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Dálete Cássia Vieira Alves1,2, Sérgio Lisboa Machado3*,
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Identifying their food sources provides insights into mosquito foraging behaviors

and directly impacts the epidemiology of mosquito-borne pathogens such as

dengue, Zika, and chikungunya. Understanding these feeding patterns becomes

even more relevant in ecosystems like the Atlantic Forest, where biodiversity is

rich and complex. The present study was conducted in Atlantic Forest remnants

of the Guapiaçu Ecological Reserve (REGUA) and the Sıt́io Recanto Preservar,

both located in the state of Rio de Janeiro, Brazil. We aimed to identify the food

sources of mosquitoes present in these areas, contributing to a better

understanding of ecological and epidemiological dynamics. Molecular

techniques, such as Sanger DNA sequencing of cytochrome b (Cytb), allows

for precise identification of food sources, which is fundamental for designing

control and monitoring strategies for mosquito populations. A total of 1,714

mosquitoes were captured, of which only 145 females (6.98%) were engorged.

The results revealed a clear tendency for the captured mosquito species to feed

predominantly on humans. Additionally, we emphasize the need to continuously

improve techniques to identify food sources, aiming to better understand

interactions between mosquitoes and their environment. This information is

crucial for developing effective policies and strategies to control vector-

borne pathogens.
KEYWORDS

mosquito ecology, blood meal analysis, Atlantic Forest, anthropophily, vector-
host interaction
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Introduction

Identifying the food sources of mosquitoes allows researchers to

investigate their feeding patterns and preferences for different food

sources. This aids in understanding their life history and the factors

that may influence their search and choice of vertebrate hosts.

Additionally, it reveals the impact of these habits on their survival

and reproductive success (Lyimo and Ferguson, 2009; Takken and

Verhulst, 2013). Understanding the feeding habits of hematophagous

mosquitoes is essential to determine their role as vectors in the

maintenance and transmission of pathogens among vertebrates

(Faraji et al., 2014). Furthermore, it provides better insight into their

ecological in-teractions and coevolutionary processes (Kent, 2009).

The availability of hosts in an area is one of the factors

influencing mosquito blood feeding (Francisco and Da Silva, 2019).

The Atlantic Forest biome is home to approximately 850 species of

birds, 370 amphibians, 200 reptiles, 270 mammals, and 350 fishes,

contributing to the maintenance of culicid populations. Originally,

the Atlantic Forest covered more than 1.3 million km² across 17 states

in Brazil, and was present along much of the country’s coast.

However, due to human occupation and activities in the region, as

expansion of agriculture with the planting of guava trees, pepper

plants, ornamental grass, horse breeding and residential development

only about 29% of its original coverage remains today (Ministério do

Meio Ambiente, 2025). Deforestation reduces local biodiversity,

causing mosquitoes, including vectors of pathogenic agents, to

disperse and seek alternative food sources.

Vector-borne pathogens pose an increasing threat to the global

human population, with more than 700,000 people dying annually

due to infection (World Health Organization, 2017). In 2022, 249

million cases of malaria were reported, resulting in 608,000 deaths

(World Health Organization, 2023). The WHO reported 4.2 million

dengue cases in 2019, with an estimated 3 billion people at infection

risk (Gangula et al., 2023).

The heterogeneity of vertebrate hosts can significantly impact the

transmission of pathogens by vectors, as many hosts are sources of

infection for a single pathogen (Marm Kilpatrick et al., 2006). However,

given the diversity of animals, some pathogens can adapt to specific

hosts (Kenney and Brault, 2014). Since mosquitoes exhibit generalist or

specialist feeding behaviors, this set of factors demonstrates the

complexity and importance of identifying animal species that serve as

reservoir hosts for various pathogens (Haydon et al., 2002).

The present study aimed to investigate the food sources of

mosquitoes captured during the crepuscular period at Sitio Recanto

Preservar in the municipality of Silva Jardim and REGUA (Guapiaçu

River Ecological Reserve) in the municipality of Cachoeiras de Macacu,

both remnants of the Atlantic Forest in the state of Rio de Janeiro, Brazil.

