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Introduction: Rapid urbanization has driven extensive land use changes, thereby

undermining the stability and sustainability of ecosystems. This highlights the

need for refined ecological zoning to strengthen environmental governance and

spatial management in urban agglomerations.

Methods: This study uses the Changsha–Zhuzhou–Xiangtan urban

agglomeration as a case study, a rapidly urbanizing region in central China that

lies at the intersection of montane and lowland ecosystems, making it highly

sensitive to both urbanization and climate-induced changes. It examines the

spatiotemporal evolution of landscape ecological risk (LER) and the ecological

health index (EHI) in response to land use changes from 2000 to 2020 and

subsequently delineates ecological zoning. Furthermore, it simulates future land

use changes under multiple scenarios for the period 2030–2050 to assess the

dynamics of future zoning.

Results: From 2000 to 2020, forest remained the dominant land use, followed by

cultivated land and construction land. During this period, 1,029.37 km² of

cultivated land and 890.88 km² of forest were converted. The total converted

area of cultivated land remained relatively stable across both phases. LER was

primarily concentrated at medium and medium–low risk levels. The areas

classified as low, medium–low, and medium risk decreased in both phases,

with reductions of 784.24 km² in the early period and 3,266.91 km² in the later

period. The EHI values declined from 0.555 in 2000 to 0.543 in 2010 and 0.518 in

2020. Forest, water body, and grassland all exhibited downward trends, while

construction land showed the most pronounced decline, with a 22.15%

reduction. Between 2000 and 2020, the spatial overlap between ecological

zones and legally protected areas shifted notably. The ecological control zone

transitioned 19,875 km² to the Strict ecological conservation zone and 18,175

km² to the ecological enhancement zone. Under future scenarios, the ecological

control zone is projected to expand, with hotspots extending significantly and

cold spots contracting slightly. By contrast, Ecological conservation zones are
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expected to shrink, with hotspots becoming more fragmented and cold spots

declining more substantially.

Conclusions: This study offers a scientific foundation for ecological zoning

management, supporting coordinated regeneration and the sustainable

development of human–land systems in rapidly urbanizing regions.
KEYWORDS

landscape ecological risk, ecosystem health, ecological zoning, land use simulation, SD-
PLUS model, SSP-RCPs multi-scenario
1 Introduction

With the acceleration of global urbanization, China’s

urbanization rate has risen from 36.2% in 2000 to 66.16% in 2023

(Xie et al., 2020). Under the combined pressures of urban expansion

and suburban sprawl, regional land use patterns have undergone

significant changes, adversely affecting the structure, functions, and

processes of natural ecosystems. These impacts are reflected in

heightened landscape ecological risks and declining ecosystem

stability (Wu et al., 2024a). In the context of global climate

change and intensified human activities, relying on a single

ecological approach is insufficient to balance economic

development with ecological conservation (Wu et al., 2020).

Instead, a comprehensive approach that considers both external

risk disturbances and internal ecosystem health is required to

understand their interactions (Wang et al., 2023a). Ecological

zoning, combined with differentiated functional assessments and

targeted management strategies, is therefore critical for identifying

ecological problems and promoting regional ecological

sustainability (Li et al., 2024b).

Landscape Ecological Risk (LER) refers to the degree and

uncertainty of disturbances to ecosystem structure, function, and

processes caused by industrial development, climate change, and

population growth (Gou et al., 2021). Its assessment aims to detect

potential hazards and provide a spatially explicit representation of

ecological risks (Wang et al., 2021). Common approaches include

source–sink models and landscape pattern index analysis. The

former captures the dynamics of risk sources, sinks, and

exposure–response processes, but often oversimplifies ecosystem

interactions and neglects the interdependence of structural and

functional components (Wu et al., 2021). The latter evaluates

ecosystem changes by examining the coupling between landscape

patterns and ecological processes, effectively reflecting spatial

integrity and complexity (Liu et al., 2020). However, a single

landscape index rarely captures the full spectrum of risks,

particularly those arising from interactions between natural,

social, and ecological systems. To address this, integrated

assessment frameworks that incorporate natural, socio-economic,

and landscape dimensions have been proposed. For instance, Zhao

(Zhao et al., 2022) developed a three-dimensional framework that
02
integrates multi-source data to improve risk identification. Gao

(Gao et al., 2021) and Lin (Lin and Wang., 2023) demonstrated that

ecological risks are jointly driven by natural and anthropogenic

factors across regions. Yan (Yan et al., 2021) confirmed the practical

value of such integrated frameworks in ecological planning,

conservation, and management.

Rising ecological risks accelerate the decline of ecosystem

services and ecosystem health, posing challenges to regional

sustainability (Sun et al., 2020). The Ecosystem Health Index

(EHI), which reflects the stability of ecosystem structure and

function, plays a critical role in guiding ecological restoration at

regional scales (Du et al., 2023). Most studies adopt multi-indicator

integration frameworks. Among them, the VOR model proposed by

Costanza (Costanza et al., 1997) is widely used. Yet, given the

complexity of ecosystems, health assessments must incorporate

both natural and anthropogenic drivers. The VORS model, which

accounts for human demand for ecosystem services, has thus been

applied extensively to analyze ecosystem health and support

sustainable development planning (Kesgin Atak and Ersoy

Tonyaloğlu, 2020; Chen et al., 2020c; Chen et al., 2024a). For

instance, Qing (Qing et al., 2024) and Lv (Lv et al., 2023) coupled

human activity intensity with EHI and found that ecologically

healthy areas are often highly sensitive to human disturbances.

Further research has shown that ecosystem health is influenced by

climate conditions, vegetation cover, landscape patterns, socio-

economic development, and land use (Zhu and Cai, 2023; Lin et

al., 2024a; Li et al., 2024a). At the regional scale, dominant drivers

vary considerably. In Guizhou’s karst areas, socio-economic factors

exert stronger impacts (Xu et al., 2017), while in urban cores, the

expansion of construction land is the primary determinant (Han

et al., 2024).

The composition, structure, and function of land use directly

shape both LER and EHI. Existing research (UI Din and Mak, 2021;

Bikis et al., 2025) demonstrates that construction land expansion

increases ecological risks, especially in developing countries. Forest

loss reduces carbon storage capacity, accelerates greenhouse gas

emissions, and weakens resilience, thereby degrading ecosystem

health. Consequently, analyzing the spatial coupling and interactive

mechanisms between LER and EHI under varying land use patterns

is essential. As a key tool for ecological governance, ecological
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zoning supports ecosystem service protection, degraded land

restoration, and differentiated management strategies (Yang et al.,

2024). Research on ecological zoning management has been

extensive (Sadeghi et al., 2023; Xie et al., 2024; Wang et al., 2025;

Lin et al., 2024b; Wang et al., 2024; Peng et al., 2025). For instance,

Li (Li T, et al., 2020a) emphasized that ecological management

should integrate resilience evolution, mechanisms, and assessments

to strengthen socio-ecological resilience. Zhou (Zhou et al., 2025)

and colleagues proposed the ESV–LER functional zoning system

from the perspectives of human well-being and ecological security,

providing references for improving ecological management

efficiency. However, studies that integrate ecological risks with

regeneration potential to forecast future conditions and formulate

adaptive strategies remain scarce. Most are single-focused: Bao (Bao

et al., 2022) and Zhao (Zhao et al., 2024) applied scenario

simulations to explore future ecological risks and ecosystem

health, while Wang (Wang et al., 2022a) suggested optimizing

land use structures from a risk perspective to enhance carrying

capacity and reduce ecological deficits. Against this backdrop,

predicting future land use patterns under the combined influences

of human activity and climate change, assessing their impacts on

LER and EHI, and constructing forward-looking ecological zoning

frameworks are critical for setting conservation priorities and

guiding ecological management.

The Changsha-Zhuzhou-Xiangtan Urban Agglomeration

(CZXUA), a core region of China’s integrated urban development

strategy, experienced rapid urbanization, rising from 40.30% in

2000 to 78.00% in 2022—well above the national average.

Compared with other major urban clusters such as Beijing–

Tianjin–Hebei, the Yangtze River Delta, and the Pearl River

Delta, the CZXUA exhibits a “central-radial plus clustered”

spatial structure. Its unique landscape, characterized by interlaced

hills, rivers, and lakes, has been heavily affected by urban expansion,

leading to losses of cultivated land, forest, and wetlands. This has

intensified landscape fragmentation, reduced ecosystem recovery

capacity, and created a highly heterogeneous ecological risk pattern.

