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Testing differences in
thermal tolerance between
two amphibians with
contrasting invasion abilities
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1Department of Biology, Drake University, Des Moines, IA, United States, 2Department of Integrative
Biology, W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States,
3Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
Physiological traits may influence the establishment success of non-native

species, yet empirical links between physiology and invasiveness remain

limited. The American bullfrog (L. catesbeianus) and the green frog (L.

clamitans) are closely related species with overlapping native ranges in the

eastern United States, but have contrasting invasion histories: bullfrogs have

colonized much of the western U.S., while green frogs have not. One hypothesis

that could explain this pattern is that invasive species possess greater tolerance to

heat stress and enhanced capacity for thermal acclimation. To test this

hypothesis, we compared critical thermal maximum (CTMAX) and acclimation

capacity in tadpoles of both species fromwithin their native range. We found that

the species both exhibit equally high CTMAX. Further, neither species was able to

acclimate to a warmer temperature. However, while bullfrogs showed no change

in CTMAX after acclimation, green frogs experienced a slight reduction in CTMAX,

suggesting that they may be more sensitive to warming than bullfrogs. These

results suggest that intrinsic differences in thermal tolerance and plasticity alone

do not explain bullfrog invasion success. Other factors—such as competitive

dominance, rapid evolutionary shifts, or interacting abiotic and biotic pressures—

may facilitate bullfrog persistence in novel, warmer habitats of the western U.S.
KEYWORDS

acclimation capacity, bullfrog, critical thermal maximum, green frog, invasive
species, tadpole
Introduction

Invasive species are a leading cause of global biodiversity loss (McKinney and

Lockwood, 1999; Mooney and Cleland, 2001). Yet, the proportion of introduced species

that become established invasives in new environments is relatively low (Williamson,

1996). Uncovering which traits promote invasiveness can provide insights into why some

species become invasive whereas others do not (DeVore et al., 2021). Many ecologically
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important traits are likely to facilitate invasion, for example, fast life

histories that include rapid growth rates and high fecundity (Sakai

et al., 2001). More recently, there has been considerable interest in

understanding whether greater physiological tolerance to stress

promotes invasions (Jarnevich et al., 2018). However, few

empirical studies investigate the relationship between invasion

success and key physiological traits that play a role in the

establishment of non-native species in a new habitat (Kelley, 2014).

In general, the physiological traits associated with invasiveness

could permit species to occupy new environments that differ from

their native ones, and they may have greater tolerance to stressors

such as temperature, desiccation, and disturbance (Olyarnik et al.,

2009). For ectotherms, temperature is a particularly important

factor influencing the geographic distribution of a species

(Bozinovic et al., 2011). Key physiological traits may therefore

include broad thermal tolerances that allow a species to exist

within a wide thermal range and especially to tolerate high

temperatures (Zerebecki and Sorte, 2011), and increased thermal

plasticity (acclimation capacity) that allows an organism to

recalibrate its thermal threshold after brief exposure to different

environmental temperatures (Buckley et al., 2001; Mittan and

Zamudio, 2019) enabling function over a wider range of

temperatures. Indeed, aquatic ectotherms such as tadpoles may be

constantly challenged by high temperatures because their small

body size coupled with the high heat capacity of water results in

body temperatures that are equal to that of the water (Duarte et al.,

2012). However, species with the propensity to become invasive

may produce tadpoles with intrinsically higher heat tolerances and

acclimation capacities than others.

A powerful approach to testing associations between physiological

traits and invasiveness is to compare these traits in closely related

species where one is a successful invader and the other is not. The

American bullfrog, Lithobates catesbeianus, and the green frog, L.

clamitans, are congeners that largely occupy the same native range in

the eastern United States (Harding and Mifsud, 2017; Figures 1A, B).

Bullfrogs are considered one of the 100 worst invasive species globally

(Lowe et al., 2000) and have successfully expanded into new habitats

in the western and southwestern United States, among 40 other

countries across four continents (Lever, 2003). They were likely

introduced in western North America between 1882 and 1904

(Jennings and Hayes, 1985) and have since established vigorous

populations in much of the western U.S. (Figure 1 (IUCN, 2020).

