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Since time immemorial, a wide range of terrestrial, aquatic, and marine organisms
have been used to treat illnesses and diseases, owing to the broad diversity of
natural products they produce. Although widely recognized for their medicinal
properties, natural products are fundamentally the result of adaptive chemistry -
or phenotypic expression - of the organisms that produce them, shaped by
evolutionary pressures from natural environmental enemies. This article examines
natural products through ecological, evolutionary, and conservation lenses,
highlighting how these perspectives add complexity to the already lengthy and
costly process of bioprospecting. Due to their origin and evolutionary history, only
a small fraction of the many screened natural products exhibits biological activity
relevant to human health, as these compounds did not evolve to possess
pharmacological properties. Our viewpoint emphasizes the true raison d‘étre of
the vast diversity of natural products and argues that this perspective should be
integrated into bioprospecting efforts. We propose focus on the ecological roles
of natural products to offer a more rational, productive, and sustainable approach
to drug discovery - one that aligns with biodiversity conservation and
economic development.

KEYWORDS
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1 Introduction

Medicinal plants have supported human health for millennia, as evidenced by ancient
records across cultures from Mesopotamia to China (Arya et al., 2022). Ethnobotanical
traditions and early pharmacological texts document extensive plant-based treatments,
while aquatic and marine organisms have also contributed bioactive compounds to
traditional medicine (Jia et al., 2004; Aasim et al., 2019). Over time, the isolation of
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plant secondary metabolites has led to major breakthroughs in
treating cancer, infections, and neurological diseases, positioning
natural products as vital resources in modern healthcare,
pharmacology, and biotechnology (Papon et al., 2022; Labes,
2023; Rojo et al., 2023; Silveria and Boylan, 2023.

This article does not aim to provide a historical overview, but
rather to reframe natural products not simply as drug leads, but as
evolved adaptive traits shaped by ecological and evolutionary
pressures. By highlighting their raison d’étre, we argue for a shift
toward a chemical ecology perspective - promoting sustainable,
efficient, and biodiversity-informed bioprospecting.

2 Search strategy for scientific articles
related to the raison d‘étre of natural
products

To support our insights on the importance of considering the
raison d’étre of natural products in bioprospecting, a systematic search
was conducted with the aim of answering the question: How has the
integration of ecological and evolutionary approaches in marine,
aquatic, and/or terrestrial bioprospecting contributed to the discovery
of bioactive natural products with pharmaceutical potential? The
methodological design followed the recommendations of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA, Moher et al, 2009) to ensure rigor, transparency, and
reproducibility through stages such as identification, screening,
eligibility, and inclusion of studies.

Data collection took place in August 2024 and used the
following indexed 4 databases: PubMed/MEDLINE, Scopus, Web
of Science, and SciELO/LILACS. The search strategy was structured
using a combination of controlled descriptors and keywords in
English, Portuguese, and Spanish, articulated by Boolean operators
(AND/OR). The main terms used were: ‘bioprospecting’, ‘natural
products’, ‘metabolites’, ‘marine organisms’, ‘terrestrial plants’,
‘aquatic organisms’, ‘aquatic plants’, ‘chemical ecology’,
‘evolutionary approach’, ‘bioactive compounds’, ‘biotechnology’,
and ‘pharmaceuticals’. A detailed description of the procedures
used in the search (Supplementary Material) and workflow for
selecting the relevant articles can be found in the Supplementary
Material (Supplementary Table S1, Supplementary Material).
Despite all the methodological rigor employed, it is not our
intention to conduct a review, but rather to justify the innovative
approach of the present perspective article.

