& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Achaz von Hardenberg,
University of Chester, United Kingdom

REVIEWED BY

Bushuyev Sergey,

Kyiv National University of Construction and
Architecture, Ukraine

*CORRESPONDENCE
Divya Lakshmi S.
divyabalul9@gmail.com

RECEIVED 07 October 2025
REVISED 27 November 2025
ACCEPTED 08 December 2025
PUBLISHED 09 January 2026

CITATION

S. DL and Kumar NS (2026) Cognitive
alignment as a pathway to
collaborative environmental sound

Al in ecological monitoring.

Front. Ecol. Evol. 13:1720295.

doi: 10.3389/fevo.2025.1720295

COPYRIGHT
© 2026 S. and Kumar. This is an open-access
article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Ecology and Evolution

TYPE Opinion
PUBLISHED 09 January 2026
Dol 10.3389/fevo.2025.1720295

Cognitive alignment as a
pathway to collaborative
environmental sound Al in
ecological monitoring

Divya Lakshmi S.*** and N. Suresh Kumar?

tDepartment of Computer Science and Engineering, Kalasalingam Academy of Research and
Education, Krishnankoil, Tamil Nadu, India, 2Department of Computer Applications, Marian College
Kuttikkanam Autonomous, Idukki, India, *Computer Science and Engineering, Kalasalingam Academy
of Research and Education, Krishnankoil, Tamil Nadu, India

KEYWORDS

cognitive alignment, co-listening Al, ecological monitoring, environmental sound
classification (ESC), human-Al collaboration

Introduction

As global biodiversity declines, continuous acoustic monitoring has emerged as a non-
invasive and scalable approach to track ecological change across landscapes. By capturing
and analysing the sounds of wildlife, weather, and human activity, ecologists can gain real-
time insight into ecosystem health and species dynamics. Yet, while artificial intelligence
(AI) has accelerated the detection and classification of environmental sounds, it often lacks
the interpretive sensitivity required for ecological decision-making.

Artificial intelligence has become an indispensable tool in ecology, reshaping how
scientists detect, classify, and interpret environmental sounds. From bioacoustics sensors
tracking biodiversity to deep-learning systems monitoring urban noise, environmental
sound classification (ESC) technologies have expanded our capacity to “hear” the living
world (Sharma et al., 2022). However, as these technologies advance, a growing disconnect
has emerged between what machines detect and what ecologists understand.

The majority of ESC models are still optimized for performance measures—F1-scores,
precision, and recall—instead of for interpretability, context, or ecological relevance
(Haider et al., 2023; Rasmussen et al., 2024). Such systems recognize statistical patterns
extremely well, yet they are often nothing more than closed, opaque black boxes, unrelated
to the thinking that underlies ecological interpretation. A model should be able to recognize
a bird call properly yet cannot produce its ecological meaning—whether it announces
mating behaviour, territorial behaviour, or stress of the environment (Kohlberg et al.,
2024). Without interpretability, Eco physiologically derived by Al risks being scientifically
proper but Eco physiologically superficial.

This article is in favour of moving from an automated approach to “co-listening”
through cognitive alignment - creating Al systems that are capable of listening with
ecologists, rather than simply for them. Cognitive alignment describes the similarity
between models’ internal representations and explanations and those of human
ecological cognition (Kvsn et al,, 2020). Aligned systems must allow for mutual
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intelligibility - the ability of humans and AI to provide each other
with interpretive processes, feedback and co-adaptive learning by
elapsed time. The next sections outline the current limits on ESC,
provide a conceptual framework for cognitive alignment and
present paths toward design of “co-listening” systems that can
combine human and machine understanding to create an
understanding of ecology.

Cognitive alignment does not imply that ecological
interpretation can be fully reduced to explicit rules. Rather, it
requires anchoring Al representations in ecologically meaningful
latent concepts—such as species traits, call types, behavioural
contexts, and habitat-level acoustic indices—so that the model’s
internal structures correspond to how ecologists reason about
sound. This process can be enabled through interactive concept-
refinement interfaces that allow experts to promote, demote, merge,
or redefine ecological concepts inside the model. In this way,
cognitive alignment becomes a pathway for shared interpretive
grounding rather than simply a visualisation of hidden layers.

The misalignment problem

Over the past decade, ESC systems have achieved remarkable
technical progress. Early approaches relied on engineered features
such as mel-frequency cepstral coefficients (MFCCs) and classifiers
like random forests or support vector machines (Toffa and
Mignotte, 2021). Deep-learning architectures—convolutional,
recurrent, and transformer-based—now dominate the field,
delivering state-of-the-art results on datasets like ESC-50,
UrbanSound8K, and DCASE (Jahangir et al., 2023).

