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The red swamp crayfish Procambarus clarkii is one of the most widely distributed
invasive species in the world. Effects of juvenile crayfish (< 5 cm in body length) in
lake ecosystems remain largely unknown, despite that they have a great potential
of preying upon zooplankton. The shrimp Exopalaemon modestus is one of the
most abundant native shrimps in China and also predate on zooplankton. The
predation rhythm of juvenile crayfish on zooplankton and how it differs from native
shrimps remain to be studied. We elucidated the predation rhythms of juvenile and
sub-adult crayfish and shrimps on Simocephalus mixtus, a common Cladocera in
the littoral region of freshwater lakes. Predation rates during the day or at night
were measured for juvenile crayfish (~3.75 cm in body length), sub-adult crayfish
(~6.68 cm) and juvenile shrimp (~3.88 cm) at different zooplankton densities (18,
54, 108 ind./L representing low, medium and high natural densities, respectively).
The results showed that (1) juvenile crayfish predated slightly more at night than
during the day, and with significantly higher predation rates than sub-adult
crayfish; (2) Juvenile shrimp predated significantly more at night than during the
day, as predation was almost absent during the day; (3) Juvenile shrimp had slightly
higher night-time predation rates than juvenile crayfish, however, their daytime
predation rates were significantly lower at medium and high zooplankton densities.
Juvenile crayfish fed for a longer period than shrimp of similar length, exhibiting
higher feeding capacity on zooplankton which supports the inherent superiority
hypothesis that invasive species possess advantages over native species in feeding
capacity. Our study provides information about the predation rhythms on
Cladocera of early stages of crayfish and of shrimp, that may help in explaining,
in part, the invasion success of red swamp crayfish.

KEYWORDS

feeding rhythms, native shrimp, predation rates, red swamp crayfish, zooplankton

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fevo.2025.1744072/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1744072/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1744072/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1744072/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2025.1744072&domain=pdf&date_stamp=2026-01-12
mailto:huizhangeco@163.com
mailto:jgao13@hotmail.com
https://doi.org/10.3389/fevo.2025.1744072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2025.1744072
https://www.frontiersin.org/journals/ecology-and-evolution

Zhang et al.

1 Introduction

Red swamp crayfish Procambarus clarkii is one of the most
important invasive species worldwide, the only alien freshwater
crayfish introduced in China since 1930s (Chen et al., 2017;
Oficialdegui et al., 2020). It is a popular aquatic product in China
and is cultured in more than 20 provinces with an area larger than
1.46 million hectares (Yuan et al., 2022). Red swamp crayfish is also
widely distributed in lakes, rivers, ditches, sloughs, and elsewhere
(Yi et al, 2018; Yue et al,, 2021). Crayfish have been found to
disrupt the clear water state of lakes through physical disturbances
and direct consumption of macrophytes (van der Wal et al., 2013;
Dercksen et al.,, 2025). They also negatively impact native species
such as amphibians, gastropods, and insect larvae through
predation or competition for food (Souty-Grosset et al., 2016;
Huang et al., 2025). However, most research on the impacts of
crayfish has focused on macrophytes and benthic animals
(Ruokonen et al.,, 2016), while little attention has been paid to
other taxa within the freshwater food web.

Crayfish are generally omnivores and their diet varies according
to life stage (Correia, 2003; Geiger et al., 2005). The diet of adult
crayfish (>8 cm in total length) consists of macrophytes, insect
larvae, gastropods, and detritus (van der Wal et al., 2013; Wu et al,,
2022), while little is known about the diet of juveniles and sub-
adults. Adult female crayfish lay eggs and incubate them on their
pleopods until hatching. By the third instar stage, juveniles become
free-living (Hamasaki et al., 2023). Juvenile crayfish (<5 c¢cm) are
primarily carnivorous, feeding on zooplankton or small benthic
animals (Correia, 2003; Weber and Traunspurger, 2017). They are
capable of capturing planktonic organisms, giving them great
potential to influence the littoral food web (Alcorlo et al., 2004;
Geiger et al., 2005). The total length of sub-adult crayfish is 5~8 cm
and they share trophic niches with both juvenile and adult crayfish
(Correia and Anastacio, 2008; Vesely et al., 2020). In the field, 30%
~80% of individuals are juveniles or sub-adults (Dorn et al., 2005),
highlighting the importance of investigating their impacts on the
food web to understand their effect on the stability of
freshwater ecosystems.

