



## OPEN ACCESS

## EDITED BY

Pablo Martinez,  
Federal University of Sergipe, Brazil

## REVIEWED BY

Carmelo Maximiliano-Cordova,  
Instituto de Ecología (INECOL), Mexico  
Janne Nauta,  
Wageningen University and Research,  
Netherlands

## \*CORRESPONDENCE

Bianca R. Charbonneau  
✉ bcharbon@sas.upenn.edu

RECEIVED 22 August 2025

REVISED 27 November 2025

ACCEPTED 03 December 2025

PUBLISHED 14 January 2026

## CITATION

Charbonneau BR, Zinnert JC, Wnek J, Williams A, McGivney E, Matthews K, Sabo A and Dohner SM (2026) The onset of coastal foredune formation at variable levels of ecological complexity.

*Front. Ecol. Evol.* 13:1691144.

doi: 10.3389/fevo.2025.1691144

## COPYRIGHT

© 2026 Charbonneau, Zinnert, Wnek, Williams, McGivney, Matthews, Sabo and Dohner. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# The onset of coastal foredune formation at variable levels of ecological complexity

Bianca R. Charbonneau<sup>1,2\*</sup>, Julie C. Zinnert<sup>3</sup>, John Wnek<sup>4</sup>, Amy Williams<sup>4</sup>, Eric McGivney<sup>4</sup>, Kailey Matthews<sup>4</sup>, Alexander Sabo<sup>3</sup> and Stephanie M. Dohner<sup>5</sup>

<sup>1</sup>Department of Biology, University of Pennsylvania, Philadelphia, PA, United States, <sup>2</sup>United States Department of Defense Army Engineer Research and Development Center, Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States, <sup>3</sup>School of Life Sciences and Sustainability, Virginia Commonwealth University, Richmond, VA, United States, <sup>4</sup>Marine Academy of Technology and Environmental Science (MATES), Manahawkin, NJ, United States, <sup>5</sup>United States Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS, United States

Gaps in our understanding of the interplay between biotic and abiotic forces shaping coastal dunes inhibit our ability to fully understand their evolution and predict topographic changes. The theoretical evolution of a dune system begins with nebkha formation. This formation begins around individual dune-building plants, which grow over time around groups of plants. Individual nebkha mounds can meld into one another, growing in size and complexity based on the dune-building vegetation population. To better understand ecogeomorphological feedbacks driving these relationships, we tested how plant density impacts nebkha formation by *Ammophila breviligulata* in both a laboratory and a field setting. Laboratory tests consisted of using a wind tunnel to control abiotic forces, focusing on the effects of varying plant density in nebkha formation. We tested three low densities commonly supporting backshore nebkha: an individual (one plant) and small groups (five and nine plants). In the field, we used both remote sensing and field techniques to quantify the relationship between stem density and the nebkha shape and size of backshore *A. breviligulata* nebkha. In the wind tunnel, stem density was not as strong a predictor of nebkha size or shape as number of leaves and aboveground biomass, both of which increased with growing stem and plant densities. Stem density was a strong predictor of nebkha size and shape, with increasing variability at increasing densities in both the laboratory and field. *In situ* measurements of stem density are performed inconsistently among field experiments due to the effort required. Therefore, strong allometric scaling among *A. breviligulata* morphology metrics can help overcome limitations around what can be collected in the field or in a modeled environment containing limited plant metrics. *In situ*, vegetation stabilization frequently allowed the nebkha to grow steeper than would be expected based on grain size and the angle of repose. These differences in field and laboratory nebkha highlight the importance of grounding laboratory work in field

collections for the interpretation of their results in nature. Understanding the underlying ecogeomorphic feedbacks involved in nebkhha formation is critical to scaling up modeling efforts to forecast coastal foredune evolution, recovery, and storm response in the face of climate change.

#### KEYWORDS

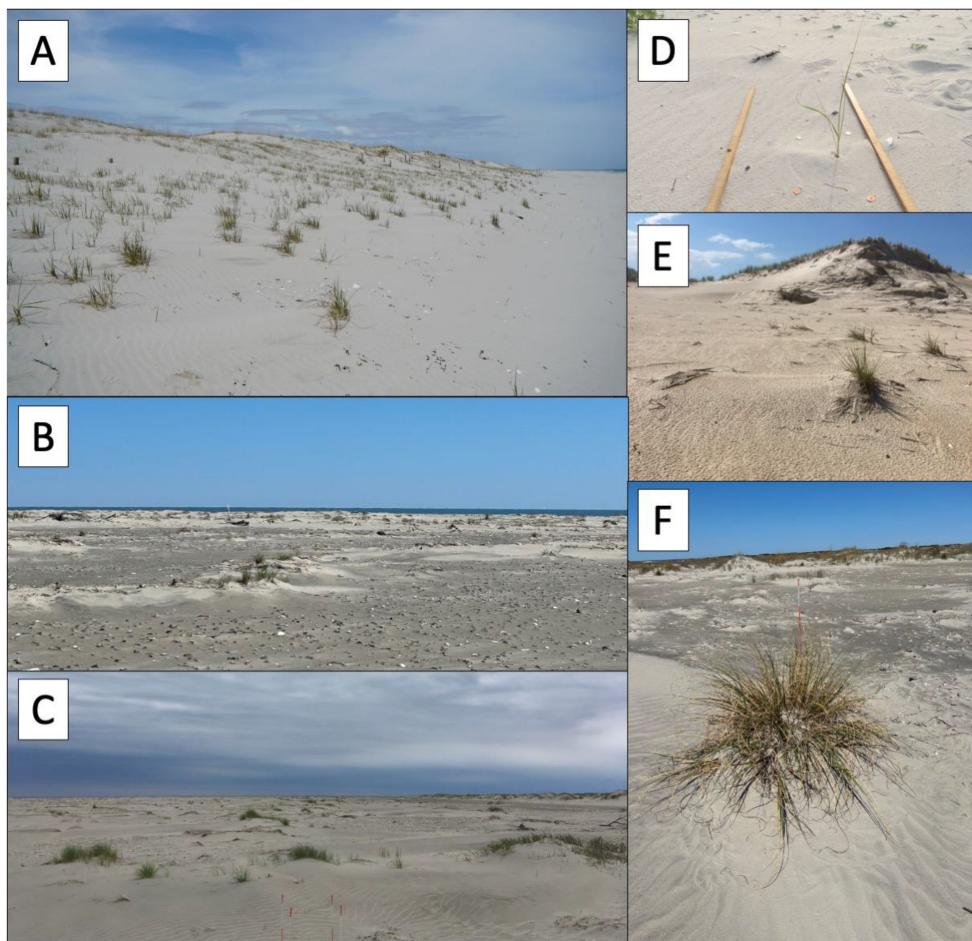
**aeolian transport, *Ammophila breviligulata* (American beachgrass), backshore, ecogeomorphology, nebkhha, remote sensing, topographic evolution, wind tunnel**

## 1 Introduction

Sandy beaches and coastal dunes are natural and nature-based features at the interface of land and sea, making them highly vulnerable to the impacts of sea-level rise and climate change. In natural, managed, or built settings, the habitats buffer upland areas and provide invaluable ecosystem services, including flood and erosion reduction (Maun, 2009; Jackson and Nordstrom, 2012). The foredune—defined as the shore-parallel vegetated dune ridge in the backshore formed by aeolian sand deposition within vegetation—serves as the first line of defense, protecting upland areas during storms (Hesp, 2002). Around the world, many natural dunes have been eroded and or replaced by artificially built dunes, which are more restricted in potential size and shape and therefore respond differently to storm events (Nordstrom et al., 2000). The upland areas buffered by these dunes and dune-like features often include both coastal habitats and infrastructure; for the latter, population growth and economic expansion continue despite the inherent and increasing risk of coastal hazards associated with climate change (IPCC, 2022). Modeling these systems under different stressors can help predict their responses to future events, enabling adaptive management strategies (Zinnert et al., 2017).

Within a system, dunes exhibit high spatiotemporal topographic variability and correspondingly variable storm responses, largely driven by the prestorm state relative to storm surge (Houser et al., 2008; Houser and Mathew, 2011). Prestorm state is influenced by both physical and biological processes; while physical processes in this system have been extensively studied for decades, biological processes have received substantially less research attention (Jackson and Nordstrom, 2020). Dunes are recognized as ecogeomorphic habitats shaped by a complex interplay between biotic and abiotic forces, though this appreciation is relatively recent (Corenblit et al., 2015; Zinnert et al., 2017; Stallins et al., 2020). Biotic and abiotic forces are linked: wind transports sand, while plants modify wind flow and trap sand, thereby building topographic features. These features, in turn, influence wind flow and sedimentation patterns. Dune-building plants respond positively to burial, increasing in vigor and thereby enhancing entrapment, sediment retention, and topographic change, creating a positive feedback loop for the vegetation and

dune development (Hesp, 1989; Stallins and Parker, 2003; Maun, 2009; Walker et al., 2017). There is positive feedback between vegetation, topography, and sand transport, but these relationships are nonlinear, can increase in complexity over time, and remain generally poorly understood (Charbonneau et al., 2021; Costas et al., 2024). This biotic–abiotic interplay ultimately impacts both topographic variability and storm response.


Dune and beach modeling efforts reflect the current state of our understanding of these systems and are therefore limited in their inclusion of biological and ecogeomorphic relationships (Piercy et al., 2023). During storms, foredune change is highly dependent on beach characteristics, dune height, dune width, and vegetation supporting the dunes, the latter of which we do not fully understand mechanistically (Houser et al., 2008; Houser and Mathew, 2011; Charbonneau et al., 2017). Both bottom-up and top-down controls can shape dune topographic variability (Stallins et al., 2020). Dune-building species maintain inter- and intraspecific variability in morphology and density, and research on the impacts of these factors on dune topography and stability has grown in the last decade (e.g., Zarnetske et al., 2012; Hacker et al., 2019; Charbonneau et al., 2021; Walker and Zinnert, 2022). Vegetation morphology and density are impacted by both biological and physical factors, with potentially compounding effects on dune morphology (Maun, 2009; Zarnetske et al., 2012; Hacker et al., 2019; Charbonneau et al., 2021; Hesp et al., 2021b); studies on these relationships have been predominantly descriptive (McGuirk et al., 2022). Moreover, existing models of beach-dune systems, including plant morphology metrics, are limited or vary in the parameters included (Piercy et al., 2023). A universally included metric or the use of allometric scaling could both help overcome the issue, but it requires more research for implementation. As our appreciation of ecogeomorphic relationships has increased, so has the number of studies looking to quantitatively understand them (McGuirk et al., 2022), in turn improving the potential for and practice of including this information in modeling and management efforts (Piercy et al., 2023).

