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Introduction: Rapid urbanization has driven extensive land use changes, thereby
undermining the stability and sustainability of ecosystems. This highlights the
need for refined ecological zoning to strengthen environmental governance and
spatial management in urban agglomerations.

Methods: This study uses the Changsha-Zhuzhou-Xiangtan urban
agglomeration as a case study, a rapidly urbanizing region in central China that
lies at the intersection of montane and lowland ecosystems, making it highly
sensitive to both urbanization and climate-induced changes. It examines the
spatiotemporal evolution of landscape ecological risk (LER) and the ecological
health index (EHI) in response to land use changes from 2000 to 2020 and
subsequently delineates ecological zoning. Furthermore, it simulates future land
use changes under multiple scenarios for the period 2030-2050 to assess the
dynamics of future zoning.

Results: From 2000 to 2020, forest remained the dominant land use, followed by
cultivated land and construction land. During this period, 1,029.37 km? of
cultivated land and 890.88 km? of forest were converted. The total converted
area of cultivated land remained relatively stable across both phases. LER was
primarily concentrated at medium and medium-low risk levels. The areas
classified as low, medium—low, and medium risk decreased in both phases,
with reductions of 784.24 km? in the early period and 3,266.91 km? in the later
period. The EHI values declined from 0.555in 2000 to 0.543in 2010 and 0.518 in
2020. Forest, water body, and grassland all exhibited downward trends, while
construction land showed the most pronounced decline, with a 22.15%
reduction. Between 2000 and 2020, the spatial overlap between ecological
zones and legally protected areas shifted notably. The ecological control zone
transitioned 19,875 km? to the Strict ecological conservation zone and 18,175
km? to the ecological enhancement zone. Under future scenarios, the ecological
control zone is projected to expand, with hotspots extending significantly and
cold spots contracting slightly. By contrast, Ecological conservation zones are
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expected to shrink, with hotspots becoming more fragmented and cold spots
declining more substantially.

Conclusions: This study offers a scientific foundation for ecological zoning
management, supporting coordinated regeneration and the sustainable
development of human—land systems in rapidly urbanizing regions.

KEYWORDS

landscape ecological risk, ecosystem health, ecological zoning, land use simulation, SD-
PLUS model, SSP-RCPs multi-scenario

1 Introduction

With the acceleration of global urbanization, China’s
urbanization rate has risen from 36.2% in 2000 to 66.16% in 2023
(Xie etal,, 2020). Under the combined pressures of urban expansion
and suburban sprawl, regional land use patterns have undergone
significant changes, adversely affecting the structure, functions, and
processes of natural ecosystems. These impacts are reflected in
heightened landscape ecological risks and declining ecosystem
stability (Wu et al, 2024a). In the context of global climate
change and intensified human activities, relying on a single
ecological approach is insufficient to balance economic
development with ecological conservation (Wu et al., 2020).
Instead, a comprehensive approach that considers both external
risk disturbances and internal ecosystem health is required to
understand their interactions (Wang et al., 2023a). Ecological
zoning, combined with differentiated functional assessments and
targeted management strategies, is therefore critical for identifying
ecological problems and promoting regional ecological
sustainability (Li et al., 2024b).

Landscape Ecological Risk (LER) refers to the degree and
uncertainty of disturbances to ecosystem structure, function, and
processes caused by industrial development, climate change, and
population growth (Gou et al., 2021). Its assessment aims to detect
potential hazards and provide a spatially explicit representation of
ecological risks (Wang et al., 2021). Common approaches include
source-sink models and landscape pattern index analysis. The
former captures the dynamics of risk sources, sinks, and
exposure-response processes, but often oversimplifies ecosystem
interactions and neglects the interdependence of structural and
functional components (Wu et al,, 2021). The latter evaluates
ecosystem changes by examining the coupling between landscape
patterns and ecological processes, effectively reflecting spatial
integrity and complexity (Liu et al., 2020). However, a single
landscape index rarely captures the full spectrum of risks,
particularly those arising from interactions between natural,
social, and ecological systems. To address this, integrated
assessment frameworks that incorporate natural, socio-economic,
and landscape dimensions have been proposed. For instance, Zhao
(Zhao et al., 2022) developed a three-dimensional framework that
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integrates multi-source data to improve risk identification. Gao
(Gao et al, 2021) and Lin (Lin and Wang., 2023) demonstrated that
ecological risks are jointly driven by natural and anthropogenic
factors across regions. Yan (Yan et al., 2021) confirmed the practical
value of such integrated frameworks in ecological planning,
conservation, and management.

Rising ecological risks accelerate the decline of ecosystem
services and ecosystem health, posing challenges to regional
sustainability (Sun et al., 2020). The Ecosystem Health Index
(EHI), which reflects the stability of ecosystem structure and
function, plays a critical role in guiding ecological restoration at
regional scales (Du et al., 2023). Most studies adopt multi-indicator
integration frameworks. Among them, the VOR model proposed by
Costanza (Costanza et al., 1997) is widely used. Yet, given the
complexity of ecosystems, health assessments must incorporate
both natural and anthropogenic drivers. The VORS model, which
accounts for human demand for ecosystem services, has thus been
applied extensively to analyze ecosystem health and support
sustainable development planning (Kesgin Atak and Ersoy
Tonyaloglu, 2020; Chen et al, 2020c; Chen et al., 2024a). For
instance, Qing (Qing et al., 2024) and Lv (Lv et al., 2023) coupled
human activity intensity with EHI and found that ecologically
healthy areas are often highly sensitive to human disturbances.
Further research has shown that ecosystem health is influenced by
climate conditions, vegetation cover, landscape patterns, socio-
economic development, and land use (Zhu and Cai, 2023; Lin et
al., 2024a; Li et al,, 2024a). At the regional scale, dominant drivers
vary considerably. In Guizhou’s karst areas, socio-economic factors
exert stronger impacts (Xu et al., 2017), while in urban cores, the
expansion of construction land is the primary determinant (Han
et al., 2024).

The composition, structure, and function of land use directly
shape both LER and EHI. Existing research (UI Din and Malk, 2021;
Bikis et al., 2025) demonstrates that construction land expansion
increases ecological risks, especially in developing countries. Forest
loss reduces carbon storage capacity, accelerates greenhouse gas
emissions, and weakens resilience, thereby degrading ecosystem
health. Consequently, analyzing the spatial coupling and interactive
mechanisms between LER and EHI under varying land use patterns
is essential. As a key tool for ecological governance, ecological
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zoning supports ecosystem service protection, degraded land
restoration, and differentiated management strategies (Yang et al.,
2024). Research on ecological zoning management has been
extensive (Sadeghi et al.,, 2023; Xie et al., 2024; Wang et al., 2025;
Lin et al., 2024b; Wang et al., 2024; Peng et al., 2025). For instance,
Li (Li T, et al, 2020a) emphasized that ecological management
should integrate resilience evolution, mechanisms, and assessments
to strengthen socio-ecological resilience. Zhou (Zhou et al., 2025)
and colleagues proposed the ESV-LER functional zoning system
from the perspectives of human well-being and ecological security,
providing references for improving ecological management
efficiency. However, studies that integrate ecological risks with
regeneration potential to forecast future conditions and formulate
adaptive strategies remain scarce. Most are single-focused: Bao (Bao
et al., 2022) and Zhao (Zhao et al., 2024) applied scenario
simulations to explore future ecological risks and ecosystem
health, while Wang (Wang et al., 2022a) suggested optimizing
land use structures from a risk perspective to enhance carrying
capacity and reduce ecological deficits. Against this backdrop,
predicting future land use patterns under the combined influences
of human activity and climate change, assessing their impacts on
LER and EHI, and constructing forward-looking ecological zoning
frameworks are critical for setting conservation priorities and
guiding ecological management.

The Changsha-Zhuzhou-Xiangtan Urban Agglomeration
(CZXUA), a core region of China’s integrated urban development
strategy, experienced rapid urbanization, rising from 40.30% in
2000 to 78.00% in 2022—well above the national average.
Compared with other major urban clusters such as Beijing-
Tianjin-Hebei, the Yangtze River Delta, and the Pearl River
Delta, the CZXUA exhibits a “central-radial plus clustered”
spatial structure. Its unique landscape, characterized by interlaced
hills, rivers, and lakes, has been heavily affected by urban expansion,
leading to losses of cultivated land, forest, and wetlands. This has
intensified landscape fragmentation, reduced ecosystem recovery
capacity, and created a highly heterogeneous ecological risk pattern.
Such complexity highlights the limitations of single-dimensional
ecological assessments and underscores the need for integrated
approaches. Therefore, this study takes the CZXUA as its
research area, delineates ecological zones using LER and EHI as
indicators, and constructs an ecological zoning framework for land
use simulation under SSP-RCPs scenarios. The aim is to analyze the
evolution trends of ecological zoning within the region’s dynamic
development, thereby enhancing regional risk defense and service
provision capabilities and promoting the coordinated development
of human-land relations. The specific objectives of this study are to:
(1) examine the spatiotemporal variation of LER and EHI from
2000 to 2020; (2) delineating ecological zones based on the coupling
relationship between LER and EHI; and (3) predict the evolution of
ecological zones in 2030, 2040, and 2050 under different SSP-RCP
scenarios, and provide practical recommendations for future
regional development.
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2 Materials and methods

2.1 Study area

The Changsha-Zhuzhou-Xiangtan Urban Agglomeration
(CZXUA) is located in central China (26°03'N-28°40'N, 111°53’
E-114°15’E) and functions as the core growth pole of economic
development and urbanization in Hunan Province. It covers an area
of approximately 28,000 km®. By 2023, the total population had
reached 17.07 million, with a regional GDP of 2.07 trillion yuan,
accounting for more than 40% of the provincial total. The region is
characterized by complex topography dominated by hills and
basins, forming a spatial structure of “one core, two sub-centers,
and a green heart.” Changsha serves as the primary core, Zhuzhou
and Xiangtan act as secondary cores, and the ecological green heart
lies at their convergence (Figure 1). Mountainous areas are
primarily distributed in the west and southeast, where the
Luoxiao-Mufu mountain range forms a critical ecological barrier.
Legally protected areas are mainly concentrated in You, Chaling,
Yanling, Liuyang, and Xiangxiang, with a total coverage of 3,392.89
km?®, representing 12.12% of the region. The Special Ecological
Protection Zone (green heart) spans 529.79 km? Despite rapid
economic growth, urbanization, and industrialization, the region
has experienced severe ecological disturbances, including cadmium
pollution in Liuyang (2009), thallium pollution in the Xiang River
in Hengyang (2020), and thallium pollution in the Leishui River
basin (2025). These events underscore the vulnerability of the
regional ecosystem and highlight the necessity of advancing
ecological zoning research.

2.2 Data sources and pre-processing

This study employed a multidimensional dataset encompassing
land use, socioeconomic, climatic, and ecological variables
(Table 1). The core variables include land use (2000, 2010, 2020),
GDP, population, precipitation, temperature, vegetation cover,
PM2.5, land surface temperature, soil type, nighttime light, net
primary productivity (NPP), and NDVI. To ensure spatial
consistency, all raster data were projected to the WGS-1984-
UTM-49N coordinate system. Vector data (e.g., transportation
networks) were rasterized to match raster resolution. For datasets
with varying resolutions, bilinear or nearest-neighbor interpolation
was applied to unify the resolution at 50 m. Missing or anomalous
values were corrected using the mode of surrounding raster cells or
the mean of adjacent cells. The years 2000 and 2010 were used as
baseline data for model construction, and 2020 land use data were
employed for validation. Model performance was evaluated using
Overall accuracy and the Kappa coefficient. Sensitivity analysis was
conducted by adjusting neighborhood weights and system
parameters to enhance model robustness.
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FIGURE 1

Location and elevation of the Changsha—Zhuzhou-Xiangtan urban agglomeration (CZXUA) in Hunan Province, China.

2.3 Methods

This study selects indicators from four dimensions—
geographical foundations, landscape patterns, human activities,
and natural disasters—to construct an ecological risk assessment
system. The Analytic Hierarchy Process (AHP) and the Standard
Correlation Weight Analysis Method (CRITIC) are employed to
determine the weights of each indicator, thereby constructing an
ecological risk assessment system to comprehensively evaluate
Landscape Ecological Risk (LER). To assess the Ecosystem Health
Index (EHI), a VORS model is established, incorporating vitality
(EV), organization (EO), resilience (ER), and ecosystem services
(ES). Based on this framework, Z-score standardization is applied to
analyze the spatiotemporal evolution of ecological zoning for the
years 2000, 2010, and 2020. Using 2020 land use data, an SD-PLUS
model is developed by integrating natural, population,
meteorological, and economic variables to simulate land use
distribution under multiple scenarios for 2030, 2040, and 2050.
LER and EHI values are then calculated for each scenario, and the
corresponding ecological zoning patterns are analyzed. Finally,
based on the historical evolution and projected future trends of
ecological zoning, targeted zoning strategies and optimization
recommendations are proposed to support sustainable
management and high-quality ecological development. The
overall workflow of this study is shown in Figure 2.
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2.3.1 Landscape ecological risk assessment

Urban agglomerations are typical compound systems integrating
nature, society, and economy, facing the interactive impacts of
multidimensional driving factors. Their ecological risks are
characterized by multiple sources of input, exposure diffusion, and
complex disturbance mechanisms (Babi, 2023). This study follows the
principles of systematics, quantifiability, and relevance to ecological
processes. It constructs an indicator system from the dual perspectives
of natural constraints and human activity disturbances, comprising
four categories of elements: geographical foundation, landscape
pattern, human activities, and natural disasters. This forms an
information-closed network of “natural foundation constraints—
landscape functional responses—anthropogenic disturbance
pressures—disaster risk feedbacks,” which is used to delineate the
spatial differentiation characteristics of landscape ecological risk.