Such complexity highlights the limitations of single-dimensional

ecological assessments and underscores the need for integrated

approaches. Therefore, this study takes the CZXUA as its

research area, delineates ecological zones using LER and EHI as

indicators, and constructs an ecological zoning framework for land

use simulation under SSP–RCPs scenarios. The aim is to analyze the

evolution trends of ecological zoning within the region’s dynamic

development, thereby enhancing regional risk defense and service

provision capabilities and promoting the coordinated development

of human-land relations. The specific objectives of this study are to:

(1) examine the spatiotemporal variation of LER and EHI from

2000 to 2020; (2) delineating ecological zones based on the coupling

relationship between LER and EHI; and (3) predict the evolution of

ecological zones in 2030, 2040, and 2050 under different SSP–RCP

scenarios, and provide practical recommendations for future

regional development.
Frontiers in Ecology and Evolution 03
2 Materials and methods

2.1 Study area

The Changsha–Zhuzhou–Xiangtan Urban Agglomeration

(CZXUA) is located in central China (26°03′N–28°40′N, 111°53′
E–114°15′E) and functions as the core growth pole of economic

development and urbanization in Hunan Province. It covers an area

of approximately 28,000 km². By 2023, the total population had

reached 17.07 million, with a regional GDP of 2.07 trillion yuan,

accounting for more than 40% of the provincial total. The region is

characterized by complex topography dominated by hills and

basins, forming a spatial structure of “one core, two sub-centers,

and a green heart.” Changsha serves as the primary core, Zhuzhou

and Xiangtan act as secondary cores, and the ecological green heart

lies at their convergence (Figure 1). Mountainous areas are

primarily distributed in the west and southeast, where the

Luoxiao–Mufu mountain range forms a critical ecological barrier.

Legally protected areas are mainly concentrated in You, Chaling,

Yanling, Liuyang, and Xiangxiang, with a total coverage of 3,392.89

km², representing 12.12% of the region. The Special Ecological

Protection Zone (green heart) spans 529.79 km². Despite rapid

economic growth, urbanization, and industrialization, the region

has experienced severe ecological disturbances, including cadmium

pollution in Liuyang (2009), thallium pollution in the Xiang River

in Hengyang (2020), and thallium pollution in the Leishui River

basin (2025). These events underscore the vulnerability of the

regional ecosystem and highlight the necessity of advancing

ecological zoning research.
2.2 Data sources and pre-processing

This study employed a multidimensional dataset encompassing

land use, socioeconomic, climatic, and ecological variables

(Table 1). The core variables include land use (2000, 2010, 2020),

GDP, population, precipitation, temperature, vegetation cover,

PM2.5, land surface temperature, soil type, nighttime light, net

primary productivity (NPP), and NDVI. To ensure spatial

consistency, all raster data were projected to the WGS-1984-

UTM-49N coordinate system. Vector data (e.g., transportation

networks) were rasterized to match raster resolution. For datasets

with varying resolutions, bilinear or nearest-neighbor interpolation

was applied to unify the resolution at 50 m. Missing or anomalous

values were corrected using the mode of surrounding raster cells or

the mean of adjacent cells. The years 2000 and 2010 were used as

baseline data for model construction, and 2020 land use data were

employed for validation. Model performance was evaluated using

Overall accuracy and the Kappa coefficient. Sensitivity analysis was

conducted by adjusting neighborhood weights and system

parameters to enhance model robustness.
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2.3 Methods

This study selects indicators from four dimensions—

geographical foundations, landscape patterns, human activities,

and natural disasters—to construct an ecological risk assessment

system. The Analytic Hierarchy Process (AHP) and the Standard

Correlation Weight Analysis Method (CRITIC) are employed to

determine the weights of each indicator, thereby constructing an

ecological risk assessment system to comprehensively evaluate

Landscape Ecological Risk (LER). To assess the Ecosystem Health

Index (EHI), a VORS model is established, incorporating vitality

(EV), organization (EO), resilience (ER), and ecosystem services

(ES). Based on this framework, Z-score standardization is applied to

analyze the spatiotemporal evolution of ecological zoning for the

years 2000, 2010, and 2020. Using 2020 land use data, an SD-PLUS

model is developed by integrating natural, population,

meteorological, and economic variables to simulate land use

distribution under multiple scenarios for 2030, 2040, and 2050.

LER and EHI values are then calculated for each scenario, and the

corresponding ecological zoning patterns are analyzed. Finally,

based on the historical evolution and projected future trends of

ecological zoning, targeted zoning strategies and optimization

recommendations are proposed to support sustainable

management and high-quality ecological development. The

overall workflow of this study is shown in Figure 2.
Frontiers in Ecology and Evolution 04
2.3.1 Landscape ecological risk assessment
Urban agglomerations are typical compound systems integrating

nature, society, and economy, facing the interactive impacts of

multidimensional driving factors. Their ecological risks are

characterized by multiple sources of input, exposure diffusion, and

complex disturbance mechanisms (Babí, 2023). This study follows the

principles of systematics, quantifiability, and relevance to ecological

processes. It constructs an indicator system from the dual perspectives

of natural constraints and human activity disturbances, comprising

four categories of elements: geographical foundation, landscape

pattern, human activities, and natural disasters. This forms an

information-closed network of “natural foundation constraints–

landscape functional responses–anthropogenic disturbance

pressures–disaster risk feedbacks,” which is used to delineate the

spatial differentiation characteristics of landscape ecological risk.

In the geographical foundation elements, topographic position

index, terrain relief, and soil type are selected to represent the

terrain stability and soil foundation conditions of ecosystems. The

topographic position index and terrain relief can reflect the

potential risks of erosion and geological disasters (Li et al.,

2020c), while soil type influences habitat quality and ecosystem

regulation capacity through its carbon sequestration ability and

resistance to erosion. In the landscape pattern elements, the

landscape disturbance index, NDVI, Shannon’s diversity index,

and contagion index are chosen to reflect the structural stability
FIGURE 1

Location and elevation of the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXUA) in Hunan Province, China.
frontiersin.org

https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Peng et al. 10.3389/fevo.2025.1662739
of the system. The former indicates the degree of landscape

disturbance (commonly calculated using patch density, landscape

division index, and landscape separation index), while the latter

three respectively reflect the extent of vegetation coverage,

landscape heterogeneity, and integrity, all of which are negatively

correlated with landscape ecological risk (Yan et al., 2021). The

human activity elements cover population aggregation pressure,

economic pressure (GDP), air pollution pressure (PM2.5), energy

consumption pressure (nighttime light intensity), transportation

network pressure, and land use pressure, which collectively depict

the ecological stress caused by urbanization. These dynamic factors

directly reflect environmental pollution, infrastructure load, and

fragmentation of the ecological base (Mentaschi et al., 2022). In the

natural disaster elements, geological disasters, rainstorm flooding,

and land surface thermal environment are selected to characterize
Frontiers in Ecology and Evolution 05
the system’s threshold for collapse. Geological disasters describe the

risks of extreme climate events such as landslides and debris flows,

rainstorm flooding reflects the risk of flooding caused by extreme

precipitation, and the land surface thermal environment reveals the

urban heat island effect, with higher land surface temperatures

indicating potential ecological risks (Jing et al., 2021).

To eliminate the dimensional effects of different indicators, all

indicators are processed using range standardization, with a value

range of [0,1] (Table 2). In the weight assignment, the final weights

of the indicators are derived by averaging the Analytic Hierarchy

Process (AHP) and the Standard Correlation Weight Analysis

Method (CRITIC) methods (Zhang et al., 2023b). AHP constructs

a judgment matrix based on pairwise comparisons, calculates the

weight vector, and passes the consistency test (CR = 0.0516, meeting

the standard CR< 0.1); CRITIC objectively assigns weights based on
TABLE 1 Data and materials.

Period Dataset Data source Website address Resolution

Historical data

Land cover Resource and Environment Science and
Data Center

(2000, 2010, and 2020)

https://www.resdc.cn
(accessed on 5July 2024)

30 m

GDP
https://www.resdc.cn

(accessed on 24July2024)
1000 m

Precipitation

National Tibetan Plateau Data Centre

https://data.tpdc.ac.cn
(accessed on 25 August2024)

1000 m

Temperature
https://data.tpdc.ac.cn

(accessed on 25 August 2024)
1000 m

FVC
https://data.tpdc.ac.cn

(accessed on 31July2024)
250 m

PM2.5
https://data.tpdc.ac.cn
(accessed on 5July2024)

1000 m

LST

National Earth System Science Data
Center

https://www.geodata.cn
(accessed on 24 July 2024)

1000 m

Soil type
https://www.geodata.cn

(accessed on 26 August 2024)
—

Evapotranspiration
https://www.geodata.cn

(accessed on 16 August2024)
1000 m

NPP
https://www.geodata.cn

(accessed on 13 August 2024)
500 m

NDVI
http://www.nesdc.org.cn
(accessed on 23July2024)

30 m

Road

the National Road Traffic Network
vector map of the Peking University

Geographic Data Platform and National
Catalogue Service For Geographic

Information

https://www.webmap.cn; https://
geodata.pku.edu.cn/ (accessed on

5August 2024)
—

Future data

Precipitation
(2020–2050)

CMIP6

https://esgfnode.llnl.gov/search/cmip6/
(accessed on 6 November 2024)

1km

Temperature
(2020–2050)

https://esgfnode.llnl.gov/search/cmip6/
(accessed on 12 November 2024)

1km

GDP
(2020–2050)

Figshare

https://figshare.com/ (accessed on 26
November 2024)

1/12°

Population
(2020–2050)

https://figshare.com/ (accessed on 23
November 2024)

30 arc-seconds
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the standard deviation and Pearson correlation coefficient matrix.