Considering that foredunes are complex, nonlinear, self-organizing habitats, studying their inception—when fewer subsequent formative events have occurred—may reduce complexity and allow clearer insight into ecogeomorphic relationships. Nebkhha formation is a precursor to incipient (or

embryo) foredune development (Hesp, 2002; Figure 1). Nebkha are aeolian-formed accumulations of sand around vegetation that represent the onset of dune formation (Cooke et al., 1993; Hesp, 2002; Figure 1). Over time, they vary in size from millimeters to meters, vertically or horizontally, and discrete nebka can merge over time as space becomes limited due to plant tillering (i.e., new stems emerging from the same plant), nebka growth, and the emergence of new nebka, all of which are impacted by sedimentation and rainfall (Hesp, 1989; Cooke et al., 1993; Hesp et al., 2021a; Figure 1). Over time, merging nebka can form a continuous, shore-parallel incipient foredune or phalanx defense against storm surge (Hesp, 2002; Hesp et al., 2021a). Nebkha and their plants also shield areas downwind, resulting in shadow dunes or tails in their lee (Hesp and Smyth, 2017). Shadow dune morphology and nebka morphology are linked, and in this publication, the nebka and attached shadow dune complex are grouped and referred to as one entity, the nebka (Hesp and Smyth, 2017; Charbonneau et al., 2021). Most Nebkha research was focused on established nebka rather than their inception (e.g., Gillies et al.,

2014; Hesp and Smyth, 2017), but research interest in nebka has increased recently (Goudie, 2022).

Backshore nebka formed by plant individuals and groups can be thought of as the most basic unit or stage of foredune development; we believe that underlying feedbacks governing foredune evolution at a greater scale may be illuminated from examining their initiation. With this in mind, we aimed to examine nebka genesis around plant individuals and groups in a wind tunnel setting, controlling physical factors and varying plant density. The laboratory work is complemented by fieldwork examining the size and shape of established backshore nebka relative to the plant population or community supporting them. This work is a continuation of the work of Charbonneau et al. (2021), which focused on nebka formation around individual plants in uniform stands of different species, morphologies, and planting configurations that are common in dune grass planting efforts. We expect that increasing biological complexity at greater plant density will result in greater variability in nebka size and shape in both field and laboratory settings. Data of this nature, at



**FIGURE 1**

Dunes form in sandy beach backshores, and their inception begins with sediment accumulation around plant individuals or single-species populations as nebka (A–F). Backshore nebka can vary in size and shape supported by monocultures of dune-builder grasses (A–F). Individual nebka (D–F) can be supported by an individual plant with only one stem (D; pennies for scale) or with multiple stems (E) and nebka are also supported by groups of individuals (F).

the onset and early stages of nebkha formation, can help us better understand the early stages of dune development, such as by identifying which vegetation morphological features (i.e., number of stems and leaves, plant height, shape, etc.) most impact resulting nebkha shape and size, which at a larger dune scale are factors that impact storm response. Quantifying the relationship between vegetation morphology features and resulting nebkha dimensions enables use within coastal protection project planning in the design, modeling, and decision phases. These relationships are particularly valuable for natural and nature-based solution projects, where hard and soft structures are combined for additional protection and ecosystem benefits.

## 2 Methods

This research combines both laboratory and fieldwork to better understand the initial stages of dune formation. Laboratory experiments were conducted using a wind tunnel, while complementary fieldwork was intended to validate/test the laboratory findings in natural conditions (Dunham and Beupre, 1988). In the wind tunnel, we controlled wind speed, wind duration, sediment supply, and grain size, focusing on the effects of varying plant density on nebkha formation. In the field, we quantified preexisting backshore nebkha and related their morphology to the plants supporting them, accounting for the greater variability in physical and biological conditions present in nature compared to the laboratory.

### 2.1 Study species

American beachgrass (*Ammophila breviligulata*, Fern.) is a prevalent native species found along the sandy beaches of the US mid-Atlantic and Great Lakes and a widespread introduced invasive species along the US Pacific Coast (Hacker et al., 2011; Zarnetske et al., 2012). This xeric, erect C<sub>3</sub> perennial grass (0.66–1 m tall) has relatively long (15–50 cm) and narrow (< 1.25 cm) leaf blades and prominent rhizomes that can expand 2–3 m per year, producing a guerilla growth form (Maun, 1984). The species is burial-tolerant, increasing vigor and altering resource allocation in response to burial (Maun, 2009; Brown and Zinnert, 2018). High density and rapid lateral spread in dune-building species can lead to increased sand accretion and the construction of taller and wider dunes compared to species with lower lateral spread and density (Hacker et al., 2019). *Ammophila breviligulata* thrives in the backshore, where dunes are initiated, and in the foredunes, where it builds, maintains, and restores habitat as an ecosystem engineer (Hacker et al., 2011; Zarnetske et al., 2012; Charbonneau et al., 2021). It is, however, outcompeted by later successional species in secondary and gray dune habitats (Maun, 2009). Reproduction occurs predominantly through asexual tillering (Maun, 1984; Slaymaker et al., 2015) or the growth of new ramets along lateral rhizomes. Both tillering and new ramet production typically occur at the beginning of the growing season rather than during it, and

individual plants usually produce multiple stems (Zarnetske et al., 2012; Charbonneau, 2019). In the US mid-Atlantic, plants begin to break dormancy in mid-February, are fully emerged by mid-May, and the growing season continues until September or October, when the plants senesce and enter dormancy (Charbonneau, 2019).

## 2.2 Laboratory experiment

### 2.2.1 Wind tunnel and experimental design

The laboratory experiment was conducted at the Ocean County Vocational Technical School Wind Tunnel in Waretown, NJ, USA (Charbonneau et al., 2021). The laboratory is a moveable-bed unilateral suction-flow wind tunnel, modified from the design of the Oregon State University O.H. Hinsdale Wave Research Lab Wind Tunnel (Zarnetske et al., 2012). The wind tunnel chamber is 6.0 m long, 1.0 m wide, and 2.0 m high. Downwind, 3.6 m into the chamber, is an opening where 1.0 m × 1.0 m × 0.3 m wooden planter boxes can be inserted. It is in these boxes that we established rooted planting configurations in sand. A box is sealed into the chamber flush with the floor, and both are leveled with a continuous dry sand bed (2.54 cm bed height, medium quartz sand, mean grain size of 0.300–0.350 mm), mimicking a dry sandy backshore for aeolian transport toward vegetation (Arens, 1996; Charbonneau et al., 2021). Additional wind tunnel details can be found at [TheWindTunnel.weebly.com](http://TheWindTunnel.weebly.com) and in Charbonneau et al. (2021).

We planted a total of 30 boxes (1 m × 1 m × 0.3 m) in monocultures across two experimental treatments and one control treatment on 13 and 14 April 2019. The experimental treatments corresponded to medium- (five plants) and high-density (nine plants) populations, with all individuals in a group supporting a single nebkha, compared to a single-plant low-density control. The experimental densities and staggered diamond configurations were designed to reflect natural plant arrangements observed along the backbeach at Island Beach State Park, NJ, USA, on 12 April 2019 (Figure 2). Sample sizes included 10 boxes per treatment (20 experimental and 10 control boxes). Bare sand boxes were not included because previous trials under the same conditions produced uniform transverse aeolian ripples (Charbonneau et al., 2021). Leading/upwind edge individuals were positioned 7.6 cm from the box edge, and plants within each group configuration were spaced 4 cm apart at the center to minimize edge effects. All plants were positioned at least 40 cm or more from the wind tunnel sidewalls, well outside the boundary layer, which begins ≈ 7.5 cm from the wall (Supplementary Material S1). Similarly, all plants sat < 40 cm tall and were pulled taut vertically, well outside the ceiling boundary layer (Supplementary Material S1). The sand used was medium quartz with a mean grain size of 0.300–0.350 mm, sourced from Island Beach State Park, NJ, USA. Detailed grain size distributions can be found in Charbonneau et al. (2021; Supplementary Material S1).

Runs consisted of exposing each box to 30 min of wind at 8.25 m/s, measured 60 cm above the box center. This speed and duration allowed maximum sediment transport within the bounds of our sediment supply (≈ 25 tons across all runs). These conditions were