Materials and methods

Study area

Sampling was conducted at the Sıt́io Recanto Preservar (SRP),

Silva Jardim (22°37’10.7”S 42°18’59.5”W). This sampling point is
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part of the Environmental Protection Area of the São João River

Basin (APA Bacia Hidrográfica do Rio São João). We also collected

samples at the Guapiaçu River Ecological Reserve (REGUA),

Cachoeiras de Macacu (22° 27′ 10.309 S and 42° 46′ 13.011 W).

Both sampling points are located in the state of Rio de

Janeiro (Figure 1).

The Environmental Protection Area of the São João River Basin

experiences high rainfall levels from November to April, with an

annual average of 2,400 mm in Silva Jardim. The dry season spans

fromMay to September (Takizawa, 1995). It is part of the ecological

region of dense ombrophilous forests, which includes montane and

submontane areas, as well as lowland forests (Veloso et al., 1991).

Montane forest occurs at altitudes from 500 to 1500 meters, and

submontane forest is present on slopes up to 500 meters between

the lowlands and montane forest. Lowland forests are found in

alluvial plains and are one of the most threatened landscapes in the

Atlantic Forest due to fragmentation.

REGUA is a remnant of the Atlantic Forest, located in the

Guanabara Bay sub-basin, with part of the reserve situated within

the Três Picos State Park, which, together with the Serra dos Órgãos

National Park and the Paraıśo State Ecological Station, protects a

large continuous area of Atlantic Forest, covering much of the Serra

dos Órgãos region, one of the areas with the greatest biodiversity in

the state (Almeida-Gomes et al., 2014).

The reserve covers an area of 7,400 hectares and features dense

ombrophilous forest vegetation, with the subtypes floodplain forest

in gently undulating terrain, submontane in highland undulating

terrain, and alluvial in flat terrain (Pires et al., 2022). The regional

climate includes rainy and hot summers (October to March) and

cold, dry winters (April to September), with an annual average

temperature of 23°C, peaking in January and February and dipping

in June. The annual average precipitation is around 2,560mm, with

December and January as the wettest months and June and July as

the driest (Kurtz and De Araujo, 2000; Alvares et al., 2013).

The fauna includes a high species diversity, with approximately

67 species of am-phibians, 455 species of birds, 45 species of reptiles

(including the broad-snouted caiman, Caiman latirostris), and 61

species of mammals (including the southern muriqui, Brachyteles

arachnoides) (Viana G. et al., 2016).
Specimen capture, storage, and
identification of engorged females

Captures were conducted over two consecutive days using CDC

light traps, installed at a height of 2 meters and distributed

randomly. The traps were exposed from 6:00 PM to 8:00 AM the

following morning. Sampling at the Sıt́io Recanto Preservar site was

conducted from February to April and August to October 2023,

while captures at REGUA occurred from March 2023 to

February 2024.

Two sampling points were established at REGUA (geographic

coordinates (S) 22° 27’10.309 (W) 42°4613.011): Point 1 (yellow

trail), located near the reserve headquarters, features a very low
frontiersin.org
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elevation and surrounds the entire lake, with vegetation that

includes a mix of reintroduced native species; Point 2 (green

trail), located at a higher elevation in the submontane zone,

features dense and diverse forest with restored secondary forest

terrain. Although these sampling points differ significantly in terms

of elevation and possibly environmental complexity, they are both

part of ecological restoration efforts and the promotion of

local biodiversity.

The sampling point at Sıt́io Recanto Preservar is represented by

an environment with a dense shrub layer, where tall trees are

positioned very close to each other. This vegetation type suggests

a dense forest ecosystem with a complex vertical structure that

provides a range of unique conditions for local biodiversity.

The captured specimens were placed in polyethylene cages,

labeled according to their origin, stored in thermal boxes, and

transported alive to the field support laboratory. Subsequently, they

were anesthetized by exposure to chloroform vapor and kept in a

freezer (4 °C) to halt the digestive process.