Some of the places that bullfrogs have become established include

areas such as California’s Central Valley and parts of NewMexico and

southern Utah in which maximum temperatures are much greater

than those in the native range of the two species (Figure 1; Fick and

Hijmans, 2017). By contrast, established green frog populations are

only documented from a handful of localities outside their native

range where they were introduced, including Newfoundland and

British Columbia, Canada, and northern Utah and Washington,

U.S. (Figure 1 (IUCN, 2020). Although the ecological impacts of

these few green frog introductions remain largely unknown,

populations in Utah and Washington have been documented since

1966 (Gregoire and Powell, 2023), but have yet to expand in the same

capacity as bullfrogs suggesting that green frogs lack traits that
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promote invasiveness. Previous studies exploring the causes of

variation in invasiveness between the two species have focused on

differences in their diet (Werner et al., 1995), gut microbiota (Fontaine

and Kohl, 2020), susceptibility to toxins (Birdsall et al., 1986) and

community interactions (Hecnar and M’Closkey, 1997), but to our

knowledge, there is no information on intrinsic thermal physiological

differences of the tadpoles of the two species. This is particularly

important, as tadpoles are a critical life stage, and potentially more

vulnerable to physiological stressors such as temperature due to their

small body size and the high thermal conductance of water

(Lutterschmidt and Hutchison, 1997; Winter et al., 2016).

Bullfrogs and green frogs therefore present an opportunity to test

predictions about the relationship between physiological traits and

invasive ability. Here, we compared physiological traits in bullfrog and

green frog tadpoles occurring in a northern part of their native habitat

in the eastern U.S.We hypothesized that the critical thermal maximum

(CTMAX), i.e., the temperature at which locomotor function ceases

(Lutterschmidt and Hutchison, 1997), and capacity to acclimate to

higher temperature should differ between bullfrog and green frog

tadpoles within their native range. In particular, we predicted that

bullfrog tadpoles should have intrinsically higher CTMAX, and a greater

capacity to acclimate to higher temperatures. We tested these

predictions using wild-caught tadpoles originating from a large semi-

natural pond complex in southwestern Michigan.
Materials and methods

Tadpole collection and lab acclimation

InMay and June 2022, we collected 77 wild bullfrog and green frog

tadpoles (n = 42 bullfrogs and n = 35 green frogs) from the W.K.

Kellogg Biological Station Experimental Pond Lab at Michigan State

University. This research facility houses 18 experimental ponds that are

currently colonized by natural flora and fauna including thriving

populations of bullfrogs and green frogs. A logger was placed in one

of the ponds to measure the natural temperature regime and inform

acclimation temperatures during experiments (Supplementary Figure

S1). Using long dip-nets, we collected tadpoles between Gosner stages

25-38 (Gosner, 1960) i.e., individuals in the ‘tadpole’ developmental

stage prior to metamorphosis (McDiarmid and Altig, 1999). We then

placed two conspecific tadpoles of similar size in rectangular plastic

containers (31 x 17 x 9 cm) filled with filtered pond water. Containers

were placed within temperature-controlled incubators (Percival

Scientific, model I36LLVL) that were held for 2 days at 14°C (for 16

hours) in the day and 10°C (for 8 hours) at night and subjected to a

light-dark cycle of 16:8 h L:D, typical of summer months in Michigan.
Critical thermal maxima

To compare heat stress tolerance, we measured the critical

thermal maximum (CTMAX), i.e., the temperature at which an

organism begins to lose locomotor function (Lutterschmidt and

Hutchison, 1997) in 17 bullfrog and 15 green frog tadpoles.
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Tadpoles were placed in individual mesh containers, partially

submerged in a water bath filled with filtered pond water and

held at 14°C. The mesh containers confined the tadpoles but
Frontiers in Ecology and Evolution 03
allowed them to experience the surrounding water. We then

increased the water temperature by 0.3°C per minute, a standard

rate for CTMAX experiments in aquatic animals (Dallas and Rivers-
FIGURE 1

Species range map of bullfrogs and green frogs in the United States. (A) bullfrog native (light brown) and introduced (dark brown) US range.
Sampling locality indicated by blue star. (B) green frog native (light green) and introduced (dark green) U.S. range. Sampling locality indicated by blue
star. Range data for both species were used from IUCN database, 2022. (C) Maximum temperatures across the U.S. – from 1970-2000 (data from
WorldClim 2).
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Moore, 2012; Gutiérrez-Pesquera et al., 2016) using a custom-built

programmable temperature controller connected to a 500 W

aquarium-grade titanium heating rod. A water pump was used to

ensure homogenization of temperature in the water bath.

Approximately every 1-2 minutes, we assessed tadpoles by

turning them over onto their backs and watching their response.