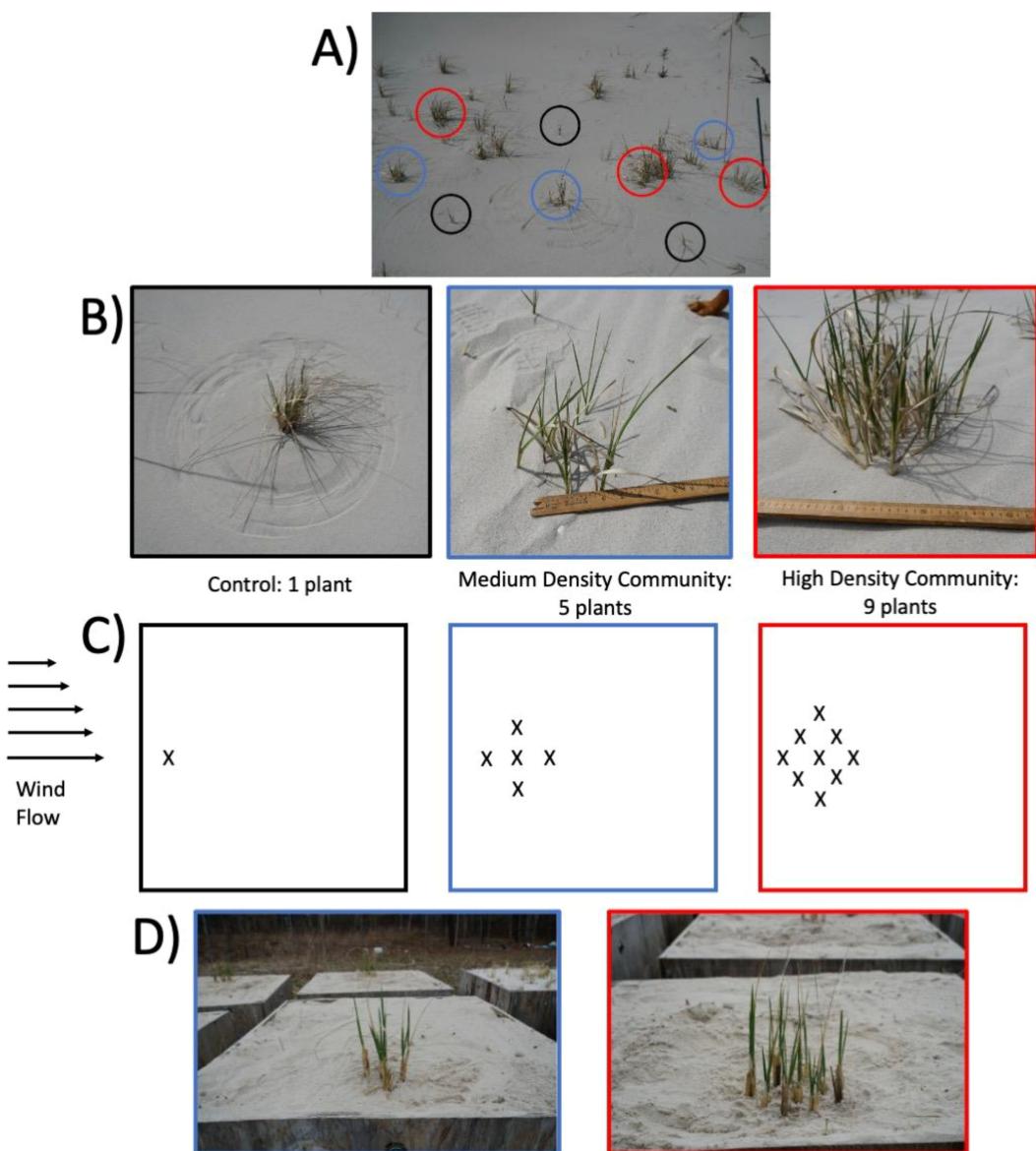



FIGURE 2

Commonly observed backshore *A. breviligulata* population group configurations and their laboratory replication in wind-tunnel boxes. Plants are typically singular or in groups sprinkled along the back beach (A, B). Individual group sizes frequently encountered were five or nine plants in a diamond-like configuration (A, B), which we replicated as our medium- and high-density laboratory treatments (C, D). Each 1-m<sup>2</sup> box was individually sealed into a wind tunnel and provided the same abiotic scenario (i.e., sand availability and wind speed and direction) to build nebkha.

the same as in Charbonneau et al. (2021) and consistent with other laboratory experiments, most notably those of Järvelä (2002) and Zarnetske et al. (2012), designed to promote accretion rather than scouring and shielding. Prior to each box run, we measured plant morphometrics for each individual. From bed level, we measured: (1) stem width as the distance between the two farthest stems perpendicular to wind flow, (2) height bent naturally, and (3) height as the tallest taut leaf. We counted (4) total leaves and (5) total stems. After the experiment, shoots from all plants were cut at the surface—without disturbing the bed and resultant topography—using shop shears to measure biomass after drying for 72 h at 70°C.

## 2.2.2 Data processing and analyses

Following Charbonneau et al. (2021), immediately after wind tunnel runs, we quantified box topography with an industrial class II laser 3D sensor, the SICK TriSpector1060. This sensor collects and meshes elevation ( $z$ ) profiles every 0.42 mm along the  $y$ -axis to generate a digital elevation model (DEM) with true  $xyz$  millimeter values. Scans encompass all plants within the 66-cm box width ( $x$ ) and 1-m box length ( $y$ ), plus 0.125 m upwind and downwind of each box. As class II lasers cannot penetrate live tissue, all aboveground biomass was removed postrun and prescan. Each box was also scanned prior to its run, with the plants in place, to

account for any bed-leveling errors during postprocessing (Charbonneau et al., 2021). We assessed whether erosive or accretionary forces visibly built nebkha using marked vertical wire stakes at the front and back of leading and trailing edge plants, and confirmed these observations in postprocessing by calculating  $\Delta z$ , defined as peak elevation minus initial bed elevation (i.e., nebkha height).

We extracted localized topographic information from the scans with SOPAS Engineering Tool V2025.1 (SICK AG, 2019). The quantified topographic parameters included nebkha volume, area, height, and shape per box. Nebkha boundaries were defined from clusters of elevation points identified with the Blob Tool, which typically spans the plant bounds and extends downwind, represents the nebkha, and the tool calculates its basal area and volume (from the object base). Once defined, we measured the elevation from base to peak, recorded the peak location, and measured the longest  $x$ - and  $y$ -axes.

Postprocessing revealed that nebkha formed around the plants in all wind tunnel runs. However, for three medium-density and two high-density boxes, the nebkha edges relative to the sand bed were not discernible enough with the methods used in SOPAS, resulting in a sample size of 10 low/control, seven medium, and eight high-density nebkha, where each box had between three to 56 stems within it, among the one to nine plants.

## 2.3 Field validation

### 2.3.1 Fieldwork

Fieldwork was conducted on the southern portion of Hog Island, VA, USA ( $37^{\circ}22'13.8252''$  N,  $75^{\circ}43'4.6236''$  W), a barrier island in the Virginia Coast Reserve Long-Term Ecological Research site (Figure 3). The sand in this area is fine, with a mean grain size of  $\sim 0.16$  mm (Fenster et al., 2016). Over the past several years, southern Hog Island has been accreting, creating a

wide beach where new dune hummocks were established by several species, including *A. breviligulata*, *Panicum amarum*, *Spartina patens*, and *Uniola paniculata* (Sabo et al., 2024). In September 2024, we randomly selected a range of nebkha formed by monocultures of *A. breviligulata* along 780 m of shoreline ( $n = 61$ ). The number of stems on each nebkha was counted, ranging from one to 30 stems. Each selected nebkha was at least 5 m from the edge of nearby vegetation patches. We recorded the location and elevation at the base of each nebkha using a Trimble R10-2 TSC7 RTK GPS receiver, with vertical and horizontal precisions of 15 and 10 mm, respectively (Trimble Inc., Westminster, CO, USA).

### 2.3.2 Data processing and analyses

To quantify the effect of stem number on nebkha formation, we extracted several nebkha morphometrics from digital elevation imagery collected in October 2024. Imagery was acquired at 100 m altitude using a DJI Phantom 4 Pro RTK unoccupied aerial system (UAS) (SZ DJI Technology Co. Ltd., Shenzhen, China), which features a 20-MP 1-in. CMOS sensor. The resulting imagery had a resolution of  $3\text{ cm pixel}^{-1}$ , a horizontal precision of 0.4 cm, and a vertical precision of 1.2 cm. Vertical accuracy, based on ground control points surveyed with a Trimble R10 RTK system, was 0.062 cm. Raw UAS imagery was processed into point clouds from UAS flight paths with 70% horizontal and 80% vertical overlap using Inverse Distance Weighting in Agisoft Metashape Pro version 1.7 (Agisoft, St. Petersburg, Russia). From this, DEMs were derived using structure-from-motion (SfM) and tiling processes, and were georeferenced during processing with the same Trimble R10 RTK ground control points.

We analyzed the resulting DEMs using Esri ArcGIS Pro. Using the dynamic range adjustment feature, we overlaid DEMs with known *Ammophila* nebkha documented by RTK GPS in the field (Figure 4). At an observable scale of 1:20, nebkha areas were manually extracted based on slope changes relative to the surrounding topography, creating polygon features. Raster



FIGURE 3

(A) The field site component of the research was conducted on the southern portion of Hog Island, Virginia, USA ( $37^{\circ}22'13.8252''$  N,  $75^{\circ}43'4.6236''$  W). This site is a barrier island that is one of many long-term ecological research (LTER) sites maintained in the USA for the purpose of studying scientific processes in a relatively unaltered or natural state free of direct management or anthropogenic intervention. (B) Purple dots mark the locations of *A. breviligulata* nebkha mounds surveyed and used in the analysis.

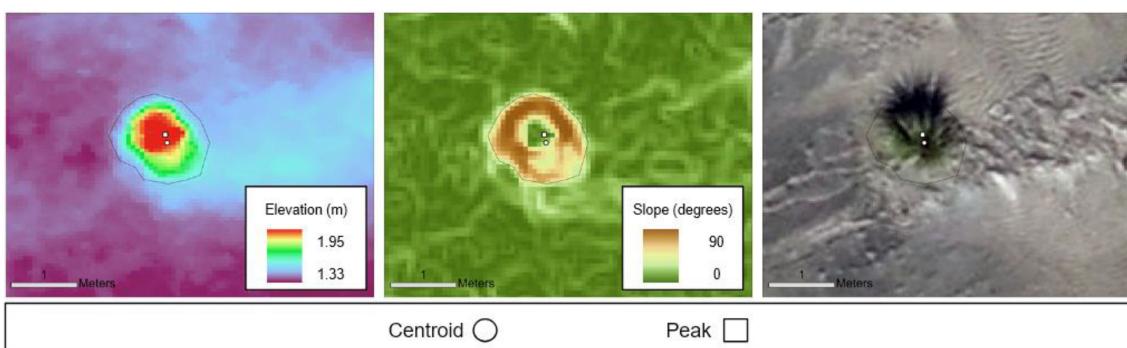



FIGURE 4

Digital elevation model (left) observed using dynamic range adjustment, surface parameter layer depicting slope (center), and orthomosaic (right) image at 1:20 range. Centroid is defined as the geometric center, and peak elevation is from the base of the nebkhla, supported by *A. breviligulata*, to the elevation maxima, which represents nebkhla peak height. Only the digital elevation model was used for discerning nebkhla.

elevation data were used to confirm slope-based changes, with elevation differences of at least  $> 2$  cm indicating the nebkhla edge (accounting for horizontal error in the imagery). Orthomosaic imagery was also evaluated to confirm nebkhla vegetation. Nebkhla showing no discernible change in slope or elevation from the surrounding topography were excluded from further analysis. Following these methods, several field nebkhla were not distinguishable from the imagery ( $n = 22$ ), and we were able to identify 39 total nebkhla of varying sizes, supported by three to 30 *A. breviligulata* stems. After extracting nebkhla areas, we quantified geometric centroid, maximum elevation, volume, and long-shore and cross-shore dimensions from the peak elevation and geometric centroid. The centroid is defined as the geometric center, and peak elevation is calculated as the difference between the elevation maxima of the base of the nebkhla, where this metric represents the nebkhla height. We created a slope raster from the DEM, allowing documentation of the south/southwestern slope for each identified nebkhla, reflecting the dominant wind direction on Hog Island during September and October 2024, as recorded by a meteorological station on Hog Island, VA, USA.

## 2.4 Statistical analyses

Means are reported  $\pm$  standard error (SE), and unless otherwise noted, all tests are two-tailed. Statistical analyses were performed using JMP Pro 18.0 (JMP, 2019). Nebkhla height measurements were taken from the base of the nebkhla to its elevation maximum (i.e., peak). Normality of all data was assessed in JMP using a Goodness-of-Fit test and by examining residual plots for homoscedasticity. When normality was not met, plant morphology data and field data were log-transformed; additional details are provided below.