Male and female specimens were separated and identified on a

refrigerated table to preserve vertebrate DNA using dichotomous

keys developed by Lane (1953a, b), Consoli & Lourenço-de-Oliveira

(1994), Forattini (2002), and Marcondes & Alencar (2010). After

identification, the specimens were stored in an ultra-freezer at -80°C

for subsequent molecular analysis.
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Molecular analysis

DNA extraction was performed using the TransGen Biotech kit:

EasyPure Viral DNA/RNA (code#ER201–02 TransGen Biotech,

Beijing, China), following the manufacturer’s protocol from the

macerated head and abdomen of the mosquito, previously

separated with a scalpel. Then, the material was quantified and

tested for quality using a Denovix DS-11 FX spectrophotometer

(Denovix Inc., Wilmington, US); only good-quality samples

proceeded to the next stage.

Food sources were identified using two pairs of primers that

amplify a mitochondrial DNA (mtDNA) fragment of the

cytochrome B (CytB) gene (Table 1). These primers are

considered universal for vertebrates and do not amplify mosquito

DNA; therefore, they are useful in amplifying only the blood meal

they consumed (Malmqvist et al., 2004).

The protocol used for the L14841/H15149 primers was adapted

from (Dias et al., 2011). The PCR reaction was performed in a final

volume of 25mL, containing 2mM of MgCl2, 2mM of dNTP, 1.0μM

of each primer, 2.5x of 10x buffer, 0.4μM of Taq DNA polymerase,

5μL of DNA, and ultrapure water to complete the final solution.

Amplification involved an initial step at 95°C for 5 minutes,

followed by 35 cycles at 95°C for 1 minute, 50°C for 1 minute,

72°C for 1 minute, and a final extension at 72°C for 5 minutes.
FIGURE 1

Map of the mosquito collection sites for this study. Sampling points: Cachoeiras de Macacu and Silva Jardim, located in the state of Rio de Janeiro,
Brazil. Maps were prepared in QGIS version 3.34.9 (URL: https://qgis.org/. Acessed: 8 August 2024).
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The protocol used for the VF/VR primers was adapted from

(Gyawali et al., 2019). The PCR reaction was also performed in a

final volume of 25mL, containing 0.5μM of each primer, 1.5mM of

MgCl2, 2.5 mM of dNTPs, 2.5x of 10x buffer, 0.4μM of Taq DNA

polymerase, 5μL of sample DNA, and ultrapure water to complete

the final volume. Amplification involved an initial step at 95°C for 1

minute, followed by 35 cycles at 95°C for 30 seconds, 58°C for 30

seconds, 72°C for 40 seconds, and a final extension at 72°C for

10 minutes.

After PCR, 5mL of the amplified product was subjected to 1.5%

agarose gel elec-trophoresis. The gels were placed in a container

with 0.05% ethidium bromide solution for 5 to 10 minutes to

visualize the bands under a UV transilluminator at 260nm.

The PCR product was purified for all materials that amplified

the CytB mtDNA fragment using the protocol established in the

PCR Purification Kit (Cellco Biotec do Brasil Ltda., São Carlos,

Brazil—cat#DPK-106L). Part of the purified material was used for

sequencing, and the remainder was preserved in an ultra-freezer at

-80°C as a reserve for future confirmation if necessary. After

purification, the amplified samples were sent for Sanger

sequencing at the RPT-01A Sequencing Platform of the Oswaldo

Cruz Institute–RJ (FIOCRUZ), Rio de Janeiro, Brazil.
Sequence analysis

The sequences obtained from sequencing were processed using

Geneious R11 v.11.1.5 (Biomatters Ltd., Auckland, New Zealand).