The combination of these two methods effectively reduces

subjective intervention, enhances the scientific and rational nature

of indicator weighting, and thereby improves the reliability and

explanatory power of the ecological risk assessment.

2.3.2 Ecological health assessment
The study refers to the improved ecosystem health assessment

model (Peng et al., 2011) and combines the assessment of ecosystem

service functions to evaluate the ecosystem health level of the study

area (Equations 4-5).

EHI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PH� ESV

p
(4)

PH =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV� EO� ER3

p
(5)

Where: EHI represents Ecosystem Health Index; PH represents

the health of ecosystem structure and organization; ESV represents

Ecosystem Service Value, which includes carbon sequestration,

habitat quality, water retention, and soil conservation services.

These services are calculated using the InVEST 3.14 model,

normalized, and then summed to obtain the overall ecosystem

service value (Tian et al., 2021). EV, EO, and ER represent the

vitality, organization, and resilience of the ecosystem, respectively.

Vitality is the metabolism or primary productivity of the

ecosystem, characterized by Net Primary Productivity (NPP) as

an indicator of ecosystem vitality. Organization force is the quantity
Frontiers in Ecology and Evolution 06
and diversity of interactions among various components of the

ecosystem, evaluated using Landscape Heterogeneity (LH),

Landscape Connectivity (LC), and Landscape Morphology (IPC)

(Equation 6).

EO = 0:35� LH + 0:35� LC + 0:3� IPC

= 0:2� SHDI + 0:15� AMPFD + 0:2� PD + 0:15

� CONTAG + 0:1PD1 + 0:05� COHESION1 + 0:1

� PD2 + 0:05� COHESION2 (6)

Where: SHDI is the Shannon Diversity Index; AMPFD is the

Area-Weighted Mean Patch Fractal Dimension; PD is the Patch

Density; CONTAG is the Contagion Index; PD1 and PD2 are the

patch densities of water bodies and forest landscapes, respectively.

COHESION1 and COHESION2 are the contagion indices of water

bodies and forest landscapes, respectively.

Resilience is the ability of an ecosystem to maintain its functions

and structures in the face of external risk disturbances (Jiang et al.,

2024). The study sets a resilience coefficient based on the difficulty

of recovery for different land use types, and represents the

ecosystem’s resilience as the weighted sum of the areas of each

land use type and their respective ecological recovery coefficients

(Equation 7) (Lei et al., 2023).

ER =on
i=1

Ai

A
� RCi (7)
FIGURE 2

The workflow of this study.
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TABLE 2 Integrated ecological risk assessment system.

Criterion layer Indicator Attribute CRITIC weight AHP weight Weight Descriptions References

I = log½( E�E + 1)� (
S
�S
+ 1)�(1)
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(Das et al., 2023)

\
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Where: ER represents the Ecosystem Resilience; A represents

the total area of land use; Ai represents the area of the i type of land

use. RCi represents the ecological recovery coefficient of the i type of

land use. The ecological recovery coefficients for cultivated land,

forest, grassland, waterbody, construction land, and bare land are

0.3, 0.8, 0.6, 0.8, 0.2, and 1, respectively (Pan et al., 2021).

2.3.3 Ecological zoning
Z-score standardization transforms data with different units

and scales into a standard normal distribution, effectively

eliminating dimensional disparities among indicators and

improving their comparability (Wu et al., 2022). In this study, Z-

score standardization is used to construct a two-dimensional

coordinate system, with LER on the vertical axis and EHI on the

horizontal axis. Based on this framework, the study area is divided

into four ecological zones: Strict Ecological Protection Zone (High

risk, High health): Ecosystems with high functions but under

significant external stress. These areas require enhanced ecological

protection and risk control; Ecological Control Zone (High risk,

Low health): Fragile ecosystems with high-risk exposure, which are

priority intervention and key control areas; Ecological Conservation

Zone (Low risk, High health): Areas with stable ecosystem functions

and low risk exposure. These zones should be preserved to maintain

ecological stability; Ecological Enhancement Zone (Low risk, Low

health): Degraded ecosystems with low external pressure but high

potential for restoration, representing key areas for ecological

improvement. This zoning approach captures the interaction

between ecological conditions and risk disturbances, highlights

spatial heterogeneity, and provides a scientific basis for

differentiated ecological management and targeted conservation

policies. The Z-score standardization calculation formula is

(Equations 8-10).

x =
xi − �x
s

(8)

�x =
1
no

n
i=1xi (9)

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(x − �x)2

r
(10)

where, xi represents the value of LER or EHI for each grid cell; �x

represents the average value of LER or EHI for the entire study area;

s represents the standard deviation of LER or EHI for the entire

study area; n represents the total number of grid cells.

2.3.4 Scenario design based on CMIP6
The Coupled Model Intercomparison Project Phase 6 (CMIP6)

recommends the use of Shared Socioeconomic Pathways (SSPs) and

Representative Concentration Pathways (RCPs) to simulate the

combined effects of socio-economic and climatic changes on land

use patterns (Chen et al., 2020a; Riahi et al., 2017; van Vuuren et al.,

2011). This study adopted three SSP–RCP scenarios—SSP126,

SSP245, and SSP585—to explore potential trajectories of

socioeconomic development and climate change and to analyze
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the spatiotemporal evolution of ecosystems under multiple futures.

SSP126 represents a low-emission sustainable development

pathway, assuming slow population growth, coordinated

economic–environmental development, and limited climate

change. SSP245 represents a medium-emission pathway,

assuming moderate population growth, economic expansion, and

climate change, consistent with current trends. SSP585 represents a

high-emission pathway, assuming rapid population growth,

intensified industrialization, high energy dependence, and strong

warming with precipitation variability. The SSP–RCP combinations

incorporate four drivers: population, GDP, precipitation, and

temperature. GDP projections are derived from global SSP

datasets (Murakami et al., 2021). Population data are obtained

from China’s kilometer-scale grid dataset (Chen et al., 2020b).

Climate variables (precipitation and temperature) are based on

future kilometer-scale climate grids for China under SSP–RCP

pathways (Chen and Ning, 2024b). The analysis was conducted at

a high-resolution grid scale. Land use policies and management

practices were assumed constant, while short-term shocks from

sudden socioeconomic or extreme climate events were excluded.

Based on these assumptions, multiple future development

trajectories were constructed to support land use simulations and

ecosystem response assessments (Table 3).

2.3.5 SD model
Among simulation models, the Markov model effectively

predicts changes in land use quantity and spatial distribution

(Tan et al., 2019), while system dynamics (SD) models are

particularly suitable for capturing system complexity, nonlinear

interactions, and temporal evolution, offering strong support for

scenario analysis and decision-making (Wang et al., 2022b).The

System Dynamics (SD) model is used to capture the nonlinear

relationships between socio-economic development and land use

change by representing causal feedback mechanisms among

multiple driving factors (Song et al., 2024). It includes four key

subsystems: economic, population, climate, and land use (Figure 3).
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The economic subsystem simulates the influence of infrastructure

investment on the expansion of construction land, which in turn

reduces ecological land. The population subsystem reflects changes

in urban-rural migration and associated consumption demands.

The climate subsystem captures the direct effects of temperature

and precipitation changes on habitat quality and ecosystem

stability. The land use subsystem integrates feedback from

population and economic growth, driving the conversion among

different land use. Based on the dynamics of land use

transformation, a system dynamics model was developed using

Vensim PLE x64. The simulation spans from 2000 to 2050, with a

one-year time step. The period from 2000 to 2020 is used for

historical simulation and model calibration. Simulation results

show that the average relative error between simulated and actual

land use values is less than 2%. The SD model demonstrates high

accuracy in reproducing land use change and is suitable for

forecasting future land use demand. Ultimately, the model is

driven by population, climate, and GDP scenario data for the

period 2021–2050 to derive future land use demands under

different scenarios.