In the geographical foundation elements, topographic position
index, terrain relief, and soil type are selected to represent the
terrain stability and soil foundation conditions of ecosystems. The
topographic position index and terrain relief can reflect the
potential risks of erosion and geological disasters (Li et al,
2020c¢), while soil type influences habitat quality and ecosystem
regulation capacity through its carbon sequestration ability and
resistance to erosion. In the landscape pattern elements, the
landscape disturbance index, NDVI, Shannon’s diversity index,
and contagion index are chosen to reflect the structural stability
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Period Dataset Data source Website address Resolution
Land https://www.resdc.cn 30
and cover Resource and Environment Science and (accessed on 5July 2024) m
Data Center
GDP (2000, 2010, and 2020) https://www.resdc.cn 1000 m
(accessed on 24July2024)
L https://data.tpdc.ac.cn
Precipitation 1000 m
(accessed on 25 August2024)
https://data.tpdc.ac.c
Temperature Hipsyrdaafpacacen 1000 m
(accessed on 25 August 2024)
National Tibetan Plateau Data Centre
Ve https://data.tpdc.ac.cn 250 m
(accessed on 31July2024)
https://data.tpdc.ac.cn
PM2.5 1000
(accessed on 5July2024) m
https://www.geodata.cn
istori LST 1000
Historical data (accessed on 24 July 2024) m
Soil type https://www.geodata.cn .
(accessed on 26 August 2024)
Evapotranspiration National Earth System Science Data https://www.geodata.cn 1006 m
P P Center (accessed on 16 August2024)
https://www.geodata.cn
NPP 500
(accessed on 13 August 2024) m
NDVI http://www.nesdc.org.cn 30m
(accessed on 23July2024)
the National Road Traffic Network
vector map of the Peking University https://www.webmap.cn; https://
Road Geographic Data Platform and National geodata.pku.edu.cn/ (accessed on —
Catalogue Service For Geographic 5August 2024)
Information
Precipitation https://esgfnode.llnl.gov/search/cmip6/ Lkm
(2020-2050) (accessed on 6 November 2024)
CMIP6
Temperature https://esgfnode.llnl.gov/search/cmip6/ Lkm
(2020-2050) (accessed on 12 November 2024)
Future data
GDP https://figshare.com/ (accessed on 26 12
(2020-2050) November 2024)
Figshare
Populati https://figshare.c d on 23
opulation https://figshare.com/ (accessed on 30 arc-seconds
(2020-2050) November 2024)

of the system. The former indicates the degree of landscape
disturbance (commonly calculated using patch density, landscape
division index, and landscape separation index), while the latter
three respectively reflect the extent of vegetation coverage,
landscape heterogeneity, and integrity, all of which are negatively
correlated with landscape ecological risk (Yan et al, 2021). The
human activity elements cover population aggregation pressure,
economic pressure (GDP), air pollution pressure (PM2.5), energy
consumption pressure (nighttime light intensity), transportation
network pressure, and land use pressure, which collectively depict
the ecological stress caused by urbanization. These dynamic factors
directly reflect environmental pollution, infrastructure load, and
fragmentation of the ecological base (Mentaschi et al., 2022). In the
natural disaster elements, geological disasters, rainstorm flooding,
and land surface thermal environment are selected to characterize
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the system’s threshold for collapse. Geological disasters describe the
risks of extreme climate events such as landslides and debris flows,
rainstorm flooding reflects the risk of flooding caused by extreme
precipitation, and the land surface thermal environment reveals the
urban heat island effect, with higher land surface temperatures
indicating potential ecological risks (Jing et al., 2021).

To eliminate the dimensional effects of different indicators, all
indicators are processed using range standardization, with a value
range of [0,1] (Table 2). In the weight assignment, the final weights
of the indicators are derived by averaging the Analytic Hierarchy
Process (AHP) and the Standard Correlation Weight Analysis
Method (CRITIC) methods (Zhang et al., 2023b). AHP constructs
a judgment matrix based on pairwise comparisons, calculates the
weight vector, and passes the consistency test (CR = 0.0516, meeting
the standard CR< 0.1); CRITIC objectively assigns weights based on
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FIGURE 2
The workflow of this study.

the standard deviation and Pearson correlation coefficient matrix.
The combination of these two methods effectively reduces
subjective intervention, enhances the scientific and rational nature
of indicator weighting, and thereby improves the reliability and
explanatory power of the ecological risk assessment.

2.3.2 Ecological health assessment

The study refers to the improved ecosystem health assessment
model (Peng et al., 2011) and combines the assessment of ecosystem
service functions to evaluate the ecosystem health level of the study
area (Equations 4-5).

EHI = /PH x ESV (4)
PH = VEV x EO x ER (5)

Where: EHI represents Ecosystem Health Index; PH represents
the health of ecosystem structure and organization; ESV represents
Ecosystem Service Value, which includes carbon sequestration,
habitat quality, water retention, and soil conservation services.
These services are calculated using the InVEST 3.14 model,
normalized, and then summed to obtain the overall ecosystem
service value (Tian et al., 2021). EV, EO, and ER represent the
vitality, organization, and resilience of the ecosystem, respectively.

Vitality is the metabolism or primary productivity of the
ecosystem, characterized by Net Primary Productivity (NPP) as
an indicator of ecosystem vitality. Organization force is the quantity
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and diversity of interactions among various components of the
ecosystem, evaluated using Landscape Heterogeneity (LH),
Landscape Connectivity (LC), and Landscape Morphology (IPC)
(Equation 6).

EO =0.35 x LH+0.35 x LC+ 0.3 x IPC
= 0.2 x SHDI + 0.15 x AMPFD + 0.2 x PD +0.15
X CONTAG + 0.1PD; + 0.05 x COHESION; + 0.1

x PD, + 0.05 x COHESION, (6)

Where: SHDI is the Shannon Diversity Index; AMPFD is the
Area-Weighted Mean Patch Fractal Dimension; PD is the Patch
Density; CONTAG is the Contagion Index; PD1 and PD2 are the
patch densities of water bodies and forest landscapes, respectively.
COHESION1 and COHESION2 are the contagion indices of water
bodies and forest landscapes, respectively.

Resilience is the ability of an ecosystem to maintain its functions
and structures in the face of external risk disturbances (Jiang et al.,
2024). The study sets a resilience coefficient based on the difficulty
of recovery for different land use types, and represents the
ecosystem’s resilience as the weighted sum of the areas of each
land use type and their respective ecological recovery coefficients
(Equation 7) (Lei et al., 2023).

A

ER = 2?:1 X X RC, (7)
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TABLE 2 Integrated ecological risk assessment system.

Criterion layer

Indicator

Terrain location

Attribute

CRITIC weight

AHP weig

Descriptions References

TI :log[(%+ 1) x (%+ D)

disasters

. - 0.0609 0.0198 0.0403 TI is the topographic position index; E and S are the elevation
index and slope at any position, respectively; E and S are the average (Das et al., 2023)
elevation and slope in the region, respectively.
Geographic Basis Topographic relief - 0.0324 0.036 0.0342 \
Calcareous (rocky) soil and stony soil are 1; tide soil, yellow soil,
and yellow-brown soil are 0.8;
Soil 0.0777 0.0652 0.0715 Li et al,, 2023
ot type * rice soil is 0.6; red soil is 0.4; mountain meadow soil and purple (Lieta )
soil are 0.2; and other soils are 0.
E=05xP+03xF+0.2xD(2)
' Landscage . 0059 00918 0.0754 E is the landscape distu.rbar'lce index% P is the patch density; F is (Chen et al,, 2022a)
disturbance index the landscape segmentation index; D is the landscape separateness
index.
Landscape Patterns Spreading index - 0.1459 0.0406 0.0932 \
Shannon diversity (Lietal, 2021)
. - 0.1290 0.0304 0.0797 \
index
NDVI - 0.0445 0.1067 0.0756 \ (Zhao et al., 2022)
d > 1000 people/km®, PDI is 1; otherwise PDI = 0.333 x
Population p people is 1; otherwise '
i log (pd + 1)(3) (Bai and Weng,
agglomeration + 0.0378 0.0523 0.0451 . . . . X
PDI is population agglomeration pressure; pd is population 2023)
pressure .
density.
Land use pressure . 0.0792 0.0408 0.0600 Construction land, unutilized land, cropland, grassland, water (Das et al,, 2023)
P ’ ' ' bodies, and forest land are, respectively, 1, 0.9, 0.5, 0.2, 0.1, and 0. ‘ ’
Transportation The pressure on the traffic network is assigned with different (Zhou and Zhao,
Human + 0.1076 0.1077 0.1076 . . .
activities pressure radius buffers according to different road classes. 2024)
Economic pressure + 0.0187 0.0708 0.0448 \ (Zhang et al., 2023b)
Air polluti Mentaschi et al.,
It poflution + 0.0780 00436 0.0608 \ (Mentaschi ete
pressure 2022)
Electricity
consumption + 0.0148 0.1017 0.0582 \ (Zhao et al., 2022)
Pressure
Geologic disasters + 0.0545 0.0946 0.0745 Measured by informativeness
Natural (Xu and
i Rain and flood sushi
Disasters ain and Foo + 0.0237 0.0601 0.0419 Measured by hazard factor and environment Matsushima, 2024)
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Where: ER represents the Ecosystem Resilience; A represents
the total area of land use; A; represents the area of the i type of land
use. RC; represents the ecological recovery coefficient of the i type of
land use. The ecological recovery coefficients for cultivated land,

(Zhao et al., 2022)

References

forest, grassland, waterbody, construction land, and bare land are
0.3, 0.8, 0.6, 0.8, 0.2, and 1, respectively (Pan et al., 2021).

2.3.3 Ecological zoning

Z-score standardization transforms data with different units
and scales into a standard normal distribution, effectively
eliminating dimensional disparities among indicators and
improving their comparability (Wu et al., 2022). In this study, Z-
score standardization is used to construct a two-dimensional
coordinate system, with LER on the vertical axis and EHI on the
horizontal axis. Based on this framework, the study area is divided

Descriptions

into four ecological zones: Strict Ecological Protection Zone (High
risk, High health): Ecosystems with high functions but under

Characterized by surface temperature data

significant external stress. These areas require enhanced ecological
protection and risk control; Ecological Control Zone (High risk,
Low health): Fragile ecosystems with high-risk exposure, which are
priority intervention and key control areas; Ecological Conservation
Zone (Low risk, High health): Areas with stable ecosystem functions
and low risk exposure. These zones should be preserved to maintain
ecological stability; Ecological Enhancement Zone (Low risk, Low

0.0372

health): Degraded ecosystems with low external pressure but high

Weight

potential for restoration, representing key areas for ecological
improvement. This zoning approach captures the interaction
between ecological conditions and risk disturbances, highlights
spatial heterogeneity, and provides a scientific basis for
differentiated ecological management and targeted conservation

0.0381

policies. The Z-score standardization calculation formula is
(Equations 8-10).

=
<
°
o
2
o
I
<<

(@)

0.0363

1
x = Y S ©)

CRITIC weight

s=1/= 30 (x - %)’ (10)

where, x; represents the value of LER or EHI for each grid cell; X

Attribute

represents the average value of LER or EHI for the entire study area;
s represents the standard deviation of LER or EHI for the entire
study area; n represents the total number of grid cells.

2.3.4 Scenario design based on CMIP6
The Coupled Model Intercomparison Project Phase 6 (CMIP6)
recommends the use of Shared Socioeconomic Pathways (SSPs) and

Indicator
Surface thermal
environment

Representative Concentration Pathways (RCPs) to simulate the
combined effects of socio-economic and climatic changes on land
use patterns (Chen et al., 2020a; Riahi et al., 2017; van Vuuren et al.,
2011). This study adopted three SSP-RCP scenarios—SSP126,
SSP245, and SSP585—to explore potential trajectories of
socioeconomic development and climate change and to analyze

TABLE 2 Continued
Criterion layer
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the spatiotemporal evolution of ecosystems under multiple futures.
SSP126 represents a low-emission sustainable development
pathway, assuming slow population growth, coordinated
economic-environmental development, and limited climate
change. SSP245 represents a medium-emission pathway,
assuming moderate population growth, economic expansion, and
climate change, consistent with current trends. SSP585 represents a
high-emission pathway, assuming rapid population growth,
intensified industrialization, high energy dependence, and strong
warming with precipitation variability. The SSP-RCP combinations
incorporate four drivers: population, GDP, precipitation, and
temperature. GDP projections are derived from global SSP
datasets (Murakami et al, 2021). Population data are obtained
from China’s kilometer-scale grid dataset (Chen et al., 2020b).
Climate variables (precipitation and temperature) are based on
future kilometer-scale climate grids for China under SSP-RCP
pathways (Chen and Ning, 2024b). The analysis was conducted at
a high-resolution grid scale. Land use policies and management
practices were assumed constant, while short-term shocks from
sudden socioeconomic or extreme climate events were excluded.
Based on these assumptions, multiple future development
trajectories were constructed to support land use simulations and
ecosystem response assessments (Table 3).