The food source was identified by aligning the sequencing data with

sequences deposited in the GenBank database (NCBI: National

Center for Biotechnology Information —https://blast.ncbi.

nlm.nih.gov/Blast.cgi) using the BLAST tool and the MUSCLE

algorithm. A vertebrate was considered a food source when the

sequences showed a similarity of > 95%.
Results

Sampling at the Guapiaçu Ecological Reserve (REGUA) and the

Recanto Preservar site yielded a total of 1,714 mosquitoes. At

Recanto Preservar, 653 specimens representing 21 species were

collected, while 1,061 mosquitoes, corresponding to 31 species, were

collected at REGUA (Table 2). Of the total captured mosquitoes,

only 145 females (8.46%) were engorged. Subsequent molecular

analysis showed that the DNA of only 55 of these engorged samples
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(37.93%) was successfully amplified. Blood meals could not be

detected in the remaining 90 engorged females, as the tested

primers did not yield any amplification.

First, PCR was performed on the blood samples using the

L14841/H15149 primers, for which only 24 samples were

amplified for Cytb. Subsequently, the VF/VR primers were tested,

and all 55 samples were amplified for this gene.
TABLE 2 Total specimens captured at the Guapiaçu Ecological Reserve
(REGUA), municipality of Cachoeiras de Macacu, and at the Recanto
Preservar Farmstead (SRP), municipality of Silva Jardim, state of Rio de
Janeiro, Brazil.

Species REGUA SRP Total

Aedeomyia (Ady.) squamipennis (Lynch
Arribálzaga, 1878)

4 – 4

Aedes (Och.) scapularis (Rondani, 1848) 7 184 191

Ae. (Och.) serratus (s.l.) (Theobald, 1901) 3 12 15

Ae. (Pro.) argyrothorax (Bonne-Wepster &
Bonne, 1920)

9 – 9

Ae. (Stg.) albopictus (Skuse, 1895) 2 6 8

Anopheles (Nys.) albitarsis Lynch-Arribálzaga,
1878

51 1 52

Anopheles (Ker.) cruzii Dyar & Knab, 1908 2 – 2

An. (Nys.) deaneorum Rosa-Freitas, 1989 2 – 2

An. (Ano.) evandroi Costa Lima, 1937 1 – 1

An. (Nys.) evansae (Brèthes, 1926) 42 12 54

An. (Ano.) maculipes (Theobald, 1903) 4 – 4

Anopheles spp. 3 2 5

Chagasia fajardi (Lutz, 1904) 1 – 1

Coquillettidia (Rhy.) albicosta (Chagas, 1908) 21 – 21

Coquillettidia (Coq.) chrysosoma (Edwards,
1915)

– 1 1

Cq. (Rhy.) chrysonotum (Peryassú,1922) 3 6 9

Cq. (Rhy.) fasciolata (Lynch-Arribálzaga, 1891) 139 49 188

Cq. (Rhy.) juxtamansonia (Chagas, 1907) 12 – 12

Cq. (Rhy.) shannoni (Lane & Antunes, 1937) – 6 6

Cq. (Rhy.) venezuelensis (Theobald, 1912) 25 – 25

Culex spp. 183 – 183

(Continued)
fronti
TABLE 1 Sequences of the two pairs of primers used and the size of their amplicons used in the present study.

Primer Sequence (5’-3’) Region Amplicon size (pb) References

L14841 Forward AAAAAGCTTCCATCCAACATCTCAGCATGATGAAA 14841 305 (Kocher et al., 1989)

H15149 Reverse AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA 15149 305 (Kocher et al., 1989)

VF Forward GAGGMCAAATATCATTCTGAGG 15150 457 (Townzen et al., 2008)

VR Reverse TAGGGCVAGGACTCCTCCTAGT 15607 457 (Townzen et al., 2008)
VF, vertebrate forward; VR, vertebrate reverse.
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In the samples collected at Sıt́io Recanto Preservar, 653

mosquitoes were captured, of which 21 females (3.21%) were

engorged. However, only eight samples (9.5%) were successfully

amplified, and it was possible to identify the blood meal of four of

them. The remaining four samples could not be identified.
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The four samples with identified blood meals corresponded to

three females of Psorophora ferox (Humboldt, 1819) and one of

Aedes scapularis (Rondani, 1848) (Table 3).