2.3.6 PLUS model
Compared with traditional models such as CA–Markov, CLUE-

S, and FLUS, the Patch-generating Land Use Simulation (PLUS)

model—enhanced with a Random Forest algorithm—demonstrates

superior explanatory power and spatial accuracy in modeling land

use drivers, making it highly applicable to ecological zoning in

complex regions (Liang et al., 2021). The Patch-generating Land

Use Simulation (PLUS) model consists of two integrated sub-

modules. The first is the rule-mining module based on the Land

Expansion Analysis Strategy (LEAS), which identifies the

relationships between land use changes and driving factors. This

module uses land use data from two time points and applies the

Random Forest algorithm to extract the influence of each driving

factor on land use transitions, thereby estimating the probability of

expansion for different land uses. The second module is the Cellular

Automata simulation module, driven by the Cellular Automata

Random Seeds (CARS) algorithm. It integrates pixel-based

neighborhood weights, land use transition matrices, and patch

generation rules to simulate future land use patterns. This

approach enables the spontaneous emergence and expansion of

land use patches under spatiotemporal dynamics. This study

incorporates land use demand predictions from the SD model

and applies four categories of driving factors in the PLUS model:

Natural environmental factors: elevation (DEM), slope, soil type,

NDVI; Socio-economic factors: nighttime light (NTL), population

(POP), GDP; Transportation factors: distances to residential areas,

government seats, highways (national, provincial, expressway,

county), railways, and subway/light rail lines; Climate factors:

evapotranspiration, annual average precipitation, and

temperature. These variables are used to spatially allocate land

use demand under different future scenarios. Model accuracy was

evaluated using the Kappa coefficient, Overall accuracy, and the

Figure of Merit (FoM), while Moran’s I index was applied to assess

the robustness of spatial predictions.
TABLE 3 Variable setting indifferent climate scenarios during 2020–
2050.

Period Scenario AGC (%) APC (%) TC PC

2020-2030

SSP126 6.079 0.745 -0.497 4.299

SSP245 5.038 1.605 0.610 2.036

SSP585 6.901 1.564 0.135 5.529

2030-2040

SSP126 4.531 0.290 0.208 11.666

SSP245 3.140 0.334 -0.013 5.823

SSP585 5.408 0.307 0.268 9.435

2040-2050

SSP126 1.986 -0.147 0.107 -0.415

SSP245 1.572 0.016 0.850 8.330

SSP585 2.354 -0.120 1.034 3.704
APC, annual average population change; AGC, annual average GDP change; PC, annual
precipitation change; TC, annual average temperature change.
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3 Results

3.1 Ecological zoning construction

3.1.1 Spatial and temporal distribution of land use
Throughout 2000, 2010, and 2020, forest remained the

dominant land use, covering 63.79%, 62.99%, and 62.28% of the

study area, respectively, followed by cultivated land and

construction land (Figures 4a–c). Cultivated land, forest, and

grassland showed gradual declines, with cultivated land

experiencing the largest reduction (7.45%). Construction land

expanded markedly (60.20%), primarily around core urban areas,

reflecting rapid urbanization and infrastructure development.

Grassland area decreased by 3.20%, indicating moderate

disturbance to natural ecosystems. Although the overall changes

in grassland and bare land were relatively limited, the proportion of

bare land increased significantly by 42.72%, likely due to intensified

construction activities and expanded engineering land use. From

2000 to 2020, substantial land use conversions occurred within the

study area, with cultivated land experiencing the most pronounced

transformation. The cumulative area converted from cultivated

land reached 1,029.37 km², primarily into construction land

(555.65 km²) and forest (394.97 km²). Forest also exhibited

considerable conversion, with a cumulative loss of 890.88 km²,

mainly transformed into construction land (466.22 km²) and

cultivated land (362.87 km²). Other land use categories

underwent relatively minor conversions (less than 100 km²),

exerting limited influence on the overall spatial pattern.

To further illustrate the dynamics of land use change, land use

transition chord diagrams were generated for the periods 2000–
Frontiers in Ecology and Evolution 10
2010 and 2010–2020 (Figures 4d–f). The results indicate that the

total converted area of cultivated land in both phases remained

nearly constant (712.36 km² and 711.22 km², respectively),

suggesting that the intensity of cultivated land conversion has

consistently remained at a high level over the past two decades.

From 2000 to 2010, cultivated land was primarily converted to

construction land (accounting for 47.80% of the total converted

area), reflecting how rapid urbanization drove industrial

development and sustained demand for construction land. From

2010 to 2020, the area of cultivated land converted to construction

land decreased (19.29 km²), while the area converted to forest

increased (39.42 km²). This shift may have been influenced by

ecological civilization policies, under which some cultivated land

was incorporated into ecological restoration and afforestation

projects. At the same time, regional development entered a phase

of structural optimization and stock adjustment, slowing the

expansion of construction land. Overall, while the land use

pattern characterized by “equal emphasis on development and

ecology” has somewhat alleviated the pressure of cultivated land

conversion into construction land, the overall trend of cultivated

land reduction driven by urbanization remains significant.

Consequently, the issue of land resource scarcity is becoming

increasingly prominent.

3.1.2 Spatial and temporal distribution of LER
Landscape Ecological Risk (LER) was classified into five levels

using the natural breaks method (Table 4). By analyzing changes in

the area of each risk level, the study examined the spatiotemporal

evolution of LER under multi-factorial drivers and identified its

spatial distribution patterns. Results show that LER was
FIGURE 3

The causal feedback loops diagram of the system dynamics model for LUCC under the joint influence of socio-economic and environmental
factors. The factors inside the box represent state variables (e.g., GDP, population, and land types), while the flow tools represent rate variables (e.g.,
population growth rate, GDP growth rate). The terms in parentheses refer to auxiliary variables (e.g., forestry investment, fisheries investment) or
shadow variables (e.g., time), and the arrows indicate causal relationships between the variables.
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predominantly characterized bymedium andmedium-low risk levels.

These two categories accounted for 76.97%, 74.40%, and 63.48% of

the total area in 2000, 2010, and 2020, respectively, reflecting a

consistent downward trend (a total decrease of 13.49%) and

indicating a gradual increase in ecological risk. From 2000 to 2010

and from 2010 to 2020, the areas of low, medium-low, and medium

risk declined by 784.24 km² and 3,266.91 km², respectively.

Compared with the first period, the second period saw area

reductions that were 3.18, 2.39, and 10.69 times larger for low,

medium-low, and medium risk levels, respectively—indicating that

medium risk areas experienced the most pronounced decline.

Meanwhile, medium-high and high risk areas expanded

continuously. Between 2010 and 2020, medium-high and high risk

zones increased by 2,247.41 km² and 1,019.50 km², respectively—7.0

and 2.2 times the increase observed from 2000 to 2010. This

highlights medium-high risk as the dominant expanding category,

with ecological risk spreading across a wider area and ecosystem

stability facing increasing threats. These findings underscore the need

for enhanced ecological protection and restoration efforts in medium

and high risk zones to improve regional ecological resilience.

In terms of spatial distribution (Figure 5), the mean LER values

in 2000, 2010, and 2020 were 0.423, 0.431, and 0.453, respectively,

showing a spatial pattern of “high in the center, low at the edges.”
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High risk zones were mainly concentrated in central urban areas

(such as Furong District), typically in clustered or strip-shaped

formations. These zones align with dense construction land and

major transportation infrastructure, indicating strong impacts from

human activities and economic development. By 2020, high risk

zones had expanded outward, further intensifying the imbalance

between urban growth and ecological protection. Medium-high and

medium risk areas were mainly distributed in transitional zones

between urban cores and peripheral counties, such as Yuhua

District. The LER value in Yuhua increased from 0.525 in 2000 to

0.611 in 2020. During this period, industrial restructuring and

infrastructure expansion led to rapid population growth and

increased construction density, exacerbating ecosystem

disturbance. Some medium risk zones consequently shifted to

medium-high risk due to economic spillover effects. Medium-low

and low-risk areas were largely found in outer counties such as

Liuyang, Chaling, and Yanling, which possess strong ecological

foundations. For example, Yanling County maintains 85.67% forest

coverage, with well-preserved natural landforms and stable

landscape structures, and is subject to minimal anthropogenic

interference. This further confirms the critical role of ecological

land (especially forest) in maintaining landscape stability and

mitigating ecological risk.
FIGURE 4

Spatial distribution of land use types in the study area from 2000 to 2020 (a–c). Land Use Transitions from 2000 to 2010, 2010 to 2020, and 2000
to 2020 (d–f).
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3.1.3 Spatial and temporal distribution of EHI
The Ecosystem Health Index (EHI) was classified into five levels

using the natural breaks method to identify its spatial distribution

characteristics (Figure 6). Overall, ecosystem health exhibited a

spatial pattern of “low in the center, high at the edges.” High and

medium-high EHI values were mainly distributed in peripheral

areas such as Liuyang, Yanling, and Chaling, where forest and

grassland dominate, and ecosystem stability remains strong.

Medium and medium-low levels were concentrated in the

transitional zones between urban centers and outlying counties,

accounting for 52.40%, 57.64%, and 63.68% of the area in 2000,

2010, and 2020, respectively. These areas are primarily composed of

cultivated land, forming the ecological matrix of the region.

