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The red swamp crayfish Procambarus clarkii is one of the most widely distributed

invasive species in the world. Effects of juvenile crayfish (< 5 cm in body length) in

lake ecosystems remain largely unknown, despite that they have a great potential

of preying upon zooplankton. The shrimp Exopalaemon modestus is one of the

most abundant native shrimps in China and also predate on zooplankton. The

predation rhythm of juvenile crayfish on zooplankton and how it differs from native

shrimps remain to be studied. We elucidated the predation rhythms of juvenile and

sub-adult crayfish and shrimps on Simocephalus mixtus, a common Cladocera in

the littoral region of freshwater lakes. Predation rates during the day or at night

were measured for juvenile crayfish (~3.75 cm in body length), sub-adult crayfish

(~6.68 cm) and juvenile shrimp (~3.88 cm) at different zooplankton densities (18,

54, 108 ind./L representing low, medium and high natural densities, respectively).

The results showed that (1) juvenile crayfish predated slightly more at night than

during the day, and with significantly higher predation rates than sub-adult

crayfish; (2) Juvenile shrimp predated significantly more at night than during the

day, as predation was almost absent during the day; (3) Juvenile shrimp had slightly

higher night-time predation rates than juvenile crayfish, however, their daytime

predation rates were significantly lower atmedium and high zooplankton densities.

Juvenile crayfish fed for a longer period than shrimp of similar length, exhibiting

higher feeding capacity on zooplankton which supports the inherent superiority

hypothesis that invasive species possess advantages over native species in feeding

capacity. Our study provides information about the predation rhythms on

Cladocera of early stages of crayfish and of shrimp, that may help in explaining,

in part, the invasion success of red swamp crayfish.
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1 Introduction

Red swamp crayfish Procambarus clarkii is one of the most

important invasive species worldwide, the only alien freshwater

crayfish introduced in China since 1930s (Chen et al., 2017;

Oficialdegui et al., 2020). It is a popular aquatic product in China

and is cultured in more than 20 provinces with an area larger than

1.46 million hectares (Yuan et al., 2022). Red swamp crayfish is also

widely distributed in lakes, rivers, ditches, sloughs, and elsewhere

(Yi et al., 2018; Yue et al., 2021). Crayfish have been found to

disrupt the clear water state of lakes through physical disturbances

and direct consumption of macrophytes (van der Wal et al., 2013;

Dercksen et al., 2025). They also negatively impact native species

such as amphibians, gastropods, and insect larvae through

predation or competition for food (Souty-Grosset et al., 2016;

Huang et al., 2025). However, most research on the impacts of

crayfish has focused on macrophytes and benthic animals

(Ruokonen et al., 2016), while little attention has been paid to

other taxa within the freshwater food web.

Crayfish are generally omnivores and their diet varies according

to life stage (Correia, 2003; Geiger et al., 2005). The diet of adult

crayfish (>8 cm in total length) consists of macrophytes, insect

larvae, gastropods, and detritus (van der Wal et al., 2013; Wu et al.,

2022), while little is known about the diet of juveniles and sub-

adults. Adult female crayfish lay eggs and incubate them on their

pleopods until hatching. By the third instar stage, juveniles become

free-living (Hamasaki et al., 2023). Juvenile crayfish (<5 cm) are

primarily carnivorous, feeding on zooplankton or small benthic

animals (Correia, 2003; Weber and Traunspurger, 2017). They are

capable of capturing planktonic organisms, giving them great

potential to influence the littoral food web (Alcorlo et al., 2004;

Geiger et al., 2005). The total length of sub-adult crayfish is 5~8 cm

and they share trophic niches with both juvenile and adult crayfish

(Correia and Anastácio, 2008; Veselý et al., 2020). In the field, 30%

~80% of individuals are juveniles or sub-adults (Dorn et al., 2005),

highlighting the importance of investigating their impacts on the

food web to understand their effect on the stability of

freshwater ecosystems.

Zooplankton play an important role in freshwater ecosystems

and are the main food source for many kinds of fish and

macroinvertebrates (Li et al., 2022; Neale and Rudolf, 2025). High

densities of white leg shrimps Litopenaeus vannamei significantly

reduce zooplankton abundance and diversity (Tran et al., 2023). The

presence of juvenile and sub-adult crayfish P. clarkii has been shown

to greatly reduce the abundances of the crustaceans Daphnia and

Cyclops (Correia and Anastácio, 2008), indicating that crayfish have

strong potential to feed on and influence zooplankton community.

