probst et al., 2019).

Therefore, we opted to use the default hyperparameter settings with

the number of trees tested set to 1000, which are likely sufficient for

our low-dimensional measurement dataset.

We generated three RF models for the present study. The first

model included all four mark types. Based on previous qualitative

observations that percussion and tooth marks are commonly

misclassified as each other and that cut and trample marks

exhibit a similar pattern, we generated two additional RF models

that include only marks representative of these two commonly

misclassified relationships.
3 Results

3.1 Summary statistics and PCA

The first three principal component (PC) axes explain

approximately 67%, 13%, and 12% of the variance in our

measurement data, respectively (Figure 1). In total, these three

axes contribute over 92% of the variation in our dataset.

Measurements contributing to data variance along the first axis

include volume, maximum and mean depth, width, and profile area.

In general, these measurements are largest in percussion marks,

followed by tooth marks. Trample marks and cut marks are both

smaller in these dimensions and more similar to each other than

tooth or percussion marks (Table 2). These trends are reflected

along the first PC axes in Figure 1, where there is significant overlap

in the confidence ellipse of cut and trample marks as well as tooth
frontiersin.org
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and percussion marks, marginal overlap between trample,

tooth, and percussion marks, and the least amount of overlap

between cut and percussion marks.

Variation in data on the second PC axis is primarily driven by

angle, radius, and mark length measurements (Figure 1). In general,

cut and trample marks are both relatively long; however, cut marks

tend to be significantly more acute with a slimmer cross-sectional

profile (Table 2). Tooth marks have the most obtuse opening angle

and broad cross-sectional profile shape, with trample marks being

only slightly more acute and slimmer on average (Table 2). Like

tooth marks, percussion marks tend to be short with broad opening

angles; however, these marks are also characterized by their very

large profile radius values.

Variation in data on the third PC axis reflects a combination of

mark surface area and length, which influenced variance on the

second PC axis. In general, these features are highly similar between

cut and trample marks, as well as between tooth and percussion

marks, as shown by the overlapping cut and trample mark ellipses

and tooth and percussion cut and trample mark ellipses in Figure 1.
3.2 Discriminant analysis

A 10-fold cross-validated QDA including the nine uncorrelated

and transformed measurement variables could discriminate

between our four taphonomic actions with approximately 76%

classification accuracy (Table 3). In general, cut marks most

frequently misclassify as trample marks (64 of the 89 misclassified

cut marks), and trample marks misclassify as cut marks (40 of

the 58 misclassified trample marks). Similarly, tooth marks

most frequently misclassify as percussion marks (27 of the

60 misclassified tooth marks), and percussion marks most
Frontiers in Ecology and Evolution 06
frequently misclassify as tooth marks (17 of the 21 misclassified

percussion marks).

Cut, percussion, and tooth OVR ROC curves demonstrate

excellent discriminatory power (AUCs of 0.94, 0.96, and 0.94,

respectively), confirming the strong classificatory powers of our

QDAmodel when classifying these mark types (Figure 2). Similarly,

the OVR ROC curve for trample marks demonstrates very good but

slightly lower discriminatory power (AUC of 0.85). ROC curves and

AUC values illustrate how well our model separates different marks

by testing model performance across all possible decision thresholds

(Fawcett, 2006). In the context of QDA, these decision boundaries

are varied by changing the necessary posterior probability threshold

required to classify a data point into a particular group, and AUC

values above 0.85 indicate excellent model performance. Overall,

these high AUC values attest to the reliability and robustness of the

classification precision obtained in the QDA model.
3.3 Random forests

A RF model including all 12 measurement variables and the

four taphonomic actions studied in this paper produced an OOB

error rate estimate of 25.8% or a predictive classification accuracy of

approximately 74% (Table 4). Among the input measurement

variables, importance analysis of mean GINI decrease shows that

profile width, length, and profile area contributed most significantly

to the predictive power of the RF model (Figure 3). In general, tooth

and percussion marks tend to be shorter, wider, and have greater

cross-sectional profile areas compared to cut and trample marks. All

other variables showed slightly lower importance to the predictive

powers of this RF mode (Figure 3). However, because the mean

GINI decreases are greater than 10 for all measurements, it shows
FIGURE 1

Principal component analysis of the BSM measurement dataset. The left scatterplot shows the distribution of measurement variance along the first
two principal components (PC1 and PC2). The right scatterplot shows the distribution of measurement variance along the first and third principal
components (PC1 and PC3). Normal data ellipses and data points are colored by mark type: red for cut marks, yellow for percussion marks, green
for tooth marks, and purple for trample marks.
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that all variables are contributing to the predictive accuracy of

this model.

The cut and trample subset model, including all 12

measurements, had an OOB error estimate of 21.0% or an

approximate classification precision of 79% (Table 5). Variables

that contributed most to the discriminatory power of this model

were mark width at the widest point on the 3D reconstruction, as

well as the depth, opening angle, and roughness of the cross-

sectional profile (Figure 3). In general, trample marks are wider

with rougher, deeper, and less acute cross-sectional profile shapes

compared to cut marks.

The tooth and percussion subset model, including all 12

measurements, had an OOB error estimate of 16.6% or an

approximate classification precision of 83% (Table 6). Variables

that contributed most to the discriminatory power of this model

were surface area and mean and maximum depth of the 3D

reconstruction. Additionally, cross-sectional profile characteristics

like area, radius, and roughness aided in discriminating between

these two groups (Figure 3). In general, percussion marks have less

surface area than tooth marks while tending to have larger

maximum and mean depths.
4 Discussion

Digital bone surface modification modeling and analytical

methodologies help reveal which ancient actions and taphonomic

processes created marks on now fossilized bones. Among the

various BSM categories, cut and tooth marks are a focus in many

taphonomic studies due to their frequency in fossil deposits and

relevance for understanding dynamic and unobservable

interactions between prehistoric hominin butchers, predators, and

prey animals during the origins and intensification of hominin

carnivory (Blumenschine and Selvaggio, 1991; Capaldo, 1997;

McPherron et al., 2010; Pante et al., 2012, 2015; Domıńguez-

Rodrigo et al., 2014; Parkinson, 2018). Although these two mark

types are usually easily distinguished from each other, their

morphological overlap with trample and percussion marks can

lead to misclassifications. The relationship between cut, tooth,

percussion, and trample marks is underexplored in digital BSM

studies, raising the possibility that some fossilized marks

characterized as resulting from a certain behavior could have

been created by a different taphonomic action.