However, they have become increasingly fragmented under urban

expansion, leading to a continuous decline in ecosystem health. Low

EHI values were mainly concentrated in the core urban districts,

such as Furong District, where construction land dominates. Under

the combined pressures of rapid economic growth and population

concentration, these areas exhibited significantly lower EHI levels

than surrounding regions. The mean EHI values in the study area

declined from 0.555 in 2000 to 0.543 in 2010 and 0.518 in 2020. The

2.16% decrease from 2000 to 2010 may be attributed to the
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implementation of the CZXUA integration strategy in 1997,

which accelerated economic development and construction land

expansion, compressing ecological space despite limited ecological

degradation at that stage. The subsequent 4.60% decline between

2010 and 2020 may relate to the accelerated urban integration

process, the accumulation of prior ecological risks, and delayed

ecological restoration measures.

From the perspective of land use, EHI generally exhibited a

declining trend between 2000 and 2020 (Figure 7). The EHI of

forest, water body, and grassland decreased by 6.29%, 4.21%, and

1.97%, respectively, with forest showing the most significant

decline. This may be attributed to the combined effects of natural

disasters (wildfires, pests, extreme weather, and soil degradation)

and anthropogenic pressures (illegal logging and construction

encroachment). The EHI of cultivated land increased initially—

possibly due to the positive effects of ecological protection measures

such as nature reserves, ecological redlines, and afforestation

programs—but later declined as the long-term effectiveness of

these measures diminished. The EHI of bare land first declined

due to urban infrastructure expansion, then improved as a result of

vegetation recovery through ecological restoration initiatives.

Construction land consistently exhibited a sharp decline in EHI,
FIGURE 5

Distribution of landscape ecological risk levels in the study area (a–c).
TABLE 4 Classification, area and proportion of landscape ecological risk in the study area from 2000 to 2020.

Risk zones Rating level
2000 2010 2020

Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%)

Low risk [0,0.3] 2003.97 7.02 1956.49 6.85 1805.49 6.32

Medium-low risk (0.3,0.4] 8573.26 30.02 7999.80 28.02 6630.25 23.22

Medium risk (0.4,0.5] 13406.92 46.95 13243.62 46.38 11497.27 40.26

Medium-high risk (0.5,0.6] 3864.69 13.53 4185.76 14.66 6433.17 22.53

High risk (0.6,1] 705.92 2.47 1169.08 4.09 2188.58 7.66
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with a total decrease of 22.15%. This was driven by the continuous

expansion of built-up areas, the reduction of ecological land, and

the resulting degradation of ecosystem services such as water

retention, soil conservation, and habitat quality. Consequently,

the stability and resilience of the ecosystem structure weakened,

leading to a significant drop in overall ecosystem health.
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3.1.4 Characteristics of the spatial and temporal
evolution of ecological zones

Based on the standardized Z-scores of LER and EHI, ecological

zones were delineated using zero as the classification threshold

(Figures 8a–c). The study area was categorized into four functional

zones: Ecological Conservation Zone (Low LER—High EHI),
FIGURE 6

Spatial distribution of ecosystem health levels in the study area (a–c).
FIGURE 7

Ecological health indices for different land use.
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Ecological Control Zone (High LER—Low EHI), Strict Ecological

Protection Zone (High LER—High EHI), and Ecological

Enhancement Zone (Low LER—Low EHI) (Table 5).

In terms of overall spatial structure, the Ecological Conservation

Zone accounted for 41.28%, 41.37%, and 41.38% of the total area in

2000, 2010, and 2020, respectively. This zone is primarily located in

peripheral counties with rich ecological resources (e.g., Yanling and

Chaling), dominated by forest and grassland. These areas

experience minimal human disturbance, have high vegetation

coverage, stable ecosystem structures, and provide significant

ecological services. The overlapping areas and proportions with

statutory protected areas were 2,641.97 km² (22.06%), 2,669.47 km²

(22.63%), and 2,608.64 km² (22.10%), respectively. This indicates

that the overlap between ecological conservation red lines and
Frontiers in Ecology and Evolution 14
ecological conservation zones remained consistently high with

minimal fluctuation, thereby supporting the stability of

ecosystems and ecological service functions.

The Ecological Control Zone is the second largest, comprising

32.14%, 32.41%, and 32.36% of the area in 2000, 2010, and 2020,

respectively. It is mainly distributed in the central and northern

parts of the core urban areas and is characterized by construction

and cultivated land. Under the pressure of urban expansion and

population concentration, this zone experiences reduced ecological

space, increased landscape fragmentation, and weakened ecosystem

function, contributing to heightened ecological security risks. The

overlapping areas and proportions with legally designated protected

zones were 306.34 km² (3.34%), 292.99 km² (3.17%), and 295.30

km² (3.20%), respectively. The fluctuating proportions reflect urban
FIGURE 8

Spatial distribution of ecological zones in the study area from 2000 to 2020 (a–c), Interconversion between different ecological zones during the
periods 2000–2010, 2010–2020, and 2000–2020 (d–f).
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expansion and land use changes within the ecological control zone,

highlighting the need to strengthen coordination between ecological

conservation and land use management.

The Strict Ecological Protection Zone showed a decreasing

trend, accounting for 17.99%, 17.48%, and 17.44% of the area in

2000, 2010, and 2020, respectively. It is mainly located in the

transitional zones surrounding the urban core and is dominated

by cultivated land. The ecosystem in this region faces degradation

risks, requiring particular attention to ecological fragility and

fragmentation issues. The overlapping areas with legally

designated protected areas were 330.39 km² (6.44%), 258.39 km²

(5.18%), and 312.19 km² (6.28%), respectively. The notable

fluctuations indicate that the extent of legally protected areas has

been influenced by urbanization processes and development

policies during specific periods. Accordingly, efforts should focus

on restoring and safeguarding ecological functions within strictly

protected areas.

The Ecological Enhancement Zone has the smallest proportion,

covering 8.72%, 8.52%, and 8.69% of the total area in 2000, 2010,

and 2020, respectively. It is mainly distributed in areas such as You

County, dominated by a mix of forest and cultivated land. This zone

lies between Ecological Conservation and Control zones and serves

as a key regulatory area with potential for ecological recovery and

functional restoration. The overlapping areas with legally

designated protected zones were 159.04 km² (6.49%), 172.03 km²

(6.89%), and 176.76 km² (7.03%), respectively. The continuous

increase in these proport ions demonstrates that the

implementation of ecological conservation policies has

strengthened ecological restoration potential and functions in

this region.

From a temporal perspective (Figures 8d–f), notable spatial

transitions occurred among the ecological zones. The Ecological

Control Zone experienced the largest transition to the Strict

Ecological Protection Zone, with a cumulative transfer of

approximately 19,875 km². However, the rate of this transition

slowed between 2010 and 2020, showing a 22.64% decrease

compared to the 2000–2010 period. These transitions were

concentrated at the edges of urban cores, where ecological risk

control has been insufficient and EHI continues to decline,

indicating limited effectiveness of ecological restoration. The
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second largest transition occurred from the Ecological Control

Zone to the Ecologica l Enhancement Zone, tota l ing

approximately 18,175 km². From 2010 to 2020, the transition

volume decreased by 69.70% compared to the previous decade,

primarily in non-core marginal areas. This suggests partial relief of

landscape risks, but slow progress in ecological health restoration.

The Ecological Conservation Zone showed a high transition

frequency. Between 2010 and 2020, the volume of outflow

transitions exceeded the inflow during 2000–2010 by 56.89%,

indicating increasing instability in regional ecosystems. This trend

underscores the urgent need to reinforce ecological redline

protections and implement targeted restoration strategies to

preserve ecological integrity.
3.2 Ecological zoning construction under
multi-scenarios

3.2.1 Simulation of land use change under
different scenarios

Using land use data from 2000 to 2020 as a baseline, this study

projected the area and proportion of each land use for the years

2030, 2040, and 2050 under three scenarios: SSP126, SSP245, and

SSP585 (Table 6). In all scenarios, forest remains the dominant land

use, accounting for approximately 60% of the total area, followed by

cultivated land at around 28%. Construction land continues to

expand across all scenarios, with average annual increases of 0.59%

(SSP126), 0.30% (SSP245), and 0.40% (SSP585). Among them, the

SSP585 scenario produces the largest area of construction land by

2050 (2,664.94 km²), reflecting the significant land pressure

imposed by a high-emission, high-urbanization development

trajectory. Although construction land grows most rapidly under

the SSP126 scenario, its final projected extent is smaller than that

under SSP585. This outcome may be attributed to the SSP126

pathway’s emphasis on ecological protection and low emissions,

aiming to accommodate urban growth while safeguarding natural

ecosystems. Cultivated land, grassland, and water body show a

consistent declining trend across scenarios. This is primarily due to

the encroachment of construction land, coupled with indirect effects

of climate change and land degradation on grassland and aquatic
TABLE 5 Statistics on the ecological zoning of the study area from 2000 to 2020.