At REGUA, 124 engorged females (11.69%) were captured out

of a total of 1061 mosquitoes; however, only 47 samples (37.90%)

were successfully amplified. At the green trail sampling point, 80

specimens were captured, of which only seven were engorged,

comprising four species. Of the 955 specimens captured on the

yellow trail, 117 females were engorged, comprising 16 species. No

food sources were detected for the species on the green trail, so all

47 amplified samples were from the yellow trail.

Similar to observations at Sıt́io Recanto Preservar, the food source

could not be detected for 27 specimens, while the blood meal of 20

specimens was successfully identified. The specimens corresponded to

two females of Uranotaenia geometrica Theobald, 1901, ten

Coquillettidia fasciolata (Lynch-Arribálzaga, 1891), two Cq.

venezuelensis (Theobald, 1912), one Aedes scapularis (Rondani,

1848), one Ae. serratus (s.l.) (Theobald, 1901), one Ae. albopictus

(Skuse, 1895), oneAnopheles evansae (Brèthes, 1926), oneAn. evandroi

Costa Lima, 1937 and one Culex (Melanoconion) sp. (Table 4).

The detected food sources of the 24 specimens included 18

humans, one amphibian, six birds, one canid, and one mouse.

However, even with a similarity of >95% in all sequences, only the

sequences of humans could be published. Two samples showed

multiple meals, corresponding to Cq. venezuelensis with two

sources, an amphibian and a human, and Cq. fasciolata with four

sources, one specimen for mouse and bird and another for human

and bird. Two identified samples corresponded only to a bird

genus (Table 5).
TABLE 2 Continued

Species REGUA SRP Total

Cx. (Mel.) clarki Evans, 1924 21 – 21

Cx. (Cux.) spp. 126 19 145

Cx. (Mcx.) pleuristriatus Theobald, 1903 1 – 1

Cx. (Mcx.) sp. 11 – 11

Cx. (Mel.) erraticus (Dyar & Knab, 1906) 2 – 2

Cx. (Mel.) pereyrai Duret, 1967 2 – 2

Cx. (Mel.) spp. 235 22 257

Haemagogus (Hag.) leucocelaenus (Dyar &
Shannon, 1924)

1 4 5

Limatus durhamii Theobald, 1901 1 1 2

Mansonia (Man.) humeralis Dyar & Knab,
1916

– 1 1

Mansonia (Man.) indubitans Dyar & Shannon,
1925

1 – 1

Ma. (Man.) titillans (Walker, 1848) 73 29 102

Psorophora (Jan.) albipes (Theobald, 1907) – 121 121

Psorophora (Jan.) ferox (Humboldt, 1819) 5 169 174

Runchomyia (Run.) reversa (Lane & Cerqueira,
1942)

2 – 2

Sabethes (Sab.) chloropterus (Humboldt, 1819) 1 – 1

Sabethes (Pey.) identicus Dyar & Knab, 1907 – 2 2

Sabethes sp. – 2 2

Trichoprosopon compressum Lutz, 1905 3 – 3

Tri. digitatum (Rondani, 1848) 1 – 1

Tr. pallidiventer (Lutz, 1905) 6 – 6

Trichoprosopon sp. 1 – 1

Uranotaenia davisi Lane, 1943 3 – 3

Ur. (Ura.) calosomata Dyar & Knab, 1907 2 – 2

Ur. (Ura.) geometrica Theobald, 1901 4 – 4

Ur. (Ura.) pulcherrima Lynch-Arribálzaga,
1891

8 4 12

Wyeomyia (Pho.) edwardsi (Lane & Cerqueira,
1942)

8 – 8

Wyeomyia spp. 29 – 29

Total 1061 653 1714
TABLE 3 Engorged species captured at the Sıt́io Recanto Preservar, Silva
Jardim, Rio de Janeiro, Brazil.