To analyze the plant morphology data from the wind tunnel tests on the individual plant level, we employed nonparametric methods due to a heavy right skew in most metrics. Transformation was not viable: while a log transformation normalized the distribution of the number of leaves, other metrics remained

skewed, necessitating nonparametric analyses. Metrics including plant height, stem width, biomass, and the number of stems and leaves were compared between treatments using Kruskal-Wallis tests, with pairwise comparisons conducted via the Wilcoxon method as the nonparametric equivalent to analysis of variance (ANOVA). Relationships between variables were assessed using Spearman's Rho ( $\rho$ ) as a nonparametric correlation measure. Aggregated metrics per box—total stems, total leaves, and total biomass—were normally distributed; these were analyzed across density treatments using ANOVA with Tukey Honestly Significant Difference (HSD) pairwise comparisons, and linear regression was applied to examine relationships among morphological variables.

We analyzed the Nebkhla wind tunnel data, which were not transformed, using both qualitative and quantitative tests. Linear regression was used to test how plant parameters, at the box level, relate to nebkhla size and shape metrics. Nebkhla size metrics included nebkhla volume ( $\text{cm}^3$ ), surface area ( $\text{cm}^2$ ), length (mm), width (mm), and height (mm). Nebkhla shape metrics included relief (height relative to area) and planform eccentricity (length/width ratio). Metrics were compared between treatments using ANOVA with Tukey HSD pairwise comparisons. Analysis of covariance (ANCOVA) was used to test whether differences in nebkhla size across treatments could be attributed to the total number of stems and total number of leaves. Multiple regression models were used to determine which plant variables (i.e., total number of leaves, total number of stems, total dry weight, average plant height (bent sitting natural), density treatment) most parsimoniously explained nebkhla size metrics (i.e., volume, surface area, height). All possible models were analyzed, and the Akaike information criterion corrected for small sample size (AICc) was used to determine the top models.

The following field variables were log-transformed to meet normality assumptions: stem number, nebkhla area, volume, alongshore distance, cross-shore distance, peak nebkhla elevation, nebkhla height, and the alongshore and cross-shore differences of the peak and centroid. Pearson's correlation was used to assess relationships between base nebkhla elevation and stem number, as well as between alongshore/cross-shore peak–centroid differences

and peak elevation. Linear regressions were used to evaluate the effect of stem number on dune nebkhā metrics (i.e., area, volume, alongshore, cross-shore, nebkhā height, slope, and position of the peak relative to the centroid alongshore and cross-shore).

## 3 Results

### 3.1 Plant morphology of wind tunnel *A. breviligulata* plants

Individual plants in the low-density control treatment were larger compared to those in the two population-level treatments. Plants in the medium- and high-density treatments had fewer leaves ( $\chi^2 = 20.1$ , degrees of freedom (df) = 2,  $p < 0.0001$ ), fewer stems ( $\chi^2 = 18.3$ , df = 2,  $p < 0.0001$ ), and also lower biomass ( $\bar{x} = 2.92 \text{ g} \pm 0.20 \text{ g}$ ;  $\chi^2 = 16.1$ , df = 2,  $p = 0.0003$ ) than low-density treatment individual plants ( $\bar{x} = 11.42 \text{ g} \pm 0.90 \text{ g}$ ). Low-density plants were also twice as wide ( $\bar{x} = 2.2 \text{ cm} \pm 0.33 \text{ cm}$ ;  $\chi^2 = 13.5$ , df = 2,  $p = 0.001$ ) as plants in the medium- and high-density treatments ( $\bar{x} = 1.1 \text{ cm} \pm 0.05 \text{ cm}$ ). Plant height did not vary between treatments when naturally bent ( $\bar{x} = 23.5 \text{ cm} \pm 0.37 \text{ cm}$ ); however, medium-density plants were shorter when pulled taut ( $\bar{x} = 27.2 \text{ cm} \pm 0.77 \text{ cm}$ ;  $\chi^2 = 8.6$ , df = 2,  $p = 0.01$ ) compared to low- and high-density plants, which were taller ( $\bar{x} = 29.3 \text{ cm} \pm 0.49 \text{ cm}$ ).

Almost all plant metrics were significantly positively related to each other (see [Supplementary Material S2](#) for measures of association using Spearman's  $\rho$  and the distribution of plant morphology metrics). Among these, the number of leaves and number of stems exhibited the strongest relationship ( $\rho = 0.90$ ,  $p \leq 0.0001$ ), indicating that plants with more stems tend to have more leaves and vice versa. The next two strongest correlations were between biomass and the number of leaves ( $\rho = 0.63$ ,  $p \leq 0.0001$ ), followed by biomass and the number of stems ( $\rho = 0.61$ ,  $p \leq 0.0001$ ).

The total number of leaves and stems per box varied, and as would be expected with the experimental design, the high-density treatment had more total stems ( $F_{2, 22} = 68.4$ ,  $p < 0.0001$ ) and total leaves ( $F_{2, 22} = 53.0$ ,  $p < 0.0001$ ) than both other treatments, and the medium-density treatment had more leaves and stems than the low-density boxes (see [Table 1](#) for mean stems, leaves, and biomass per box). The total number of stems in a box was strongly positively related to the total number of leaves in a box ( $R^2 = 0.93$ ,  $F_{1, 23} = 319.6$ ,  $p < 0.0001$ ). Despite individual plants varying in height

within the density treatments, the average height of plants, sitting bent or taut, did not vary across treatments ( $p > 0.05$ ).

Low-, medium-, and high-density treatments contained one, five, and nine plants, respectively. Many topographic variables were associated with density treatment, driven by increased plant biomass and greater variability in plant morphological traits at higher densities. Means are reported  $\pm$  SE, and pairwise comparisons across densities were performed using Wilcoxon tests; all comparisons were statistically significant.

### 3.2 Wind tunnel nebkhā size

With the exception of nebkhā height and width, all size metrics were significantly positively correlated. A full correlation matrix of these metrics is provided in [Supplementary Material S3](#).

Nebkhā surface area varied across the different density treatments, predominantly driven by differences in the total number of leaves in each replicate ([Figure 5](#)). Surface area was greater in the high-density treatment than in the other two lower-density treatments ( $F_{2, 22} = 11.6$ ,  $p = 0.002$ ). The top five models among all possible models for predicting the nebkhā surface area are represented in [Table 1](#). ANCOVA examining the effects of total leaves, density, and their interaction indicated that the relationship between nebkhā surface area and total leaves did not differ by density ( $R^2 = 0.60$ ,  $F_{5, 19} = 5.70$ ,  $p = 0.002$ ).

Density refers to the density treatment as low, medium, or high, and plant height is the average plant height in a replicate, measured as *A. breviligulata* plants sat bent naturally.

Nebkhā volume varied across the different density treatments, with this variation driven primarily by differences in total biomass ([Figure 5](#)). Nebkhā volume was greater in the high-density treatments compared to the low- and medium-density treatments ( $F_{2, 22} = 9.8$ ,  $p = 0.0009$ ). The top five models for predicting nebkhā volume are summarized in [Table 2](#). ANCOVA examining the effects of total leaves, density, and their interaction indicated that the differences in nebkhā volume among density treatments were largely driven by variations in leaf number ( $R^2 = 0.57$ ,  $F_{5, 19} = 5.09$ ,  $p = 0.004$ ; [Table 1](#)). Similarly, ANCOVA assessing biomass, density, and their interaction revealed that differences in nebkhā volume by density were primarily due to variations in biomass across treatments  $R^2 = 0.69$ ,  $F_{5, 19} = 8.38$ ,  $p = 0.0003$ ; [Table 1](#)).

Nebkhā height showed a trend of varying across treatments, driven by the high-density treatment producing nebkhā of greater

**TABLE 1** Plant morphology metrics per wind tunnel plant density treatment.

|                                 | Low density (L) | Medium density (M) | High density (H) | Comparisons across densities |
|---------------------------------|-----------------|--------------------|------------------|------------------------------|
| Stems per wind tunnel box (#)   | $12.9 \pm 1.8$  | $27.9 \pm 2.2$     | $45.1 \pm 2.1$   | $L < M < H$                  |
| Leaves per wind tunnel box (#)  | $46.2 \pm 6.3$  | $86.3 \pm 7.6$     | $144.1 \pm 7.1$  | $L < M < H$                  |
| Biomass per wind tunnel box (g) | $11.4 \pm 2.8$  | $15.0 \pm 3.3$     | $27.2 \pm 3.1$   | $(L = M) < H$                |

Low-, medium-, and high-density treatments contained one, five, and nine plants, respectively. Many topographic variables were associated with density treatment, driven by increased plant biomass and greater variability in plant morphological traits at higher densities. Means are reported  $\pm$  SE, and pairwise comparisons across densities were performed using Wilcoxon tests; all comparisons were statistically significant at a nn alpha level ( $\alpha$ ) of 0.05,  $P < 0.05$ .

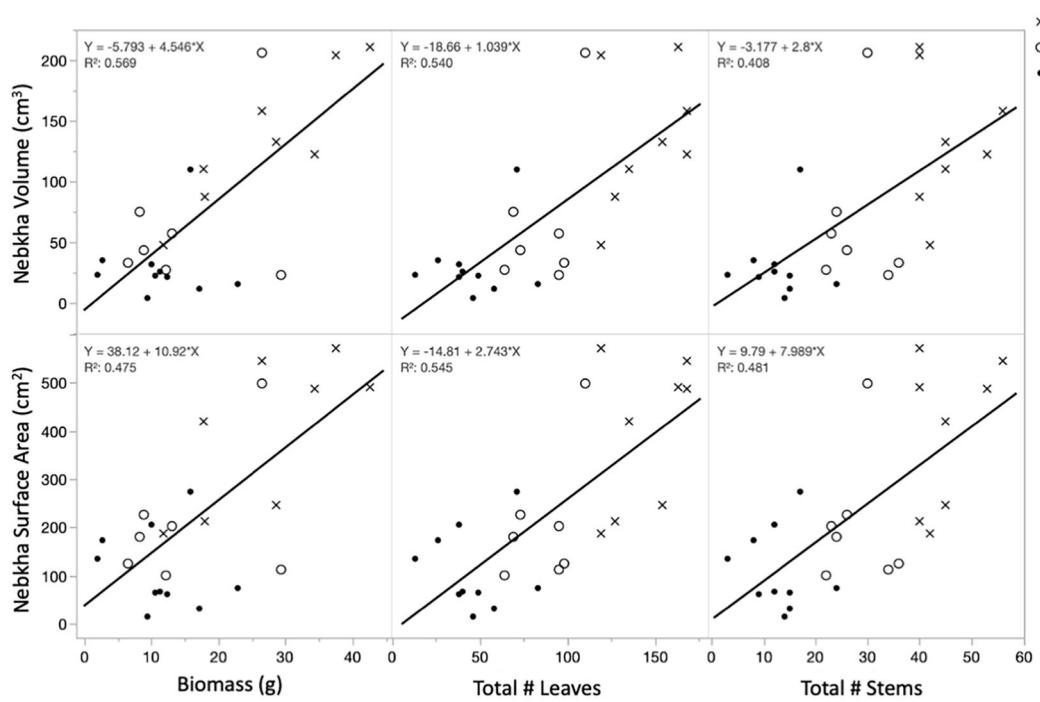



FIGURE 5

Nebkha volume and surface area, for wind tunnel nebkhā, are both most strongly positively related to the total number of leaves and biomass of *A. breviligulata*, as the most prevalent variables in the top five models for both of these variables. The total number of stems is shown, given that it is a common model variable used to predict topographic changes, but these results show that much more variability can be captured using the number of leaves or biomass, both of which are tightly related to the number of stems. It is also important to note that plant morphology varies within plant populations, but density differences in topography are driven by these differences, not the treatment itself, as revealed with ANCOVA. Points represent the three different density treatments: low (L: one plant), medium (M: five plants), and high (H: nine plants). All *p*-values are < 0.0001.