Aquatic animals including fish, macroinvertebrates, and

zooplankton exhibit diurnal feeding rhythms that vary among

species and habitats (Williamson et al., 2011; Krylov et al., 2021;

Viccon-Pale, 2022). Light intensity influences the circadian rhythm

of crustaceans which is regulated by putative pacemakers such as

the brain (López-Becerril et al., 2025). The juvenile shrimp L.

vannamei exhibit higher feeding rates in light than in darkness

(Sanudin et al., 2014). Crayfish P. clarkii often hide in burrows to
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avoid predators such as fish or waterbirds, which mainly feed

during the day (Haubrock et al., 2019). The feeding activity of

crayfish follows rhythmic patterns (Viccon-Pale, 2022), some

studies reported peak feeding time in the morning from 8:00 to

10:00 and at night from 19:00 to 22:00 (Xu et al., 2012), while others

suggested continuous feeding during the day and at night (Zhou

and Zhao, 2007). Most studies on feeding rhythms focus on adult

crayfish, while little is known about the behavior of the juveniles.

Invasive crayfish have significant impacts on native crustaceans

due to their advantages in growth, reproduction and locomotion

(Lodge et al., 2012; Guareschi et al., 2024). Native freshwater

shrimps in China are generally omnivorous, feeding on

zooplankton, dipteran larvae, periphyton and detritus (Tiffan and

Hurst, 2016; Zhu et al., 2022). Presence of shrimp may reduce

periphyton biomass and increase macrophyte biomass in freshwater

lakes (Ye et al., 2019). Shrimps prefer to feed on cladocerans,

leading to changes in zooplankton community structure (Mamani

et al., 2019). The shrimp Exopalaemon modestus is one of the most

abundant and common native shrimp in lakes in the lower reaches

of the Yangtze River (Zhao et al., 2023). E. modestus predate on

various zooplankton species (He et al., 2021), with cladocerans and

copepods constituting a high percentage in their diets (Zhu et al.,

2022). This shrimp is generally active at night, with feeding activity

peaked near 22:00 (Wen and Xie, 2013). Co-occurrences of P.

clarkii and E. modestus have been reported in natural lakes in China

(Wu et al., 2022; Zhao et al., 2023). Although field observations

indicate a similar trophic niche between the invasive P. clarkii and

the native E. modestus (Wu et al., 2022), their differential predation

rhythms on zooplankton remain unclear.

In this study, we hypothesized that there is a circadian rhythm

difference between invasive juvenile crayfish and native shrimp in

their predation of zooplankton, which might lead to a higher

zooplankton feeding intensity in juvenile crayfish than in shrimp.

To test this hypothesis, we compared the predation intensity and

efficiency of crayfish and shrimp on cladoceran Simocephalus

mixtus, one of the most common cladocerans in the littoral

regions of freshwater lakes (Huang, 2014), at different prey

densities under both daytime and night-time conditions. Our

results provide insights into the mechanisms through which

invasive species adversely affect native ones and partly help

explain the invasion success of crayfish.
2 Materials and methods

2.1 Pre-culturing of the animals

Juvenile and sub-adult crayfish were obtained from a rice-

crayfish field in Qianjiang, China (112°59”6’ E, 30°11”1’ N) in

April 2024. Simocephalus mixtus, was collected from a natural pond

in Wuhan, China (114°18”24’ E, 30°29”4’ N). Shrimps were

collected from Lake Taihu, China (120°13”36’ E, 31°24”05’ N). All

organisms were obtained in April 2024 and cultured in the lab for a

month prior to the experiment. One day before the experiment,

individuals were placed in BG11 medium to evacuate their guts.
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The experiments were conducted in cylindrical glass beakers

(diameter 15 cm, height 8 cm, volume 1.4 L) with black tape applied

under the bottom to mimic natural conditions (Figure 1). Culture

medium (500 mL BG11) was added to each beaker as well as

shelters (tiles) to mimic crayfish burrows (Haubrock et al., 2019).