Issues created by taphonomic equifinality are the focal

point of3several high-profile and long-standing debates in

paleoanthropology. For example, researchers debate whether

fossilized BSMs supporting depictions of hominin hunting and/or

scavenging at the FLK Zinjanthropus site, Olduvai Gorge, Tanzania,

were created by mammalian carnivores or another taphonomic

process, such as bioerosion (Domıńguez-Rodrigo and Barba, 2006;

Blumenschine et al., 2007). Similarly, there is debate whether the

3.4-million-year-old marks from Dikika, Ethiopia are the earliest

evidence of hominin carnivory or resulted from ungulate trampling

or crocodilian feeding (McPherron et al., 2010; Domıńguez-Rodrigo

et al . , 2012; Thompson et al . , 2015). Potential BSM
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misidentifications also generate doubt about the anthropogenic

origin of marks on Late Pleistocene fossils that could rewrite

the timing of humans in the Americas, including marks on the

130,000-year-old Cerutti Mastodon in California (Haynes, 2017;

Holen et al., 2017a; Ferrell, 2019), 30,000-year-old fossils in Arroyo

del Vizcaıńo, Uruguay (Fariña et al., 2014; Holcomb et al., 2022),

and 24,000-year-old fossils in Bluefish Caves, Canada (Bourgeon

et al., 2017; Krasinski and Blong, 2020; Litynski and Pante, 2023).

Because BSMs are often the only direct evidence of hominin

carnivory and interactions with carnivores and prey animals in

Plio-Pleistocene sites (e.g., Pobiner et al., 2008; McPherron et al.,

2010; Curran et al., 2025), misclassifications of these marks stymie

palaeoecological models that are necessary to understand the

evolution of hominin subsistence strategies (Gifford-Gonzalez,

1991; James and Thompson, 2015). Therefore, establishing
Frontiers in Ecology and Evolution 08
methods to precisely identify the ancient actions that created

fossilized BSMs is critical to understanding ecological and

evolutionary trends in the hominin lineage. Despite the potential

for quantitative and computational BSMmodeling methods to clear

up these long-standing debates, the widespread adoption of these

methods is obstructed by a lack of open-source measurement

databases investigating experimental BSM shape and methods

that lack tests of reliability.

The present study addresses problems in quantitative BSM

modeling by publishing measurement data for nearly 1, 000

experimental tooth, cut, percussion, and trample marks generated

by replicating actions that may have resulted in fossilized BSMs. As

described below, our goal in publishing these marks is primarily to

gain further insight into the morphological complexities and shape

variation present in BSMs created by different actions. However, we
TABLE 3 Confusion matrix for quadratic discriminant analysis (QDA).

QDA BSM
Predicted

Total
Cut Percussion Tooth Trample

Actual

Cut 322 1 24 64 411

Percussion 3 69 17 1 90

Tooth 11 27 253 22 313

Trample 40 2 16 74 132

Total 376 99 310 161 946
Bolded values indicate correctly identified BSMs.
FIGURE 2

One-vs-rest receiver operating characteristic (ROC) curves for each mark type in the 10-fold cross-validated quadratic discriminant analysis model.
Dashed lines show per-fold ROC curves; solid lines show the average ROC curve across the 10 folds.
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also hope that other researchers find use in this now open-source

database of 12 computationally measured features when analyzing

their own fossilized BSMs.
4.1 Univariate descriptors of BSM
morphology

Quantitative evaluations of mark shape provide context to

appreciate the challenges researchers face when employing less

precise qualitative techniques, that is, misidentifying the causal

action behind a feeding trace. While this remains possible when

using quantitative techniques, the known likelihood of error and

posterior probabilities provided for individual classifications allow

assessment of the reliability of mark identifications on fossils that

are not possible with qualitative methods.

Results from our quantitative analysis of butchery, carnivore

tooth, and trampling BSM morphology are consistent with

qualitative descriptions of mark shape. Namely, we show that cut

marks, on average, are the longest mark type, while also having the

smallest cross-mark widths and most acute opening angles. These

measurement data also emphasize the considerable degree of

morphological overlap between trample and cut marks, as

trample marks are often long with intermediary width
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measurements. However, our data also shows that trample marks

can be morphologically diverse, having many features intermediate

to and overlapping with cut, tooth, and percussion marks. This

analysis underscores the complexity of qualitative trample mark

identifications and the potential of misdiagnosing these marks as

another BSM type.

Many measured characteristics of percussion and tooth marks

morphologically overlap. The present quantitative assessment of

mark shape corroborates qualitative assessments that tooth and

percussion marks have more equal length:width ratios while also

being deeper than other BSM types. Although quantitative

descriptions highlight the many similarities between tooth and

percussion marks, they also reveal that percussion marks are

characterized by rougher, more complex cross-sectional profile

shapes and larger mean depths. Still, all measurements overlap

between these mark types, which could complicate attempts to

determine whether stone tool percussion or carnivore feeding

produced some fossilized BSMs.

It is well established that different actions and behaviors can

create BSMs with overlapping morphologies, meaning that no

individual morphological feature can serve as a definitive

discriminator. Domıńguez-Rodrigo et al. (2009) demonstrate this

concept by showing that, among 14 qualitative criteria now used to

distinguish cut and trample marks, no single characteristic is unique
FIGURE 3

Variable importance chart based on mean decrease in Gini from the random forest analysis discriminating cut, percussion, trample, and tooth marks
(A), cut and trample marks (B), and tooth and percussion marks (C).
TABLE 4 Confusion matrix for the random forest (RF) classifying the four BSM categories.