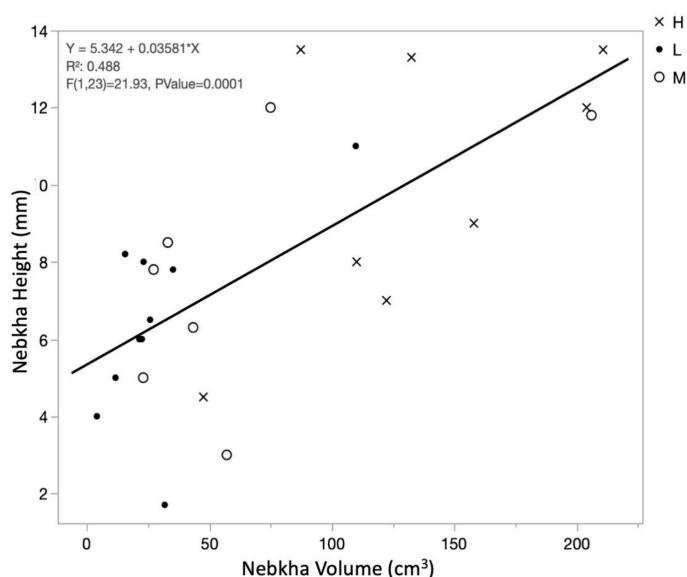
TABLE 2 The top five models for predicting *A. breviligulata*-built nebkhā size metrics—specifically, nebkhā surface area, volume, and height—for wind tunnel nebkhā.

| Model dependent variable | Model independent variables   | Adjusted R <sup>2</sup> | AIC   | RMSE  | F-value | P-value  |
|--------------------------|-------------------------------|-------------------------|-------|-------|---------|----------|
| Nebkhā surface area      | Total leaves                  | 0.525                   | 314.8 | 118.6 | 27.58   | < 0.0001 |
|                          | Total leaves and biomass      | 0.541                   | 315.7 | 116.6 | 15.14   | < 0.0001 |
|                          | Biomass and density           | 0.535                   | 316.0 | 117.3 | 14.86   | < 0.0001 |
|                          | Total stems and biomass       | 0.529                   | 316.3 | 118.1 | 14.51   | < 0.0001 |
|                          | Total leaves and density      | 0.516                   | 317.0 | 119.6 | 13.84   | < 0.0001 |
| Nebkhā volume            | Total leaves and biomass      | 0.590                   | 264.5 | 41.88 | 28.34   | < 0.0001 |
|                          | Biomass and density           | 0.584                   | 264.9 | 42.19 | 17.91   | < 0.0001 |
|                          | Biomass                       | 0.550                   | 265.1 | 43.93 | 30.34   | < 0.0001 |
|                          | Total leaves and total stems  | 0.580                   | 265.2 | 42.43 | 17.59   | < 0.0001 |
|                          | Biomass and plant height      | 0.576                   | 265.4 | 42.61 | 17.35   | < 0.0001 |
| Nebkhā height            | Biomass and plant height      | 0.287                   | 129.8 | 2.83  | 5.84    | 0.009    |
|                          | Total leaves                  | 0.189                   | 131.3 | 3.02  | 6.60    | 0.01     |
|                          | Biomass                       | 0.174                   | 131.8 | 3.05  | 6.05    | 0.02     |
|                          | Density                       | 0.161                   | 132.2 | 3.07  | 5.62    | 0.03     |
|                          | Total leaves and plant height | 0.201                   | 132.7 | 3.00  | 4.03    | 0.03     |

Density refers to the density treatment as low, medium, or high, and plant height is the average plant height in a replicate, measured as *A. breviligulata* plants sat bent naturally.

height than the low-density treatment ( $F_{2, 22} = 3.2, p = 0.06$ ). The top five models of all possible models for predicting nebkha height are presented in [Table 2](#). Generally, height was not strongly predicted by plant morphological variables (Adj  $R^2$  range: 0.174–0.287) compared to how well both surface area and volume could be predicted by them. Nebkha height appears driven by volume and surface area ( $R^2 = 0.65, F_{2, 22} = 20.68, p < 0.0001$ ; [Supplementary Material S3](#)); an effects test shows that both independent variables significantly impact nebkha height, but a stronger relationship exists with volume ( $F = 25.61, p < 0.0001$ ) than with area ( $F = 10.43, p = 0.004$ ), where volume alone accounts for 48.8% of the variability in nebkha height ([Figure 6](#)).

### 3.3 Wind tunnel nebkha shape


Nebkha shape across all three treatments was ellipsoidal in the prevailing wind direction, as eccentricity—the ratio of nebkha length to width—did not vary by treatment ( $\bar{x} = 1.41 \pm 0.11$ ). Similarly, relief did not vary among treatments. Supporting this, an ANCOVA examining the effect of surface area on height with density as a covariate revealed that the relationship between height and area did not differ by density ( $p > 0.05$ ). Nebkha width ( $F_{2, 22} = 7.02, p = 0.004$ ) and length ( $F_{2, 22} = 7.86, p = 0.002$ ) both varied by treatment, with high-density treatments producing nebkha that were longer and wider than those in the low-density treatment. Nebkha length was not related to plant height ( $p = 0.51$ ) but was positively related to the number of stems ( $R^2 = 0.39, F_{1, 22} = 13.93, p = 0.001$ ). Eccentricity showed a trend of increasing (length growing more than width) with increasing number ( $R^2 = 0.15, F_{1, 22} = 4.02, p = 0.06$ ). Supporting these findings, the distance of the

centroid from the upwind nebkha edge increased with stem number ( $R^2 = 0.35, F_{1, 22} = 11.86, Pp < 0.01$ ), whereas the peak location did not vary with the number of stems.

The nebkha peak was always located within or just behind the plants, and its position varied by density. Typically, the peak did not coincide with the nebkha centroid; only three instances had the centroid at the peak, and in most cases, the centroid was behind the plants. In the low- and medium-density treatments, nebkha peaks were behind the plants (15 of 17 replicates)—more than expected by chance—whereas in the high-density treatment, six of eight peaks were within the plants (Fisher's exact;  $\chi^2 = 10.1, df = 2, N = 25, p < 0.001$ ). Further examination revealed that nebkha with peaks within the plants had more stems ( $\bar{x} = 43.1 \pm 2.60$ ) than those with centroids behind the plants ( $\bar{x} = 21.6 \pm 3.11; t_{20,2} = 5.33, p < 0.0001$ ). The maximum upwind angle recorded for wind tunnel nebkha was  $18^\circ$  ( $\bar{x} = 6.4^\circ \pm 0.78^\circ$ ).

### 3.4 Field nebkha size

Multiple size metrics of field nebkha were significantly positively correlated; a full correlation matrix is provided in [Supplementary Material S4](#). The number of stems in nebkha formed by *A. breviligulata* ranged from three to 30 and occurred within an elevation range of 1.11–1.54 m above sea level. No significant correlation was observed between total stem number and base elevation ( $p > 0.05$ ). Field nebkha surface area ranged from 0.20 to  $4.47 \text{ m}^2$  and was weakly but positively related to stem number ( $R^2 = 0.17, F_{1, 37} = 7.70, p = 0.009$ ; [Figure 7](#)). Nebkha height (measured peak to base) ranged from 0.04 to 0.68 m and showed a strong positive relationship with stem number ( $R^2 = 0.71, F_{1, 37} = 91.15, p < 0.0001$ ; [Figure 7](#)). Nebkha volume ranged from 0.013 to



**FIGURE 6**

For wind tunnel nebkha, nebkha height was not strongly predicted by *A. breviligulata* plant morphology metrics (e.g., biomass, number of stems, etc.) but was strongly positively related to nebkha volume, which can be predicted by this variable. Points represent the three different density treatments: low (L: one plant), medium (M: five plants), and high (H: nine plants).

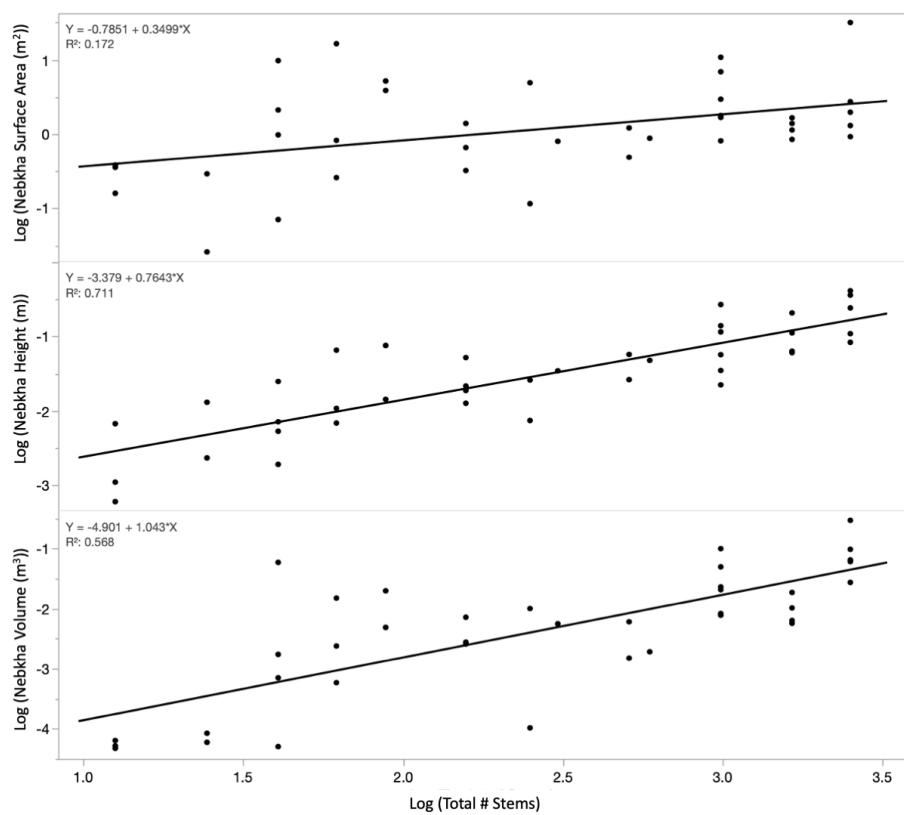



FIGURE 7

For field nebkhā, nebkhā height, surface area, and volume are all positively related to the total number of *A. breviligulata* stems supporting them. All  $p$ -values are  $< 0.0001$ , with the exception of the total number of stems and surface area, which maintained a  $p$ -value of 0.009.