The systematic search identified 115 records in the selected
databases, PubMed/MEDLINE (n= 10), Scopus (n= 55), Web of
Science (n= 49) and SciELO/LILACS (n= 1). After removing 29
duplicates, 86 records remained for initial evaluation. Of these, 14
studies were excluded for not meeting the minimum eligibility
criteria. Thus, 72 records proceeded to the title and abstract
screening phase, during which 24 were eliminated for not directly
addressing bioprospecting or for not employing an ecological/
evolutionary approach. In the full-text reading phase, 48 studies
were assessed, with 24 excluded (4 due to being of an unsuitable study
type and 20 for presenting a methodological approach outside the
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defined scope). In the end, 24 studies were included in the systematic
review and comprised the analysis corpus (Supplementary Table S2,
Supplementary Material). However, none of these 24 articles
(Supplementary Table S2, Supplementary Material) explored the
purpose of natural products or the importance of considering their
ecological roles and evolution in the bioprospecting of natural
products. This finding underscores the relevance of our insight,
emphasizing the importance of incorporating the raison d’étre of
natural products into bioprospecting.

3 General aspects on the
development of pharmaceuticals

In the early stages of drug discovery, the process typically
consists of two main steps: the collection of biological samples
and the evaluation of its extracts for bioactivities. However,
identifying promising biological activity is only the beginning of a
long, expensive and complex process (Firn, 2003). Drug
development is notoriously costly - estimate at approximately $
900 million - and can take around 14 years from discovery to
market approval. Moreover, only a small number of potential
candidates, referred to as “hits”, exhibit sufficient bioactivity to
warrant further investigation as viable drug candidates (DiMasi
et al, 2003). From these hits, a “lead” compound is selected for
preclinical studies (Hunt and Vicent, 2006).

Screening of bioactive chemicals is generally conducted through
one or more of the following approaches: (1) Random screening, (2)
Ethnopharmacological knowledge or (3) The examination of chemical
diversity within a particular taxon in comparison to another
previously studied bioactive compounds. However, all these
approaches, bioprospecting can lead to significative negative
ecological consequences. For example, large-scale bioprospecting can
lead to populations decline, loss of genetic diversity, genetic drift, and
even local extinction of source species (DiMasi, 2001). These concerns
raise important questions about the sustainability of a widespread
biological sampling. Therefore, these bioprospecting strategies —
whether random, ethnopharmacological, or taxonomically guided -
may not always be environmentally sustainable.

In recent years, the advanced analytical tools such as Gas
Chromatography-Mass Spectrometry (CG-MS) and/or Liquid
Chromatography-Mass Spectrometry in tandem (LC-MS/MS),
often combined with bioinformatics database resources like the
Global Natural Products Social Molecular Networking (GNPS) have
helped to mitigate these impacts (Cachet et al., 2015; Raina et al,
2022). These methods require only a few milligrams of material and
allow for high throughput, environmentally conscious screening.
Additionally, artificial intelligence and advanced in vitro
technologies are being employed to streamline the drug
development pipeline and reduce associated costs and timelines -
though many challenges remain (Singh et al., 2023).

Once a promising compound is identified, however, the process
of isolation and characterization represent a major bottleneck.
Bioactive compounds are typically produced in very small
quantities by their source organisms. For instance, several
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marine-derived secondary metabolites - including ecteinascidin 743
from the ascidian Ecteinascidia turbinata, bryostatins from the
bryozoan Bugula neritina, and halichondrins from the sponge
Lissodendoryx, can only be isolated in trace quantities (Pereira
and Costa-Lotufo, 2012). As a specific example, therapeutic use of
halichondrins in cancer treatment would require 1-5 kg annually,
which would necessitate harvesting between 3,000 16,000 metric
tons of sponge biomass per year (Proksch et al.,, 2003).

In summary, although bioprospecting has led to important
discoveries, its current models remain conceptually fragmented and
environmentally unsustainable. The predominant reliance on
random screening or ethnopharmacological knowledge often fails
to incorporate ecological principles, leading to costly and low-yield
outcomes. Moreover, these approaches typically overlook the adaptive
nature of natural products, treating them as pharmacological candidates
rather than evolved traits. This disconnect highlights the need for
transdisciplinary frameworks that not only integrate chemical,
biological, and ecological knowledge, but also reframe bioprospecting
as a process informed by eco-evolutionary logic (Rotter et al., 2020).
However, it is necessary and urgent that bioprospecting and its associated
costs be minimized through the recognition of the true origin and
evolution of natural products in the organisms that produce them.