2.3.5 SD model

Among simulation models, the Markov model effectively
predicts changes in land use quantity and spatial distribution
(Tan et al, 2019), while system dynamics (SD) models are
particularly suitable for capturing system complexity, nonlinear
interactions, and temporal evolution, offering strong support for
scenario analysis and decision-making (Wang et al., 2022b).The
System Dynamics (SD) model is used to capture the nonlinear
relationships between socio-economic development and land use
change by representing causal feedback mechanisms among
multiple driving factors (Song et al., 2024). It includes four key
subsystems: economic, population, climate, and land use (Figure 3).

TABLE 3 Variable setting indifferent climate scenarios during 2020
2050.

Period @Scenario AGC (%) APC (%) TC PC

SSP126 6.079 0.745 -0.497 4.299
2020-2030 SSP245 5.038 1.605 0.610 2.036
SSP585 6.901 1.564 0.135 5.529
SSP126 4.531 0.290 0.208 11.666
2030-2040 SSP245 3.140 0.334 -0.013 5.823
SSP585 5.408 0.307 0.268 9.435
SSP126 1.986 -0.147 0.107 -0.415
2040-2050 SSP245 1.572 0.016 0.850 8.330
SSP585 2.354 -0.120 1.034 3.704

APC, annual average population change; AGC, annual average GDP change; PC, annual
precipitation change; TC, annual average temperature change.
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The economic subsystem simulates the influence of infrastructure
investment on the expansion of construction land, which in turn
reduces ecological land. The population subsystem reflects changes
in urban-rural migration and associated consumption demands.
The climate subsystem captures the direct effects of temperature
and precipitation changes on habitat quality and ecosystem
stability. The land use subsystem integrates feedback from
population and economic growth, driving the conversion among
different land use. Based on the dynamics of land use
transformation, a system dynamics model was developed using
Vensim PLE x64. The simulation spans from 2000 to 2050, with a
one-year time step. The period from 2000 to 2020 is used for
historical simulation and model calibration. Simulation results
show that the average relative error between simulated and actual
land use values is less than 2%. The SD model demonstrates high
accuracy in reproducing land use change and is suitable for
forecasting future land use demand. Ultimately, the model is
driven by population, climate, and GDP scenario data for the
period 2021-2050 to derive future land use demands under
different scenarios.

2.3.6 PLUS model

Compared with traditional models such as CA-Markov, CLUE-
S, and FLUS, the Patch-generating Land Use Simulation (PLUS)
model—enhanced with a Random Forest algorithm—demonstrates
superior explanatory power and spatial accuracy in modeling land
use drivers, making it highly applicable to ecological zoning in
complex regions (Liang et al., 2021). The Patch-generating Land
Use Simulation (PLUS) model consists of two integrated sub-
modules. The first is the rule-mining module based on the Land
Expansion Analysis Strategy (LEAS), which identifies the
relationships between land use changes and driving factors. This
module uses land use data from two time points and applies the
Random Forest algorithm to extract the influence of each driving
factor on land use transitions, thereby estimating the probability of
expansion for different land uses. The second module is the Cellular
Automata simulation module, driven by the Cellular Automata
Random Seeds (CARS) algorithm. It integrates pixel-based
neighborhood weights, land use transition matrices, and patch
generation rules to simulate future land use patterns. This
approach enables the spontaneous emergence and expansion of
land use patches under spatiotemporal dynamics. This study
incorporates land use demand predictions from the SD model
and applies four categories of driving factors in the PLUS model:
Natural environmental factors: elevation (DEM), slope, soil type,
NDVI; Socio-economic factors: nighttime light (NTL), population
(POP), GDP; Transportation factors: distances to residential areas,
government seats, highways (national, provincial, expressway,
county), railways, and subway/light rail lines; Climate factors:
evapotranspiration, annual average precipitation, and
temperature. These variables are used to spatially allocate land
use demand under different future scenarios. Model accuracy was
evaluated using the Kappa coefficient, Overall accuracy, and the
Figure of Merit (FoM), while Moran’s I index was applied to assess
the robustness of spatial predictions.
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The causal feedback loops diagram of the system dynamics model for LUCC under the joint influence of socio-economic and environmental
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population growth rate, GDP growth rate). The terms in parentheses refer to auxiliary variables (e.g., forestry investment, fisheries investment) or
shadow variables (e.g., time), and the arrows indicate causal relationships between the variables.

3 Results
3.1 Ecological zoning construction

3.1.1 Spatial and temporal distribution of land use

Throughout 2000, 2010, and 2020, forest remained the
dominant land use, covering 63.79%, 62.99%, and 62.28% of the
study area, respectively, followed by cultivated land and
4a-c). Cultivated land, forest, and
grassland showed gradual declines, with cultivated land

construction land (Figures

experiencing the largest reduction (7.45%). Construction land
expanded markedly (60.20%), primarily around core urban areas,
reflecting rapid urbanization and infrastructure development.
Grassland area decreased by 3.20%, indicating moderate
disturbance to natural ecosystems. Although the overall changes
in grassland and bare land were relatively limited, the proportion of
bare land increased significantly by 42.72%, likely due to intensified
construction activities and expanded engineering land use. From
2000 to 2020, substantial land use conversions occurred within the
study area, with cultivated land experiencing the most pronounced
transformation. The cumulative area converted from cultivated
land reached 1,029.37 km?, primarily into construction land
(555.65 km?) and forest (394.97 km?). Forest also exhibited
considerable conversion, with a cumulative loss of 890.88 km?,
mainly transformed into construction land (466.22 km?®) and
cultivated land (362.87 km?). Other land use categories
underwent relatively minor conversions (less than 100 km?),
exerting limited influence on the overall spatial pattern.

To further illustrate the dynamics of land use change, land use
transition chord diagrams were generated for the periods 2000-
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2010 and 2010-2020 (Figures 4d-f). The results indicate that the
total converted area of cultivated land in both phases remained
nearly constant (712.36 km® and 711.22 km?, respectively),
suggesting that the intensity of cultivated land conversion has
consistently remained at a high level over the past two decades.
From 2000 to 2010, cultivated land was primarily converted to
construction land (accounting for 47.80% of the total converted
area), reflecting how rapid urbanization drove industrial
development and sustained demand for construction land. From
2010 to 2020, the area of cultivated land converted to construction
land decreased (19.29 km?), while the area converted to forest
increased (39.42 km?). This shift may have been influenced by
ecological civilization policies, under which some cultivated land
was incorporated into ecological restoration and afforestation
projects. At the same time, regional development entered a phase
of structural optimization and stock adjustment, slowing the
expansion of construction land. Overall, while the land use
pattern characterized by “equal emphasis on development and
ecology” has somewhat alleviated the pressure of cultivated land
conversion into construction land, the overall trend of cultivated
land reduction driven by urbanization remains significant.
Consequently, the issue of land resource scarcity is becoming
increasingly prominent.

3.1.2 Spatial and temporal distribution of LER
Landscape Ecological Risk (LER) was classified into five levels
using the natural breaks method (Table 4). By analyzing changes in
the area of each risk level, the study examined the spatiotemporal
evolution of LER under multi-factorial drivers and identified its
spatial distribution patterns. Results show that LER was
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predominantly characterized by medium and medium-low risk levels.
These two categories accounted for 76.97%, 74.40%, and 63.48% of
the total area in 2000, 2010, and 2020, respectively, reflecting a
consistent downward trend (a total decrease of 13.49%) and
indicating a gradual increase in ecological risk. From 2000 to 2010
and from 2010 to 2020, the areas of low, medium-low, and medium
risk declined by 784.24 km? and 3,266.91 km?, respectively.
Compared with the first period, the second period saw area
reductions that were 3.18, 2.39, and 10.69 times larger for low,
medium-low, and medium risk levels, respectively—indicating that
medium risk areas experienced the most pronounced decline.
Meanwhile, medium-high and high risk areas expanded
continuously. Between 2010 and 2020, medium-high and high risk
zones increased by 2,247.41 km* and 1,019.50 km?, respectively—7.0
and 2.2 times the increase observed from 2000 to 2010. This
highlights medium-high risk as the dominant expanding category,
with ecological risk spreading across a wider area and ecosystem
stability facing increasing threats. These findings underscore the need
for enhanced ecological protection and restoration efforts in medium
and high risk zones to improve regional ecological resilience.

In terms of spatial distribution (Figure 5), the mean LER values
in 2000, 2010, and 2020 were 0.423, 0.431, and 0.453, respectively,
showing a spatial pattern of “high in the center, low at the edges.”
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High risk zones were mainly concentrated in central urban areas
(such as Furong District), typically in clustered or strip-shaped
formations. These zones align with dense construction land and
major transportation infrastructure, indicating strong impacts from
human activities and economic development. By 2020, high risk
zones had expanded outward, further intensifying the imbalance
between urban growth and ecological protection. Medium-high and
medium risk areas were mainly distributed in transitional zones
between urban cores and peripheral counties, such as Yuhua
District. The LER value in Yuhua increased from 0.525 in 2000 to
0.611 in 2020. During this period, industrial restructuring and
infrastructure expansion led to rapid population growth and
increased construction density, exacerbating ecosystem
disturbance. Some medium risk zones consequently shifted to
medium-high risk due to economic spillover effects. Medium-low
and low-risk areas were largely found in outer counties such as
Liuyang, Chaling, and Yanling, which possess strong ecological
foundations. For example, Yanling County maintains 85.67% forest
coverage, with well-preserved natural landforms and stable
landscape structures, and is subject to minimal anthropogenic
interference. This further confirms the critical role of ecological
land (especially forest) in maintaining landscape stability and
mitigating ecological risk.

frontiersin.org


https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Peng et al.

10.3389/fevo.2025.1662739

TABLE 4 Classification, area and proportion of landscape ecological risk in the study area from 2000 to 2020.

2000 2010 2020
Risk zones  Rating level 5 5 >
Area (km°)  Proportion (%) Area (km“) Proportion (%) Area (km“) Proportion (%)

Low risk [0,0.3] 2003.97 7.02 1956.49 6.85 1805.49 632
Medium-low risk (0.3,04] 8573.26 30.02 7999.80 28.02 6630.25 23.22
Medium risk (0.4,0.5] 13406.92 46.95 13243.62 46.38 11497.27 40.26
Medium-high risk (0.5,0.6] 3864.69 13.53 4185.76 14.66 6433.17 2253
High risk (0.6,1] 705.92 247 1169.08 409 2188.58 7.66

3.1.3 Spatial and temporal distribution of EHI

The Ecosystem Health Index (EHI) was classified into five levels
using the natural breaks method to identify its spatial distribution
characteristics (Figure 6). Overall, ecosystem health exhibited a
spatial pattern of “low in the center, high at the edges.” High and
medium-high EHI values were mainly distributed in peripheral
areas such as Liuyang, Yanling, and Chaling, where forest and
grassland dominate, and ecosystem stability remains strong.
Medium and medium-low levels were concentrated in the
transitional zones between urban centers and outlying counties,
accounting for 52.40%, 57.64%, and 63.68% of the area in 2000,
2010, and 2020, respectively. These areas are primarily composed of
cultivated land, forming the ecological matrix of the region.
However, they have become increasingly fragmented under urban
expansion, leading to a continuous decline in ecosystem health. Low
EHI values were mainly concentrated in the core urban districts,
such as Furong District, where construction land dominates. Under
the combined pressures of rapid economic growth and population
concentration, these areas exhibited significantly lower EHI levels
than surrounding regions. The mean EHI values in the study area
declined from 0.555 in 2000 to 0.543 in 2010 and 0.518 in 2020. The
2.16% decrease from 2000 to 2010 may be attributed to the

I Low risk
[ Medium-low risk

[ Medium risk
[ Medium-high risk

B High risk B High risk

FIGURE 5
Distribution of landscape ecological risk levels in the study area (a—c).
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implementation of the CZXUA integration strategy in 1997,
which accelerated economic development and construction land
expansion, compressing ecological space despite limited ecological
degradation at that stage. The subsequent 4.60% decline between
2010 and 2020 may relate to the accelerated urban integration
process, the accumulation of prior ecological risks, and delayed
ecological restoration measures.

From the perspective of land use, EHI generally exhibited a
declining trend between 2000 and 2020 (Figure 7). The EHI of
forest, water body, and grassland decreased by 6.29%, 4.21%, and
1.97%, respectively, with forest showing the most significant
decline. This may be attributed to the combined effects of natural
disasters (wildfires, pests, extreme weather, and soil degradation)
and anthropogenic pressures (illegal logging and construction
encroachment). The EHI of cultivated land increased initially—
possibly due to the positive effects of ecological protection measures
such as nature reserves, ecological redlines, and afforestation
programs—but later declined as the long-term effectiveness of
these measures diminished. The EHI of bare land first declined
due to urban infrastructure expansion, then improved as a result of
vegetation recovery through ecological restoration initiatives.
Construction land consistently exhibited a sharp decline in EHI,

I Low risk
[ Medium-low risk

[ Medium risk
[ Medium-high risk
B igh risk
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with a total decrease of 22.15%. This was driven by the continuous
expansion of built-up areas, the reduction of ecological land, and
the resulting degradation of ecosystem services such as water
retention, soil conservation, and habitat quality. Consequently,
the stability and resilience of the ecosystem structure weakened,
leading to a significant drop in overall ecosystem health.
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3.1.4 Characteristics of the spatial and temporal
evolution of ecological zones

Based on the standardized Z-scores of LER and EHI, ecological
zones were delineated using zero as the classification threshold
(Figures 8a—c). The study area was categorized into four functional
zones: Ecological Conservation Zone (Low LER—High EHI),
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Ecological Control Zone (High LER—Low EHI), Strict Ecological
Protection Zone (High LER—High EHI), and Ecological
Enhancement Zone (Low LER—Low EHI) (Table 5).