The beakers were placed in an incubator (PGx-60013) at 25°C, with

a light intensity of 1000lx and a light:dark cycle of 12:12 h.
2.2 Predation experiment

The densities of zooplankton were set at 18 ind./L in the low-

density treatment, 54 ind./L in the medium-density treatment, and

108 ind./L in the high-density treatment. The density gradients were

set based on field observations of cladocerans (Choi and Kim, 2020;

Chen et al., 2021). The predation experiments included all three

zooplankton densities, with three replicates per treatment. The average

body length of S. mixtus used in the experiments was 1.57 ± 0.29 mm

in body length and 0.24 ± 0.15 mg in wet weight. The number of living

zooplankton in each beaker was counted at the end of the experiment,
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and potential leftovers under the bottom of beakers were checked. A

control experiment containing only zooplankton was included to

determine the natural mortality rate of zooplankton.

The experiment was conducted with the five treatments at the

three zooplankton densities mentioned above, with one predator

per beaker. Each treatment has three replicates, and the set-ups are

listed in the table (Table 1). The first and second treatments tested

the predation of juvenile crayfish on zooplankton during the day

and at night, respectively. The third treatment tested the predation

of sub-adult crayfish on zooplankton at night. The fourth and fifth

treatments tested the predation of juvenile shrimp on zooplankton

during the day and at night, respectively.
2.3 Data analysis

Predation rates were estimated based on differences in the

biomass of zooplankton between the start and end of the

experiment, taking predator biomass into account (Vucic-Pestic

et al., 2010):
FIGURE 1

Schematic overview of the experimental beakers. (1) Juvenile crayfish procambarus clarkii (J) + low density of zooplankton (L); (2) J + medium
density of zooplankton (M); (3) J + high density of zooplankton (H); (4) J + L + light during the day (D); (5) J + M + D; (6) J + H + D; (7) Sub-adult
crayfish (S) + L; (8) S + M; (9) S + H; (10) shrimp Exopalaemon modestus (E) + L; (11) E + M; (12) E + H; (13) E + L + D; (14) E + M + D; (15) E + H + D.
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r = (mt−m0)
(M·T)

�

where r is the predation rates (mg/(g·h)), m0 is the initial

biomass of zooplankton (mg), mt is the final biomass of

zooplankton (mg); M is the biomass of predator (g) and T is the

duration of experimental period (h). For each treatment, predation

rates at different zooplankton densities were analyzed using one-

way ANOVA, and the LSD test was used for pairwise comparisons.

Differences in predation rates between juvenile crayfish and shrimp

during the day or at night were assessed using Student’s T-test. All

analyses were performed using R (R core Team, 2023).
3 Results

3.1 Predation rates of juvenile crayfish on
zooplankton

Predation rates of juvenile crayfish on cladoceran S. mixtus

increased with increasing prey density (Figure 2). In the control

treatments with only zooplankton, no dead individual was observed
Frontiers in Ecology and Evolution 04
during the 8 hour-experimental period. At the initial high zooplankton

density of 108 ind./L, the night-time predation rate (1.3 mg/(g·h)) was

significantly higher than at medium zooplankton density (p < 0.001).

For juvenile crayfish, the daytime predation rate at the high

zooplankton density was significantly higher than at medium

zooplankton density (p < 0.05; Figure 2A). Mean predation rates

tended to be lower during the day than at night, though the

differences were not significant at any zooplankton density

(Supplementary Table S1).

For sub-adult crayfish, predation rate was significantly higher at

the high zooplankton density than at medium zooplankton density

(p < 0.05; Figure 3). Juvenile crayfish (length< 5 cm) showed higher

predation rates than sub-adult crayfish (length 5~8 cm) at all

densities (p < 0.05; Supplementary Table S2).
3.2 Predation rates of juvenile shrimps on
zooplankton

For juvenile shrimps, the predation rate was significantly higher

at the high zooplankton density than at medium zooplankton
TABLE 1 Experimental set-up for predation experiment.