0.59 m<sup>3</sup> and was also positively related to stem number ( $R^2 = 0.57$ ,  $F_{1,37} = 48.74$ ,  $p < 0.0001$ ; Figure 7).

### 3.5 Field nebkhā shape

The Nebkhā shape appears somewhat related to the number of stems. Nebkhā were slightly longer alongshore (0.52–2.68 m), with a slightly stronger relationship with total stems ( $R^2 = 0.23$ ,  $F_{1,37} = 11.17$ ,  $p = 0.002$ ) relative to cross-shore length (0.47–2.09 m,  $R^2 = 0.17$ ,  $F_{1,37} = 7.84$ ,  $p = 0.008$ ). The number of stems did not affect nebkhā eccentricity, the ratio of nebkhā length to width ( $p > 0.05$ ), where the mean eccentricity of field nebkhā was  $0.99 \pm 0.05$ , indicating a fairly circular nebkhā shape. This result suggests both nebkhā length and width increase concomitantly in the field; supporting this, both alongshore width ( $R^2 = 0.17$ ,  $F_{1,37} = 7.84$ ,  $p = 0.01$ ) and length ( $R^2 = 0.23$ ,  $F_{1,37} = 11.17$ ,  $p = 0.001$ ) had a positive relationship with the number of stems. Nebkhā slopes ( $\bar{x} = 28.3 \pm 1.9$ ) had a wide angle range from  $6.9^\circ$  to  $51.3^\circ$ , and slope was positively related to the number of stems ( $R^2 = 0.54$ ,  $F_{1,37} = 43.16$ ,  $p < 0.0001$ , Figure 8). Of 39 nebkhā, 13 had slopes at or above a theoretical angle of repose for medium-sized grains (Bagnold, 1960; Sloss et al., 2012; Figure 8), and taller nebkhā maintained elevated angles of repose ( $R^2 = 0.69$ ,  $F_{1,37} = 80.67$ ,  $p < 0.0001$ ).

The mean position of the nebkhā peak relative to the centroid was within 9 cm alongshore and 6 cm cross-shore, although substantial variation was observed across all dune nebkhā. Despite this variability, both the peak and centroid were consistently located within the plant stems, and the number of stems had no significant effect on the placement of the nebkhā peak relative to the centroid alongshore or cross-shore ( $p > 0.05$  for both).

## 4 Discussion

### 4.1 Allometric relationships among *A. breviligulata* plant traits

Allometry, the scaling of form, is apparent in *A. breviligulata*. Here, all plant morphological parameters were highly correlated (Supplementary Material S2); thus, larger plants were larger across all measured parameters, a pattern observed in several dune species. Early work on *Ammophila arenaria* and *Elymus mollis* demonstrates allometric relationships between biomass and leaf area mediated by nitrogen availability (Pavlik, 1983). In the field, allometric relationships among population- and community-level root metrics of *Spartina patens* and *A. breviligulata* have been

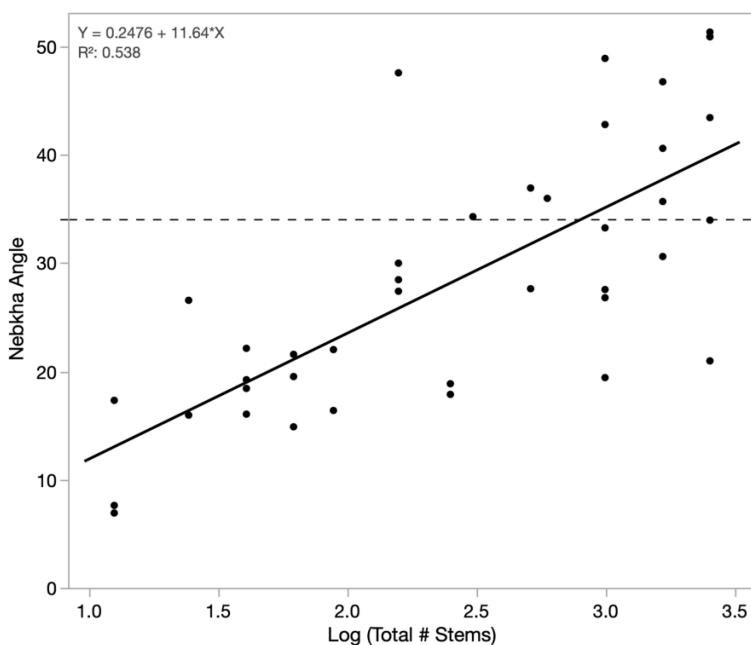



FIGURE 8

For field nebkhā, the upwind slope (nebkhā angle) is positively related to the total number of *A. breviligulata* stems. The angle measured represents the stoss upwind nebkhā slope relative to the predominant southwest wind direction on Hog Island, VA, USA. The dotted line represents a theoretical angle of repose (34°) for medium-sized grains, and stem densities ranged from 3 to 30.

described (Snook and Day, 1995). Correlations among plant traits have been observed for *A. breviligulata*, *Panicum amarum*, *S. patens*, *Uniola paniculata*, and the invasive species *Carex kobomugi* (Jass, 2015; Charbonneau et al., 2021), although not explicitly considered in the framework of allometric scaling or theory. Comparisons of morphological variables between dune-builder species exist (e.g., Hacker et al., 2019; Charbonneau et al., 2021; Walker and Zinnert, 2022), with these differences typically linked to preexisting topography (McGuirk et al., 2022). In contrast, in this study, we observed nebkhā topographic formation to identify morphological metrics with the greatest physical influence.

Employing allometric equations in existing dune models can be an efficient way to expand or incorporate modeled ecogeomorphic relationships. Allometric equations have been used in tree models for decades, including mangroves and shrubs, but there are known issues with universality and site- or species-specific variability (Komiyama and Poungparn, 2005, 2008; Brantley and Young, 2007; Reeves et al., 2022). Woody plants cannot necessarily be harvested or measured quickly or inexpensively to tailor models to specific sites, making this issue difficult to overcome (Komiyama et al., 2008). While dune grasses may vary across species (Pavlik, 1983; Gao et al., 2024), site data, including biomass, can be collected relatively quickly and inexpensively, making site-specific issues less prohibitive. Our observed strong coupling of morphological parameters suggests that stem density could be measured across a site and then used to extrapolate other parameters, such as biomass and number of leaves—the two strongest predictors (over 50% variability) of nebkhā size metrics, including volume and surface area. Despite this, dune model

options remain limited, as most models incorporating plants beyond a roughness component rely on percent cover to drive ecogeomorphic relationships (Piercy et al., 2023). Only two of nine known exceptions exist—de Luna et al. (2011) and Charbonneau et al. (2022)—highlighting the need to expand the range of vegetation parameters in existing models or to better understand the relationships between percent cover and morphology.

## 4.2 Stem density effects on nebkhā morphology

Wind tunnel differences in nebkhā surface area and volume across density treatments were an artifact of a strong positive relationship with leaves, aboveground biomass, and stem density. Interestingly, the relationships were stronger for the former two parameters (leaf density and aboveground biomass) than for stem density (Figure 5) and were more prominent in top models predicting nebkhā size (Table 2). Stem density is commonly used to estimate abundance, and relationships have been observed between stem density and sand capture relative to dune size and shape (e.g., Zarnetske et al., 2012; Hacker et al., 2019; Charbonneau et al., 2021). Grasses maintain numerous leaves per stem, but leaves are more easily buried than stems as they are more flexible, often less upright, with some species having leaf parts close to or at the sand surface (Hacker et al., 2019; Walker and Zinnert, 2022). Burial reduces leaf number in *A. breviligulata* (Harris et al., 2017) and leaf-to-stem ratios in related species, *A. arenaria*, triggering subsequent

tillering (Sykes and Wilson, 1990). While leaves and biomass could not be measured in the field, stem density showed a strong positive relationship with nebkhā size metrics (Figure 7) and, interestingly, was not influenced by establishment location (relative to elevation), despite lower-elevation areas being more prone to overwash (Reeves et al., 2022). It is also worth noting that we observed increasing variability in nebkhā size parameters with rising stem density in both the field and wind tunnel, with the lowest standard error at reduced stem numbers (< 15) and lower density treatments (Figures 5, 7). Based on the recent work of Costas et al. (2024), at higher plant densities—or as nebkhā grow and merge—these relationships may become nonlinear. Stems are easier to measure in the field, and the strong correlation between the number of leaves and stems in *A. breviligulata* demonstrated here supports the continued use and collection of stem density as a field metric.

Observed field nebkhā slopes document plant stabilization. Of 39 nebkhā, 15 had slopes above a theoretical angle of repose, 30°, for medium-fine grains, where Sloss et al. (2012) note that slopes can be increased to up to 50° by dense vegetation (Bagnold, 1960). Field nebkhā slope was positively related to stem density, but our results also suggest slope is not related to density alone – field nebkhā at the maximum observed stem density (30 stems) maintained 50° slopes, whereas others with the same density were at or below 30°, and nebkhā with 10–20 stems maintained slopes at or near 50° (Figure 8). While we did not collect and analyze sediment samples, these results suggest that grain aggregation resulting in greater slopes is possible without soil stabilization (Bagnold, 1960). While roots provide structural stability and, as noted in Cooke et al. (1993), can influence nebkhā slope, much of this stability likely arises directly from arbuscular mycorrhizal fungi (AMF; Daynes et al., 2013). AMF hyphae and their secreted compounds bind grains and physically entangle them with roots (see Figure 4 of Feagin et al., 2015), and dune-builder species such as *A. breviligulata* engage in mutualistic relationships with AMF (e.g., Maun, 2009; Walker and Zinnert, 2022). In *A. breviligulata*, AMF increases stem density from the same plant by 31% (Gemma and Koske, 1997). Observed patterns in slope, stem density, and nebkhā height suggest that, at the foredune level, vegetation densities may contribute to greater accrued topographic height than would be expected from physical processes alone.