Ecological zoning
type

2000 2010 2020
2000-
2010

2010-
2020

2000-
2020

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Change rate (%)

Ecological conservation
zone (LH)

11774.25 41.28 11798.75 41.37 11803.25 41.38 0.086 0.016 0.102

Ecological control zone
(HL)

9165.25 32.14 9242.5 32.41 9228.25 32.36 0.271 -0.050 0.221

Ecological strict
protection zone (HH)

5129.75 17.99 4985 17.48 4974 17.44 -0.508 -0.039 -0.546

Ecological enhancement
zone (LL)

2452 8.60 2495 8.75 2515.75 8.82 0.151 0.073 0.224
fro
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ecosystems. Among all land uses, the decline in cultivated land is

the most pronounced, with average annual decreases of 0.57%

(SSP126), 0.10% (SSP245), and 0.25% (SSP585) projected for

2030, 2040, and 2050, respectively.

Spatial analysis of land use transitions from 2020 to 2050

(Figure 9) reveals that most land conversion under all scenarios

involves transformation into construction land, with forest being

the most affected. The expansion of construction land is

concentrated on the urban periphery, typically along

transportation corridors and infrastructure belts, forming an

outward expansion pattern that reflects the spatial coupling of

urban growth and transportation development. Compared to

2020, the net increase in construction land by 2050 is 850.98 km²

(SSP126), 607.40 km² (SSP245), and 1,031.21 km² (SSP585).

Concurrently, the forest area converted to other uses is 366.13

km² (SSP126), 438.95 km² (SSP245), and 671.45 km² (SSP585).

These figures indicate that urban expansion poses a substantial

threat to ecosystem integrity and reflects the intensifying impact of

socio-economic development on natural landscapes. Specifically,

under SSP126, cultivated land is converted to both forest and

construction land, suggesting a balance between urban expansion

and ecological restoration. Forest remains relatively stable within

core urban areas but is more frequently converted in peripheral

counties, primarily to construction and cultivated land. Under

SSP245 and SSP585, cultivated land is predominantly converted

to construction land, indicating that medium to high intensity
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urbanization is accelerating the loss of agricultural land. Forest is

also increasingly converted to construction land, especially in the

hilly eastern and southern regions, suggesting that urban

construction pressure is encroaching upon ecologically sensitive

zones and intensifying land use conflicts.

3.2.2 Ecological zoning simulation
Based on land use simulation results for 2030, 2040, and 2050

under multiple scenarios, the LER and the EHI were recalculated to

construct the spatial distribution of future ecological zoning

(Figure 10). This study reveals the evolution characteristics of

ecological spatial structures under different SSP–RCP scenarios.

Compared to 2020, the Ecological Control Zone exhibits an overall

expansion trend across all scenarios, with an average area increase

of 4.90%. In contrast, the Ecological Enhancement Zone, Strict

Ecological Protection Zone, and Ecological Conservation Zone

show decreasing trends, with average reductions of 2.63%, 1.23%,

and 1.04%, respectively.

Further analysis of the phased changes under each scenario

reveals the following: The ecological control zone exhibits varying

area changes across different scenarios. Under SSP126, it first

contracts by 60.25 km² (2030–2040) and then expands by 32.50

km² (2040–2050). Under SSP245, it continuously contracts,

decreasing by 38.50 km². Under SSP585, it shows a phased

expansion pattern—first shrinking by 7.75 km², then increasing

by 26.00 km². The relatively stable trend under SSP126 and SSP245
TABLE 6 Area and proportion of land use types in 2030, 2040, and 2050 under multiple scenarios.

Type
Multi-

scenarios
Cultivated Forest Grassland Water Construction land Bare land

Area
(km2)

SSPRCP126-30 8006.45 17000.10 423.17 533.84 2150.57 3.98

SSPRCP126-40 7847.37 17006.90 430.64 512.70 2317.18 3.33

SSPRCP126-50 7688.28 17146.22 304.17 491.55 2484.71 3.19

SSPRCP245-30 8008.09 17119.20 425.41 489.67 2071.32 4.43

SSPRCP245-40 7980.32 17096.30 415.54 466.05 2156.23 3.69

SSPRCP245-50 7952.55 17073.40 405.66 442.42 2241.13 2.95

SSPRCP585-30 8004.14 16839.90 379.72 450.35 2440.75 3.26

SSPRCP585-40 7934.81 16850.90 357.07 430.19 2542.96 2.19

SSPRCP585-50 7865.47 16840.90 334.42 410.04 2664.94 2.35

Proportion (%)

SSPRCP126-30 28.47% 60.46% 1.51% 1.90% 7.65% 0.014%

SSPRCP126-40 27.91% 60.48% 1.53% 1.82% 8.24% 0.012%

SSPRCP126-50 27.34% 60.98% 1.08% 1.75% 8.84% 0.011%

SSPRCP245-30 28.48% 60.88% 1.51% 1.74% 7.37% 0.016%

SSPRCP245-40 28.38% 60.80% 1.48% 1.66% 7.67% 0.013%

SSPRCP245-50 28.28% 60.72% 1.44% 1.57% 7.97% 0.010%

SSPRCP585-30 28.47% 59.89% 1.35% 1.60% 8.68% 0.012%

SSPRCP585-40 28.22% 59.93% 1.27% 1.53% 9.04% 0.008%

SSPRCP585-50 27.97% 59.89% 1.19% 1.46% 9.48% 0.008%
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is linked to stricter ecological policies that constrain urban

expansion. In contrast, the SSP585 scenario reflects higher urban

development pressure and weaker ecological controls, leading to an

increase in ecological risk and the expansion of the control zone. As

the largest and most ecologically stable zone (>40%), the Ecological

Conservation Zone serves as a natural ecological buffer dominated

by forest. Under SSP126, it increases by 167.50 km² from 2030 to

2040, followed by a slight contraction of 8.75 km² from 2040 to

2050. In the SSP245 and SSP585 scenarios, the Ecological

Conservation Zone continues to expand, with total increases of
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175.50 km² and 166.50 km², respectively, suggesting that moderate

to high development paths can still accommodate the preservation

of core ecological areas under certain land-use controls. A strict

Ecological Protection Zone between conservation areas and urban

development is highly sensitive to ecological disturbance. The Strict

Ecological Protection Zone decreases in all scenarios: by 0.21%

under SSP126, 0.04% under SSP245, and 0.34% under SSP585,

relative to 2020. The sharpest decline occurs in SSP585, where

accelerated urban boundary expansion causes spatial compression,

ecological degradation, and rising risk levels in already vulnerable
FIGURE 9

Spatial distribution of land use type transitions from 2020 to 2050.
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zones. The Ecological Enhancement Zone is mainly found in

fragmented patches along the edges of the conservation zone. In

all scenarios, its area decreases steadily: by 0.09% (SSP126), 0.14%

(SSP245), and 0.18% (SSP585). Due to its low ecosystem health

status, the forest is more susceptible to conversion into construction

land, resulting in limited ecological restoration potential and

continuous spatial loss.

To further reveal spatial distribution differences in ecological

zoning across multiple scenarios, this study analyzes the center of
Frontiers in Ecology and Evolution 18
gravity distribution, migration trajectories, and hot and cold spot

regions for the ecological control zone and ecological conservation

zone (Figure 11). The center of gravity for the ecological control

zone is located in Yutang District, Xiangtan City. Under SSP126 and

SSP585 scenarios, the migration direction shifts from northwest to

southeast, whereas under SSP245 it reverses from southeast to

northwest, with migration speeds increasing across all scenarios.

The standard deviation ellipse rotation angle across scenarios is

approximately 150°, with the major axis about 1.4 times the minor
FIGURE 10

Spatial distribution patterns of ecological zones under multiple scenarios.
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axis, indicating pronounced northwest-to-southeast diffusion

associated with urban economic gradient zones. Hotspot areas are

concentrated in Changsha, Liuyang, and Chaling, with more

extensive regional expansion under SSP585 than under SSP126.

Cold spots are mainly located in You County, with regional changes

under SSP585 showing weaker contraction compared to SSP126.

These results suggest that the expansion of construction land and

industrial agglomeration significantly affects the ecological

conservation zone. The center of gravity for ecological

conservation zones is located in Liling City. Under the SSP126

scenario, its migration direction is from northwest to southeast.

Under the SSP245 and SSP585 scenarios, the migration direction
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shifts to northwest to southwest, with the latter showing a faster

migration rate. The standard deviation ellipse rotation angle across

scenarios is approximately 160°, with the major axis about 1.6 times

the minor axis. This reflects pronounced northwest-to-southeast

diffusion, consistent with regional mountain and river distributions.