Species
Engorged
females

Food
sources

Aedes (Ochlerotatus) scapularis (Rondani,
1848)

5 1

Ae. (Ochlerotatus) serratus (s.l.) (Theobald,
1901)

1 –

Anopheles (Nyssorhynchus) albitarsis
(Lynch-h-Arribálzaga, 1878)

1 –

An. (Nyssorhynchus) evansae (Brèthes,
1926)

1 –

Coquillettidia (Rhynchotaenia) fasciolata
(Lynch-Arribálzaga, 1891)

1 –

Mansonia (Mansonia) humeralis Dyar &
Knab, 1916

1 –

Ma. (Mansonia) titillans (Walker, 1848) 6 –

Psorophora (Janthinosoma) ferox
(Humboldt, 1819)

5 3

Total 21 4
f

Total values are highlighted in bold at the end of the table.
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TABLE 4 Engorged species captured at sampling points in the Guapiaçu Ecological Reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil.

Species
Engorged
females

Yellow trail Green trail Food sources

Aedes (Stegomyia) albopictus (Skuse, 1895) 1 1 – 1

Ae. (Protomacleaya) argyrothorax (Bonne-Wepster & Bonne, 1919) 4 – 4 –

Aedes (Ochlerotatus) scapularis (Rondani, 1848) 5 5 – 1

Aedes (Ochlerotatus) serratus (Theobald, 1901) 1 1 – 1

Anopheles (Anopheles) evandroi Costa Lima, 1937 1 1 – 1

An. (Nyssorhynchus) albitarsis Lynch-Arribálzaga, 1878 4 4 – –

Anopheles (Nyssorhynchus) evansae (Brèthes, 1926) 1 1 – 1

Coquillettidia (Rhynchotaenia) albicosta (Peryassú, 1908) 4 4 – –

Cq. (Rhynchotaenia) chrysonotum (Peryassú,1908) 1 1 – –

Cq. (Rhynchotaenia) fasciolata (Lynch-Arribálzaga, 1891) 38 38 – 10

Cq. (Rhynchotaenia) juxtamansonia (Chagas, 1907) 1 1 – –

Cq. (Rhynchotaenia) venezuelensis (Theobald, 1912) 7 7 – 2

Culex (Culex) sp. 2 2 – –

Culex (Melanoconion) spp. 18 18 – 1

Mansonia (Mansonia) titillans (Walker, 1848) 30 30 – –

Psorophora (Janthinosoma) ferox (Humboldt, 1819) 1 – 1 –

Runchomyia (Runchomyia) reversa Lane & Cerqueira, 1942 1 – 1 –

Trichoprosopon digitatum (Rondani, 1848) 1 – 1 –

Uranotaenia (Uranotaenia) geometrica Theobald, 1901 2 2 – 2

Ur. (Uranotaenia) pulcherrima Lynch-Arribálzaga, 1891 1 1 – –

Total 124 117 7 20
F
rontiers in Ecology and Evolution
 06
Total values are highlighted in bold at the end of the table.
TABLE 5 Mosquito species captured at Cachoeiras de Macacu and Silva Jardim, Rio de Janeiro, Brazil, and their respective food sources.

Mosquito species Locality Quantity Food sources Class

Aedes scapularis (Rondani, 1848) Sitio Recanto Preservar 1 Anas acuta

Coquilletidia. fasciolata (Lynch-Arribálzaga, 1891) REGUA

1 Gallus gallus

Bird

1 Harpia harpyja

1 Meleagris gallopavo

1 Larus sp

1 Chroicocephalus sp.

Cq. venezuelensis (Theobald, 1912) REGUA 1 Pithecopus rohdei Amphibia

Anopheles evansae (Brèthes, 1926) REGUA 1 Canis lupus familiaris

Mammalia

Coquilletidia. fasciolata (Lynch-Arribálzaga, 1891) REGUA 1 Mus musculus

Ae. albopictus (Skuse, 1895)

REGUA

1

Homo sapiens

Ae. scapularis (Rondani, 1848) 1

Ae. serratus (Theobald, 1901) 1

Anopheles evandroi Lima, 1937 1

Cq. fasciolata (Lynch-Arribálzaga, 1891) 6

(Continued)
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Discussion

The present findings highlight the importance of considering

not only human presence but also the behavior and feeding

preferences of mosquitoes when planning vector control strategies

and preventing pathogens transmitted by these insects. It is essential

to emphasize the need for more research to clarify better the feeding

patterns of mosquitoes and their implications for public health.