Number Predator Length (cm, mean±SE) Wet weight (g, mean±SE) Period Duration

1 Juvenile crayfish 3.75±0.037 1.10±0.041 Daytime 10:00~18:00

2 Juvenile crayfish 3.74±0.033 1.07±0.028 Night-time 0:00~8:00

3 Sub-adult crayfish 6.68±0.026 8.35±0.034 Night-time 0:00~8:00

4 Juvenile shrimp 3.88±0.073 0.40±0.026 Daytime 10:00~18:00

5 Juvenile shrimp 3.87±0.067 0.40±0.030 Night-time 0:00~8:00
FIGURE 2

Daytime (A) and night-time (B) predation rates of juvenile crayfish procambarus clarkii on different densities (18, 54 and 108 ind./L) of zooplankton.
Different letters indicate significant differences in the LSD test by ranks.
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density (p < 0.05; Figure 4). Night-time predation rates of juvenile

shrimps on zooplankton tended to be higher than those of juvenile

crayfish at all zooplankton densities, though the differences were

not significant (Table 2).

For juvenile shrimps, the daytime predation rates were similar

at all three zooplankton densities, being close to 0 at low and

medium densities (Figure 4). Mean predation rates on zooplankton

during the day were significantly lower than at night at medium and

high zooplankton densities (p < 0.01; Supplementary Table S3),

with no significant difference at the low zooplankton density.
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Predation rates of juvenile shrimp on zooplankton during the

day were significantly lower than for juvenile crayfish at medium

and high zooplankton densities (p < 0.05; Table 2), with no

significant difference being found at the low zooplankton density.
4 Discussion

Invasive species generally have higher feeding efficiency, faster

growth rate and/or higher fecundity than native species (Vila-
FIGURE 3

Night-time predation rates of sub-adult crayfish procambarus clarkii on different densities of zooplankton (18, 54 and 108 ind./L). Different letters
indicate significant differences in the LSD test by ranks.
FIGURE 4

Predation rates of shrimps exopalaemon modestus during the day (A) and at night (B) on different densities of zooplankton (18, 54 and 108 ind./L).
Different letters indicate significant differences in the LSD test by ranks.
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gispert et al., 2005; Van Kleunen et al., 2010). In our study, juvenile

crayfish exhibited higher zooplankton feeding intensity than

shrimp. The results confirmed the hypothesis that the invasive

crayfish and native shrimp differ in circadian rhythm of predation

on cladocerans. Invasive juvenile crayfish fed continuously

throughout the day and night, while native shrimp showed low

feeding activity during the day.

Predation rates of crayfish increased with increasing

zooplankton densities in all experiments. As prey abundance

rises, encounter and predation rates normally increase (Turesson

and Brönmark, 2007). Functional responses describe the

relationship between predation rate and prey density (Faria et al.,

2023). Juvenile crayfish shows a Type II functional responses when

feeding on another cladoceran Daphnia magana, maintaining high

feeding rates at low prey densities (South et al., 2019). Prey density

also affects the defense of cladocerans against handling of predators,

which tends to be stronger at higher prey densities (Jeschke and

Tollrian, 2000). We found that feeding rates of juvenile crayfish on

cladocerans increased as prey density increased, however, density

gradient of zooplankton was not high enough to fit the Type I, Type

II or Type III functional responses. Further studies are needed to

explore the functional responses of juvenile crayfish and shrimp to

variations in density of S. mixtus and other zooplankton species.

We found that the larger sub-adult crayfish predated less on

zooplankton than juvenile crayfish at all zooplankton densities.

Furthermore, one individual of sub-adult crayfish also predated less

on zooplankton than one juvenile crayfish (1.71 versus 4.88 ind./h

under high zooplankton density). This aligns with the fact that

juvenile crayfish tend to be carnivores, while sub-adult and adult

crayfish shift toward higher degree of herbivory (Correia, 2003).

Moreover, juvenile crayfish are capable swimmers (Geiger et al.,

2005; Kato et al., 2018), whereas the swimming ability of sub-adult

crayfish is limited, resulting in low possibility of catching

cladocerans (Barbaresi et al., 2004). Predation of juvenile and
Frontiers in Ecology and Evolution 06
sub-adult crayfish on cladocerans will influence zooplankton

community structure, with potential cascading effects on

phytoplankton abundance and water clarity (Jeppesen et al.,

2004). Crayfish influence the zooplankton community not only

through predation but also by increasing water turbidity (Correia

and Anastácio, 2008), and their influence on zooplankton is more

complicated under natural conditions. Differences in eyesight

between juvenile and sub-adult crayfish also contribute to

variations in their catching ability (Fanjul-Moles and Prieto-

Sagredo, 2003). As sensitivity to light varies between juvenile and

adult crayfish (Ou and Liang, 2017), further studies are needed to

explore how light influences their predation rhythms.