Zooplankton play an important role in freshwater ecosystems
and are the main food source for many kinds of fish and
macroinvertebrates (Li et al., 2022; Neale and Rudolf, 2025). High
densities of white leg shrimps Litopenaeus vannamei significantly
reduce zooplankton abundance and diversity (Tran et al., 2023). The
presence of juvenile and sub-adult crayfish P. clarkii has been shown
to greatly reduce the abundances of the crustaceans Daphnia and
Cyclops (Correia and Anastacio, 2008), indicating that crayfish have
strong potential to feed on and influence zooplankton community.

Aquatic animals including fish, macroinvertebrates, and
zooplankton exhibit diurnal feeding rhythms that vary among
species and habitats (Williamson et al., 2011; Krylov et al., 2021;
Viccon-Pale, 2022). Light intensity influences the circadian rhythm
of crustaceans which is regulated by putative pacemakers such as
the brain (Lopez-Becerril et al., 2025). The juvenile shrimp L.
vannamei exhibit higher feeding rates in light than in darkness
(Sanudin et al., 2014). Crayfish P. clarkii often hide in burrows to
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avoid predators such as fish or waterbirds, which mainly feed
during the day (Haubrock et al., 2019). The feeding activity of
crayfish follows rhythmic patterns (Viccon-Pale, 2022), some
studies reported peak feeding time in the morning from 8:00 to
10:00 and at night from 19:00 to 22:00 (Xu et al., 2012), while others
suggested continuous feeding during the day and at night (Zhou
and Zhao, 2007). Most studies on feeding rhythms focus on adult
crayfish, while little is known about the behavior of the juveniles.

Invasive crayfish have significant impacts on native crustaceans
due to their advantages in growth, reproduction and locomotion
(Lodge et al, 2012; Guareschi et al, 2024). Native freshwater
shrimps in China are generally omnivorous, feeding on
zooplankton, dipteran larvae, periphyton and detritus (Tiffan and
Hurst, 2016; Zhu et al., 2022). Presence of shrimp may reduce
periphyton biomass and increase macrophyte biomass in freshwater
lakes (Ye et al, 2019). Shrimps prefer to feed on cladocerans,
leading to changes in zooplankton community structure (Mamani
et al,, 2019). The shrimp Exopalaemon modestus is one of the most
abundant and common native shrimp in lakes in the lower reaches
of the Yangtze River (Zhao et al,, 2023). E. modestus predate on
various zooplankton species (He et al., 2021), with cladocerans and
copepods constituting a high percentage in their diets (Zhu et al,,
2022). This shrimp is generally active at night, with feeding activity
peaked near 22:00 (Wen and Xie, 2013). Co-occurrences of P.
clarkii and E. modestus have been reported in natural lakes in China
(Wu et al,, 2022; Zhao et al.,, 2023). Although field observations
indicate a similar trophic niche between the invasive P. clarkii and
the native E. modestus (Wu et al., 2022), their differential predation
rhythms on zooplankton remain unclear.

In this study, we hypothesized that there is a circadian rhythm
difference between invasive juvenile crayfish and native shrimp in
their predation of zooplankton, which might lead to a higher
zooplankton feeding intensity in juvenile crayfish than in shrimp.
To test this hypothesis, we compared the predation intensity and
efficiency of crayfish and shrimp on cladoceran Simocephalus
mixtus, one of the most common cladocerans in the littoral
regions of freshwater lakes (Huang, 2014), at different prey
densities under both daytime and night-time conditions. Our
results provide insights into the mechanisms through which
invasive species adversely affect native ones and partly help
explain the invasion success of crayfish.

2 Materials and methods
2.1 Pre-culturing of the animals

Juvenile and sub-adult crayfish were obtained from a rice-
crayfish field in Qianjiang, China (112°59”6 E, 30°11”1’ N) in
April 2024. Simocephalus mixtus, was collected from a natural pond
in Wuhan, China (114°18724 E, 30°29”4" N). Shrimps were
collected from Lake Taihu, China (120°13736’ E, 31°24”05° N). All
organisms were obtained in April 2024 and cultured in the lab for a
month prior to the experiment. One day before the experiment,
individuals were placed in BG11 medium to evacuate their guts.
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The experiments were conducted in cylindrical glass beakers
(diameter 15 cm, height 8 cm, volume 1.4 L) with black tape applied
under the bottom to mimic natural conditions (Figure 1). Culture
medium (500 mL BGI1) was added to each beaker as well as
shelters (tiles) to mimic crayfish burrows (Haubrock et al., 2019).
The beakers were placed in an incubator (PGx-60013) at 25°C, with
a light intensity of 1000lx and a light:dark cycle of 12:12 h.

