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Introduction

As global biodiversity declines, continuous acoustic monitoring has emerged as a non-

invasive and scalable approach to track ecological change across landscapes. By capturing

and analysing the sounds of wildlife, weather, and human activity, ecologists can gain real-

time insight into ecosystem health and species dynamics. Yet, while artificial intelligence

(AI) has accelerated the detection and classification of environmental sounds, it often lacks

the interpretive sensitivity required for ecological decision-making.

Artificial intelligence has become an indispensable tool in ecology, reshaping how

scientists detect, classify, and interpret environmental sounds. From bioacoustics sensors

tracking biodiversity to deep-learning systems monitoring urban noise, environmental

sound classification (ESC) technologies have expanded our capacity to “hear” the living

world (Sharma et al., 2022). However, as these technologies advance, a growing disconnect

has emerged between what machines detect and what ecologists understand.

The majority of ESC models are still optimized for performance measures—F1-scores,

precision, and recall—instead of for interpretability, context, or ecological relevance

(Haider et al., 2023; Rasmussen et al., 2024). Such systems recognize statistical patterns

extremely well, yet they are often nothing more than closed, opaque black boxes, unrelated

to the thinking that underlies ecological interpretation. A model should be able to recognize

a bird call properly yet cannot produce its ecological meaning—whether it announces

mating behaviour, territorial behaviour, or stress of the environment (Kohlberg et al.,

2024). Without interpretability, Eco physiologically derived by AI risks being scientifically

proper but Eco physiologically superficial.

This article is in favour of moving from an automated approach to “co-listening”

through cognitive alignment - creating AI systems that are capable of listening with

ecologists, rather than simply for them. Cognitive alignment describes the similarity

between models’ internal representations and explanations and those of human

ecological cognition (Kvsn et al., 2020). Aligned systems must allow for mutual
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intelligibility - the ability of humans and AI to provide each other

with interpretive processes, feedback and co-adaptive learning by

elapsed time. The next sections outline the current limits on ESC,

provide a conceptual framework for cognitive alignment and

present paths toward design of “co-listening” systems that can

combine human and machine understanding to create an

understanding of ecology.

Cognitive alignment does not imply that ecological

interpretation can be fully reduced to explicit rules. Rather, it

requires anchoring AI representations in ecologically meaningful

latent concepts—such as species traits, call types, behavioural

contexts, and habitat-level acoustic indices—so that the model’s

internal structures correspond to how ecologists reason about

sound. This process can be enabled through interactive concept-

refinement interfaces that allow experts to promote, demote, merge,

or redefine ecological concepts inside the model. In this way,

cognitive alignment becomes a pathway for shared interpretive

grounding rather than simply a visualisation of hidden layers.
The misalignment problem

Over the past decade, ESC systems have achieved remarkable

technical progress. Early approaches relied on engineered features

such as mel-frequency cepstral coefficients (MFCCs) and classifiers

like random forests or support vector machines (Toffa and

Mignotte, 2021). Deep-learning architectures—convolutional,

recurrent, and transformer-based—now dominate the field,

delivering state-of-the-art results on datasets like ESC-50,

UrbanSound8K, and DCASE (Jahangir et al., 2023).

Despite these advances, most architectures remain opaque.

Their decision processes are difficult to interpret, and post-hoc

visualization methods such as Grad-CAM yield insights that are

limited or ecologically irrelevant. Context collapse further occurs

when isolated audio clips are analysed without temporal,

behavioural, or environmental context (Zinemanas et al., 2021).

Distributional drift compounds this issue: ecological

soundscapes evolve with seasons, habitats, and weather

(Patchipala, 2023), leading to poor model generalization beyond

training conditions. Human–AI interaction is similarly one-sided—

ecologists provide annotations for training, yet deployed systems

rarely accept ongoing feedback or correction.

Consequently, a cognitive gap persists. Models “hear”

statistically while ecologists “listen” contextually. Without shared

interpretive grounding, predictions may be accurate yet cognitively

alien, eroding trust and limiting ecological understanding.
Toward cognitive alignment

Cognitive alignment offers a conceptual as well as practical

answer to the misalignment that is being observed. It refers to the

extent to which the reasoning, representations, and uncertainty

estimates of an artificial intelligence system have been made
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consistent with ecological interpretive models (Rane et al., 2024).