RF BSM
Predicted

Total
Cut Percussion Tooth Trample

Actual

Cut 318 2 23 68 411

Percussion 1 68 21 0 90

Tooth 13 41 241 18 313

Trample 39 3 15 75 132

Total 371 114 300 161 946
Bolded values indicate correctly identified BSMs.
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to either mark type. However, the use of binary or nominal scales to

evaluate these qualitative criteria (e.g., U- vs V-shaped cross-

sectional profile shape) obscures subtle differences between mark

types that quantitative methods can more precisely measure. For

example, our quantitative method described can use a combination

of cross-sectional profile opening angle and radius measurements to

describe BSM cross-sectional shape previously described as U- or

V-shaped. The use of ratio-scale measurements can enhance the

precision with which we capture morphological variation between

mark types.

In addition to more thoroughly capturing microscopic details in

BSM shape variability, our analytical methodology quantifies

previously unconsidered, unobservable, and unmeasurable BSM

shapes that might help determine what behaviors and actions

created a mark. For example, we directly quantify the degree of

cross-sectional profile “roughness” and the total mark surface area.

While these new morphological criteria provide a more holistic

representation of BSM shape, they also show that no single variable

can reliably differentiate BSMs in experimental settings. This

observation motivates the subsequent multivariate analysis of

BSM shape.
4.2 Evaluating ML methods for BSM
identification

Machine learning (ML) methods possess immense power to

analyze vast amounts of multivariate data at scales inaccessible to

individual analysts who rely on qualitative criteria. Consequently,

these analytical tools are increasingly common in archaeological

inquiry to classify artifact features using large geospatial, imaging,

or microscopic datasets with complex and hidden variance patterns

(Mantovan and Nanni, 2020; Bickler, 2021; Bellat et al., 2025). The
Frontiers in Ecology and Evolution 10
expanded use of complex ML tools can likely, in part, be attributed

to the introduction of “point-and-click” software that makes their

application in analyses of large and complex datasets easy without

the need to understand underlying statistical and methodological

processes (Calder et al., 2022). Below, we demonstrate one

application of ML methods for identifying prehistoric actions

from fossilized BSM shape. However, we also show that, because

ML tools exist within a statistical and analytical “black-box”, there is

a high risk that researchers will misapply these high-powered tools,

which parallels current debates about the limitations of deep

learning methods in resolving taphonomic equifinality associated

with fossilized BSM identifications (Courtenay et al., 2024;

Domıńguez-Rodrigo et al., 2025a).

In the present study, we use two ML algorithms to investigate

the potential for multivariate, quantitative descriptions of BSM

shape to determine whether a hominin butcher, carnivore predator,

or ungulate trampler created fossilized marks. In recent years, the

“No Free Lunch” theorem, as described by Wolpert and Macready

(1997), has been interpreted by some researchers as “one should use

as many techniques as possible and determine which one(s) is (are)

the best for the problem at hand” (Domıńguez-Rodrigo, 2019,

p. 2714), to justify applying upwards of ten different ML

algorithms to a single dataset. However, this interpretation

overlooks the spirit of this theorem. Model selection should not

be done through brute-force experimentation but, instead, by

familiarity with the variance in your dataset coupled with domain

experience and statistical expertise. For example, bootstrapping a

small sample of only a few hundred datapoints to create thousands

of synthetic samples, solely to justify using ML algorithms like

neural networks, does not resolve the fundamental limitations of

small sample sizes that cause overfitting (Van Der Ploeg et al., 2014;

Lones, 2021). Pursuing complex, data-hungry ML models is

particularly questionable given the availability of many simpler

algorithms that do not require data manipulation. Below, we

explain our reasoning behind the two methods used in this study

and explain model results in light of other BSM studies.

The first method we use to analyze BSM measurements is DA,

as it handles multiple continuous predictor variables simultaneously

to classify unknown datapoints while also being less prone to

overfitting than many other ML methods (McLachlan, 2005;

Khondoker et al., 2016; Nikita and Nikitas, 2020). A further

motivator in adopting a DA approach is its long history in

experimental studies of fossilized BSMs (e.g., de Juana et al., 2010;

Bonney, 2014; Pante et al., 2017; Courtenay et al., 2018; Gümrükçü

and Pante, 2018; Domıńguez-Rodrigo, 2019) and archaeological

inquiry (Kovarovic et al., 2011), facilitating discipline-wide

accessibility of our results. The ubiquity of this method likely

stems from its interpretability, as both input and output data are

straightforward to understand. A further benefit of DA is its

Bayesian framework that allows for the inclusion of prior

qualitative information (Solberg, 1978; Srivastava et al., 2007).

While we do not include qualitative information in our current

model, we foresee Bayesian prior information being included in

future DA models of BSMs using data derived from the past 50

years of qualitative BSM studies.
TABLE 6 Confusion matrix for the random forest (RF) classifying tooth
and percussion marks.

RF BSM
Predicted

Total
Tooth Percussion

Actual
Tooth 268 45 313

Percussion 22 68 90

Total 290 113 403
Bolded values indicate correctly identified BSMs.
TABLE 5 Confusion matrix for the random forest (RF) classifying cut and
trample marks.

RF BSM
Predicted

Total
Cut Trample

Actual
Cut 343 68 411

Trample 46 86 132

Total 389 154 543
Bolded values indicate correctly identified BSMs.
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The second ML algorithm we use is RF. Given the structure of

our dataset, RF algorithms present a useful ML method because

they can produce precise classificatory models without needing data

normalization or significant preprocessing (Breiman, 2001; Jiang

et al., 2008). RF methods are also becoming increasingly frequent in

BSM studies (e.g., Courtenay et al., 2019b; Domıńguez-Rodrigo,

2019; Domı ́nguez-Rodrigo et al., 2020), making broader

dissemination and interpretation of results easier. However,

downsides of RF models are their black-box programming,

reducing data interpretability, problems with imbalanced datasets,

and overfitting noisy datasets (Chen et al., 2004; Barreñada et al.,

2024; Halabaku and Bytyçi, 2024). After accounting for these issues,

we do not see them negatively impacting our analysis. However, we

highlight them as a caution when interpreting the results of past and

future BSM studies using RF methods without knowledge of the

underlying algorithms.