2.2 Predation experiment

The densities of zooplankton were set at 18 ind./L in the low-
density treatment, 54 ind./L in the medium-density treatment, and
108 ind./L in the high-density treatment. The density gradients were
set based on field observations of cladocerans (Choi and Kim, 2020;
Chen et al, 2021). The predation experiments included all three
zooplankton densities, with three replicates per treatment. The average
body length of S. mixtus used in the experiments was 1.57 + 0.29 mm
in body length and 0.24 + 0.15 mg in wet weight. The number of living
zooplankton in each beaker was counted at the end of the experiment,

10.3389/fevo.2025.1744072

and potential leftovers under the bottom of beakers were checked. A
control experiment containing only zooplankton was included to
determine the natural mortality rate of zooplankton.

The experiment was conducted with the five treatments at the
three zooplankton densities mentioned above, with one predator
per beaker. Each treatment has three replicates, and the set-ups are
listed in the table (Table 1). The first and second treatments tested
the predation of juvenile crayfish on zooplankton during the day
and at night, respectively. The third treatment tested the predation
of sub-adult crayfish on zooplankton at night. The fourth and fifth
treatments tested the predation of juvenile shrimp on zooplankton
during the day and at night, respectively.

2.3 Data analysis

Predation rates were estimated based on differences in the
biomass of zooplankton between the start and end of the
experiment, taking predator biomass into account (Vucic-Pestic
et al., 2010):

FIGURE 1

Schematic overview of the experimental beakers. (1) Juvenile crayfish procambarus clarkii (J) + low density of zooplankton (L); (2) J + medium
density of zooplankton (M); (3) J + high density of zooplankton (H); (4) J + L + light during the day (D); (5)J + M + D; (6) J + H + D; (7) Sub-adult
crayfish (S) + L; (8) S + M; (9) S + H; (10) shrimp Exopalaemon modestus (E) + L; (11) E+ M; (12) E+ H; (13) E+ L+ D; (14 E+ M+ D; (15 E + H + D.

(12) EH

(15) E
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TABLE 1 Experimental set-up for predation experiment.

Number Predator Length (cm, mean+SE)  Wet weight (g, mean+SE) Period Duration
1 Juvenile crayfish 3.75+0.037 1.10+0.041 Daytime 10:00~18:00
2 Juvenile crayfish 3.74%0.033 1.07+0.028 Night-time 0:00~8:00
3 Sub-adult crayfish 6.68+0.026 8.35+0.034 Night-time 0:00~8:00
4 Juvenile shrimp 3.88+0.073 0.40+0.026 Daytime 10:00~18:00
5 Juvenile shrimp 3.87+0.067 0.40+0.030 Night-time 0:00~8:00
7 = (mi=mo) Joan) during the 8 hour-experimental period. At the initial high zooplankton

density of 108 ind./L, the night-time predation rate (1.3 mg/(g-h)) was

where 1 is the predation rates (mg/(gh)), mo is the initial significantly higher than at medium zooplankton density (p < 0.001).

biomass of zooplankton (mg), m; is the final biomass of For juvenile crayfish, the daytime predation rate at the high

zooplankton (mg); M is the biomass of predator (g) and T is the zooplankton density was significantly higher than at medium

duration of experimental period (h). For each treatment, predation zooplankton density (p < 0.05; Figure 2A). Mean predation rates

rates at different zooplankton densities were analyzed using one- (.1 4ed to be lower during the day than at night, though the

way ANOVA, and the LSD test was used for pairwise comparisons.  jifferences were not significant at any zooplankton density

Differences in predation rates between juvenile crayfish and shrimp (Supplementary Table S1).

during the day or at night were assessed using Student’s T-test. All For sub-adult crayfish, predation rate was significantly higher at

analyses were performed using R (R core Team, 2023). the high zooplankton density than at medium zooplankton density
(p < 0.05; Figure 3). Juvenile crayfish (length< 5 cm) showed higher
predation rates than sub-adult crayfish (length 5~8 cm) at all