Despite these advances, most architectures remain opaque.
Their decision processes are difficult to interpret, and post-hoc
visualization methods such as Grad-CAM yield insights that are
limited or ecologically irrelevant. Context collapse further occurs
when isolated audio clips are analysed without temporal,
behavioural, or environmental context (Zinemanas et al., 2021).

Distributional drift compounds this issue: ecological
soundscapes evolve with seasons, habitats, and weather
(Patchipala, 2023), leading to poor model generalization beyond
training conditions. Human-AlI interaction is similarly one-sided—
ecologists provide annotations for training, yet deployed systems
rarely accept ongoing feedback or correction.

Consequently, a cognitive gap persists. Models “hear”
statistically while ecologists “listen” contextually. Without shared
interpretive grounding, predictions may be accurate yet cognitively
alien, eroding trust and limiting ecological understanding.

Toward cognitive alignment

Cognitive alignment offers a conceptual as well as practical
answer to the misalignment that is being observed. It refers to the
extent to which the reasoning, representations, and uncertainty
estimates of an artificial intelligence system have been made
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consistent with ecological interpretive models (Rane et al., 2024).
A coherent model of an ecological soundscape classifier must be
able to go beyond mere categorisation of acoustic phenomena and
give a description of the rationale behind it in a way that can be
understood by experts in the domain.

The efficacious communication thus requires a restructuring of
the automatization of the classification process involved in
ecological soundscape classifiers (ESC) into a collaborative
interpretive process, which involves a mutually co-operative co-
listening activity between machine and human.

1. Soundscape Contribution: Raw environmental records are
accompanied by contextual metadata of variables in terms
of time, place, habitat and weather conditions.

2. Representation of Models: The Acoustic features are
changed, resulting in probabilistic forecasts of uncertainty
based on quantitative features.

3. Ecologically valid Interface: The utility visualisations of
the model are presented in the form of ecologically valid
representations of ecologically valid activation or attention-
map representations that enhances the interpretation of
the visuals.

4. Human Feedback: Ecologists analyse the output of the
model, discover invalid classifications, and record
arguments like redundant vocalization.

5. Model Adaptation: Active or incremental learning to adapt
the system with elite information is influencing the system
to predict better.

6. Iteration: Due to the process of co-adaptation between
the human reviewers and the AI model, the framework
will converge to a more precise and common
interpretive alignment.

This cycle recasts ESC as an interpretive co-operation instead of
a pipeline, allowing AI to engage ecological reasoning through
contextual awareness and clear feedback.

Design of paths for cognitive
correspondence

Cognitively harmonized environmental sound classification
(ESC) systems are designed in such a way that a systematic
refactoring of representation, context, feedback and uncertainty
are required to ensure ecologically interpretable results.

Interpretability: The ecological partitions: the latent
representations should capture ecological partitions such as
species traits, types of calls or acoustic indices. Internal
reasonability can be achieved through prototype-based and
concept-bottleneck architectures (Zheng et al., 2025; Cheng et al.,
2025) and can generate more realistic species-occurrence data and
increase trust in the biodiversity estimate.

Context awareness: Environment (e.g. weather conditions and
habitat properties) and time (e.g. diel cycles) metadata should be
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FIGURE 1
The co-listening loop in environmental sound Al.
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included in models so as to form relationships between acoustic
patterns and underlying ecology, constituting long-term habitat and
biodiversity monitoring.

To strengthen context awareness in ESC systems, multimodal
fusion architectures should be used to integrate ecological metadata
with acoustic features. Early fusion models concatenate
spectrogram-derived embeddings with structured variables such
as time-of-day, weather indices, or habitat descriptors before
entering a shared encoder. Late-fusion approaches process
acoustic and contextual information in parallel streams and
combine their latent representations for joint inference. Cross
—modal attention mechanisms further allow contextual variables
to dynamically weight acoustic features, supporting ecologically
coherent representations within the model.

TABLE 1 Current limitations in environmental sound classification and
corresponding cognitive alignment strategies for ecological insight.
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Human feedback Human-in-the-loop learning (Retzlaff et al.,
2024) combines predictive output with conservation priorities,
which allows models to optimize the detection of indicator
species, and spend less resources on the annotation of rare species.