ML results show that DA and RF algorithms can discriminate

between cut, percussion, tooth, and trample marks using 3D and

cross-sectional profile measurements with 76% and 74% accuracy,

respectively. These classification accuracies are comparable to other

ML BSM studies, which frequently report accuracies between 70

and 90% depending on the studied mark-creating actions (Yravedra

et al., 2017, 2018; Courtenay et al., 2019b; Linares-Matás et al., 2019;

Domı ́nguez-Rodrigo et al., 2020). However, considering

classification accuracy alone does not provide a meaningful

assessment of a model’s utility, as differences in the number of

comparative groups or experimental procedures can influence

classification accuracy, as described below.

Classification accuracy can decrease as the number of compared

groups increases, which corresponds to a lower chance level of

accuracy in the classificatory problem (Lones, 2021). Multi-class

discrimination problems with four groups, as in the current study,

have a baseline classification of 25% accuracy. This value represents

the expected value when a dataset has zero underlying structure and

the model, instead, relies on random sorting. Alternatively, two-

class discrimination models with equal group sizes, which are

common in BSM studies (e.g., Pante et al., 2017; Otárola-Castillo

et al., 2018; Courtenay et al., 2020a, 2020b; Maté-González et al.,

2023), have a higher uniform baseline accuracy of 50%. Therefore,

achieving similarly high accuracies becomes more challenging when

dealing with multi-class classification problems.

Experimental procedures also influence ML classification

accuracy. Most algorithms can easily separate datapoints when

there is either low intra-group or high inter-group variance.

When considering BSM shape, low intra-group measurement

variation can occur if experimental protocols generate identical or

very similarly shaped marks that only capture a subset of total real-

world variation. For example, Courtenay et al. (2020a) achieve high

classification accuracies by comparing trample marks to cut marks

intentionally created “by a single right-handed individual,

perpendicular to the bone while the bone was fresh and the meat

intact”. From our experience, we anticipate this experimental

procedure will produce uniformly shaped marks unreflective of

the full spectrum of cut mark morphology.
Frontiers in Ecology and Evolution 11
In contrast to studies primarily focused on intentionally created

BSMs, we study marks from actualistic experiments mimicking the

real-world actions and behaviors that create bone surface markings

(e.g., replicative stone tool butchery). This does not diminish the

utility of intentionally made BSMs, as we include some of these

marks in our database, but instead advocates for incorporating both

intentional and actualistic marks. In general, this will increase intra-

group variation, leading to lower expected classification accuracy.

However, this protocol will, in turn, produce an ML model more

reflective of real-world variability in mark morphology and have

broader efficacy when identifying what created fossilized BSMs.

A further concern when comparing classification accuracies

across BSM studies is a frequent misapplication of statistical

models, combined with a lack of statistical literacy. This problem

may be demonstrated by the multiple studies reporting 100%

classification accuracies when identifying taphonomic actions

using mark shape (Courtenay et al., 2019b; Domıńguez-Rodrigo,

2019; Courtenay et al., 2020a; Domıńguez-Rodrigo et al., 2022).

While perfect discriminatory precision may not be entirely

impossible, we view its repeated occurrence across multiple

studies comparing microscopic and characteristically overlapping

details with skepticism. Such consistency in precision across

independent analyses may suggest that shared sampling biases,

measurement constraints, or improper analytical frameworks

influenced outcomes (McPherron et al., 2022; Courtenay et al.,

2024). Therefore, rather than interpreting these reported BSM

identification accuracies as methodologically superior to the

method in the present study, we instead view it as indicative that

further scrutiny is required to ensure reported precisions are not the

artifacts of misapplied analyses.

Below, we discuss three major statistical and analytical issues in

quantitative BSM studies that can artificially inflate experimental

classification rates and, therefore, produce misinformed

interpretations of what prehistoric actions created fossilized

BSMs. We primarily comment on the recent publications by

Domıńguez-Rodrigo and Baquedano (2018; 2025) as examples of

ongoing issues in BSM research. However, we emphasize these

issues not to criticize any one research group, but to highlight why

claims of 100% accuracy warrant further scrutiny, as such results

may be more attributable to statistical bias than genuine

discriminatory power.

McPherron et al. (2022) demonstrate that the 100%

classification accuracy reported by Domı ́nguez-Rodrigo and

Baquedano (2018) when distinguishing cut, trample, and tooth

marks likely stemmed from improper bootstrapping methods.

Additionally, it seems likely that this high classification accuracy

is due to data leakage caused by bootstrapping data before

separating the testing and training datasets. Unfortunately, data

leakage is common in ML studies of BSM shape, which may be

creating over optimistic classification accuracies. For example,

multiple geometric-morphometric studies follow nearly identical

analytical protocols by reducing data dimensionality using PCA,

then, often, bootstrapping the data, before, finally, separating it

into testing and training datasets (e.g., Aramendi et al., 2019;
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Courtenay et al., 2019b, 2020a, 2020b; Yravedra et al., 2022; Maté-

González et al., 2023). As such, the testing and training data both

inform the PC scores, leading to the training data in the model

having direct knowledge of the test set and, potentially, biasing

results (Moscovich and Rosset, 2022). It is difficult to fully assess the

limitations of these studies because the statistical methods are rarely

explained in detail. However, improper bootstrapping methods

resulting in duplicated data in testing and training sets, alongside

other issues of data leakage, almost certainly compromise model

accuracy and create poorly informed interpretations of the

fossil record.

While it is occasionally possible to trace methodological

problems and identify statistical and analytical shortcomings in

BSM studies, most studies do not report code, data, or explain their

methodological design in sufficient detail to identify such problems.

One recent exception is Domıńguez-Rodrigo and Baquedano

(2025), who publish their dataset and statistical code in response

to McPherron et al.’s (2022) earlier criticisms. This renewed

analysis shows that, when controlling for data leakage, their ML

method can distinguish cut, tooth, and trample marks with up to

100% accuracy. While we applaud their open distribution of the

dataset and code, we believe this dataset and code contain more

fundamental issues in the data collection and statistical design that

likely permeate most high-accuracy BSM identification studies

without openly published data and code.

At a fundamental level, the dataset in Domıńguez-Rodrigo and

Baquedano (2025), published nearly a decade after their original

2018 paper and used in other studies (Domıńguez-Rodrigo, 2019;

Abellán et al., 2022), appears to contain typographical errors.

Specifically, their binary present/absent “microstriation” variable

has three levels.