A coherent model of an ecological soundscape classifier must be

able to go beyond mere categorisation of acoustic phenomena and

give a description of the rationale behind it in a way that can be

understood by experts in the domain.

The efficacious communication thus requires a restructuring of

the automatization of the classification process involved in

ecological soundscape classifiers (ESC) into a collaborative

interpretive process, which involves a mutually co-operative co-

listening activity between machine and human.
1. Soundscape Contribution: Raw environmental records are

accompanied by contextual metadata of variables in terms

of time, place, habitat and weather conditions.

2. Representation of Models: The Acoustic features are

changed, resulting in probabilistic forecasts of uncertainty

based on quantitative features.

3. Ecologically valid Interface: The utility visualisations of

the model are presented in the form of ecologically valid

representations of ecologically valid activation or attention-

map representations that enhances the interpretation of

the visuals.

4. Human Feedback: Ecologists analyse the output of the

model, discover invalid classifications, and record

arguments like redundant vocalization.

5. Model Adaptation: Active or incremental learning to adapt

the system with elite information is influencing the system

to predict better.

6. Iteration: Due to the process of co-adaptation between

the human reviewers and the AI model, the framework

wil l converge to a more precise and common

interpretive alignment.
This cycle recasts ESC as an interpretive co-operation instead of

a pipeline, allowing AI to engage ecological reasoning through

contextual awareness and clear feedback.
Design of paths for cognitive
correspondence

Cognitively harmonized environmental sound classification

(ESC) systems are designed in such a way that a systematic

refactoring of representation, context, feedback and uncertainty

are required to ensure ecologically interpretable results.

Interpretability: The ecological partitions: the latent

representations should capture ecological partitions such as

species traits, types of calls or acoustic indices. Internal

reasonability can be achieved through prototype-based and

concept-bottleneck architectures (Zheng et al., 2025; Cheng et al.,

2025) and can generate more realistic species-occurrence data and

increase trust in the biodiversity estimate.

Context awareness: Environment (e.g. weather conditions and

habitat properties) and time (e.g. diel cycles) metadata should be
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included in models so as to form relationships between acoustic

patterns and underlying ecology, constituting long-term habitat and

biodiversity monitoring.

To strengthen context awareness in ESC systems, multimodal

fusion architectures should be used to integrate ecological metadata

with acoustic features. Early fusion models concatenate

spectrogram-derived embeddings with structured variables such

as time-of-day, weather indices, or habitat descriptors before

entering a shared encoder. Late-fusion approaches process

acoustic and contextual information in parallel streams and

combine their latent representations for joint inference. Cross

−modal attention mechanisms further allow contextual variables

to dynamically weight acoustic features, supporting ecologically

coherent representations within the model.
Frontiers in Ecology and Evolution 03
Human feedback Human-in-the-loop learning (Retzlaff et al.,

2024) combines predictive output with conservation priorities,

which allows models to optimize the detection of indicator

species, and spend less resources on the annotation of rare species.

Uncertainty and adaptation: Calibrated confidence estimates

can be provided based on Bayesian or evidential frameworks (Zhuo

et al., 2023) when soundscapes are changing. Adaptive sampling is

informed by the transparent quantification of uncertainty, and

model robustness is maintained in dynamic ecosystems through

incessant learning.
Discussion

The way scientists use AI vs. old-school supervisory techniques

is transformed by Cognitive Alignment and how they interact with

Ecologists. The creation of a Collaborative Experience for humans

and AI to build and utilize ESC Systems which can produce Real

Time Ecological Interpretations and Iteratively Feedback during the

Application Process occurs when Cognitive Alignment is integrated

into an Environmental Sound Classification System. The creation of

environmentally accurate, validated and scientific interpretation by

Cognitively Aligned Models results from their ability to capture

dynamically changing environmental conditions over time as well

as behaviourally relevant information and contextual factors (e.g.

Habitat Acoustic Diversity Levels, Specific Species Activity Cycles),

thus allowing researchers to identify patterns and subsequently

conduct biodiversity assessments and create effective conservation

management strategies (McCrindle et al., 2021).