Juvenile crayfish showed similar feeding rate but a longer

feeding period on S. mixtus compared to shrimps of similar

length, indicating higher feeding capacity of this invasive species.

In our study, the feeding rate of juvenile crayfish tended to be

slightly lower during the day than at night. Shrimp E. modestus

mainly fed at night, which aligns with findings of other studies of

diurnal variation in the feeding activity of another shrimp of the

same genus (E. carinicauda) (Wang et al., 2023). For shrimp L.

vannamei, the circadian rhythm of nocturnal feeding is driven by an

endogenous clock and persist under different conditions (Santos

et al., 2016). Juvenile crayfish fed continuously during the day and

at night, showing no apparent circadian rhythm, which might be

linked to the fact that crayfish rely on both eyesight and smell for

foraging (Zhou and Zhao, 2007). The night-time feeding rates of

juvenile crayfish were close to that of shrimp, indicating that

juvenile crayfish has high catching ability on cladocerans (South

et al., 2019). Cladocerans can identify predators with different

feeding habitats and behaviors (Ekvall et al., 2020; Lee and

Hansson, 2024). Juvenile crayfish are ambush predators, while

shrimp swim at relatively constant speeds at night (Hu et al.,

2001; Renai and Gherardi, 2004), which may also explain the

observed differences in their predation rhythms on S. mixtus. Size
TABLE 2 Daytime and night-time predation rates of juvenile crayfish and shrimp.

Number Density (ind./L) Period Predator Mean predation rate (mg/(g·h)) p value

1 18

Daytime Crayfish 0.135 ± 0.073
0.0922

Daytime Shrimp 0.017 ± 0.029

Night-time Crayfish 0.209 ± 0.063
0.8612

Night-time Shrimp 0.225 ± 0.130

2 54

Daytime Crayfish 0.622 ± 0.102
0.0034**

Daytime Shrimp 0.084 ± 0.058

Night-time Crayfish 0.718 ± 0.016
0.0516

Night-time Shrimp 1.175 ± 0.189

3 108

Daytime Crayfish 1.093 ± 0.215
0.0210*

Daytime Shrimp 0.354 ± 0.263

Night-time Crayfish 1.264 ± 0.057
0.0987

Night-time Shrimp 2.000 ± 0.439
Significant results of p values are indicated as follows: p ≤ 0.05 and p ≤ 0.01 are marked with * and **, respectively.
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of the predator influence the enzyme digestive activities, which

indirectly influence the predation rates and frequency (Gilannejad

et al., 2021). Juvenile shrimp at weight 0.4 g showed relatively lower

enzyme digestive activities than shrimp at weight 0.1-0.3 g (Wang

et al., 2010). For juvenile crayfish, enzyme digestive activities

increase steadily through 42 days of development and remain

high at weight 0.6 g (Hammer et al., 2000). Our study on early

stages of invasive crayfish and native shrimp supports the inherent

superiority hypothesis that invasive species possess advantages over

native species in feeding behaviors and capacity (Ju et al., 2013).

Presence of crayfish has also been found to cause shift in the trophic

niche of shrimp (Baudry et al., 2024). Moreover, adult and sub-

adult crayfish have the potential to prey on shrimps (Banha and

Anastácio, 2011), adding to their invasion success.

To conclude, juvenile crayfish and shrimp were found to

consume cladocerans efficiently. Juvenile crayfish fed more at

night than during the day and at a faster rate than sub-adult

crayfish. Juvenile crayfish also fed for longer periods than shrimp,

showing higher feeding capacity for invasive species than their

native counterparts (Faria et al., 2025). Future studies are needed to

investigate the differences between invasive crayfish and native

shrimps in natural lakes, and to explore the overall impacts of

decapods on the zooplankton community and the entire

freshwater ecosystem.
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