Hotspot areas are relatively dispersed across scenarios, though You,

Yanling, and Chaling show persistent expansion. Cold spots are

most evident in Liuyang and contract with increasing emission

intensity. These findings indicate that ecological conservation zones

are shaped by the combined influence of natural geography, human

activities, and ecological policies. Therefore, analyzing the spatial

response mechanisms of ecological zoning under different
FIGURE 11

Distribution of centroid locations, movement trajectories, and hot/cold spot areas in ecological control zones and ecological conservation zones
under multiple scenarios.
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development pathways is essential for designing ecological zoning

governance and protection policies, and for promoting more

coordinated human–land relationships in the region.
3.3 Ecological zoning control measures

Based on the characteristics, historical evolution, and projected

trends of ecological zones, this study proposes targeted control

strategies to support regional sustainable development and enhance

ecosystem resilience.

The ecological control zone covers a relatively large area with high

urbanization levels, characterized by dense population and

concentrated economic activities. This spatial concentration exerts

substantial pressure on the surrounding ecological environment,

leading to landscape fragmentation and heightened ecological risks.

Under all SSP scenarios—particularly SSP585—this zone is projected to

expand, thereby intensifying potential ecological threats. To address

these challenges, the zone should leverage its spatial structure of “central

core with radial extensions and clustered satellite districts” to promote

intensive and efficient land use in surrounding areas. A zoning-based

and classified land use management system should be established,

coupled with strict controls on construction intensity. It is also essential

to delineate urban growth boundaries and ecological buffer zones based

on scientific assessments. Furthermore, the implementation of

ecological risk assessment and early warning mechanisms will be

crucial for strengthening the zone’s capacity to cope with intensive

development and preventing further ecological degradation.

The ecological conservation zone serves as a vital barrier for

maintaining regional ecological security, characterized by relatively

stable structures and fully functional ecosystems. To maximize its

ecological advantages, green economic activities—such as camellia

oil cultivation and eco-tourism—should be promoted to foster

synergies between ecological protection and local economic

development. At the same time, site-specific green infrastructure

should be developed, ecological corridors and networks

constructed, and landscape connectivity strengthened to improve

ecosystem self-regulation and resilience.

The Strict ecological conservation zone is highly vulnerable to

disturbances from urban expansion due to the sensitivity and

fragility of its ecosystems. Strengthening environmental

protection policies is essential to support ecological restoration

and risk mitigation. A robust protection framework should be

implemented, incorporating comprehensive risk prevention and

control systems, stricter enforcement of ecological redlines, and

stringent regulation of construction activities. In addition, an

integrated ecological management system should be developed for

transitional urban–rural areas to enhance their buffering capacity

and ecological barrier functions.

The ecological enhancement zone experiences relatively low levels

of human disturbance and land use intensity, yet it possesses significant

ecological restoration potential. Across all scenarios, however, its area is

projected to decline, and its spatial distribution is expected to become

increasingly fragmented due to encroachment from surrounding zones.

To counter this trend, a strategy that integrates natural succession with
Frontiers in Ecology and Evolution 20
moderate human intervention is recommended. Low-disturbance land

use approaches—such as green agriculture and ecological forestry—

should be encouraged. In addition, land consolidation and the

restoration of fragmented patches are necessary to strengthen

ecological recovery and enhance the provision of ecosystem services.
4 Discussion

4.1 LER response to land use change under
multiple scenarios

Under the interaction of human activities and natural processes,

changes in land use composition, structure, and function directly

affect the level of LER, highlighting the close relationship between

land use dynamics and LER’s spatial–temporal patterns (Guo et al.,

2024). The study employed a combined subjective and objective

weighting method to comprehensively calculate the weight values

for each evaluation factor, ensuring both the comprehensiveness

and objectivity of weight assignment (Zhang et al., 2023b).

This study finds that forest consistently dominates the land use

structure (approximately 60%) and corresponds to regions with

predominantly medium and medium-low LER. This indicates the

risk-buffering function of forests, consistent with the findings of Li

(Li et al., 2025) and Liu (Liu and Tang., 2024). The former

emphasizes forest stability and resistance to disturbance, while the

latter argues that the loss of ecological land (forest, grassland, and

water body) compromises hydrological functions and ecosystem

services, posing a threat to ecological security. Wu (Wu et al., 2022)

also demonstrates that forest possess strong structural stability and

ecological connectivity, enabling self-regulation under pressure.

Scenarios oriented toward sustainability (SSP126) preserve more

ecological land and show slower increases in ecological risk. Under

SSP245, 16.52% of the area falls within high and medium-high risk

levels, with 63.94% of the land still classified as ecological land. This

suggests that moderate land development and strong ecological

protection policies (e.g., ecological redlines) help maintain

ecosystem resilience and suppress systemic degradation. Li (Li et

al., 2020b) further confirms that projected LER increases are closely

linked to land use and climate change, supporting the reliability of

the scenario-based simulations presented in this study. This is

consistent with the findings of Wang (Wang and Zhang, 2023b),

which confirmed that policy interventions, ecological conservation

efforts, and technological innovations can effectively enhance land

intensification and mitigate ecological risks.

From 2000 to 2020, the area of construction land expanded from

650.17 km² to 1,633.74 km², representing an increase of 60.20%.

Under the SSP585 scenario, the expansion of construction land by

1.63 times by 2050 leads to ecological patch fragmentation caused by

imbalanced land conversion and ecological regulation. The increase

and outward spread of medium-to-high risk zones indicate that the

expansion of construction land is a key driver of the rising LER value.

This aligns with the findings of Shaker UI Din (UI Din and Mak,

2021) and Addis Bikis (Bikis et al., 2025). Zhang (Zhang et al., 2023a)

also emphasized that urban expansion occupies portions of cultivated
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land, forest, and grassland, thereby triggering soil erosion and

contamination, increasing landscape heterogeneity, and

exacerbating ecological risks.
4.2 EHI response to land use change under
multiple scenarios

The expansion of construction land and the reduction of ecological

land are the primary drivers of regional ecosystem health deterioration

(Saifullah et al., 2016). From 2000 to 2020, construction land expanded

2.52 times. This process was partly stimulated by the region’s

designation as a national pilot zone for ecological reform in 2007,

which spurred rapid economic growth but simultaneously intensified

ecological land fragmentation (forest, grassland, and water bodies),

thereby weakening ecosystem structure and resilience. Consequently,

the EHI was dominated by low and medium-low levels, particularly in

urban cores and expanding peri-urban areas. This pattern corroborates

the findings of Zhu (Zhu et al., 2025) and Chen (Chen, et al., 2022b).

The former highlighted that urbanization heightens land use pressure,

causing ecological resource loss and patch fragmentation, while the

latter reported cold spot aggregation in economic core areas dominated

by construction land.

Simulation results indicate that future expansion of construction

land will continue to erode ecological land across all SSP scenarios,

leading to further degradation of ecosystem health. This outcome

aligns with Tu (Tu et al., 2023) and Wu (Wu et al., 2024b), whose

studies in the Greater Bay Area demonstrated that land development

under SSP scenarios degrades habitat quality and ecological security.

Under SSP126 and SSP245, more than 66% of the study area remains

within medium and medium-high EHI levels, suggesting a relatively

robust ecosystem structure and recovery potential. By contrast,

SSP585 exhibits the most pronounced deterioration, with medium-

low EHI areas increasing by 2.83%. Construction land is projected to

expand to 1.42, 1.32, and 1.56 times its 2020 extent under SSP126,

SSP245, and SSP585, respectively, further reducing ecosystem

organization and service functions. This is consistent with Pan

(Pan et al., 2020), who argued that urban expansion leads to a

decline in ecosystem organization and service functions, thereby

causing a continuous decline in EHI, which also confirms the

accuracy of the results of this study. Similar evidence has been

reported elsewhere: Yimuranzi (Yimuranzi et al., 2023) identified

construction land expansion as the primary cause of ecological

quality decline in the northern foothills of the Tianshan

Mountains, while Zhang (Zhang et al., 2023c) emphasized that

ecological land enhances connectivity among habitat patches and

strengthens ecosystem vitality and service functions by increasing

vegetation cover.
4.3 Advantages and applicability

Research integrating the SD-PLUS model facilitates the

assessment of land-use changes and the prediction of future

spatial distributions. The SD model simulates shifts in land use
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under different scenarios, while the PLUS model dynamically

analyzes spatial patterns of land use. Their combination enables

long-term land-use simulations under SSP-RCP scenarios.

Compared with the direct use of the LUH2 dataset (spatial

resolution 0.25°) (Kim et al., 2018), the SD-PLUS model generates

higher-resolution land use projections, thereby capturing finer

details of local land use dynamics and ecosystem changes. The

model’s land use simulation results were validated against actual

2020 land use data, yielding a Kappa coefficient of 0.833 (Kappa >

0.8) and an overall accuracy of 0.912. These results indicate high

simulation precision and reliability in modeling both land use

structure types and spatial distribution patterns. Based on existing

research (Wang and Zhang, 2023b), with ecological red lines as

constraints, and using 1.25 times and 1.68 times the existing road

network plus new expressways as driving factors, we simulated the

structural types and spatial distribution of land use in 2050 under

the SSP585 scenario. The results showed that both the Kappa

coefficient and the overall accuracy exceeded 0.93, while Moran’s

I index (for construction land) remained stable at around 0.83. This

demonstrates that the model has high simulation accuracy and a

relatively stable spatial distribution, providing reliable predictive

outcomes. Given that the coarse resolution of global SSP–RCP

scenarios may introduce significant uncertainty in regional-scale

studies, we improved, adjusted, and localized the SSP-RCP

scenarios based on prior research (Zhong et al., 2023). The land-

use expansion ratio was applied as the transition matrix, while

major river basins (areas > 0.8 km²), important ecological health

patches, and connectivity patches (ecological corridors) were set as

constraints. This approach enhances the model’s ability to capture

regional ecological processes and spatial heterogeneity, thereby

improving the plausibility and applicability of the prediction results.