Uncertainty and adaptation: Calibrated confidence estimates
can be provided based on Bayesian or evidential frameworks (Zhuo
et al,, 2023) when soundscapes are changing. Adaptive sampling is
informed by the transparent quantification of uncertainty, and
model robustness is maintained in dynamic ecosystems through

incessant learning.

Discussion

The way scientists use Al vs. old-school supervisory techniques
is transformed by Cognitive Alignment and how they interact with
Ecologists. The creation of a Collaborative Experience for humans
and Al to build and utilize ESC Systems which can produce Real
Time Ecological Interpretations and Iteratively Feedback during the
Application Process occurs when Cognitive Alignment is integrated
into an Environmental Sound Classification System. The creation of
environmentally accurate, validated and scientific interpretation by
Cognitively Aligned Models results from their ability to capture
dynamically changing environmental conditions over time as well
as behaviourally relevant information and contextual factors (e.g.
Habitat Acoustic Diversity Levels, Specific Species Activity Cycles),
thus allowing researchers to identify patterns and subsequently
conduct biodiversity assessments and create effective conservation
management strategies (McCrindle et al., 2021).

Transparency and interpretability from cognitively aligned
systems will be able to increase the accuracy and reliability of the
ecological modelling that occurs with the increased transparency
and interpretability of system reasoning and uncertainty. The
conservation data pipelines will then have increased
trustworthiness due to their improved transparency and
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interpretability. Additionally, by providing a transparent
framework for reasoning, it is possible to allow ecologists to
evaluate the limits of the model; this, in turn, provides an
opportunity for the ecologist to validate the model in the field, as
well as develop adaptive sampling strategies. As such, cognitively
aligned systems are most beneficial for long-term monitoring
projects and for developing management frameworks using
reliable, science-based indicators of biodiversity.

Cognitive alignment is ethically beneficial as it distributes
interpretation of data among many; AI enhances rather than
replaces the professional expertise of a scientist, promotes an
attitude of humility and ethical integrity for both researchers and
policy makers of ecological and environmental work.
Interpretability also enables collaboration between people who are
outside of academics, enabling meaningful engagement by
practitioners, policymakers and citizen science participants with
the model outputs. In community-based monitoring, co-listening
models enable the ability of local monitors to offer contextual
feedback on the model and thus improve its applicability within
the diversity of habitats and socio-ecological contexts (Figure 1).

Evaluating cognitive alignment remains an open challenge
(Table 1). Potential indicators include overlap between human
and model attention maps, expert correction rates, and qualitative
satisfaction scores. Developing benchmark datasets annotated with
expert rationales could provide measurable progress toward
interpretive convergence.

To support transparent evaluation, we refine the Cognitive
Alignment Score (CAS) into a modular benchmarking scheme
with measurable indicators across four dimensions: (1)
Representational alignment, quantified by metrics such as spatial
overlap between expert-annotated and model-generated attention
maps or rank correlations between reasoning traces; (2) Interpretive
alignment, measured using explanation-validity rubrics and
matches between predicted behavioural context and expert
interpretations; (3) Adaptive alignment, captured by reductions in
time-to-correction or decreases in repeated expert-flagged errors
across feedback iterations; and (4) Uncertainty alignment, evaluated
through calibration error and Brier scores relative to expert
judgments of ambiguity. CAS provides a reproducible and
extensible pathway for assessing whether humans and AI systems
are progressively converging toward co-listening.

The next steps for future research will be to develop Open-Source
Co-Listening Platforms, Develop Annotated Datasets with Context
and to Perform Comparative Studies to Determine if Cognitively
Aligned Systems Improve Ecological Inference Quality,
Interpretability and Decision-Making Quality. These efforts will
help make cognitive alignment an essential part of developing
Responsible Al, Collaborative AI, and Ecologically Grounded AL

A constructive outlook

Environmental Sound AT has reached a crossroads. Advances in
technical capabilities allow for the identification of sounds within
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the acoustic environment with greater sensitivity than ever before;
however, they lack interpretive context which limits their ability to
be used as valuable tools for understanding the environment.
Cognitive alignment provides a method to develop systems which
are able to collaboratively develop a shared understanding of the
world through the combination of computational inference and
ecological knowledge.

The long-term goal is not for Al to listen better than ecologists
but to listen with them: to share the perceptual and cognitive work
of understanding complex ecosystems. In doing so, AI becomes an
interpretive partner that amplifies ecological reasoning and
strengthens the foundations of conservation science.
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