3 Results densities (p < 0.05; Supplementary Table S2).

3.1 Predation rates of juvenile crayfish on
zooplankton 3.2 Predation rates of juvenile shrimps on
zooplankton
Predation rates of juvenile crayfish on cladoceran S. mixtus
increased with increasing prey density (Figure 2). In the control For juvenile shrimps, the predation rate was significantly higher
treatments with only zooplankton, no dead individual was observed  at the high zooplankton density than at medium zooplankton

2.0 2.04

(A) (B)
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= =
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FIGURE 2
Daytime (A) and night-time (B) predation rates of juvenile crayfish procambarus clarkii on different densities (18, 54 and 108 ind./L) of zooplankton.
Different letters indicate significant differences in the LSD test by ranks.
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0.004

25 50

FIGURE 3

Night-time predation rates of sub-adult crayfish procambarus clarkii on diffe
indicate significant differences in the LSD test by ranks.

Density (ind./L)

75 100 125

rent densities of zooplankton (18, 54 and 108 ind./L). Different letters

density (p < 0.05; Figure 4). Night-time predation rates of juvenile
shrimps on zooplankton tended to be higher than those of juvenile
crayfish at all zooplankton densities, though the differences were
not significant (Table 2).

For juvenile shrimps, the daytime predation rates were similar
at all three zooplankton densities, being close to 0 at low and
medium densities (Figure 4). Mean predation rates on zooplankton
during the day were significantly lower than at night at medium and
high zooplankton densities (p < 0.01; Supplementary Table S3),
with no significant difference at the low zooplankton density.

Predation rates of juvenile shrimp on zooplankton during the
day were significantly lower than for juvenile crayfish at medium
and high zooplankton densities (p < 0.05; Table 2), with no
significant difference being found at the low zooplankton density.

4 Discussion

Invasive species generally have higher feeding efficiency, faster
growth rate and/or higher fecundity than native species (Vila-

254

(A)

2.0

Predation rate (mg / (g - h))
Predation rate (mg / (g - h))

[
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FIGURE 4
Predation rates of shrimps exopalaemon modestus during the day (A) and at
Different letters indicate significant differences in the LSD test by ranks.

50 75 100 125

Density (ind./L)

%5

night (B) on different densities of zooplankton (18, 54 and 108 ind./L)
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TABLE 2 Daytime and night-time predation rates of juvenile crayfish and shrimp.

Number Density (ind./L) Period Predator Mean predation rate (mg/(g-h)) p value
Daytime Crayfish 0.135 + 0.073
0.0922
Daytime Shrimp 0.017 + 0.029
1 18
Night-time Crayfish 0.209 + 0.063
0.8612
Night-time Shrimp 0.225 £ 0.130
Daytime Crayfish 0.622 + 0.102
0.0034**
Daytime Shrimp 0.084 + 0.058
2 54
Night-time Crayfish 0.718 £ 0.016
0.0516
Night-time Shrimp 1.175 + 0.189
Daytime Crayfish 1.093 + 0.215
0.0210*
Daytime Shrimp 0.354 £ 0.263
3 108
Night-time Crayfish 1.264 £ 0.057
0.0987
Night-time Shrimp 2.000 + 0.439

Significant results of p values are indicated as follows: p < 0.05 and p < 0.01 are marked with * and **, respectively.

gispert et al., 2005; Van Kleunen et al., 2010). In our study, juvenile
crayfish exhibited higher zooplankton feeding intensity than
shrimp. The results confirmed the hypothesis that the invasive
crayfish and native shrimp differ in circadian rhythm of predation
on cladocerans. Invasive juvenile crayfish fed continuously
throughout the day and night, while native shrimp showed low
feeding activity during the day.

Predation rates of crayfish increased with increasing
zooplankton densities in all experiments. As prey abundance
rises, encounter and predation rates normally increase (Turesson
and Bronmark, 2007). Functional responses describe the
relationship between predation rate and prey density (Faria et al.,
2023). Juvenile crayfish shows a Type II functional responses when
feeding on another cladoceran Daphnia magana, maintaining high
feeding rates at low prey densities (South et al., 2019). Prey density
also affects the defense of cladocerans against handling of predators,
which tends to be stronger at higher prey densities (Jeschke and
Tollrian, 2000). We found that feeding rates of juvenile crayfish on
cladocerans increased as prey density increased, however, density
gradient of zooplankton was not high enough to fit the Type I, Type
II or Type III functional responses. Further studies are needed to
explore the functional responses of juvenile crayfish and shrimp to
variations in density of S. mixtus and other zooplankton species.