A further concern with the dataset in Domıńguez-Rodrigo and

Baquedano (2025) is that it contains variable criteria that are not

fully explained in either the original or this paper. For example,

groove trajectories were originally coded as being straight, curvy, or

sinuous by Domıńguez-Rodrigo et al. (2009). However, a fourth

category exists in the published dataset, which is potentially

explained by Abellán et al. (2022, p.14) as being “variable”. How

a “variable” groove trajectory differs from sinuous grooves is

unclear. The addition of new variates that are ambiguously

defined further reduces replicability between analysts, which

Domıńguez-Rodrigo et al. (2017) showed was already an issue

when coding for the 14 qualitative variables that Domıńguez-

Rodrigo et al. (2009) introduced for BSM identification.

Even if these structural dataset issues are overlooked, issues

permeate how Domıńguez-Rodrigo and Baquedano (2025) apply

ML algorithms. After generating 1,000 RF models using three

variables and randomized training/testing data splits, Domıńguez-

Rodrigo and Baquedano (2025) report a mean classification

accuracy of 100% with a standard deviation of 0%. These values

indicate that all 1,000 RF models could perfectly separate the cut,

trample, and tooth marks in the randomized testing datasets every

single time. However, inspection of their code reveals that they

inadvertently included the label category (coded as “croc”, “tramp”,

“rf”, and “sf” for crocodile, trample, retouched cut marks, and
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simple cut marks, respectively) as a variable in the RF model,

allowing their model to achieve perfect discrimination in the test

dataset by using this single “variable”. After correcting for this issue,

the accuracy of this model decreases substantially to

approximately 85%.

We do not presume that Domıńguez-Rodrigo and Baquedano

(2025) included the label variable in their openly published code

intentionally, but we raise this issue as a cautionary tale that using

ML methods without understanding the underlying algorithmic

principles can easily lead to their misapplication. Researchers

familiar with ML methods should recognize that 1,000 RF models

reporting perfect classification accuracy is implausible, barring

perfectly separable datasets. Here, domain knowledge also plays

an important role in constructing ML models, as taphonomic

researchers should also recognize that there will always be

morphological overlap between these types of BSMs that would

reduce model accuracy.

Ultimately, issues plaguing studies of fossilized butchery marks

stem from a lack of transparent data and methods, as well as a lack

of understanding of how to properly apply statistical methods. The

present study overcomes these issues by publishing our raw BSM

measurement dataset as well as the associated analytical code

necessary to analyze this dataset. Additionally, we hope that our

critique highlights that the goal of taphonomic research should not

be 100% classification accuracy in experimental models. Instead,

research should understand the past as precisely as possible while

acknowledging that BSM shape can and will overlap, meaning

models with realistic data will likely never achieve perfect

discrimination. When ML models are constructed correctly, we

can simultaneously assess the experimental precision of the model

and the confidence levels for individual classifications of fossilized

BSMs providing quantitative assessments of the probability that a

specific action produced each mark.
4.3 Misclassification patterns in BSM
identification

Our classification models reveal three trends about the shape of

bone markings created by different actions. First, following

qualitative observations (Behrensmeyer et al., 1986; Olsen and

Shipman, 1988; Domıńguez-Rodrigo et al., 2009), our model

frequently misidentifies cut and trample marks for each other.

Second, we show a similar trend of misclassifying carnivore tooth

marks and percussion marks, which is also consistent with previous

qualitative descriptions (Blumenschine and Selvaggio, 1988;

Blumenschine et al., 1996; Galán et al., 2009). A third, and

somewhat surprising, trend in our models is that a non-

insignificant number of tooth marks are misclassified as cut and

trample marks and vice versa. Below, we describe the relevance of

these trends considering previous experimental work.

4.3.1 Cut & trample marks
Qualitatively, there is disagreement about what morphological

criteria are diagnostic of trample marks. Trampling BSMs occur as
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animals kick, walk on, or otherwise move a bone against sediment

above, below, or along the ground (Olsen and Shipman, 1988).

Generally, this process produces large patches of microscopic

and easily identifiable abrasion marks (Domıńguez-Rodrigo et al.,

2009). However, in some instances, trampling moves bones against

rocks or a surface that produces BSMs that macromorphologically

mimic cut marks (Behrensmeyer et al., 1986; Domıńguez-Rodrigo

et al., 2009; Courtenay et al., 2020a).

Domıńguez-Rodrigo et al. (2009) show that, compared to many

cut marks, some but not all trample marks have sinuous groove

trajectories without shoulder flaking. However, Domıńguez-Rodrigo

et al. (2017) also show that there is limited inter-observer agreement

when qualitatively identifying these features. Furthermore, some

criteria Domıńguez-Rodrigo et al. (2009) use to define trample

marks, such as shoulder flaking, are absent on fossils that have

undergone weathering and other post-depositional processes.

Further confusion surrounding what features are diagnostic of

trampling is highlighted by descriptions in Behrensmeyer et al.
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(1986) and Olsen and Shipman (1988), who disagree whether

trample marks have or lack internal microstriations.

Our quantitative assessment of trample and cut marks also

reveals many overlapping morphological features between these

mark types, as shown in Figure 4. Mean 3D depth and profile depth

measurements are nearly equal between cut and trample marks

(Table 2). Similarly, profile roughness as a proxy measurement for

the presence and extent of microstriations is only slightly smaller in

cut marks compared to trample marks (Table 2). Because these

variables are measured on a microscopic scale, the quantitative

measurements in the present study highlight nuances that were only

previously qualitatively described, providing a more objective

description of mark similarities.

Nonetheless, the same analysis demonstrates that there is some

unique variation between cut and trample mark shape. These

distinct measurements appear to reflect that trampling tends to

produce broader marks than stone tool butchery. This is reflected

by trample marks having an average radius almost four times
FIGURE 4

Example of a trample (A) and cut (B) mark with overlapping 3D characteristics, including length, width, and maximum depth.
frontiersin.org

https://doi.org/10.3389/fevo.2026.1681814
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Keevil et al. 10.3389/fevo.2026.1681814
greater than cut marks and almost double 3D and profile widths

(Table 2). Despite these differences in cut and trample mark

measurements, the standard deviations reported in Table 2 reveal

that all measurement variables overlap to some degree, meaning

that no one measurement variable can perfectly discriminate

between these marks. Consequently, we consider a multivariate

approach to capture the combined discriminatory power of

multiple variables in identifying cut and trample marks.