In terms of overall spatial structure, the Ecological Conservation
Zone accounted for 41.28%, 41.37%, and 41.38% of the total area in
2000, 2010, and 2020, respectively. This zone is primarily located in
peripheral counties with rich ecological resources (e.g., Yanling and
Chaling), dominated by forest and grassland. These areas
experience minimal human disturbance, have high vegetation
coverage, stable ecosystem structures, and provide significant
ecological services. The overlapping areas and proportions with
statutory protected areas were 2,641.97 km?* (22.06%), 2,669.47 km”
(22.63%), and 2,608.64 km® (22.10%), respectively. This indicates
that the overlap between ecological conservation red lines and

Frontiers in Ecology and Evolution

ecological conservation zones remained consistently high with
minimal fluctuation, thereby supporting the stability of
ecosystems and ecological service functions.

The Ecological Control Zone is the second largest, comprising
32.14%, 32.41%, and 32.36% of the area in 2000, 2010, and 2020,
respectively. It is mainly distributed in the central and northern
parts of the core urban areas and is characterized by construction
and cultivated land. Under the pressure of urban expansion and
population concentration, this zone experiences reduced ecological
space, increased landscape fragmentation, and weakened ecosystem
function, contributing to heightened ecological security risks. The
overlapping areas and proportions with legally designated protected
zones were 306.34 km? (3.34%), 292.99 km? (3.17%), and 295.30
km?® (3.20%), respectively. The fluctuating proportions reflect urban
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TABLE 5 Statistics on the ecological zoning of the study area from 2000 to 2020.

2000- 2010- 2000-
AL AL AU 2010 2020 2020
Ecological zoning
type Area | Proportion Area  Proportion @ Area  Proportion Change rate (%)
(km?) (%) (km?) (%) (km?) (%) 9 -
Ecological conservation
1177425 41.28 11798.75 41.37 11803.25 4138 0.086 0.016 0.102
zone (LH)
E°°1°glcaégir)"r°1 o 9165.05 32.14 92425 3241 9228.25 3236 0271 -0.050 0.221
Ecological strict
) 5129.75 17.99 4985 17.48 4974 17.44 -0.508 -0.039 -0.546
protection zone (HH)
Ecological enhancement
2452 8.60 2495 8.75 2515.75 8.82 0.151 0.073 0.224
zone (LL)

expansion and land use changes within the ecological control zone,
highlighting the need to strengthen coordination between ecological
conservation and land use management.

The Strict Ecological Protection Zone showed a decreasing
trend, accounting for 17.99%, 17.48%, and 17.44% of the area in
2000, 2010, and 2020, respectively. It is mainly located in the
transitional zones surrounding the urban core and is dominated
by cultivated land. The ecosystem in this region faces degradation
risks, requiring particular attention to ecological fragility and
fragmentation issues. The overlapping areas with legally
designated protected areas were 330.39 km? (6.44%), 258.39 km*
(5.18%), and 312.19 km® (6.28%), respectively. The notable
fluctuations indicate that the extent of legally protected areas has
been influenced by urbanization processes and development
policies during specific periods. Accordingly, efforts should focus
on restoring and safeguarding ecological functions within strictly
protected areas.

The Ecological Enhancement Zone has the smallest proportion,
covering 8.72%, 8.52%, and 8.69% of the total area in 2000, 2010,
and 2020, respectively. It is mainly distributed in areas such as You
County, dominated by a mix of forest and cultivated land. This zone
lies between Ecological Conservation and Control zones and serves
as a key regulatory area with potential for ecological recovery and
functional restoration. The overlapping areas with legally
designated protected zones were 159.04 km® (6.49%), 172.03 km*
(6.89%), and 176.76 km® (7.03%), respectively. The continuous
increase in these proportions demonstrates that the
implementation of ecological conservation policies has
strengthened ecological restoration potential and functions in
this region.

From a temporal perspective (Figures 8d-f), notable spatial
transitions occurred among the ecological zones. The Ecological
Control Zone experienced the largest transition to the Strict
Ecological Protection Zone, with a cumulative transfer of
approximately 19,875 km? However, the rate of this transition
slowed between 2010 and 2020, showing a 22.64% decrease
compared to the 2000-2010 period. These transitions were
concentrated at the edges of urban cores, where ecological risk
control has been insufficient and EHI continues to decline,
indicating limited effectiveness of ecological restoration. The
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second largest transition occurred from the Ecological Control
Zone to the Ecological Enhancement Zone, totaling
approximately 18,175 km’. From 2010 to 2020, the transition
volume decreased by 69.70% compared to the previous decade,
primarily in non-core marginal areas. This suggests partial relief of
landscape risks, but slow progress in ecological health restoration.
The Ecological Conservation Zone showed a high transition
frequency. Between 2010 and 2020, the volume of outflow
transitions exceeded the inflow during 2000-2010 by 56.89%,
indicating increasing instability in regional ecosystems. This trend
underscores the urgent need to reinforce ecological redline
protections and implement targeted restoration strategies to
preserve ecological integrity.

3.2 Ecological zoning construction under
multi-scenarios

3.2.1 Simulation of land use change under
different scenarios

Using land use data from 2000 to 2020 as a baseline, this study
projected the area and proportion of each land use for the years
2030, 2040, and 2050 under three scenarios: SSP126, SSP245, and
SSP585 (Table 6). In all scenarios, forest remains the dominant land
use, accounting for approximately 60% of the total area, followed by
cultivated land at around 28%. Construction land continues to
expand across all scenarios, with average annual increases of 0.59%
(SSP126), 0.30% (SSP245), and 0.40% (SSP585). Among them, the
SSP585 scenario produces the largest area of construction land by
2050 (2,664.94 km?), reflecting the significant land pressure
imposed by a high-emission, high-urbanization development
trajectory. Although construction land grows most rapidly under
the SSP126 scenario, its final projected extent is smaller than that
under SSP585. This outcome may be attributed to the SSP126
pathway’s emphasis on ecological protection and low emissions,
aiming to accommodate urban growth while safeguarding natural
ecosystems. Cultivated land, grassland, and water body show a
consistent declining trend across scenarios. This is primarily due to
the encroachment of construction land, coupled with indirect effects
of climate change and land degradation on grassland and aquatic
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TABLE 6 Area and proportion of land use types in 2030, 2040, and 2050 under multiple scenarios.

Multi-

scenarios Cultivated Forest Grassland Water Construction land Bare land
SSPRCP126-30 8006.45 17000.10 423.17 533.84 2150.57 3.98
SSPRCP126-40 7847.37 17006.90 430.64 512.70 2317.18 333
SSPRCP126-50 7688.28 17146.22 304.17 491,55 2484.71 3.19
SSPRCP245-30 8008.09 17119.20 42541 489.67 2071.32 443
Area
(km2) SSPRCP245-40 7980.32 17096.30 415.54 466.05 2156.23 3.69
SSPRCP245-50 7952.55 17073.40 405.66 44242 2241.13 2.95
SSPRCP585-30 8004.14 16839.90 379.72 450.35 2440.75 326
SSPRCP585-40 7934.81 16850.90 357.07 430.19 2542.96 2.19
SSPRCP585-50 7865.47 16840.90 33442 410.04 2664.94 235
SSPRCP126-30 28.47% 60.46% 1.51% 1.90% 7.65% 0.014%
SSPRCP126-40 27.91% 60.48% 1.53% 1.82% 8.24% 0.012%
SSPRCP126-50 27.34% 60.98% 1.08% 1.75% 8.84% 0.011%
SSPRCP245-30 28.48% 60.88% 1.51% 1.74% 7.37% 0.016%
Proportion (%) SSPRCP245-40 28.38% 60.80% 1.48% 1.66% 7.67% 0.013%
SSPRCP245-50 28.28% 60.72% 1.44% 1.57% 7.97% 0.010%
SSPRCP585-30 28.47% 59.89% 1.35% 1.60% 8.68% 0.012%
SSPRCP585-40 28.22% 59.93% 1.27% 1.53% 9.04% 0.008%
SSPRCP585-50 27.97% 59.89% 1.19% 1.46% 9.48% 0.008%

ecosystems. Among all land uses, the decline in cultivated land is
the most pronounced, with average annual decreases of 0.57%
(SSP126), 0.10% (SSP245), and 0.25% (SSP585) projected for
2030, 2040, and 2050, respectively.

Spatial analysis of land use transitions from 2020 to 2050
(Figure 9) reveals that most land conversion under all scenarios
involves transformation into construction land, with forest being
the most affected. The expansion of construction land is
concentrated on the urban periphery, typically along
transportation corridors and infrastructure belts, forming an
outward expansion pattern that reflects the spatial coupling of
urban growth and transportation development. Compared to
2020, the net increase in construction land by 2050 is 850.98 km*
(SSP126), 607.40 km?* (SSP245), and 1,031.21 km?> (SSP585).
Concurrently, the forest area converted to other uses is 366.13
km? (SSP126), 438.95 km? (SSP245), and 671.45 km? (SSP585).
These figures indicate that urban expansion poses a substantial
threat to ecosystem integrity and reflects the intensifying impact of
socio-economic development on natural landscapes. Specifically,
under SSP126, cultivated land is converted to both forest and
construction land, suggesting a balance between urban expansion
and ecological restoration. Forest remains relatively stable within
core urban areas but is more frequently converted in peripheral
counties, primarily to construction and cultivated land. Under
SSP245 and SSP585, cultivated land is predominantly converted
to construction land, indicating that medium to high intensity
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urbanization is accelerating the loss of agricultural land. Forest is
also increasingly converted to construction land, especially in the
hilly eastern and southern regions, suggesting that urban
construction pressure is encroaching upon ecologically sensitive
zones and intensifying land use conflicts.

3.2.2 Ecological zoning simulation

Based on land use simulation results for 2030, 2040, and 2050
under multiple scenarios, the LER and the EHI were recalculated to
construct the spatial distribution of future ecological zoning
(Figure 10). This study reveals the evolution characteristics of
ecological spatial structures under different SSP-RCP scenarios.
Compared to 2020, the Ecological Control Zone exhibits an overall
expansion trend across all scenarios, with an average area increase
of 4.90%. In contrast, the Ecological Enhancement Zone, Strict
Ecological Protection Zone, and Ecological Conservation Zone
show decreasing trends, with average reductions of 2.63%, 1.23%,
and 1.04%, respectively.

Further analysis of the phased changes under each scenario
reveals the following: The ecological control zone exhibits varying
area changes across different scenarios. Under SSP126, it first
contracts by 60.25 km? (2030-2040) and then expands by 32.50
km? (2040-2050). Under SSP245, it continuously contracts,
decreasing by 38.50 km?®. Under SSP585, it shows a phased
expansion pattern—first shrinking by 7.75 km? then increasing
by 26.00 km?. The relatively stable trend under SSP126 and SSP245
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Spatial distribution of land use type transitions from 2020 to 2050.
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is linked to stricter ecological policies that constrain urban
expansion. In contrast, the SSP585 scenario reflects higher urban
development pressure and weaker ecological controls, leading to an
increase in ecological risk and the expansion of the control zone. As
the largest and most ecologically stable zone (>40%), the Ecological
Conservation Zone serves as a natural ecological buffer dominated
by forest. Under SSP126, it increases by 167.50 km?® from 2030 to
2040, followed by a slight contraction of 8.75 km?* from 2040 to
2050. In the SSP245 and SSP585 scenarios, the Ecological
Conservation Zone continues to expand, with total increases of
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175.50 km?* and 166.50 km?, respectively, suggesting that moderate
to high development paths can still accommodate the preservation
of core ecological areas under certain land-use controls. A strict
Ecological Protection Zone between conservation areas and urban
development is highly sensitive to ecological disturbance. The Strict
Ecological Protection Zone decreases in all scenarios: by 0.21%
under SSP126, 0.04% under SSP245, and 0.34% under SSP585,
relative to 2020. The sharpest decline occurs in SSP585, where
accelerated urban boundary expansion causes spatial compression,
ecological degradation, and rising risk levels in already vulnerable
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Spatial distribution patterns of ecological zones under multiple scenarios.

zones. The Ecological Enhancement Zone is mainly found in
fragmented patches along the edges of the conservation zone. In
all scenarios, its area decreases steadily: by 0.09% (SSP126), 0.14%
(SSP245), and 0.18% (SSP585). Due to its low ecosystem health
status, the forest is more susceptible to conversion into construction
land, resulting in limited ecological restoration potential and
continuous spatial loss.