Differences in the relationships observed with nebkhā height may be a function of differences in available time and space for the resultant topography to evolve. In the field, nebkhā height had the strongest relationship with stem density among all nebkhā parameters (Figure 7) but was also related to nebkhā volume and surface area (Supplementary Material S4). In the wind tunnel, nebkhā height was more related to nebkhā volume and surface area than to plant morphology or density metrics (Figure 7). Both available space and sediment supply were controlled in the laboratory, and plant-influenced topography was measured shortly after a wind event, allowing for a direct test of planting density on resulting nebkhā topography. Conversely, field nebkhā formed and evolved over multiple sand transport events, as suggested by the absence of tails indicating the predominant wind

direction during deposition, and they maintained distances of more than a meter between individual nebkhā (Cooke et al., 1993; Sloss et al., 2012). Over the course of field nebkhā evolution, there was greater potential for ecogeomorphic interactions (i.e., plant burial and growth in response to sand transport), which was not present in the wind tunnel experiment. Field wind directions were also more variable than in the controlled wind tunnel. Although winds from the south/southwest were most prominent in the month preceding our imagery collection, the most frequent wind directions over longer timeframes originate from the south/southwest and the north/northwest (Priestas et al., 2015), likely contributing to overall nebkhā shape.

The shape of the field nebkhā, compared to those created in the wind tunnel, documents topographic stabilization by plants. Wind tunnel nebkhā formed by erect grasses were ellipsoid, both here and in Charbonneau et al. (2021), forming around and behind plants in a full nebkhā-shadow dune complex (Hesp and Smyth, 2017). Laboratory simulations of sand flow around objects (Hesp and Smyth, 2017) and backshore transport to artificial plants (Hesp et al., 2019) also produced tails. In contrast, field nebkhā were circular around plant groups, distinctly lacking tails. In light of the aforementioned studies, this suggests tails are ephemeral in nature unless stabilized, with the area among plants theoretically stabilized both above and below ground. Nebkhā width increased in both the field and wind tunnel with greater stem densities or larger areas of plant influence. Nebkhā eccentricity and length were only related to stem density at high wind tunnel stem densities, where broader zones of influence produced greater elongation in downwind sheltered areas—a pattern that appears biologically irrelevant and underscores the importance of integrating laboratory and field observations (Dunham and Beaupre, 1988). These differences can suggest that the shapes of foredunes and nebkhā complexes formed by the same species may not be directly related. In this context, topographic changes around plants in the main nebkhā body are relevant for dune modeling, whereas the tails are ephemeral and contribute negligibly to overall topographic change.

Nebkhā peak locations varied, with potential ecogeomorphic implications for where dune plants expand to offer new obstructions for topography building. In the wind tunnel, peaks were within the plants in the high-density treatments and downwind of the plants in the low- and medium-density treatments. All field nebkhā peaks were in the plants, but as previously discussed, this may be because the tails or any downwind deposition were eroded. These results support flow deceleration with increasing density, resulting in increased deposition around plants—a finding observed in dunes as well as other canopied systems (e.g., Hesp, 1989; Gillies et al., 2014; Hesp et al., 2019; Finnigan, 2000). From a biological perspective, increasing stem densities may enhance deposition within the canopy, which is more likely to trigger the burial-vigor response characteristic of dune-building plants (Sykes and Wilson, 1990; Maun, 2009; Brown and Zinnert, 2018). This supports the notion that nebkhā tails are ephemeral and largely separate from the main body from a dune evolution perspective. Paradoxically, while sand

deposition within the plants promotes tillering (Disraeli, 1984; Maun, 2009) in the main nebkha body, downwind shielding and the resulting deposition may also facilitate stand expansion and subsequent nebkha growth in the lee of the main body (Maun, 2009; Gao et al., 2023). Recent findings by Gao et al. (2023) indicate that leeward tillering may occur or that leeward shielding reduces stress, allowing seedlings to establish. Together, our laboratory and field results suggest that burial responses and stem/leaf density influence nebkha size, although the processes driving nebkha shape evolution remain incompletely understood.

## 5 Conclusions

This work adds to the relatively limited number of quantitative studies examining plant morphology and dune topography at inception (McGuirk et al., 2022). We sought to better understand the underlying mechanisms of nebkha formation, whereas most studies of plant morphology examine the completed dune form and aim to infer the mechanistic history after the fact. Overall, the results highlight how plants stabilize the topography they support and provide insight into the plant morphological and density variables that most strongly predict topographic variability in nebkha size and shape metrics. Simulations of natural phenomena in laboratory settings are not always validated with field measurements to ensure the simulation aligns with reality, but they should be incorporated in a well-constructed experimental design (Dunham and Beaupre, 1988). This approach is supported by our work, where separate interpretations of laboratory and field data would have led to different conclusions than when analyzed together. In the wind tunnel, both the number of leaves and biomass were stronger predictors of nebkha volume and surface area than the number of stems, a commonly used metric in modeling efforts. In the field, however, these metrics are harder to measure than stem density, which was also a strong predictor of nebkha morphology and shape. This likely reflects the ecogeomorphic interactions between plant growth and sand burial. Our results regarding relationships between plant morphology metrics, allometry, and growing topographic variability at increasing plant densities are relevant for modeling efforts. Similarly, the demonstrated stabilizing role observed in *A. breviligulata* here, and presumably mirrored in other dune-builder species, highlights how the ecogeomorphic feedback between nebkha and plant can result in variability in topographies that might not be predictable when examining physical properties alone. These results showcase dune vegetation as ecosystem engineers with critical roles in the dune-building process and continued geomorphic evolution of dune systems, which need to be quantitatively represented in dune system modeling, management, and natural and nature-based project design.

## Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

## Author contributions

BC: Writing – original draft, Formal analysis, Methodology, Project administration, Data curation, Visualization, Resources, Investigation, Validation, Conceptualization, Writing – review & editing, Funding acquisition, Supervision. JZ: Validation, Supervision, Project administration, Data curation, Writing – review & editing, Methodology, Investigation, Writing – original draft, Funding acquisition, Resources, Visualization, Formal analysis. JW: Funding acquisition, Conceptualization, Writing – review & editing, Supervision, Methodology, Project administration, Resources, Investigation. AW: Project administration, Resources, Conceptualization, Supervision, Writing – review & editing, Investigation, Methodology. EM: Formal analysis, Investigation, Writing – review & editing, Methodology. KM: Formal analysis, Methodology, Investigation, Writing – review & editing. AS: Writing – original draft, Writing – review & editing, Investigation, Formal analysis, Methodology, Visualization, Validation. SD: Investigation, Validation, Methodology, Formal analysis, Writing – review & editing.

## Funding

The author(s) declared financial support was received for this work and/or its publication. This research was conducted with support under contract FA9550-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168 awarded to Charbonneau. The work was funded by the US Coastal Research Program (USCRP) as administered by the US Army Corps of Engineers® (USACE), Department of Defense, contract W912HZ16P0088 awarded to Charbonneau. The content of the information provided in this publication does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. This research was supported in part by an appointment to the Department of Defense (DOD) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the DOD. ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of DOD, DOE, or ORAU/ORISE. Field work and field image analyses were funded by the National Science Foundation Long-Term Ecological Research Grant (DEB-1832221, DEB-2425178) awarded to Zinnert. This work was also supported in part by a working group, entitled 'Beyond waves and shifting sand: considering ecosystem processes in forecasts of coastal ecosystem change', supported by the U.S. Geological Survey's John Wesley Powell Center for Analysis and Synthesis.

## Acknowledgments

The authors thank Thomas Burkett for imagery collection and post-processing.

## Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author BC declared that they were an editorial board member of Frontiers at the time of submission. This had no impact on the peer review process and the final decision.

## Generative AI statement

The author(s) declare that Generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

## Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

## Supplementary material

The Supplementary Material for this article can be found online at: <https://www.frontiersin.org/articles/10.3389/fevo.2025.1691144/full#supplementary-material>

## References

Arens, S. M. (1996). Patterns of sand transport on vegetated foredunes. *Geomorphology* 17, 339–350. doi: 10.1016/0169-555X(96)00016-5

Bagnold, R. A. (1960). *The Physics of Blown Sand and Desert Dunes* (London, UK: Methuen).

Brantley, S. T., and Young, D. R. (2007). Leaf-area index and light attenuation in rapidly expanding shrub thickets. *Ecology* 88, 524–530. doi: 10.1890/06-0913

Brown, J. K., and Zinnert, J. C. (2018). Mechanisms of surviving burial: Dune grass interspecific differences drive resource allocation after sand deposition. *Ecosphere* 9, e02162–e02111. doi: 10.1002/ecs2.2162

Charbonneau, B. R. (2019). *From the Sand they Rise: Post-Storm Foredune Plant Recolonization and its Biogeomorphic Implications* (Philadelphia, Pennsylvania: Doctoral Dissertation University of Pennsylvania).

Charbonneau, B. R., Dohner, S. M., Wnek, J. P., Barber, D., Zarnetske, P. L., Casper, B. B., et al. (2021). Vegetation effects on coastal foredune initiation: Wind tunnel experiments and field validation for three dune-building plants. *Geomorphology* 378, 107594. doi: 10.1016/j.geomorph.2021.107594

Charbonneau, B. R., Duarte, A., Swannack, T. M., et al. (2022). DOONIES: A process-based ecogeomorphological functional-community model for coastal dune vegetation and landscape dynamics. *Geomorphology* 398, 108037. doi: 10.1016/j.geomorph.2021.108037

Charbonneau, B. R., Wootton, L. S., Wnek, J. P., Langley, J. A., and Posner, M. A. (2017). A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during Hurricane Sandy. *J. Appl. Ecol.* 54, 1385–1394. doi: 10.1111/1365-2664.12846

Cooke, R., Warren, A., and Goudie, A. (1993). *Desert Geomorphology* (London, UK: UCL Press).

Corenblit, D., Baas, A., Balke, T., Bouma, T., Fromard, F., Garofano-Gómez, V., et al. (2015). Engineer pioneer plants respond to and affect geomorphic constraints similarly along water-terrestrial interfaces world-wide. *Global Ecol. Biogeography* 24, 1363–1376. doi: 10.1111/geb.12373

Costas, S., Sousa de, L. B., Gallego-Fernández, J. B., Hesp, P., and Kombiadou, K. (2024). Foredune initiation and early development through biophysical interactions. *Sci. Total Environment.* 940, 173548. doi: 10.1016/j.scitotenv.2024.173548

Daynes, C. N., Field, D. J., Saleeba, J. A., Cole, M. A., and McGee, P. A. (2013). Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. *Soil Biol. Biochem.* 57, 683–694. doi: 10.1016/j.soilbio.2012.09.020

de Luna, M. C. M., Parteli, E. J. R., Durán, O., and Herrmann, H. J. (2011). Model for the genesis of coastal dune fields with vegetation. *Geomorphology* 129, 215–224. doi: 10.1016/j.geomorph.2011.01.024

Disraeli, D. J. (1984). The effect of sand deposits on the growth and morphology of *Ammophila breviligulata*. *J. Ecol.* 72, 145–154. doi: 10.2307/2260010

Dunham, A. E., and Beaupre, S. J. (1988). “Ecological experiments: scale, phenomenology, mechanism, and the illusion of generality,” in *Resistarts W and Bernardo J (eds), Experimental ecology: Issues and perspectives* (Oxford University Press, London, UK), 27–49.