We found that the larger sub-adult crayfish predated less on
zooplankton than juvenile crayfish at all zooplankton densities.
Furthermore, one individual of sub-adult crayfish also predated less
on zooplankton than one juvenile crayfish (1.71 versus 4.88 ind./h
under high zooplankton density). This aligns with the fact that
juvenile crayfish tend to be carnivores, while sub-adult and adult
crayfish shift toward higher degree of herbivory (Correia, 2003).
Moreover, juvenile crayfish are capable swimmers (Geiger et al.,
2005; Kato et al., 2018), whereas the swimming ability of sub-adult
crayfish is limited, resulting in low possibility of catching
cladocerans (Barbaresi et al., 2004). Predation of juvenile and
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sub-adult crayfish on cladocerans will influence zooplankton
community structure, with potential cascading effects on
phytoplankton abundance and water clarity (Jeppesen et al,
2004). Crayfish influence the zooplankton community not only
through predation but also by increasing water turbidity (Correia
and Anastacio, 2008), and their influence on zooplankton is more
complicated under natural conditions. Differences in eyesight
between juvenile and sub-adult crayfish also contribute to
variations in their catching ability (Fanjul-Moles and Prieto-
Sagredo, 2003). As sensitivity to light varies between juvenile and
adult crayfish (Ou and Liang, 2017), further studies are needed to
explore how light influences their predation rhythms.

Juvenile crayfish showed similar feeding rate but a longer
feeding period on S. mixtus compared to shrimps of similar
length, indicating higher feeding capacity of this invasive species.
In our study, the feeding rate of juvenile crayfish tended to be
slightly lower during the day than at night. Shrimp E. modestus
mainly fed at night, which aligns with findings of other studies of
diurnal variation in the feeding activity of another shrimp of the
same genus (E. carinicauda) (Wang et al., 2023). For shrimp L.
vannamei, the circadian rhythm of nocturnal feeding is driven by an
endogenous clock and persist under different conditions (Santos
et al,, 2016). Juvenile crayfish fed continuously during the day and
at night, showing no apparent circadian rhythm, which might be
linked to the fact that crayfish rely on both eyesight and smell for
foraging (Zhou and Zhao, 2007). The night-time feeding rates of
juvenile crayfish were close to that of shrimp, indicating that
juvenile crayfish has high catching ability on cladocerans (South
et al., 2019). Cladocerans can identify predators with different
feeding habitats and behaviors (Ekvall et al,, 2020; Lee and
Hansson, 2024). Juvenile crayfish are ambush predators, while
shrimp swim at relatively constant speeds at night (Hu et al,
2001; Renai and Gherardi, 2004), which may also explain the
observed differences in their predation rhythms on S. mixtus. Size
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of the predator influence the enzyme digestive activities, which
indirectly influence the predation rates and frequency (Gilannejad
etal., 2021). Juvenile shrimp at weight 0.4 g showed relatively lower
enzyme digestive activities than shrimp at weight 0.1-0.3 g (Wang
et al, 2010). For juvenile crayfish, enzyme digestive activities
increase steadily through 42 days of development and remain
high at weight 0.6 g (Hammer et al.,, 2000). Our study on early
stages of invasive crayfish and native shrimp supports the inherent
superiority hypothesis that invasive species possess advantages over
native species in feeding behaviors and capacity (Ju et al., 2013).
Presence of crayfish has also been found to cause shift in the trophic
niche of shrimp (Baudry et al.,, 2024). Moreover, adult and sub-
adult crayfish have the potential to prey on shrimps (Banha and
Anastacio, 2011), adding to their invasion success.

To conclude, juvenile crayfish and shrimp were found to
consume cladocerans efficiently. Juvenile crayfish fed more at
night than during the day and at a faster rate than sub-adult
crayfish. Juvenile crayfish also fed for longer periods than shrimp,
showing higher feeding capacity for invasive species than their
native counterparts (Faria et al., 2025). Future studies are needed to
investigate the differences between invasive crayfish and native
shrimps in natural lakes, and to explore the overall impacts of
decapods on the zooplankton community and the entire
freshwater ecosystem.
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