To further reveal spatial distribution differences in ecological
zoning across multiple scenarios, this study analyzes the center of
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gravity distribution, migration trajectories, and hot and cold spot
regions for the ecological control zone and ecological conservation
zone (Figure 11). The center of gravity for the ecological control
zone is located in Yutang District, Xiangtan City. Under SSP126 and
SSP585 scenarios, the migration direction shifts from northwest to
southeast, whereas under SSP245 it reverses from southeast to
northwest, with migration speeds increasing across all scenarios.
The standard deviation ellipse rotation angle across scenarios is
approximately 150°, with the major axis about 1.4 times the minor
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under multiple scenarios.

axis, indicating pronounced northwest-to-southeast diffusion
associated with urban economic gradient zones. Hotspot areas are
concentrated in Changsha, Liuyang, and Chaling, with more
extensive regional expansion under SSP585 than under SSP126.
Cold spots are mainly located in You County, with regional changes
under SSP585 showing weaker contraction compared to SSP126.
These results suggest that the expansion of construction land and
industrial agglomeration significantly affects the ecological
conservation zone. The center of gravity for ecological
conservation zones is located in Liling City. Under the SSP126
scenario, its migration direction is from northwest to southeast.
Under the SSP245 and SSP585 scenarios, the migration direction
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shifts to northwest to southwest, with the latter showing a faster
migration rate. The standard deviation ellipse rotation angle across
scenarios is approximately 160°, with the major axis about 1.6 times
the minor axis. This reflects pronounced northwest-to-southeast
diffusion, consistent with regional mountain and river distributions.
Hotspot areas are relatively dispersed across scenarios, though You,
Yanling, and Chaling show persistent expansion. Cold spots are
most evident in Liuyang and contract with increasing emission
intensity. These findings indicate that ecological conservation zones
are shaped by the combined influence of natural geography, human
activities, and ecological policies. Therefore, analyzing the spatial
response mechanisms of ecological zoning under different
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development pathways is essential for designing ecological zoning
governance and protection policies, and for promoting more
coordinated human-land relationships in the region.

3.3 Ecological zoning control measures

Based on the characteristics, historical evolution, and projected
trends of ecological zones, this study proposes targeted control
strategies to support regional sustainable development and enhance
ecosystem resilience.

The ecological control zone covers a relatively large area with high
urbanization levels, characterized by dense population and
concentrated economic activities. This spatial concentration exerts
substantial pressure on the surrounding ecological environment,
leading to landscape fragmentation and heightened ecological risks.
Under all SSP scenarios—particularly SSP585—this zone is projected to
expand, thereby intensifying potential ecological threats. To address
these challenges, the zone should leverage its spatial structure of “central
core with radial extensions and clustered satellite districts” to promote
intensive and efficient land use in surrounding areas. A zoning-based
and classified land use management system should be established,
coupled with strict controls on construction intensity. It is also essential
to delineate urban growth boundaries and ecological buffer zones based
on scientific assessments. Furthermore, the implementation of
ecological risk assessment and early warning mechanisms will be
crucial for strengthening the zone’s capacity to cope with intensive
development and preventing further ecological degradation.

The ecological conservation zone serves as a vital barrier for
maintaining regional ecological security, characterized by relatively
stable structures and fully functional ecosystems. To maximize its
ecological advantages, green economic activities—such as camellia
oil cultivation and eco-tourism—should be promoted to foster
synergies between ecological protection and local economic
development. At the same time, site-specific green infrastructure
should be developed, ecological corridors and networks
constructed, and landscape connectivity strengthened to improve
ecosystem self-regulation and resilience.

The Strict ecological conservation zone is highly vulnerable to
disturbances from urban expansion due to the sensitivity and
fragility of its ecosystems. Strengthening environmental
protection policies is essential to support ecological restoration
and risk mitigation. A robust protection framework should be
implemented, incorporating comprehensive risk prevention and
control systems, stricter enforcement of ecological redlines, and
stringent regulation of construction activities. In addition, an
integrated ecological management system should be developed for
transitional urban-rural areas to enhance their buffering capacity
and ecological barrier functions.

The ecological enhancement zone experiences relatively low levels
of human disturbance and land use intensity, yet it possesses significant
ecological restoration potential. Across all scenarios, however, its area is
projected to decline, and its spatial distribution is expected to become
increasingly fragmented due to encroachment from surrounding zones.
To counter this trend, a strategy that integrates natural succession with
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moderate human intervention is recommended. Low-disturbance land
use approaches—such as green agriculture and ecological forestry—
should be encouraged. In addition, land consolidation and the
restoration of fragmented patches are necessary to strengthen
ecological recovery and enhance the provision of ecosystem services.

4 Discussion

4.1 LER response to land use change under
multiple scenarios

Under the interaction of human activities and natural processes,
changes in land use composition, structure, and function directly
affect the level of LER, highlighting the close relationship between
land use dynamics and LER’s spatial-temporal patterns (Guo et al.,
2024). The study employed a combined subjective and objective
weighting method to comprehensively calculate the weight values
for each evaluation factor, ensuring both the comprehensiveness
and objectivity of weight assignment (Zhang et al., 2023b).

This study finds that forest consistently dominates the land use
structure (approximately 60%) and corresponds to regions with
predominantly medium and medium-low LER. This indicates the
risk-buffering function of forests, consistent with the findings of Li
(Li et al, 2025) and Liu (Liu and Tang., 2024). The former
emphasizes forest stability and resistance to disturbance, while the
latter argues that the loss of ecological land (forest, grassland, and
water body) compromises hydrological functions and ecosystem
services, posing a threat to ecological security. Wu (Wu et al., 2022)
also demonstrates that forest possess strong structural stability and
ecological connectivity, enabling self-regulation under pressure.
Scenarios oriented toward sustainability (SSP126) preserve more
ecological land and show slower increases in ecological risk. Under
SSP245, 16.52% of the area falls within high and medium-high risk
levels, with 63.94% of the land still classified as ecological land. This
suggests that moderate land development and strong ecological
protection policies (e.g., ecological redlines) help maintain
ecosystem resilience and suppress systemic degradation. Li (Li et
al., 2020b) further confirms that projected LER increases are closely
linked to land use and climate change, supporting the reliability of
the scenario-based simulations presented in this study. This is
consistent with the findings of Wang (Wang and Zhang, 2023b),
which confirmed that policy interventions, ecological conservation
efforts, and technological innovations can effectively enhance land
intensification and mitigate ecological risks.

From 2000 to 2020, the area of construction land expanded from
650.17 km? to 1,633.74 km?, representing an increase of 60.20%.
Under the SSP585 scenario, the expansion of construction land by
1.63 times by 2050 leads to ecological patch fragmentation caused by
imbalanced land conversion and ecological regulation. The increase
and outward spread of medium-to-high risk zones indicate that the
expansion of construction land is a key driver of the rising LER value.
This aligns with the findings of Shaker UI Din (UI Din and Mak,
2021) and Addis Bikis (Bikis et al., 2025). Zhang (Zhang et al., 2023a)
also emphasized that urban expansion occupies portions of cultivated
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land, forest, and grassland, thereby triggering soil erosion and
contamination, increasing landscape heterogeneity, and
exacerbating ecological risks.

4.2 EHI response to land use change under
multiple scenarios

The expansion of construction land and the reduction of ecological
land are the primary drivers of regional ecosystem health deterioration
(Saifullah et al., 2016). From 2000 to 2020, construction land expanded
2.52 times. This process was partly stimulated by the region’s
designation as a national pilot zone for ecological reform in 2007,
which spurred rapid economic growth but simultaneously intensified
ecological land fragmentation (forest, grassland, and water bodies),
thereby weakening ecosystem structure and resilience. Consequently,
the EHI was dominated by low and medium-low levels, particularly in
urban cores and expanding peri-urban areas. This pattern corroborates
the findings of Zhu (Zhu et al., 2025) and Chen (Chen, et al., 2022b).
The former highlighted that urbanization heightens land use pressure,
causing ecological resource loss and patch fragmentation, while the
latter reported cold spot aggregation in economic core areas dominated
by construction land.

Simulation results indicate that future expansion of construction
land will continue to erode ecological land across all SSP scenarios,
leading to further degradation of ecosystem health. This outcome
aligns with Tu (Tu et al,, 2023) and Wu (Wu et al,, 2024b), whose
studies in the Greater Bay Area demonstrated that land development
under SSP scenarios degrades habitat quality and ecological security.
Under SSP126 and SSP245, more than 66% of the study area remains
within medium and medium-high EHI levels, suggesting a relatively
robust ecosystem structure and recovery potential. By contrast,
SSP585 exhibits the most pronounced deterioration, with medium-
low EHI areas increasing by 2.83%. Construction land is projected to
expand to 1.42, 1.32, and 1.56 times its 2020 extent under SSP126,
SSP245, and SSP585, respectively, further reducing ecosystem
organization and service functions. This is consistent with Pan
(Pan et al,, 2020), who argued that urban expansion leads to a
decline in ecosystem organization and service functions, thereby
causing a continuous decline in EHI, which also confirms the
accuracy of the results of this study. Similar evidence has been
reported elsewhere: Yimuranzi (Yimuranzi et al., 2023) identified
construction land expansion as the primary cause of ecological
quality decline in the northern foothills of the Tianshan
Mountains, while Zhang (Zhang et al, 2023c) emphasized that
ecological land enhances connectivity among habitat patches and
strengthens ecosystem vitality and service functions by increasing
vegetation cover.

4.3 Advantages and applicability
Research integrating the SD-PLUS model facilitates the

assessment of land-use changes and the prediction of future
spatial distributions. The SD model simulates shifts in land use

Frontiers in Ecology and Evolution

21

10.3389/fevo.2025.1662739

under different scenarios, while the PLUS model dynamically
analyzes spatial patterns of land use. Their combination enables
long-term land-use simulations under SSP-RCP scenarios.
Compared with the direct use of the LUH2 dataset (spatial
resolution 0.25°) (Kim et al., 2018), the SD-PLUS model generates
higher-resolution land use projections, thereby capturing finer
details of local land use dynamics and ecosystem changes. The
model’s land use simulation results were validated against actual
2020 land use data, yielding a Kappa coefficient of 0.833 (Kappa >
0.8) and an overall accuracy of 0.912. These results indicate high
simulation precision and reliability in modeling both land use
structure types and spatial distribution patterns. Based on existing
research (Wang and Zhang, 2023b), with ecological red lines as
constraints, and using 1.25 times and 1.68 times the existing road
network plus new expressways as driving factors, we simulated the
structural types and spatial distribution of land use in 2050 under
the SSP585 scenario. The results showed that both the Kappa
coefficient and the overall accuracy exceeded 0.93, while Moran’s
I index (for construction land) remained stable at around 0.83. This
demonstrates that the model has high simulation accuracy and a
relatively stable spatial distribution, providing reliable predictive
outcomes. Given that the coarse resolution of global SSP-RCP
scenarios may introduce significant uncertainty in regional-scale
studies, we improved, adjusted, and localized the SSP-RCP
scenarios based on prior research (Zhong et al.,, 2023). The land-
use expansion ratio was applied as the transition matrix, while
major river basins (areas > 0.8 km?), important ecological health
patches, and connectivity patches (ecological corridors) were set as
constraints. This approach enhances the model’s ability to capture
regional ecological processes and spatial heterogeneity, thereby
improving the plausibility and applicability of the prediction results.

By simulating future ecological zoning across multiple
scenarios, potential ecological risk areas and their evolutionary
trends can be effectively identified, providing support for
establishing a dynamic and precise spatial control system and
regional sustainable development (Lyu et al, 2022; Liu et al,
2019). This study employs LER and EHI as complementary
perspectives for assessing ecosystem status, respectively capturing
ecosystem sensitivity to external disturbances and the internal
stability of the system (Zhang et al, 2025). The expansion of
construction land leads to landscape fragmentation and habitat
loss, which elevates LER. Simultaneously, the reduction of
cultivated land and the fragmentation of forests weaken
ecosystem service functions, resulting in a decline in EHI levels
(Chen and Ning., 2024b). In the main urban area and surrounding
regions, this compounding effect of “rising risk and declining
health” is particularly evident, forming a coupled pattern of high
risk and low health. In contrast, while forested areas in peripheral
mountainous regions act as natural barriers, intensifying human
disturbances have pushed natural carrying capacity to its limits.
This is particularly evident in fragmented, steep-sloped marginal
zones where severe soil erosion and land degradation pose critical
challenges to regional ecological security. Under the SSP126
scenario, limiting the expansion of construction land effectively
mitigates the upward trend of LER, resulting in an average EHI
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reduction of 6.25%. Under the SSP245 scenario, risk and health
exhibit a more complex and contradictory relationship. Under the
SSP585 scenario, rapid urbanization accelerates ecological risks and
significantly damages ecological health, with an average EHI
reduction of 8.97%. This indicates a tighter negative coupling
between the two indicators, confirming that land use dynamics
are the core driver of the coupled evolution of LER and EHIL
Moreover, the underlying mechanisms of this coupling differ
significantly across development pathways.

4.4 Limitation

First, although LER assessments comprehensively account for
factors such as economic development and population density, the
driving mechanisms of LER vary greatly across regions. A unified
indicator system struggles to fully capture regional characteristics.
Future research should integrate environmental factors (e.g.,
proximity of industrial land and construction land, urban form, and
frequency of ecological pollution incidents) with socioeconomic factors
(e.g., agricultural output, industrial output, and land utilization rates) to
establish a more comprehensive evaluation framework. Ecological
zoning research based on the dual dimensions of LER and EHI
effectively reflects risk sensitivity and system stability but omits critical
elements such as ecological service value and socio-ecological resilience.
Future research should develop a multidimensional coupled indicator
system integrating LER-EHI-ESV-REIL By employing methods such as
geographically weighted regression (GWR) and random forest, it will be
possible to explore the spatial patterns, driving mechanisms, and
spillover effects of ecological zoning in greater depth. This approach
will enhance both the theoretical foundation and the practical
application of ecological zoning assessments.