The capacity for a multivariate approach to discriminate cut

and trample marks is shown by three of the discriminatory models

produced in the present study. First, we consider a QDA model and

a RF model comparing cut, trample, percussion, and carnivore

tooth marks, showing that even when jointly considering all

measurement variables, cut and trample marks can overlap in

shape. The extent of multivariate morphological overlap between

cut and trample marks is shown by the QDA confusion matrix,

where 104 out of the 228 misclassified marks occur between cut and

trample marks, and the RF confusion matrix, with 107 out of the

244 misclassified marks (Tables 3, 4).

A follow-up RF model comparing only cut and trample marks

reveals the multivariate features that help differentiate these two

mark categories. This two-mark RF model was able to discriminate

between cut and trample marks with approximately 79% accuracy.

In general, the most important variables in this RF model, as

depicted by a variable importance plot (VIP) (Figure 3), align

with our univariate analysis of cut and trample mark

characteristics, specifically that measurements associated with

mark breadth and broadness are informative when separating

these classes.

One surprising observation in the VIP of the RF model

separating cut and trample marks is that maximum profile depth

contributes significantly to this model’s ability to discriminate

between marks. When considered univariately, mean maximum

profile depth is nearly equal between cut and trample marks. The

importance of this depth variable is likely due to its covariation with

another variable, or if it has a non-linear relationship that

contributes to discrimination in this model. This observation

underscores the broader utility of a multivariate approach in

revealing hidden patterns that may be missed when considering

only a singular variable.

In general, few quantitative BSM studies consider how

trampling marks differ from butchery marks. One exception is

Courtenay et al. (2020a), who use 3D microscopy, geometric

morphometrics, and deep learning neural networks to distinguish

trampling marks from cut marks with 100% accuracy. However, the

methodological design of this study only considers intentionally

created cut marks, while also suffering from data leakage problems

caused by using a PCA and bootstrapping before splitting testing

and training datasets. As such, the results reported in Courtenay

et al. (2020a) likely confirm our findings that there are

morphological differences between cut and trample marks.

However, we remain skeptical that any method can discriminate

these marks with 100% precision.

Other quantitative studies characterize the shape of trampling

marks; however, they do not consider how trampling BSMs
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compare to cut marks (Courtenay et al., 2019c, 2020b) or they

use primarily descriptive statistical tests that do not assess data or

model discriminatory power (Souron et al., 2019). As such, the

application of quantitative BSM modeling techniques for

differentiating trampling marks from other taphonomic processes

remains unclear.

The results of our study, alongside other qualitative and

quantitative studies of trample and cut marks, indicate that cut

and trample marks overlap in morphological characteristics. These

similarities could easily lead to researchers misidentifying a

fossilized trample mark as a cut mark, and vice versa.

4.3.2 Tooth & percussion marks
Qualitative shape characteristics of percussion marks are known

to overlap with carnivore tooth marks (Blumenschine and

Selvaggio, 1988, 1991; Blumenschine, 1995; Blumenschine et al.,

1996; Galán et al., 2009). Both carnivore and percussive behaviors

can create pit-shaped marks with similarly high breadth:depth

ratios. Qualitative studies show that these marks often differ

based on the presence or absence of internal microstriations

(Blumenschine et al., 1996). However, Galán et al. (2009) show

that when butchers use non-modified hammerstones, they create

percussion marks lacking internal microstriations, which overlap

morphologically with carnivore tooth marks.

The present quantitative assessment of tooth and percussion

marks confirms qualitative observations that these mark types

overlap morphologically. Specifically, we confirm previous

qualitative results that the mean length and width of tooth marks

tend to resemble percussion marks (Table 2), as shown in Figure 5.

Additionally, our results show that both carnivore predation and

percussion behaviors produce pit-shaped marks with similarly

obtuse cross-sectional profiles (Table 2).

However, our results diverge from qualitative observations by

showing that percussion marks are, on average, twice as deep as

tooth marks (Table 2). These observations contrast previous

descriptions of both mark types having similarly high breadth:

depth ratios, as they have similar width values but differ in depth.

This observation can likely be attributed to the high resolution of

the confocal profilers used in this study, which can measure

micrometer-scale differences in mark size and shape. Similarly,

our technique shows that previously unconsidered features, such

as mark volume and profile radius, are nearly twice as large in

percussion marks compared to tooth marks (Table 2).

As in our analysis of cut and trample marks, this univariate

analysis shows that no single measurement variable perfectly

differentiates tooth and percussion marks. As such, we assess the

discriminatory powers of our multivariate measurement dataset

using three different classification models.

Confusion matrices produced by the four-mark QDA and RF

models show that tooth marks are most frequently mistaken as

percussion marks, and vice versa. In the QDA model, 27 of the 60

misclassified tooth marks are classified as percussion marks, and 17

of the 21 misclassified percussion marks are classified as tooth

marks (Table 3). We observe a similar trend in the RF model, where

41 of the 72 misclassified tooth marks classify as percussion marks,
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and 21 of the 22 misclassified percussion marks classify as tooth

marks (Table 4).

We also generated a two-mark RF model comparing tooth and

percussion marks to further investigate the multivariate

classification powers of our dataset. This two-mark model was

able to discriminate tooth and percussion marks with
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approximately 83% accuracy. A VIP of the RF model shows that

maximum and mean depth measurements contribute most to the

construction of this model, which aligns with our univariate

measurement descriptions (Figure 3). Length and width

measurements are less influential in our two-mark RF model,

which agrees with previous qualitative and our univariate

observations that these measurements tend to be similar.

In general, 3D studies of percussion marks have not received

significant attention compared to cut and tooth marks. Yravedra

et al. (2018) discriminate between carnivore tooth marks and

percussion marks using a geometric morphometric and structured

laser scanning approach with approximately 76% accuracy. This

result is slightly lower than the 83% classification accuracy shown in

our tooth and percussion RF model (Table 6).

In addition to providing a higher classification accuracy

compared to Yravedra et al. (2018), the methodology described in

the present study has several advantages. First, Yravedra et al.