We defined CTMAX as the temperature at which tadpoles failed to

right themselves when turned over (Lutterschmidt and Hutchison,

1997). When tadpoles reached this point, they were rapidly

removed from the experimental bath and placed in cool (14°C)

pond water to recover. All tadpoles recovered, i.e., resumed normal

swimming activity. Following the experiment, we measured the wet

mass of each tadpole.
Thermal acclimation capacity

We measured thermal acclimation, which represents reversible

plasticity in heat tolerance and can develop over days-to-weeks of

sustained exposure to altered environmental temperatures (e.g.,

Cupp, 1980; Lapwong et al., 2021; Rohr et al., 2018). We placed

newly caught tadpoles (15 bullfrogs and 10 green frogs) in an

incubator set to reach a maximum of 20°C (for 16 hours per day),

and a minimum nighttime temperature of 16°C (held for 8 hours

per day) for 6 days. This acclimation temperature was higher than

the baseline experiment, but still well within the natural range of

variation in the pond temperatures (see Supplementary Figure S1).

We chose an acclimation period of 6 days because this period is

thought to be long enough to allow physiological changes to take

place during thermal acclimation in amphibians (Brattstrom, 1968;

Hutchison, 1961). Then, following the same protocol as above, we

measured CTMAX.
Statistics

All statistical analyses were performed in R Studio v 2024.04.2

(Posit Team, 2024). To test the prediction that bullfrog tadpoles are

more tolerant of heat stress than green frog tadpoles, we performed

a linear regression analysis to investigate how CTMAX varies

between the two species, while controlling for mass. Mass and

Gosner stage were strongly correlated, (r (28) = 0.4, p = 0.03), and

Gosner stage had no effect on CTMAX (t = -0.60, p = 0.56). We,

therefore, did not include Gosner stage in the analysis. Two data

points were dropped from the analysis because the tadpoles did not

look healthy at the start of the experiments. Next, to assess

acclimation capacity, we conducted a linear regression analysis to

examine the effects of acclimation temperature (i.e., 14°C or 20°C)

on CTMAX of the two species. Our model evaluated the main effects

of acclimation temperature and the interaction between species and

acclimation temperature on the response variable, CTMAX, while

controlling for mass.

To provide an estimate of acclimation capacity, an acclimation

response ratio (ARR, Claussen, 1977) was calculated for each

species, using:
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ARR =  
D  CTmax

D  Temperature
 

where, ARR is the acclimation response ratio, D CTMAX is the

difference between CTMAX after acclimation to the high

temperature and CTMAX after acclimation to the low temperature;

and D   Temperature is the difference between high and the low

acclimation temperatures. Higher ARR values indicate greater

acclimation capacity. After all experimentation, we euthanized

tadpoles by applying a ~1/8th teaspoon of 20% benzocaine cream

to their ventral sides until no movement or breathing was detected.

All tadpoles were stored in 70% ethanol and assigned a

Gosner stage.
Results

Critical thermal maxima

We found no significant difference in CTMAX between the two

species (F(1, 27) = 3.82 p = 0.06). Qualitatively, however, green frogs

appeared to have lower CTMAX than bullfrogs. Mean CTMAX values

were 38.2°C for bullfrogs and 37.5°C for green frogs (Figure 2). The

effect of wet mass on CTMAX was also non-significant (F(1, 27) = 2.52;

p = 0.12).
Thermal acclimation capacity

Our results indicated that the species do not differ in

acclimation capacity, i.e., there was no significant interaction

between acclimation temperature and species (Figure 2; F(1,50) =

0.46; p = 0.50). However, after acclimation to the warmer

temperature, green frogs had significantly lower CTMAX than

bullfrogs (F(1, 50) = 11.62; p< 0.01). Mean CTMAX values did not

change for bullfrog tadpoles (CTMAX after warm acclimation = 38.2;

ARR = 0) but decreased for green frog tadpoles (CTMAX after warm

acclimation = 37.2; ARR = -0.03).
Discussion

Researchers are increasingly recognizing that physiological

traits, such as tolerance to environmental stress, may predispose

some species to invading and colonizing new habitats. Although

bullfrogs and green frogs have been frequently studied within an

invasive-native species context (e.g., Fontaine and Kohl, 2020), to

our knowledge, there is no information on intrinsic thermal

physiological differences in the juveniles of the two species.

When subjected to ramping heat-stress experiments after a brief

acclimation to a cool, average springtime pond temperature (14°C),

bullfrog and green frog tadpoles showed no difference in critical

thermal maxima (CTMAX). Overall, both species had high CTMAX

values indicating that they can withstand relatively high pond

temperature spikes. Indeed, these species occur in exposed, sunlit

ponds and can experience maximum temperatures of ~36°C over
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several consecutive days in the summer (A. Shah, unpubl. data).