Feagin, R. A., Figlus, J., Zinnert, J. C., Sigren, J., Martínez, M. L., Silva, R., et al. (2015). Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. *Front. Ecol. Environ.* 13, 203–210. doi: 10.1890/140218

Fenster, M. S., Dolan, R., and Smith, J. J. (2016). Grain-size distributions and coastal morphodynamics along the southern Maryland and Virginia barrier islands. *Sedimentology* 63, 809–823. doi: 10.1111/sed.12239

Finnigan, J. J. (2000). Turbulence in plant canopies. *Annu. Rev. Fluid Mechanics* 32, 519–571. doi: 10.1146/annurev.fluid.32.1.519

Gao, J., Kennedy, D. M., and McSweeney, S. (2023). Patterns of vegetation expansion during dune stabilization at the decadal scale. *Earth Surface Processes Landforms* 48, 3059–3073. doi: 10.1002/esp.5681

Gao, J., Kennedy, D. M., and McSweeney, S. (2024). Decadal changes in vegetation cover within coastal dunes at the regional scale in Victoria, SE Australia. *J. Environ. Manag.* 351, 119622.

Gemma, J. N., and Koske, R. E. (1997). Arbuscular mycorrhizae in sand dune plants of the North Atlantic coast of the US: field and greenhouse inoculation and presence of mycorrhizae in planting stock. *J. Environ. Manage.* 50, 251–264. doi: 10.1006/jema.1996.9985

Gillies, J. A., Nield, J. M., and Nickling, W. G. (2014). Wind speed and sediment transport recovery in the lee of a vegetated and denuded nebkhā within a nebkhā dune field. *Aeolian Res.* 12, 135–141. doi: 10.1016/j.aeolia.2013.12.005

Goudie, A. S. (2022). Nebkhās: An essay in aeolian biogeomorphology. *Aeolian Res.* 54, 100772. doi: 10.1016/j.aeolia.2022.100772

Hacker, S. D., Jay, K. R., Cohn, N., Goldstein, E. B., Hovenga, P. A., Itzkin, M., et al. (2019). Species-specific functional morphology of four US atlantic coast dune grasses: biogeographic implications for dune shape and coastal protection. *Diversity* 11, 82–16. doi: 10.3390/d11050082

Hacker, S. D., Zarnetske, P., Seabloom, E., Ruggiero, P., Mull, J., Gerrity, S., et al. (2011). Subtle differences in two non-native congeneric beach grasses significantly affect their colonization, spread, and impact. *Oikos* 121, 138–148. doi: 10.1111/j.1600-0706.2011.18887.x

Harris, A. L., Zinnert JC., and Young, D. R. (2017). Differential response of barrier island dune grasses to species interactions and burial. *Plant Ecol.* 218, 609–619. doi: 10.1007/s11258-017-0715-0

Hesp, P. A. (1989). A review of biological and geomorphological processes involved in the initiation and development of incipient foredunes. *Int. Assoc. Sci. Hydrology* 54, 181–201. doi: 10.1017/S026972700010927

Hesp, P. A. (2002). Foredunes and blowouts: initiation, geomorphology and dynamics. *Geomorphology* 48, 245–268. doi: 10.1016/S0169-555X(02)00184-8

Hesp, P. A., Dong, Y., Cheng, H., and Booth, J. L. (2019). Wind flow and sedimentation in artificial vegetation: Field and wind tunnel experiments. *Geomorphology* 337, 165–182. doi: 10.1016/j.geomorph.2019.03.020

Hesp, P. A., Hernández-Calvento, L., Gallego-Fernández, J. B., Silva da, G. M., Hernández-Cordero, A. I., Ruz, M. H., et al. (2021a). Nebkhā or not? Climate control on foredune mode. *J. Arid Environments* 187, 104444. doi: 10.1016/j.jaridenv.2021.104444

Hesp, P. A., Hernández-Calvento, L., Hernández-Cordero, A. I., Gallego-Fernández, J. B., Romero, L. G., Silva, G. M., et al. (2021b). Nebkha development and sediment supply. *Sci. Total Environ.* 773, 144815. doi: 10.1016/j.scitotenv.2020.144815

Hesp, P. A., and Smyth, T. A. G. (2017). Nebkha flow dynamics and shadow dune formation. *Geomorphology* 282, 27–38. doi: 10.1016/j.geomorph.2016.12.026

Houser, C., Hapke, C., and Hamilton, S. (2008). Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. *Geomorphology* 100, 223–240. doi: 10.1016/j.geomorph.2007.12.007

Houser, C., and Mathew, S. (2011). Alongshore variation in foredune height in response to transport potential and sediment supply: South Padre Island, Texas. *Geomorphology* 125, 62–72. doi: 10.1016/j.geomorph.2010.07.028

IPCC (2022). *Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*. Eds. H. O. Pörtner, D. C. Roberts, M. Tignor, et al (New York, NY, USA: Cambridge University Press), 3056.

Jackson, N. L., and Nordstrom, K. F. (2020). Trends in research on beaches and dunes on sandy shores, 1969–2019. *Geomorphology* 366, 106737. doi: 10.1016/j.geomorph.2019.04.009

Järvelä, J. (2002). Flow resistance of flexible and stiff vegetation: a flume study with natural plants. *J. Hydrology* 269, 44–54. doi: 10.1016/S0022-1694(02)00193-2

Jass, T. (2015). Environmental controls on the growth of dune-building grasses and the effect of plant morphology on coastal foredune formation. (Chapel Hill: University of North Carolina)

JMP® (2019). *Version Pro 14* (Cary, NC: SAS Institute Inc.).

Komiyama, A., and Poungparn, S. (2005). Common allometric equations for estimating the tree weight of mangroves. *J. Trop. Ecol.* 21, 471–477.

Komiyama, A., Ong, J. E., and Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. *Aquatic Botany* 89, 128–137.

Maun, M. A. (1984). Colonizing ability of *Ammophila breviligulata* through vegetative regeneration. *J. Ecol.* 72, 565–574. doi: 10.2307/2260067

Maun, M. A. (2009). *The biology of coastal sand dunes* (Oxford, UK: Oxford University Press).

McGuirk, M. T., Kennedy, D. M., and Konlechner, T. (2022). The role of vegetation in incipient dune and foredune development and morphology: A review. *J. Coast. Restor.* 38, 414–428. doi: 10.2112/JCOASTRES-D-21-00021.1

Nordstrom, K., Lampe, R., and Vandemark, L. (2000). Reestablishing naturally functioning dunes on developed coasts. *Environ. Manage.* 25, 37–51. doi: 10.1007/s002679910004

Pavlik, B. M. (1983). Nutrient and productivity relations of the dune grasses *Ammophila arenaria* and *Elymus mollis*. *Oecologia* 57, 233–238. doi: 10.1007/BF00379585

Piercy, C. D., Charbonneau, B. R., Russ, E. R., and Swannack, T. M. (2023). Examining the commonalities and knowledge gaps in coastal zone vegetation simulation models. *Earth Surface Processes Landforms* 49, 24–48. doi: 10.1002/esp.5565

Priestas, A. M., Mariotti, G., Leonardi, N., and Fagherazzi, S. (2015). Coupled wave energy and erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA. *J. Mar. Sci. Eng.* 3, 1041–1065. doi: 10.3390/jmse3031041

Reeves, I. R., Goldstein, E. B., Moore, L. J., and Zinnert, J. C. (2022). Exploring the impacts of shrub-overwash feedbacks in coastal barrier systems with an ecological-morphological model. *J. Geophysical Research: Earth Surface* 127, e2021JF006397. doi: 10.1029/2021jf006397

Sabo, A. B., Cornish, M. R., Castorani, M. C. N., and Zinnert, J. C. (2024). Drivers of dune formation control ecosystem function and response to disturbance in a barrier island system. *Sci. Rep.* 14, 11405. doi: 10.1038/s41598-024-61741-9

SICK AG. (2019). *TriSpector1000 Operating Instructions:1–104* (Waldkirch, Germany).

Slaymaker, D. H., Peek, M. S., Wresil, J., Zeltner, D. C., and Saleh, Y. F. (2015). Genetic Structure of Native and Restored Populations of American Beachgrass (*Ammophila breviligulata* Fern.) along the New Jersey Coast. *J. Coast. Res.* 316, 1334–1343. doi: 10.2112/JCOASTRES-D-13-00157.1

Sloss, C. R., Shepherd, M., and Hesp, P. A. (2012). Coastal dunes: geomorphology. *Nat. Educ. Knowledge* 3, 2.

Snook, R. E., and Day, F. P. (1995). Community-level allometric relationships among length, planar area, and biomass of fine roots on a coastal barrier island. *Bull. Torrey Botanical Club* 122, 196–202. doi: 10.2307/2996084

Stallins, J. A., Hsu, L. C., Zinnert, J. C., and Brown, J. K. (2020). How bottom-up and top-down controls shape dune topographic variability along the U.S. Virginia barrier island coast and the inference of dune dynamical properties. *J. Coast. Conserv.* 24, 1–16. doi: 10.1007/s11852-020-00747-7

Stallins, J. A., and Parker, A. J. (2003). The influence of complex systems Interactions on barrier island dune vegetation pattern and process. *Ann. Assoc. Am. Geographers* 93, 13–29. doi: 10.1111/1467-8306.93102

Sykes, M. T., and Wilson, J. B. (1990). An experimental investigation into the response of New Zealand sand dune species to different depths of burial by sand. *Acta Botanica Neerlandica* 39, 171–181. doi: 10.1111/j.1438-8677.1990.tb01485.x

Walker, I. J., Davidson-Arnott, R. G. D., Bauer, B. O., Hesp, P. A., Delgado-Fernandez, I., Ollerhead, J., et al. (2017). Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. *Earth Sci. Rev.* 171, 220–253. doi: 10.1016/j.earscirev.2017.04.011

Walker, S. L., and Zinnert, J. C. (2022). Whole plant traits of coastal dune vegetation and implications for interactions with dune dynamics. *Ecosphere* 13, e4065. doi: 10.1002/ecs2.4065

Zarnetske, P. L., Hacker, S. D., Seabloom, E. W., Ruggiero, P., Killian, J. R., Maddux, T. B., et al. (2012). Biophysical feedback mediates effects of invasive grasses on coastal dune shape. *Ecology* 93, 1439–1450. doi: 10.1890/11-1112.1

Zinnert, J. C., Stallins, J. A., Brantley, S. T., and Young, D. R. (2017). Crossing Scales: The complexity of barrier-island processes for predicting future change. *BioScience* 67, 39–52. doi: 10.1093/biosci/biw154