(2018) use a DAVID structured light-scanner, which has a very

low reported maximum resolution of only 60,000 nm (Maté

González et al., 2015) compared to the scanner resolution of 45

or 70 nm used in this study. Despite structured-light scanning

methodologies being common in studies of BSMs (e.g., Arriaza

et al., 2019; Courtenay et al., 2019d, 2019a; Maté-González et al.,

2019), low-resolution data could easily impact mark classification

when considering microscopic mark features. The issue is even

more problematic when considering that in this study, the only

inter-analyst test of replicability was in the geometric-

morphometric landmarking procedure, not the scanning

procedure that creates the mark. Furthermore, Yravedra et al.

(2018) highlighted that their scanner is unable to capture

“inconspicuous marks whose main morphological exterior and

interior features could not be appreciated”, suggesting that this

method is not appropriate for studying many deep and/or wide

percussion or tooth marks. The inconspicuous marks are key to

accurately estimating hominin and carnivore involvement in the

accumulation of fossil assemblages but are also the most difficult to

distinguish from one another when using qualitative methods. Our

high-resolution technique is capable of measuring these shallow

and difficult to identify marks.

4.3.3 Trample and cut marks & tooth marks
An unanticipated trend in our quantitative BSM study is how

frequently tooth marks misclassify as both cut and trample marks,

and vice versa. Pante et al. (2017) demonstrate that cut and tooth

marks can have overlapping morphological features that, when

quantitatively measured in 3D, will lead to classificatory models

occasionally misclassifying one mark as the other (approximate

misclassification rate of 2.75%). Our results misclassify these marks

with an approximate 7% misclassification rate, which exceeds

previous misclassification estimations and could suggest that

some fossilized BSMs classified as cut, tooth, or trample marks

are misclassified.

The results of this study show that there is morphological

overlap between cut, trample, and tooth marks. Twenty-four out

of the 89 misclassified cut marks in the QDAmodel and 23 of the 93
FIGURE 5

Example of a percussion (A), tooth (B), and trample (C) mark with
overlapping 3D characteristics.
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misclassified cut marks in the RF model are classified as tooth marks

(Tables 3, 4). Alternatively, of the 60 misclassified tooth marks in

the QDA model, 11 misclassify as a cut mark, while 13 of the 72

misclassified tooth marks in the RF model misclassify as a cut mark

(Tables 3, 4).

Previous qualitative studies primarily concern themselves with

cut and tooth mark morphological variability. In general, these

marks are considered relatively straightforward to distinguish. For

example, Blumenschine et al. (1996) show that qualitative mark

identification methods can reliably distinguish carnivore tooth

marks and cut marks made by metal knives in experimental

settings. However, Potts and Shipman (1981) show that fine tooth

scratches by carnivores can easily be mistaken for cut marks in both

microscopic and macroscopic features. In general, because of the

presumed ease in distinguishing cut and tooth marks, the

relationship between these marks is omitted from most

quantitative studies of BSM morphology, with some researchers

calling it unnecessary as the relationship is “relatively obvious and

less informative” (Courtenay et al., 2019a) and “[does] not respond

to any real archaeological questions” (Courtenay et al., 2019c).

We agree with the notion that qualitatively identifying cut

marks that are extremely long, narrow, and with a clear V-shaped

cross-sectional profile from some tooth scores or pits on bones that

are extremely short, round, and have a more U-shaped profile is not

problematic. However, many fossilized marks lack morphological

clarity, making their classification as a tooth, cut, or other BSM

problematic. For example, whether the 3.4-million-year-old marks

on the Dikika fossils were produced by a hominin butcher or a

different process has been the subject of intense debate for over a

decade (McPherron et al., 2010; Domıńguez-Rodrigo et al., 2012;

Thompson et al., 2015), while some of the 2.5-million-year-old

Bouri Hata marks have also been questioned (Sahle et al., 2017).

These debates cloud our understanding of the origins of hominin

carnivory and its role in the evolutionary history of humans.

Further examination of the misclassified tooth and cut marks in

our QDA and RF models provides additional context for

understanding why long-standing debates persist for some fossilized

BSMs. In our QDA model, 16 of the 24 cut marks misclassified as

tooth marks were produced by unmodified stone tools. Similarly, 13 of

the 23 cut marks misclassified as tooth marks in the RF model were

made by unmodified stones used as tools (Appendix B.1 & B.2). In

their description of the 3.4-million-year-old Dikika marks, McPherron

et al. (2010) hypothesized that early hominin butchers could have used

naturally occurring and unmodified stones as tools to obtain animal

tissue. This suggests cut marks made by unmodified stones could

potentially be mistaken for crocodile tooth marks.

Our results also suggest there is potential for misclassification of

crocodile tooth marks as cut marks. Specifically, of the tooth marks

that were misclassified as cut marks, six of the 11 in the QDAmodel

and six of the 13 in the RF model were produced by crocodiles

(Appendix B.1, B.2). This point underscores the morphological

overlap of BSMs produced by unmodified stones used as tools and

crocodile teeth. Overall, the majority of crocodile tooth marks were

correctly classified by both models (72% and 71% in the QDA and

RF models, respectively), suggesting their potential for
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misclassification as cut marks on fossils is much lower after the

emergence of stone tool technologies. These findings highlight the

importance of applying more objective quantitative BSM modeling

methods, as described in the present study, to analyze

controversially identified BSMs.

The similarities between tooth marks and trample marks are

more or less unexplored in both qualitative and quantitative

experiments compared to trample and cut marks. As noted above,

this is likely because trample marks are qualitatively described as cut

mark mimics (Behrensmeyer et al., 1986; Olsen and Shipman,

1988). While the results of this study do support the qualitative

similarities between cut and trample marks, it also shows that

trample marks can share morphological features with tooth

marks, as evidenced by the digital tooth and trample mark

reconstructions in Figure 5. Some trample marks present width:

length relationships as great or greater than tooth marks and have

similarly shaped U-shaped cross-sectional profiles, as reflected in

their broad opening angle and large radii (Table 2).