Second, to focus on climate-economic scenario simulations, the
transportation network component within the SD-PLUS model was
parameterized using static data from 2020. Although policy
documents such as the Hunan Provincial Territorial Spatial Plan
(2021-2035), the Changsha-Zhuzhou-Xiangtan Ecological Green
Heart High-Level Protection and High-Quality Development Plan
(2024-2035), the Hunan Provincial Expressway Network Plan
(2024-2035), and the Hunan Provincial Highway Network Layout
Plan (2021-2050) were incorporated, and sensitivity tests were
conducted to strengthen model robustness and predictive validity,
some uncertainty remains. Future research could adopt kernel
density methods to calculate urban road network density
expansion rates, thereby improving prediction accuracy.

Third, SSP-RCP data are provided at a kilometer-level spatial
resolution, which makes it difficult to capture fine-scale local
variations. Scenario projections inherently involve uncertainty,
and actual developments may deviate from simulated trajectories.
The relationship between land use and ecological responses
depends on empirical models that cannot fully incorporate all
ecological processes and nonlinear feedbacks. In addition, both
the data and models themselves contain inherent errors and
uncertainties. Future studies should consider integrating high-
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resolution remote sensing imagery and refined socioeconomic
data, employing multi-source fusion techniques to improve
simulation accuracy and decision-support capacity.

5 Conclusions

This study assessed land use changes, LER, and EHI from 2000
to 2020 in the CZXUA and projected future ecological zoning
patterns under SSP126, SSP245, and SSP585 scenarios. The main
conclusions are as follows:

From 2000 to 2020, land use was dominated by forest
(accounting for more than 60% of the total area), followed by
cultivated land and construction land. The cumulative area of
cultivated land transferred out reached 1,029.37 km?®, mainly
converted into construction land (555.65 km?) and forest (394.97
km?). Forest was the second most transferred type, with a
cumulative area of 890.88 km?, mainly converted into
construction land (466.22 km?) and cultivated land (362.87 km?).
Other land use exhibited relatively small conversion magnitudes.
The total area of cultivated land converted in the two study phases
remained almost unchanged (712.36 km? and 711.22 km?,
respectively). In the earlier phase, cultivated land was primarily
converted into construction land, whereas in the later phase, the
area converted to construction land decreased while forest
conversion increased.

LER was mainly characterized by medium and medium-low
risk levels, accounting for 76.98%, 74.40%, and 63.48% of the total
area, respectively. The areas of low, medium-low, and medium risk
gradually declined, while the area of medium-high risk continued to
expand. The spatial distribution of LER showed a pattern of “high in
the center and low at the edges.” High-risk areas were concentrated
in the central urban construction zones, with patches distributed in
clumps and strips, largely consistent with construction land and
transportation networks. Medium-high and medium risk areas were
located in the transitional zones between urban centers and
peripheral counties, while medium-low and low-risk areas were
found in peripheral counties with stronger ecological foundations.

The spatial distribution of EHI presented a concentric structure
of “low in the center and high at the edges.” High and medium-high
values were concentrated in peripheral counties dominated by
forest and grassland. Medium and medium-low values,
dominated by cultivated land, accounted for more than 52% of
the total area, forming the core of the regional ecological pattern.
Low values were mainly concentrated in central urban districts
dominated by construction land. Overall, ecological health declined
from 2000 to 2020. The EHI of forest, water body, and grassland
decreased by 6.29%, 4.21%, and 1.97%, respectively, with forest
showing the most severe degradation. The EHI of cultivated land
first increased and then decreased, while bare land showed the
opposite trend. The EHI of construction land continuously
declined, with a total reduction of 22.15%.

During 2000-2020, the proportion of Ecological conservation
zones remained above 40%. The overlapping area and proportion
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with legally designated protected areas remained high with minimal
fluctuations, contributing to ecosystem stability and ecological
services. Ecological control zones ranked second in area
proportion, with 19,875 km* and 18,175 km” transferred to Strict
ecological conservation zones and ecological enhancement zones,
respectively. However, their overlapping areas and proportions with
statutorily protected areas fluctuated, highlighting the need for
enhanced coordination between ecological conservation and land
use management. Strict ecological conservation zones experienced a
continuous decline in area proportion, with more pronounced
fluctuations in overlapping areas and proportions with statutory
protected areas, requiring close monitoring of ecological restoration
and protection functions. Ecological enhancement zones accounted
for the smallest proportion, but their overlapping areas and
proportions with legally designated protected areas continuously
increased, indicating that strengthened ecological conservation
efforts are gradually restoring ecological functions.

Under future scenarios, ecological control zones are projected to
expand, with hotspot areas showing notable growth and cold spot
areas experiencing reduced contraction. Urban expansion
boundaries and ecological buffer zones should be delineated based
on their “central-radial + clustered distribution” spatial structure,
while ecological risk assessment and early warning systems should
be established. Ecological conservation zones are projected to
shrink, with hotspots becoming more dispersed and cold spots
contracting more significantly. Local ecological resources should be
utilized to foster a green economy, develop ecological corridors and
networks, and improve patch connectivity and system self-
regulation. Strict ecological conservation zones require
strengthened conservation policies and red-line constraints, with
rigorous protection and risk prevention systems. Ecological
enhancement zones should integrate natural succession with
moderate human intervention, promoting low-disturbance
agroforestry and habitat restoration to enhance ecological service
provision and system recovery capacity.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding authors.

Author contributions

HP: Visualization, Formal Analysis, Writing — review & editing,
Writing - original draft, Methodology, Software, Conceptualization.
HL: Writing - review & editing, Formal Analysis, Visualization. YZ:
Writing - review & editing, Investigation, Visualization. WW: Writing
- review & editing, Formal Analysis, Validation. QH: Data curation,
Conceptualization, Writing - review & editing. PL: Funding
acquisition, Writing - review & editing, Supervision. YY:

Frontiers in Ecology and Evolution

10.3389/fevo.2025.1662739

Supervision, Writing - review & editing, Funding acquisition,
Project administration.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This
research was funded by the Key Disciplines of State Forestry
Administration of China (No. 21 of Forest Ren Fa, 2016); and the
Hunan Province”Double First-Class”Cultivation discipline of
China (No. 469 of Xiang Jiao Tong, 2018); National Long-term
Research Base for Landscape Architecture in Qingxiu Mountain,
Guangxi Nanning (No. 96 of Forestry Science and Technology
Development, 2021); Postgraduate Scientific Research Innovation
Project of Hunan Province(grant number CX20240712); Central
South University of Forestry and Technology 2024 Graduate
Student Science and Technology Innovation Fund (grant
number 2024CX01009).

Acknowledgments

We would like to thank the reviewers and editors for their
valuable comments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Peng et al.

References

Babi Almenar, J., Petucco, C., Sonnemann, G., Geneletti, D., Elliot, T., Rugani, B.,
et al. (2023). Modelling the net environmental and economic impacts of urban nature-
based solutions by combining ecosystem services, system dynamics and life cycle
thinking: An application to urban forests. Ecosystem Services. 60, 101506. doi: 10.1016/
j.ecoser.2022.101506

Bai, H. N., and Weng, L. F. (2023). Ecological security pattern construction and
zoning along the China-Laos Railway based on the potential-connectedness-resilience
framework. Ecol. Indic. 146, 109773. doi: 10.1016/j.ecolind.2022.109773

Bao, T. T., Wang, R. F,, Song, L. H,, Liu, X. J., Zhong, S. W, Liu, ], et al. (2022).
Spatio-temporal multi-scale analysis of landscape ecological risk in Minjiang river basin
based on adaptive cycle. Remote Sens. 14, 5540. doi: 10.3390/rs14215540

Bikis, A., Engdaw, M., Pandey, D., and Pandey, B. K. (2025). The impact of
urbanization on land use land cover change using geographic information system
and remote sensing: a case of Mizan Aman City Southwest Ethiopia. Sci. Rep. 15, 12014.
doi: 10.1038/s41598-025-94189-6

Chen, G. Z,, Li, X,, Liu, X. P., Chen, Y. M,, Liang, X,, Leng, J. Y., et al. (2020a). Global
projections of future urban land expansion under shared socioeconomic pathways. Nat.
Commun. 11, 537. doi: 10.1038/s41467-020-14386-x

Chen, W. X,, Gu, T. C, Xiang, ]. W., Luo, T., Zeng, J., and Yuan, Y. H. Y. (2024a).
Ecological restoration zoning of territorial space in China: An ecosystem health
perspective. J. Environ. Manage. 364, 121371. doi: 10.1016/j.jenvman.2024.121371

Chen, Y., Guo, F., Wang, J., Cai, W., Wang, C., and Wang, K. (2020b). Provincial and
gridded population projection for China under shared socioeconomic pathways from
2010 to 2100. Sci. Data 7, 1-13. doi: 10.1038/s41597-020-0421-y

Chen, W. X,, Liu, Z. L,, Li, J. F,, Ran, D., and Zeng, J. (2020c). Mapping the spatial
relationship between ecosystem services and urbanization in the middle reaches of the
Yangtze River Urban Agglomerations. Acta Ecologica Sin. 40, 5137-5150. doi: 10.5846/
stxb201809212065

Chen, Q. B, and Ning, Y. (2024b). Projecting LUCC dynamics and ecosystem
services in an emerging urban agglomeration under SSP-RCP scenarios and their
management implications. Sci. Total Environ. 949, 175100. doi: 10.1016/
j.scitotenv.2024.175100

Chen, X. D,, Yang, Z. P., Wang, T., and Han, F. (2022a). Landscape ecological risk
and ecological security pattern construction in world natural heritage sites: A case study
of Bayinbuluke, Xinjiang, China. ISPRS Int. J. Geo-Inf. 11, 328. doi: 10.3390/
ijgi11060328

Chen, W. X,, Zhao, X. L., Zhong, M. X,, Li, J. F., and Zeng, J. (2022b). Spatiotemporal
evolution patterns of ecosystem health in the Middle Reaches of the Yangtze River
Urban Agglomerations. Acta Ecologica Sin. 42, 138-149. doi: 10.5846/
stxb202012093142

Costanza, R., d'Arge, R., de Groot, R,, Farber, S., Grasso, M., Hannon, B., et al. (1997).
The value of the world's ecosystem services and natural capital. Nature 387, 253-260.
doi: 10.1038/387253a0

Das, M., Das, A., and Mandal, A. (2023). Exploring the factors affecting urban
ecological risk: A case from an Indian mega metropolitan region. Geosci. Front. 14,
101488. doi: 10.1016/j.gsf.2022.101488

Du, L. D,, Dong, C,, Kang, X. C,, Qian, X. L,, and Gu, L. X. (2023). Spatiotemporal
evolution of land cover changes and landscape ecological risk assessment in the Yellow
River Basin 2015-2020. J. Environ. Manage 332, 117149. doi: 10.1016/
jjenvman.2022.117149

Gao, B. B, Li, C, Wu, Y. M,, Zhen, K. ], and Wu, Y. (2021). Landscape ecological risk
assessment and influencing factors in ecological conservation area in Sichuan-Yunnan
provinces, China. Chin. J. Appl. Ecol. 32, 1603-1613. doi: 10.13287/j.1001-
9332.202105.018

Gou, M. M,, Li, L., Ouyang, S., Wang, N, La, L. M, Liu, C. F,, et al. (2021). Identifying
and analyzing ecosystem service bundles and their socioecological drivers in the Three
orges Reservoir Area. J. Clean. Prod. 307, 127208. doi: 10.1016/j.jclepro.2021.127208

Guo, J. P, Li, F. Y. H., Tuvshintogtokh, I, Niu, J. M., Li, H. X,, Shen, B. B, et al.
(2024). Past dynamics and future prediction of the impacts of land use cover change
and climate change on landscape ecological risk across the Mongolian plateau. J.
Environ. Manage. 355, 120365. doi: 10.1016/j.jenvman.2024.120365

Han, P. Y., Hu, H. Z,, Zhou, J. Y., Wang, M., and Zhou, Z. X. (2024). Integrating key
ecosystem services to study the spatio-temporal dynamics and determinants of
ecosystem health in Wuhan’s central urban area. Ecol. Indic. 166, 112352.
doi: 10.1016/j.ecolind.2024.112352

Jiang, S. W., Feng, F., Zhang, X. N, Xu, C. Y,, Jia, B. Q., and Lafortezza, R. (2024).
Ecological transformation is the key to improve ecosystem health for resource-
exhausted cities: A case study in China based on future development scenarios. Sci.
Total Environ. 921, 171147. doi: 10.1016/j.scitotenv.2024.171147

Jing, P. Q., Zhang, D. H., Ai, Z. M., and Guo, B. (2021). Natural landscape ecological
risk assessment based on the three-dimensional framework of pattern-process
ecological adaptability cycle: a case in Loess Plateau. Acta Ecol. Sin. 41, 7026-7036.
doi: 10.5846/stxb202012173213

Frontiers in Ecology and Evolution

10.3389/fevo.2025.1662739

Kesgin Atak, B., and Ersoy Tonyaloglu, E. (2020). Monitoring the spatiotemporal
changes in regional ecosystem health: a case study in Izmir, Turkey. Environ. Monit
Assess. 192, 385. doi: 10.1007/s10661-020-08357-4

Kim, H., Rosa, I. M., Alkemade, R., Leadley, P., Hurtt, G., Popp, A,, et al. (2018). A
protocol for an intercomparison of biodiversity and ecosystem services models using
harmonized land-use and climate scenarios. Geosci. Model. Dev. 11, 4537-4562.
doi: 10.5194/gmd-114537-2018