By simulating future ecological zoning across multiple

scenarios, potential ecological risk areas and their evolutionary

trends can be effectively identified, providing support for

establishing a dynamic and precise spatial control system and

regional sustainable development (Lyu et al., 2022; Liu et al.,

2019). This study employs LER and EHI as complementary

perspectives for assessing ecosystem status, respectively capturing

ecosystem sensitivity to external disturbances and the internal

stability of the system (Zhang et al., 2025). The expansion of

construction land leads to landscape fragmentation and habitat

loss, which elevates LER. Simultaneously, the reduction of

cultivated land and the fragmentation of forests weaken

ecosystem service functions, resulting in a decline in EHI levels

(Chen and Ning., 2024b). In the main urban area and surrounding

regions, this compounding effect of “rising risk and declining

health” is particularly evident, forming a coupled pattern of high

risk and low health. In contrast, while forested areas in peripheral

mountainous regions act as natural barriers, intensifying human

disturbances have pushed natural carrying capacity to its limits.

This is particularly evident in fragmented, steep-sloped marginal

zones where severe soil erosion and land degradation pose critical

challenges to regional ecological security. Under the SSP126

scenario, limiting the expansion of construction land effectively

mitigates the upward trend of LER, resulting in an average EHI
frontiersin.org

https://doi.org/10.3389/fevo.2025.1662739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Peng et al. 10.3389/fevo.2025.1662739
reduction of 6.25%. Under the SSP245 scenario, risk and health

exhibit a more complex and contradictory relationship. Under the

SSP585 scenario, rapid urbanization accelerates ecological risks and

significantly damages ecological health, with an average EHI

reduction of 8.97%. This indicates a tighter negative coupling

between the two indicators, confirming that land use dynamics

are the core driver of the coupled evolution of LER and EHI.

Moreover, the underlying mechanisms of this coupling differ

significantly across development pathways.
4.4 Limitation

First, although LER assessments comprehensively account for

factors such as economic development and population density, the

driving mechanisms of LER vary greatly across regions. A unified

indicator system struggles to fully capture regional characteristics.

Future research should integrate environmental factors (e.g.,

proximity of industrial land and construction land, urban form, and

frequency of ecological pollution incidents) with socioeconomic factors

(e.g., agricultural output, industrial output, and land utilization rates) to

establish a more comprehensive evaluation framework. Ecological

zoning research based on the dual dimensions of LER and EHI

effectively reflects risk sensitivity and system stability but omits critical

elements such as ecological service value and socio-ecological resilience.

Future research should develop a multidimensional coupled indicator

system integrating LER–EHI–ESV–REI. By employing methods such as

geographically weighted regression (GWR) and random forest, it will be

possible to explore the spatial patterns, driving mechanisms, and

spillover effects of ecological zoning in greater depth. This approach

will enhance both the theoretical foundation and the practical

application of ecological zoning assessments.

Second, to focus on climate–economic scenario simulations, the

transportation network component within the SD-PLUS model was

parameterized using static data from 2020. Although policy

documents such as the Hunan Provincial Territorial Spatial Plan

(2021–2035), the Changsha–Zhuzhou–Xiangtan Ecological Green

Heart High-Level Protection and High-Quality Development Plan

(2024–2035), the Hunan Provincial Expressway Network Plan

(2024–2035), and the Hunan Provincial Highway Network Layout

Plan (2021–2050) were incorporated, and sensitivity tests were

conducted to strengthen model robustness and predictive validity,

some uncertainty remains. Future research could adopt kernel

density methods to calculate urban road network density

expansion rates, thereby improving prediction accuracy.

Third, SSP-RCP data are provided at a kilometer-level spatial

resolution, which makes it difficult to capture fine-scale local

variations. Scenario projections inherently involve uncertainty,

and actual developments may deviate from simulated trajectories.

The relationship between land use and ecological responses

depends on empirical models that cannot fully incorporate all

ecological processes and nonlinear feedbacks. In addition, both

the data and models themselves contain inherent errors and

uncertainties. Future studies should consider integrating high-
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resolution remote sensing imagery and refined socioeconomic

data, employing multi-source fusion techniques to improve

simulation accuracy and decision-support capacity.
5 Conclusions

This study assessed land use changes, LER, and EHI from 2000

to 2020 in the CZXUA and projected future ecological zoning

patterns under SSP126, SSP245, and SSP585 scenarios. The main

conclusions are as follows:

From 2000 to 2020, land use was dominated by forest

(accounting for more than 60% of the total area), followed by

cultivated land and construction land. The cumulative area of

cultivated land transferred out reached 1,029.37 km², mainly

converted into construction land (555.65 km²) and forest (394.97

km²). Forest was the second most transferred type, with a

cumulative area of 890.88 km², mainly converted into

construction land (466.22 km²) and cultivated land (362.87 km²).

Other land use exhibited relatively small conversion magnitudes.

The total area of cultivated land converted in the two study phases

remained almost unchanged (712.36 km² and 711.22 km²,

respectively). In the earlier phase, cultivated land was primarily

converted into construction land, whereas in the later phase, the

area converted to construction land decreased while forest

conversion increased.

LER was mainly characterized by medium and medium-low

risk levels, accounting for 76.98%, 74.40%, and 63.48% of the total

area, respectively. The areas of low, medium-low, and medium risk

gradually declined, while the area of medium-high risk continued to

expand. The spatial distribution of LER showed a pattern of “high in

the center and low at the edges.” High-risk areas were concentrated

in the central urban construction zones, with patches distributed in

clumps and strips, largely consistent with construction land and

transportation networks. Medium-high and medium risk areas were

located in the transitional zones between urban centers and

peripheral counties, while medium-low and low-risk areas were

found in peripheral counties with stronger ecological foundations.

The spatial distribution of EHI presented a concentric structure

of “low in the center and high at the edges.”High and medium-high

values were concentrated in peripheral counties dominated by

forest and grassland. Medium and medium-low values,

dominated by cultivated land, accounted for more than 52% of

the total area, forming the core of the regional ecological pattern.

Low values were mainly concentrated in central urban districts

dominated by construction land. Overall, ecological health declined

from 2000 to 2020. The EHI of forest, water body, and grassland

decreased by 6.29%, 4.21%, and 1.97%, respectively, with forest

showing the most severe degradation. The EHI of cultivated land

first increased and then decreased, while bare land showed the

opposite trend. The EHI of construction land continuously

declined, with a total reduction of 22.15%.

During 2000–2020, the proportion of Ecological conservation

zones remained above 40%. The overlapping area and proportion
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with legally designated protected areas remained high with minimal

fluctuations, contributing to ecosystem stability and ecological

services. Ecological control zones ranked second in area

proportion, with 19,875 km² and 18,175 km² transferred to Strict

ecological conservation zones and ecological enhancement zones,

respectively. However, their overlapping areas and proportions with

statutorily protected areas fluctuated, highlighting the need for

enhanced coordination between ecological conservation and land

use management. Strict ecological conservation zones experienced a

continuous decline in area proportion, with more pronounced

fluctuations in overlapping areas and proportions with statutory

protected areas, requiring close monitoring of ecological restoration

and protection functions. Ecological enhancement zones accounted

for the smallest proportion, but their overlapping areas and

proportions with legally designated protected areas continuously

increased, indicating that strengthened ecological conservation

efforts are gradually restoring ecological functions.

Under future scenarios, ecological control zones are projected to

expand, with hotspot areas showing notable growth and cold spot

areas experiencing reduced contraction. Urban expansion

boundaries and ecological buffer zones should be delineated based

on their “central-radial + clustered distribution” spatial structure,

while ecological risk assessment and early warning systems should

be established. Ecological conservation zones are projected to

shrink, with hotspots becoming more dispersed and cold spots

contracting more significantly. Local ecological resources should be

utilized to foster a green economy, develop ecological corridors and

networks, and improve patch connectivity and system self-

regulation. Strict ecological conservation zones require

strengthened conservation policies and red-line constraints, with

rigorous protection and risk prevention systems. Ecological

enhancement zones should integrate natural succession with

moderate human intervention, promoting low-disturbance

agroforestry and habitat restoration to enhance ecological service

provision and system recovery capacity.
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