We note a similar observation of trample marks misclassified as

tooth marks, with 16 of the 58 misclassified trample marks in the

QDA model and 15 of the 57 misclassified trample marks in the RF

model being classified as tooth marks (Tables 3, 4). Similarly, 22 of

the 60 misclassified tooth marks in the QDA model were classified

as trample marks, and 18 of the 72 misclassified tooth marks in the

RF model classified as trample marks (Tables 3, 4).

Our observation that tooth marks can look like cut and trample

marks and vice versa supports the data-centric approach we employ

in this study. Compared to model-centric studies that focus on

parameterizing and refining models, data-centric methods focus on

improving the quantity and quality of the data by accepting

redundancy or noise in the dataset (Jakubik et al., 2024). This

approach, which is fast becoming a standard in many ML studies,

allows for a broad understanding of the patterns in a dataset across

all groups (e.g., our model comparing the four experimental BSM

groups) before creating subset models to study relationships more

in-depth (e.g., our models comparing cut and trample marks). In

addition to finding and allowing for underlying and hidden

relationships to be discovered in a dataset, data-centric ML

methods do not necessarily focus on creating hyperparameterized

models that may not apply to real-world scenarios (Zha et al., 2025).

While not the primary focus of any model developed in the

present study, the observation that tooth marks, cut marks, and

trample marks have overlapping morphological characteristics has

important implications for using fossilized BSMs as a proxy for

understanding hominin carnivory. Namely, it may suggest that

qualitative observations of fossilized butchery BSMs previously

considered “relatively obvious” and unworthy of further

consideration may, in fact, be evidence of non-hominin-related

activities, such as carnivore consumption.
5 Conclusion

Numerous studies over the past two decades highlight the

potential of quantitative BSM identification methods for
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discerning the specific actions that created marks on fossils (e.g.,

Bello and Soligo, 2008; Bello, 2011; Bello et al., 2011; Boschin and

Crezzini, 2012; Maté González et al., 2015; Pante et al., 2017;

Domıńguez-Rodrigo and Baquedano, 2018; Otárola-Castillo et al.,

2018, 2022; Yravedra et al., 2018; Courtenay et al., 2019a, 2020a,

2020b; Linares-Matás et al., 2019; Jiménez-Garcıá et al., 2020;

Pobiner et al., 2023; Curran et al., 2025). However, these methods

lack widespread adoption because most experimental procedures

are unstandardized, which generates a discipline suffering from

irreproducible experimental methodologies, data, and results

(James and Thompson, 2015). In the present study, we describe

the first open-source database of BSM measurements

experimentally generated through simulated stone-tool butchery

and percussion, carnivore feeding trials, and ungulate trampling

using a quantitative BSM identification method shown to be

replicable. Here, we also show how these data can be used to

precisely identify what specific taphonomic action created a mark

based on mark shape in experimental settings, which has

applications for identifying similarly shaped BSMs on

fossilized bones.

Our intention in publishing raw measurement values for the

largest sample of experimentally generated BSMs to date is to

facilitate scholarly collaborations and encourage the adoption of

quantitative BSM modeling methods. Data generated by this study

have the potential to assist researchers when analyzing

morphologically ambiguous fossilized BSMs, improving the

reliability and accuracy of our understanding of hominin carnivory.

While the results of this study are promising for discriminating

actions based on fossilized BSM shape, we also recognize that our

experimental BSM database is incomplete. No single experimental

procedure can fully capture the vast array of possible BSM shapes

produced by any taphonomic process. For example, the 411 cut

marks included in the present database likely capture a sizable

amount of morphological variation that could occur in all possible

cut marks. However, it is possible that different stone tool

technologies (e.g., blades) or raw materials, or even individual

butchers could produce morphologically distinct BSMs not

currently captured in our database. While it is important to

acknowledge such methodological and experimental restrictions,

this inherent limitation should not be viewed as a barrier to

scientific progress, nor should it impede the use of experimental

mark data to understand what effectors and actors (sensu Gifford-

Gonzalez, 1991) created fossilized BSMs.

The current study marks the beginning of an ongoing project

expanding and contributing additional marks to the BSM

measurement database presented in this paper. Expanded

versions of this BSM database will include larger samples of the

mark types presented in this paper, as well as previously unstudied

mark types, such as rodent gnawing, bone retoucher, and root

etching. As this database grows, so will our understanding of the

morphological variation that is possible for each BSM type.

While the primary aim of the present study is to introduce a

working measurement database following the analytical protocols
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established by Pante et al. (2017), we recognize that other

researchers may wish to analyze our experimental BSM database

using alternative measurement methods. Accordingly, forthcoming

publications will include the raw scanned files of our experimentally

generated BSM database as openly available 3D coordinate XYZ

text files.

An important aspect in presenting this dataset is that we do not

intend for our methodology to supplant qualitative BSM

identification methods, but instead, work in tandem with

such methods. Fossilized marks that researchers agree are

unambiguously created by a specific taphonomic action should not

require further analysis. However, BSMs that are morphologically

ambiguous or the subject of intense debate (e.g., Domıńguez-Rodrigo

and Barba, 2006; Blumenschine et al., 2007; McPherron et al., 2010;

Domıńguez-Rodrigo et al., 2012; Fariña et al., 2014; Thompson et al.,

2015; Holen et al., 2017b; Ferrell, 2019; Holcomb et al., 2022) should

be prioritized whenmodeling fossilized BSMmorphology. Ultimately,

we hope that this database can help clear up long-standing

controversies about the origins of some marks on fossil bones that

researchers continue to debate.
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Curran, S. C., Drăgus ̧in, V., Pobiner, B., Pante, M., Hellstrom, J., Woodhead, J., et al.
(2025). Hominin presence in Eurasia by at least 1.95 million years ago. Nat. Commun.
16, 836. doi: 10.1038/s41467-025-56154-9

de Heinzelin, J., Clark, J. D., White, T., Hart, W., Renne, P., WoldeGabriel, G., et al.
(1999). Environment and behavior of 2.5-million-year-old Bouri hominids. Science
284, 625–629. doi: 10.1126/science.284.5414.625

de Juana, S., Galán, A. B., and Domıńguez-Rodrigo, M. (2010). Taphonomic
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Jiménez-Garcıá, B., Aznarte, J., Abellán, N., Baquedano, E., and Domıńguez-Rodrigo,
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