Lei, J. J., Li, C. S, and Yang, W. N. (2023). Ecosystem health assessment and
approaches to improve Sichuan Province based on an improved vigor organization
resilience model. Ecol. Indic. 155, 110925. doi: 10.1016/j.ecolind.2023.110925

Li, T.,, Dong, Y. X,, and Liu, Z. H. (2020a). A review of social-ecological system
resilience: Mechanism, assessment and management. Sci. Total Environ. 723, 138113.
doi: 10.1016/j.scitotenv.2020.138113

Li, S. K, He, W. X,, Wang, L., Zhang, Z., Chen, X. Q,, Lei, T. C,, et al. (2023).
Optimization of landscape pattern in China Luojiang Xiaoxi basin based on landscape
ecological risk assessment. Ecol. Indic. 146, 109887. doi: 10.1016/j.ecolind.2023.109887

Li, X. P, Li, S. S, Zhang, Y. F,, O’Connor, P. J., Zhang, L. W., and Yan, J. P. (2021).
Landscape ecological risk assessment under multiple indicators. Land 10, 739.
doi: 10.3390/land10070739

Li, S. Y., Miao, L. ], Jiang, Z. H., Wang, G. J., Gnyawali, K. R, Zhang, J., et al. (2020b).
Projected drought conditions in Northwest China with CMIP6 models under
combined SSPs and RCPs for 2015-2099. Adv. Climate Change Res. 11, 210-217.
doi: 10.1016/j.accre.2020.09.003

Li, Y. Y., Qin, L., Wang, Y. H,, Liu, H., Zhang, M., and Hao, H. G. (2024a). Ecosystem
health assessment of the largest lake wetland in the Yellow River basin using an
improved vigor-organization-resilience-services model. Ecol. Indic. 166, 112539.
doi: 10.1016/j.ecolind.2024.112539

Li, R. W, Sun, ], Han, G. D,, Qi, Z. X,, Li, Y. H,, Chen, J. H,, et al. (2025). Ecological
risks linked with ecosystem services in the upper reach of the Yellow River under global
changes. J. Integr. Agric. 24, 966-983. doi: 10.1016/j.jia.2024.09.015

Li, W.].,, Wang, Y., Xie, S. Y., Sun, R. H., and Cheng, X. (2020c). Impacts of landscape
multifunctionality change on landscape ecological risk in a megacity, China: a case
study of Beijing. Ecol. Indic. 117, 106681. doi: 10.1016/j.ecolind.2020.106681

Li, H. Q, Zhu, Y. L, Tang, Y. ]., and Song, M. J. (2024b). Ecological zoning based on
value-risk in the Wuling Mountains Area of Hunan Province. Sustainability 16, 1397.
doi: 10.3390/5u16041397

Liang, X., Guan, Q. F,, Clarke, K. C,, Liu, S. S., Wang, B. Y,, and Yao, Y. (2021).
Understanding the drivers of sustainable land expansion using a patch-generating land
use simulation (PLUS) model: a case study in Wuhan, China. Comput. Environ. Urban
85, 101569. doi: 10.1016/j.compenvurbsys.2020.101569

Lin, X, and Wang, Z. T. (2023). Landscape ecological risk assessment and its driving
factors of multi-mountainous city. Ecol. Indic. 146, 109823. doi: 10.1016/
j.ecolind.2022.109823

Lin, X., Wang, Z. T., and Bao, Y. (2024a). Integrating ecosystem stress into the
assessment of ecosystem health in karst areas and exploring its driving factors. Ecol.
Indic. 167, 112662. doi: 10.1016/j.ecolind.2024.112662

Lin, Y. Y., Xu, X. B,, Tan, Y., and Chen, M. K. (2024b). Multi-scalar assessment of
ecosystem-services supply and demand for establishing ecological management zoning.
Appl. Geogr. 172, 103435. doi: 10.1016/j.apgeog.2024.103435

Liu, Y. X, Li, T., Zhao, W. W, Wang, S., and Fu, B. J. (2019). Landscape functional
zoning at a county level based on ecosystem services bundle: Methods comparison and
management indication. J. Environ. Manage. 249, 109315. doi: 10.1016/
jjenvman.2019.109315

Liu, H,, and Tang, D. W. (2024). Ecological zoning and ecosystem management
based on landscape ecological risk and ecosystem services: A case study in the Wuling
mountain area. Ecol. Indic. 166, 112421. doi: 10.1016/j.ecolind.2024.112421

Liu, Z. H., Zhang, G.]., and Fu, F. J. (2020). Assessing landscape ecological risk based
on landscape pattern and services in Guangzhou during 1990-2015. Acta Ecologica Sin.
40, 3295-3302. doi: 10.5846/stxb201903060425

Lv, T.Y,, Zeng, C, Lin, C. X,, Liu, W. P,, Cheng, Y. J., and Li, Y. B. (2023). Towards an
integrated approach for land spatial ecological restoration zoning based on ecosystem
health assessment. Ecol. Indic. 147, 110016. doi: 10.1016/j.ecolind.2023.110016

Lyu, R, Clarke, K. C,, Tian, X., Zhao, W, Pang, J., Zhang, J., et al. (2022). Land Use
Zoning Management to Coordinate the Supply-Demand Imbalance of Ecosystem
Services: A Case Study in the City Belt Along the Yellow River in Ningxia, China. Front.
Environ. Sci., 10, 911190. doi: 10.3389/fenvs.2022.911190

Mentaschi, L., Duveiller, G., Zulian, G., Corbane, C., Pesaresi, M., Maes, J., et al.
(2022). Global long-term mapping of surface temperature shows intensified intra-city
urban heat island extremes. Glob. Environ. Change 72, 102441. doi: 10.1016/
j.gloenvcha.2021.102441

Murakami, D., Yoshida, T., and Yamagata, Y. (2021). Gridded GDP projections
compatible with the five SSPs (Shared socioeconomic pathways). Front. Built Environ.
7. doi: 10.3389/fbuil.2021.760306

frontiersin.org


https://doi.org/10.1016/j.ecoser.2022.101506
https://doi.org/10.1016/j.ecoser.2022.101506
https://doi.org/10.1016/j.ecolind.2022.109773
https://doi.org/10.3390/rs14215540
https://doi.org/10.1038/s41598-025-94189-6
https://doi.org/10.1038/s41467-020-14386-x
https://doi.org/10.1016/j.jenvman.2024.121371
https://doi.org/10.1038/s41597-020-0421-y
https://doi.org/10.5846/stxb201809212065
https://doi.org/10.5846/stxb201809212065
https://doi.org/10.1016/j.scitotenv.2024.175100
https://doi.org/10.1016/j.scitotenv.2024.175100
https://doi.org/10.3390/ijgi11060328
https://doi.org/10.3390/ijgi11060328
https://doi.org/10.5846/stxb202012093142
https://doi.org/10.5846/stxb202012093142
https://doi.org/10.1038/387253a0
https://doi.org/10.1016/j.gsf.2022.101488
https://doi.org/10.1016/j.jenvman.2022.117149
https://doi.org/10.1016/j.jenvman.2022.117149
https://doi.org/10.13287/j.1001-9332.202105.018
https://doi.org/10.13287/j.1001-9332.202105.018
https://doi.org/10.1016/j.jclepro.2021.127208
https://doi.org/10.1016/j.jenvman.2024.120365
https://doi.org/10.1016/j.ecolind.2024.112352
https://doi.org/10.1016/j.scitotenv.2024.171147
https://doi.org/10.5846/stxb202012173213
https://doi.org/10.1007/s10661-020-08357-4
https://doi.org/10.5194/gmd-114537-2018
https://doi.org/10.1016/j.ecolind.2023.110925
https://doi.org/10.1016/j.scitotenv.2020.138113
https://doi.org/10.1016/j.ecolind.2023.109887
https://doi.org/10.3390/land10070739
https://doi.org/10.1016/j.accre.2020.09.003
https://doi.org/10.1016/j.ecolind.2024.112539
https://doi.org/10.1016/j.jia.2024.09.015
https://doi.org/10.1016/j.ecolind.2020.106681
https://doi.org/10.3390/su16041397
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.ecolind.2022.109823
https://doi.org/10.1016/j.ecolind.2022.109823
https://doi.org/10.1016/j.ecolind.2024.112662
https://doi.org/10.1016/j.apgeog.2024.103435
https://doi.org/10.1016/j.jenvman.2019.109315
https://doi.org/10.1016/j.jenvman.2019.109315
https://doi.org/10.1016/j.ecolind.2024.112421
https://doi.org/10.5846/stxb201903060425
https://doi.org/10.1016/j.ecolind.2023.110016
https://doi.org/10.3389/fenvs.2022.911190
https://doi.org/10.1016/j.gloenvcha.2021.102441
https://doi.org/10.1016/j.gloenvcha.2021.102441
https://doi.org/10.3389/fbuil.2021.760306
https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Peng et al.

Pan, Z. Z., He, J. H,, Liu, D. F,, and Wang, J. W. (2020). Predicting the joint effects of
future climate and land use change on ecosystem health in the Middle Reaches of the
Yangtze River Economic Belt, China. Appl. Geogr. 124, 102293. doi: 10.1016/
j.apgeog.2020.102293

Pan, Z. Z., He, ]. H, Liu, D. F., Wang, J. W, and Guo, X. N. (2021). Ecosystem health
assessment based on ecological integrity and ecosystem services demand in the Middle
Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 774, 144837.
doi: 10.1016/j.scitotenv.2020.144837

Peng, H. Z., Lou, H. C, Liu, Y. F,, He, Q. Y., Zhang, M. M., and Yang, Y. (2025).
Spatial and temporal evolution assessment of landscape ecological resilience based on
adaptive cycling in Changsha-Zhuzhou-Xiangtan Urban agglomeration, China. Land
14, 709. doi: 10.3390/land 14040709

Peng, J., Wang, Y. L, Wu, J. S,, Shen, H., and Pan, Y. J. (2011). Research progress on
evaluation frameworks of regional ecological sustainability. Chin. Geogr. Sci. 21, 496-
510. doi: 10.1007/s11769-011-0490-0

Qing, L., Fan, H. H,, Zhang, F. Q,, Chen, W. B,, Xia, Y. P,, and Yan, B. (2024). The
dominant role of human activity intensity in spatial pattern of ecosystem health in the
Poyang Lake ecological economic zone. Ecol. Indic. 166, 112347. doi: 10.1016/
j.ecolind.2024.112347

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S.,
et al. (2017). The Shared Socioeconomic Pathways and their energy, land use, and
greenhouse gas emissions implications: An overview. Global Environ. Change 42, 153—
168. doi: 10.1016/j.gloenvcha.2016.05.009

Sadeghi, S. H., Chamani, R,, Silabi, M. Z., Tavosi, M., Katebikord, A., Darvishan, A.
K., et al. (2023). Watershed health and ecological security zoning throughout Iran. Sci.
Total Environ. 905, 167123. doi: 10.1016/j.scitotenv.2023.167123

Saifullah, M., Li, Z. J., Li, Q. L., Zaman, M., and Hashim, S. (2016). Quantitative
estimation of the impact of precipitation and land surface change on hydrological
processes through statistical modeling. Adv. Meteorology 1, 6130179. doi: 10.1155/
2016/6130179

Song, J., Aishan, T., and Ma, X. (2024). Coupled water-habitat-carbon nexus and
driving mechanisms in the Tarim River Basin: A multi-scenario simulation perspective.
Ecol. Indic. 167, 112649. doi: 10.1016/j.ecolind.2024.112649

Sun, M. Y., Li, X. H, Yang, R. J., Zhang, Y., Zhang, L., Song, Z. W., et al. (2020).
Comprehensive partitions and different strategies based on ecological security and
economic development in Guizhou Province, China. J. Clean. Prod. 274, 122794.
doi: 10.1016/j.jclepro.2020.122794

Tan, J. B., Li, A. N,, Lei, G. B., and Xie, X. Y. (2019). A SD-MaxEnt-CA model for
simulating the landscape dynamic of natural ecosystem by considering socio-economic
and natural impacts. Ecol. Model. 410, 108783. doi: 10.1016/j.ecolmodel.2019.108783

Tian, P., Li, J. L., Cao, L. D., Pu, R. L,, Gong, H. B, Liu, Y. C,, et al. (2021). Impacts of
reclamation derived land use changes on ecosystem services in a typical gulf of eastern
China: A case study of Hangzhou bay. Ecol. Ind. 132, 108259. doi: 10.1016/
j.ecolind.2021.108259

Tu, W., Gao, W,, Li, M. X, Yao, Y., He, B, Huang, Z. D., et al. (2023). Spatial
cooperative simulation of land use-population-economy in the Greater Bay Area,
China. Int. J. Geographical Inf. Sci. 38, 381-406. doi: 10.1080/13658816.2023.2285459

Ul Din, S., and Mak, H. W. L. (2021). Retrieval of land-use/land cover change (LUCC)
maps and urban expansion dynamics of Hyderabad, Pakistan via landsat datasets and
support vector machine framework. Remote Sens. 13, 3337. doi: 10.3390/rs13163337

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K.,
etal. (2011). The representative concentration pathways: An overview. Climatic Change
109, 5-31. doi: 10.1007/s10584-011-0148-z