Their CTMAX are largely comparable to those measured for other

temperate tadpoles (Duarte et al., 2012). However, after acclimating

to a warmer temperature (20°C), the two species showed significant

differences in their CTMAX. These differences were driven by a

decrease in CTMAX in green frogs. Decreases in CTMAX after

acclimation to warm temperatures may indicate that green frogs

are more sensitive to warming (e.g., Shah et al., 2017) and

potentially have a lower capacity to acclimate to warmer conditions.

Indeed, during field collections, bullfrog tadpoles substantially

outnumbered green frogs in shallow ponds that were several degrees

warmer than the deeper ponds in the area (E. VanDenBerg, K.

Jaynes, and A. Shah pers. obs.). In light of our results, this

observation could be partly explained by the fact that green frog

tadpoles are marginally more sensitive to warmer temperatures.

However, other factors may also be at play. The higher abundance

of bullfrog tadpoles in warmer ponds may additionally result from

their ability to outcompete green frog tadpoles. If bullfrogs can

perform (i.e., eat, grow, locomote) more effectively than green frogs

at warmer temperatures, they may be better able to overtake and

displace green frogs in warmer habitats (Mauro et al., 2022). For

example, when bullfrogs were removed from an aquatic

community, green frog abundance increased significantly,

indicating that bullfrogs are superior competitors (Hecnar and

M’Closkey, 1997). Testing the interaction between physiological

performance and competitive differences in the two species across a

range of temperatures was outside the scope of this study, but

should be considered as a future research goal (Mauro et al., 2022).

A second potential physiological mechanism that may facilitate

bullfrog invasiveness is thermal plasticity or acclimation (Mittan and

Zamudio, 2019; Tepolt and Somero, 2014; Xue and Ma, 2020).

Acclimation is predicted to enable species to persist across variable

spatiotemporal thermal landscapes (Brattstrom and Lawrence, 1962;
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Franklin et al., 2007; Sørensen et al., 2016) and adaptive plasticity can

facilitate successful establishment in novel habitats (Bock et al., 2018;

Corl et al., 2018; Mittan and Zamudio, 2019). We expected CTMAX to

increase after warm acclimation, particularly in bullfrog tadpoles.

However, we found no differences in acclimation capacity between

the two species. In fact, neither species showed any acclimation ability;

i.e., their CTMAX values remained largely unchanged after acclimation.

One possible reason for this lack of plasticity may be that they already

possess a relatively high basal tolerance for heat stress (average CTMAX

of both species after cool acclimation = 38°C). Some evidence suggests

that due to physiological constraints, there may be a trade-off between

basal thermal tolerance and the capacity of an organism to further

increase its heat tolerance (Stillman, 2003; but see Birrell et al. 2023).

Additionally, acclimation ability can vary across populations (e.g.,

Cicchino et al., 2023) so, although acclimation capacity is limited in the

populations tested in our study, other populations may well be able to

acclimate to warmer conditions. For example, bullfrogs living closer to

the warmer parts of the native range in North America may have

greater acclimation capacity than their counterparts in the cooler parts.

Alternatively, longer periods of acclimation to warmer temperatures or

investigation of heat shock protein production (Zerebecki and Sorte,

2011) may reveal differences that were not seen in our experiment.
Conclusion

We hypothesized that intrinsic physiological tolerances between

two congeners that differ in their invasive ability should vary. Our

results revealed no major differences. In addition to being stronger

competitors, we surmise that other factors, such as rapid evolution of

thermal tolerance or combinations of responses to novel abiotic and

biotic conditions may ultimately predispose bullfrog tadpoles to

successfully persist in hotter habitats in the western U.S. We note
FIGURE 2

Boxplots from CTMAX experiments on bullfrog and green frog tadpoles. (A) CTMAX of bullfrog and green frog tadpoles after acclimation to 14°C.
Green frogs have a qualitatively lower mean CTMAX than bullfrogs. (B) Comparison of CTMAX after cool and warm acclimation. There were no
differences in acclimation capacity, however, average green frog CTMAX declined slightly after warm acclimation suggesting that they may be
marginally more sensitive to heat stress than bullfrogs.
frontiersin.org

https://doi.org/10.3389/fevo.2025.1671218
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


VanDenBerg et al. 10.3389/fevo.2025.1671218
that with only two species (Garland and Adolph, 1994), and

measuring traits in only the northern part of their range, we are

limited in our ability to make strong conclusions about physiological

differences. However, in addition to establishing a first step in

measuring these differences, our study also provides a framework

for testing other populations and multiple species in the future.

Finally, investigating physiological tolerance in regions where

bullfrogs were introduced, particularly those where green frogs have

also established in the west, would be an important next step in

understanding how physiological traits influence invasiveness.
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