The biodiversity of the Atlantic Forest is considered of extreme

biological importance; however, this richness of fauna and flora is

threatened by deforestation. The greater the increase in deforested

areas, the faster the rate and acceleration of biodiversity loss

(Branco et al., 2021). The loss of native vegetation is associated

with an increase in the transmission of etiological agents of

arboviruses (dengue, Zika, Chikungunya, and yellow fever).

Consequently, the natural habitats of vectors and their life cycles

are altered, affecting their population density. It should be added

that, with the degradation of forest areas and the increasing human

occupation, biological vector insects approach homes and

peridomestic areas, causing transmissions (Moreno, 2021).

Besides the small sample size, we have detected in the two

specimens of Ae. scapularis at different sampling points, one

belonging to human and one bird which is consistent with the

previous studies indicating that this species exhibits a generalist

behavior, feeding on birds, canids, cattle, horses, and humans

(Forattini et al., 1989; Mucci et al., 2015; Santos et al., 2019), which

corroborates our results.

Coquillettidia fasciolata was found to feed on humans, mouse

and birds. It is worth noting that some bird species can disperse

over long distances, frequenting terrestrial and aquatic systems

(Martıń-Vélez et al., 2020). Gulls, for example, are aquatic birds

that can travel hundreds of kilometers between freshwater, marine,

and terrestrial habitats (Viana D. S. et al., 2016). Two bird genera

found in this study correspond to two gulls. However, there is no

information on the occurrence of these bird genera at REGUA

(Barbieri, 2008; Santos et al., 2021; Chupil et al., 2024). Therefore,

two possibilities arise: these birds may have migrated to the region,

or there was an error in sequencing editing and analysis.

In our research, the sequences corresponding to these two genera

showed >95% similarity, indicating a high level of reliability. Based on

this principle, one might assume that these animals were indeed

present in the study area. However (Townzen et al., 2008), emphasize

that verifying the distribution of vertebrates is as important as

checking the similarity of sequences, as this set of variables

influences the accurate identification of the blood meal taken by
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the mosquitoes. Therefore, although the sequences’ similarity were

within the expected range, the presence of gulls around REGUA is

questionable due to the type of habitat that comprises the area and

the lack of records of these animals in the location.

It is undeniable that with the advent of sequencing and the range

of genomes present in current databases, studies on the blood meals of

hematophagous arthropods have seen unprecedented advancement

(Hopken et al., 2021; Muturi et al., 2021; Balasubramanian et al.,

2022). However, these results highlight the importance of improving

these tools and continuing research on the subject.

The food source of a single specimen ofAn. evansaewas identified

as a canid; however, we could not determine its blood-feeding patterns

due to the low sample size. Coquillettidia venezuelensis was found to

fed on two food sources: an amphibian and two humans. According to

(De Carvalho et al., 2014) and (Alencar et al., 2015), the feeding habit

of Cq. venezuelensis involves mammals and birds. However, in the

present study, one specimen was found to have fed on an amphibian,

which had not been previously recorded.

Light traps with CO2 baits have been reported to attract females

searching for hosts, so they are either not fed or are partially fed

with blood (Thiemann and Reisen, 2012). In our study, few

engorged mosquitoes were observed, possibly due to the capture

method used, as CDC traps were employed. Female mosquitoes that

have just taken a blood meal tend to rest (Duvall, 2019). Therefore,

resting traps should be employed, such as entomological nets

(Brugman et al., 2017; Melgarejo-Colmenares et al., 2022) and

battery-powered aspirators (Vazquez-Prokopec et al., 2009) to

achieve better results in future studies.