Transparency and interpretability from cognitively aligned

systems will be able to increase the accuracy and reliability of the

ecological modelling that occurs with the increased transparency

and interpretability of system reasoning and uncertainty. The

conservation data pipel ines wil l then have increased

trustworthiness due to their improved transparency and
FIGURE 1

The co-listening loop in environmental sound AI.
TABLE 1 Current limitations in environmental sound classification and
corresponding cognitive alignment strategies for ecological insight.

Dimension
Current
limitation

Alignment
strategy

Expected
benefit

Interpretability
Opaque
decision
processes

Prototype/concept
bottleneck models

Transparent
ecological
reasoning

Context
Awareness

Isolated sound
clips

Integrate temporal
and environmental

metadata

Context-aware
classification

Human
Feedback

One-way
training
process

Co-listening loops
with expert review

Adaptive,
continuously

improving models

Uncertainty
Overconfident
predictions

Bayesian/evidential
inference

Communicated
ambiguity and

trust

Domain
Adaptation

Poor
generalization

Continual learning
with drift detection

Sustained
performance
across habitats
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interpretability. Additionally, by providing a transparent

framework for reasoning, it is possible to allow ecologists to

evaluate the limits of the model; this, in turn, provides an

opportunity for the ecologist to validate the model in the field, as

well as develop adaptive sampling strategies. As such, cognitively

aligned systems are most beneficial for long-term monitoring

projects and for developing management frameworks using

reliable, science-based indicators of biodiversity.

Cognitive alignment is ethically beneficial as it distributes

interpretation of data among many; AI enhances rather than

replaces the professional expertise of a scientist, promotes an

attitude of humility and ethical integrity for both researchers and

policy makers of ecological and environmental work.

Interpretability also enables collaboration between people who are

outside of academics, enabling meaningful engagement by

practitioners, policymakers and citizen science participants with

the model outputs. In community-based monitoring, co-listening

models enable the ability of local monitors to offer contextual

feedback on the model and thus improve its applicability within

the diversity of habitats and socio-ecological contexts (Figure 1).

Evaluating cognitive alignment remains an open challenge

(Table 1). Potential indicators include overlap between human

and model attention maps, expert correction rates, and qualitative

satisfaction scores. Developing benchmark datasets annotated with

expert rationales could provide measurable progress toward

interpretive convergence.

To support transparent evaluation, we refine the Cognitive

Alignment Score (CAS) into a modular benchmarking scheme

with measurable indicators across four dimensions: (1)

Representational alignment, quantified by metrics such as spatial

overlap between expert-annotated and model-generated attention

maps or rank correlations between reasoning traces; (2) Interpretive

alignment, measured using explanation-validity rubrics and

matches between predicted behavioural context and expert

interpretations; (3) Adaptive alignment, captured by reductions in

time-to-correction or decreases in repeated expert-flagged errors

across feedback iterations; and (4) Uncertainty alignment, evaluated

through calibration error and Brier scores relative to expert

judgments of ambiguity. CAS provides a reproducible and

extensible pathway for assessing whether humans and AI systems

are progressively converging toward co-listening.

The next steps for future research will be to develop Open-Source

Co-Listening Platforms, Develop Annotated Datasets with Context

and to Perform Comparative Studies to Determine if Cognitively

Aligned Systems Improve Ecological Inference Quality,

Interpretability and Decision-Making Quality. These efforts will

help make cognitive alignment an essential part of developing

Responsible AI, Collaborative AI, and Ecologically Grounded AI.
A constructive outlook

Environmental Sound AI has reached a crossroads. Advances in

technical capabilities allow for the identification of sounds within
Frontiers in Ecology and Evolution 04
the acoustic environment with greater sensitivity than ever before;

however, they lack interpretive context which limits their ability to

be used as valuable tools for understanding the environment.

Cognitive alignment provides a method to develop systems which

are able to collaboratively develop a shared understanding of the

world through the combination of computational inference and

ecological knowledge.

The long-term goal is not for AI to listen better than ecologists

but to listen with them: to share the perceptual and cognitive work

of understanding complex ecosystems. In doing so, AI becomes an

interpretive partner that amplifies ecological reasoning and

strengthens the foundations of conservation science.
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