Wang, S. Q., Chen, Y. Y, Jin, H. Y., and Li, Y. G. (2024). Ecological management
zoning based on the causation between ecological risk and ecosystem services in the
Gaoligong Mountain. Ecol. Indic. 167, 112673. doi: 10.1016/j.ecolind.2024.112673

Wang, Z. Y., Gao, Y., Wang, X. R,, Lin, Q., and Li, L. (2022a). A new approach to land
use optimization and simulation considering urban development sustainability: A case
study of Bortala, China. Sustain. Cities Soc. 87, 104135. doi: 10.1016/j.scs.2022.104135

Wang, Z. Y., Li, X,, Mao, Y. T,, Li, L., Wang, X. R, and Lin, Q. (2022b). Dynamic
simulation of land use change and assessment of carbon storage based on climate
change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 134,
108499. doi: 10.1016/j.ecolind.2021.108499

Wang, H,, Liu, X. M,, Zhao, C. Y,, Chang, Y. P, Liu, Y. Y, and Zang, F. (2021).
Spatial-temporal pattern analysis of landscape ecological risk assessment based on land
use/land cover change in Baishuijiang National nature reserve in Gansu Province,
China. Ecol. Indic. 124, 107454. doi: 10.1016/j.ecolind.2021.107454

Wang, L. J., Luo, G. Y., Ma, S., Wang, H. Y,, Jiang, ], and Zhang, J. G. (2023a).
Integrating landscape ecological risk into ecosystem service value assessment: A case
study of Nanjing City. China. Ecol. Indic. 154, 110625. doi: 10.1016/
j.ecolind.2023.110625

Wang, J., Wang, J. M., and Zhang, J. N. (2025). Optimization of landscape ecological
risk assessment method and ecological management zoning considering resilience. J.
Environ. Manage. 376, 124586. doi: 10.1016/j.jenvman.2025.124586

Frontiers in Ecology and Evolution

25

10.3389/fevo.2025.1662739

Wang, Y., and Zhang, L. (2023b). The impact of technology innovation on urban
land intensive use in China: evidence from 284 cities in China. Sustainability 15, 3801.
doi: 10.3390/su15043801

Wu, B. F, Fu, Z. ], Fu, B. J,, Yan, C. Z,, Zeng, H. W., and Zhao, W. W. (2024a).
Dynamics of land cover changes and driving forces in China’s drylands since the 1970 s.
Land Use Policy 140, 107097. doi: 10.1016/j.landusepol.2024.107097

Wu, Y. Z, Gu, C. Z,, and Zhang, Y. N. (2022). Towards sustainable management of
urban ecological space: A zoning approach hybridized by ecosystem service value and
ecological risk assessment. Land 11, 1220. doi: 10.3390/land11081220

Wu, Y. F,, Wang, J. B, and Gou, A. P. (2024b). Research on the evolution
characteristics, driving mechanisms and multi-scenario simulation of habitat quality
in the Guangdong-Hong Kong-Macao greater bay based on multi-model coupling. Sci.
Total Environ. 924, 171263. doi: 10.1016/j.scitotenv.2024.171263

Wu, X,, Zhang, J. ., Geng, X. L., Wang, T., Wang, K., and Liu, S. D. (2020). Increasing
green infrastructure-based ecological resilience in urban systems: A perspective from
locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc.
61, 102354. doi: 10.1016/j.5¢s.2020.102354

Wu, J. S, Zhu, Q. L., Qiao, N,, Wang, Z. Y., Sha, W,, Luo, K. Y., et al. (2021).
Ecological risk assessment of coal mine area based on “source-sink” landscape theory —
A case study of Pingshuo mining area. J. Cleaner Production 295, 126371. doi: 10.1016/
j.jclepro.2021.126371

Xie, H. L., He, Y. F,, Choi, Y., Chen, Q. R., and Cheng, H. (2020). Warning of negative
effects of land use changes on ecological security based on GIS. Sci. Total Environ. 704,
135427. doi: 10.1016/j.scitotenv.2019.135427

Xie, Y. Y., Zhu, Q. C,, Bai, H., He, H. Z., and Zhang, Y. (2024). Combining ecosystem
service value and landscape ecological risk to subdivide the riparian buffer zone of the
Weihe River in Shaanxi. Ecol. Indic. 166, 112424. doi: 10.1016/j.ecolind.2024.112424

Xu, M. L,, and Matsushima, H. (2024). Multi-dimensional landscape ecological risk
assessment and its drivers in coastal areas. Sci. Total Environ. 908, 168183. doi: 10.1016/
j.scitotenv.2023.168183

Xu, Y. Q. Zhou, B. T,, Yu, L, Shi, Y., and Xu, Y. (2017). Temporal-spatial dynamic
pattern of forest ecosystem service value affected by climate change in the future in
China. Acta Ecologica Sin. 38, 1952-1963. doi: 10.5846/stxb201703210482

Yan, Y. C, Ju, H. R, Zhang, S. R, and Chen, G. K. (2021). The construction of
ecological security patterns in coastal areas based on landscape ecological risk
assessment—A case study of Jiao Dong Peninsula, China. Int. J. Environ. Res. Public
Health 18, 12249. doi: 10.3390/ijerph182212249

Yang, Z. K, Zhang, X. S,, Hu, X. R, and Zhou, X. W. (2024). Spatial-temporal
evolution of agricultural carbon balance at township scale and carbon compensation
zoning: A case study of Guangshui City, Hubei Province. Land 13, 820. doi: 10.3390/
1and13060820

Yimuranzi, A., Alimujiang, K., Liang, H. W., Zhang, X. L., Zhao, Y. Y., and Wei, B. H.
(2023). Evaluation of ecological space and ecological quality changes in urban
agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 146,
109896. doi: 10.1016/j.ecolind.2023.109896

Zhang, Y. L., Hu, X. J., Wei, B. J., Zhang, X, Tang, L., Chen, C. Y, et al. (2023a).
Spatiotemporal Exploration of Ecosystem Service Value, Landscape Ecological Risk,
and Their Interactive Relationship in Hunan Province, Central-South China, over the
past 30 Years. Ecol. Indic. 156, 111066. doi: 10.1016/j.ecolind.2023.111066

Zhang, H. T, Liu, Y. C, Li, J. L, Tian, P., Zhong, J., and Gong, H. B. (2023b).
Evaluation and analysis of coastal complex ecological resilience based on
multidimensional data: A case study of East China Sea. Ecol. Indic. 155, 110981.
doi: 10.1016/j.ecolind.2023.110981

Zhang, P., Liu, L., Yang, L. W., Zhao, J., Li, Y. Y., Qi, Y. Y., et al. (2023c). Exploring
the response of ecosystem service value to land use changes under multiple scenarios
coupling a mixed-cell cellular automata model and system dynamics model in Xi'an,
China. Ecol. Indic. 147, 110009. doi: 10.1016/j.ecolind.2023.110009

Zhang, J. Y., Qiao, X. N,, Yang, Y. J,, Liu, L., Li, Y. L,, and Zhao, S. N. (2025).
Ecological security driving mechanisms and optimization of zoning in Chinese urban
agglomerations: A case study of the central plains urban agglomeration. Ecol. Indic.
171, 113190. doi: 10.1016/j.ecolind.2025.113190

Zhao, Y., He, L., Bai, W. Q,, He, Z. W, Luo, F., and Wang, Z. F. (2024). Prediction of
ecological security patterns based on urban expansion: A case study of Chengdu. Ecol.
Indic. 158, 111467. doi: 10.1016/j.ecolind.2023.111467

Zhao, Y., Tao, Z., Wang, M. N, Chen, Y. H., Wy, R,, and Guo, L. (2022). Landscape
ecological risk assessment and planning enlightenment of Songhua river basin based on
multi-source heterogeneous data fusion. Water 14, 4060. doi: 10.3390/w14244060

Zhong, Y. Q., Zhang, X. X,, Yang, Y. F,, and Xue, M. H. (2023). Optimization and
simulation of mountain city land use based on MOP-PLUS model: A case study of
Caijia cluster, Chonggqing. ISPRS Int. ]J. Geo-Information 12, 451. doi: 10.3390/
ijgi12110451

Zhou, X, Ji, G. H.,, Wang, F.,, and Ji, X. (2025). Identification and simulation of
ecological zoning in the Yangtze River Delta (YRD) urban agglomeration based on

frontiersin.org


https://doi.org/10.1016/j.apgeog.2020.102293
https://doi.org/10.1016/j.apgeog.2020.102293
https://doi.org/10.1016/j.scitotenv.2020.144837
https://doi.org/10.3390/land14040709
https://doi.org/10.1007/s11769-011-0490-0
https://doi.org/10.1016/j.ecolind.2024.112347
https://doi.org/10.1016/j.ecolind.2024.112347
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.scitotenv.2023.167123
https://doi.org/10.1155/2016/6130179
https://doi.org/10.1155/2016/6130179
https://doi.org/10.1016/j.ecolind.2024.112649
https://doi.org/10.1016/j.jclepro.2020.122794
https://doi.org/10.1016/j.ecolmodel.2019.108783
https://doi.org/10.1016/j.ecolind.2021.108259
https://doi.org/10.1016/j.ecolind.2021.108259
https://doi.org/10.1080/13658816.2023.2285459
https://doi.org/10.3390/rs13163337
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1016/j.ecolind.2024.112673
https://doi.org/10.1016/j.scs.2022.104135
https://doi.org/10.1016/j.ecolind.2021.108499
https://doi.org/10.1016/j.ecolind.2021.107454
https://doi.org/10.1016/j.ecolind.2023.110625
https://doi.org/10.1016/j.ecolind.2023.110625
https://doi.org/10.1016/j.jenvman.2025.124586
https://doi.org/10.3390/su15043801
https://doi.org/10.1016/j.landusepol.2024.107097
https://doi.org/10.3390/land11081220
https://doi.org/10.1016/j.scitotenv.2024.171263
https://doi.org/10.1016/j.scs.2020.102354
https://doi.org/10.1016/j.jclepro.2021.126371
https://doi.org/10.1016/j.jclepro.2021.126371
https://doi.org/10.1016/j.scitotenv.2019.135427
https://doi.org/10.1016/j.ecolind.2024.112424
https://doi.org/10.1016/j.scitotenv.2023.168183
https://doi.org/10.1016/j.scitotenv.2023.168183
https://doi.org/10.5846/stxb201703210482
https://doi.org/10.3390/ijerph182212249
https://doi.org/10.3390/land13060820
https://doi.org/10.3390/land13060820
https://doi.org/10.1016/j.ecolind.2023.109896
https://doi.org/10.1016/j.ecolind.2023.111066
https://doi.org/10.1016/j.ecolind.2023.110981
https://doi.org/10.1016/j.ecolind.2023.110009
https://doi.org/10.1016/j.ecolind.2025.113190
https://doi.org/10.1016/j.ecolind.2023.111467
https://doi.org/10.3390/w14244060
https://doi.org/10.3390/ijgi12110451
https://doi.org/10.3390/ijgi12110451
https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Peng et al.

Ecological Service Value (ESV)-Landscape Ecological Risk (LER). J. Cleaner Production
516, 145778. doi: 10.1016/j.jclepro.2025.145778

Zhou, Y. P., and Zhao, X. C. (2024). Spatial relationship between human activity
intensities and ecosystem services value in Changsha-Zhuzhou-Xiangtan urban
agglomeration. China Environ. Sci. 44, 2948-2960. doi: 10.19674/j.cnki.issn1000-
6923.20240017.003

Frontiers in Ecology and Evolution

26

10.3389/fevo.2025.1662739

Zhu, Q,, and Cai, Y. L. (2023). Integrating ecological risk, ecosystem health, and ecosystem
services for assessing regional ecological security and its driving factors: Insights from a large
river basin in China. Ecol. Indic. 155, 110954. doi: 10.1016/j.ecolind.2023.110954

Zhu, H. M., Xu, Q., Zheng, Y. N,, Cui, J., and Meng, Q. X. (2025). Ecological health
assessment of the middle route of the South-to-North Water Diversion Project using an
enhanced VORS model. Ecol. Indic. 172, 113281. doi: 10.1016/j.ecolind.2025.113281

frontiersin.org


https://doi.org/10.1016/j.jclepro.2025.145778
https://doi.org/10.19674/j.cnki.issn1000-6923.20240017.003
https://doi.org/10.19674/j.cnki.issn1000-6923.20240017.003
https://doi.org/10.1016/j.ecolind.2023.110954
https://doi.org/10.1016/j.ecolind.2025.113281
https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem health
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data sources and pre-processing
	2.3 Methods
	2.3.1 Landscape ecological risk assessment
	2.3.2 Ecological health assessment
	2.3.3 Ecological zoning
	2.3.4 Scenario design based on CMIP6
	2.3.5 SD model
	2.3.6 PLUS model


	3 Results
	3.1 Ecological zoning construction
	3.1.1 Spatial and temporal distribution of land use
	3.1.2 Spatial and temporal distribution of LER
	3.1.3 Spatial and temporal distribution of EHI
	3.1.4 Characteristics of the spatial and temporal evolution of ecological zones

	3.2 Ecological zoning construction under multi-scenarios
	3.2.1 Simulation of land use change under different scenarios
	3.2.2 Ecological zoning simulation

	3.3 Ecological zoning control measures

	4 Discussion
	4.1 LER response to land use change under multiple scenarios
	4.2 EHI response to land use change under multiple scenarios
	4.3 Advantages and applicability
	4.4 Limitation

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