Mosquitoes can spread pathogens to various vertebrate hosts,

causing human dis-eases due to their high vector capacity (Segura

et al., 2021). In the present study, human blood meals were detected

in nine species, notably Ae. albopictus, a vector of several important

viruses, including dengue, yellow fever, Zika, and chikungunya

(Ryan et al., 2019), and Aedes serratus (s.l.), Ae. scapularis, and

Ps. ferox, vectors of the yellow fever virus (Cardoso et al., 2010;

Moreno et al., 2011). These findings suggest a tendency toward

human hosts among the mosquito species captured.

This dominance is likely due to the frequent presence of

residents, tourists, and researchers in these forest fragments.

Additionally, it is important to consider the possibility that the

recorded blood meals were not taken from team members during

the capture. Mosquito species are known to travel greater distances

than expected, even under unfavorable conditions, to find hosts.

Mosquitoes are known for their behavioral plasticity and

adaptability to environmental conditions, mainly due to their
TABLE 5 Continued

Mosquito species Locality Quantity Food sources Class

Cq. venezuelensis (Theobald, 1912) 2

Culex (Melanoconion) sp. 1

Psorophora ferox
(Humboldt, 1819)

Sitio Recanto Preservar 3

Uranotaenia geometrica Theobald, 1901 REGUA 2
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ability to adapt to different food sources, including vertebrate blood

and resources available in vegetation. However, in some situations,

especially when there is a reduction in the number of vertebrate

hosts, mosquito species may resort to alternative blood sources,

such as humans (Alencar et al., 2015).

Physical and chemical factors like vision, smell, heat, and

humidity, as well as behavior are directly involved in the search

and orientation of a vertebrate host (Cardé, 2015; Coutinho-Abreu

et al., 2022). Anopheles gambie and Ae. aegypti, for example, when

coming into contact with air laden with CO2 odors, fly upwind

towards the vertebrate trail (Dekker and Cardé, 2011; Hinze et al.,

2021). Were observed a tendency for human blood meals in Cq.

fasciolata and Ps. ferox, which, according to the literature, can fly an

average of 2500 meters, which is in line with previous studies

(Verdonschot and Besse-Lototskaya, 2014).

The successful identification of blood meals using PCR-based

methods can present some limitations, such as the low quality and

quantity of the host DNA in the mosquito’s abdomen (Gómez-Dıáz and

Figuerola, 2010); preservation, transportation, and storage after collection

(Mukabana et al., 2002); and DNA degradation during the conservation

period before extraction (King et al., 2008). The effectiveness of food

source analyses varies widely between studies (Thiemann et al., 2011;

Hernández-Triana et al., 2017; Santos et al., 2019). In our work, 37.93%

of the samples successfully amplified host DNA.

We must consider that the Sanger sequencing system used in

this research has a methodological limitation, as it can only detect

the target with the highest concentration. If more than one source is

present, the amplified product may show multiple peaks in the

chromatogram, even with highly specific primers are used,

hampering their accurate identification (Avanesyan et al., 2021;

Nagaki et al., 2021; Trivellone et al., 2022; Alonso et al., 2023).

Another possibility highlighted in a study by (Trivellone et al.,

2022) is that short primers (<25 bp) used for Sanger sequencing, can

lead to conflicting results and low specificity compared to other

methods like next-generation sequencing (NGS) (Martıńez-Porchas

et al., 2016; Trivellone et al., 2022). In this regard the sequences

from the amphibian, birds, canid, and mouse were of low quality,

with less than 200 bp; therefore. they were not accepted for

inclusion in the NCBI database.

Our study indicates that while molecular biology techniques

hold promise, various factors can influence their outcomes. This

suggests that, like collection methods, these techniques still require

refinement and adjustment to enhance their sensitivity.
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