Despite more than a century of research, many questions
remain about the functions and ecological roles of natural
products in the organisms that produce them (Dixon et al., 2024).
But while the origin of secondary metabolites is not fully
understood, it is widely accepted that they evolved to facilitate
chemical defense, inter-organism communication, and competition
within ecological communities. Thus, regardless of the procedure
used in the search for bioactive substances, the origin and evolution
of natural products cannot be disregarded, as this is the main
foundation of our current insight.

4 Ecological and evolutionary views
on the bioprospecting area

Among the major challenges in natural product bioprospecting is
the low success rate in discovering new drug leads (Liu et al., 2019).
For over two decades, bioprospecting has been viewed as
economically discouraging due to high costs and the low
probability that a given compound will display meaningful
biological activity (Firn, 2003; Liu et al, 2019). However, in our
view, a more fundamental limitation lies in the fact that natural
products have evolved - through natural selection - to function
primarily as chemical mediators in ecological contexts in the natural
environments (terrestrial, marine, and aquatic), rather than as
therapeutic agents for human use. For this simple reason, many
molecules are tested, but only a small fraction exhibit biological
activity. This outcome is not surprising if one considers that current
screening strategies are largely blind to the ecological context in
which natural products evolved. The assumption that any given
metabolite might display therapeutic activity disregards its original
adaptive function. This methodological oversight represents a critical
limitation in traditional bioprospecting pipelines, which often
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prioritize pharmacological potential over ecological relevance. A
more productive strategy would reverse this logic, beginning with
ecological function as a filter before pharmacological testing, thereby
increasing both efficiency and sustainability.

This idea is encapsulated in the known screening hypothesis,
which suggest that potent biological activity is an uncommon
property among natural products, given that most evolved to exhibit
ecological roles rather than interact with human disease targets (Jones
and Firn, 1991). This hypothesis was a pioneering attempt to
conceptualize an evolutionary scenario in which significant
constraints on the evolution of natural product diversity would have
existed, given that most natural products did not possess a potent
biological activity beneficial to the producer (Firn and Jones, 2003). As
a result, bioprospecting screens tens of thousands of molecules, but
only a small fraction shows promise as drug candidates. There is an
evolutionary history behind the phenotypic expression of thousands of
small molecules (natural products) that serve as chemical mediators in
various ecological interactions among organisms and in their
relationships with the environment. For many years, natural
products have been repeatedly recognized as adaptive traits that have
been shaped by natural selection during evolution (e.g. Wink, 2003;
Erb and Kliebenstein, 2020). Assuming this is true, the organism that
produce natural products have evolved distinct or unique types of these
chemicals as selective response to numerous environmental factors or
natural enemies. For example, the marine environments are significant
variability in conditions such as pressure (1 atm for every 10 meters
depth), salinity (salinities well below or above the average of 35),
temperature (ranging from Antarctic waters and cold seeps to tropical
regions and thermal vents), nutrient availability (from eutrophic to
oligotrophic areas) and light, such as photic to aphotic zone (Rotter
et al, 2021). It is therefore essential to consider the ecological rationale
- or raison détre - for the existence of these compounds when
exploring their pharmacological potential. Unlike ecological
functions, therapeutic activity in humans typically results from
chance interactions, as most organisms producing natural products
have not co-evolved with human pathogens or disease targets.

Contrary to ecological roles of evolved chemicals, biological
activities may result from chance encounters, as most organisms
have never had an evolutionary relationship with human diseases.
Nevertheless, some biological activities help bridge the fields of
bioprospecting and chemical ecology closer together. For this
reason, studies on allelopathy have been suggested as promising
avenues for the discovery and development of cytotoxic substances
(Singh and Thakur, 2016), since this ecological role is often
expressed through biological activities, such as: modification of
membrane structure and transport receptors, changes in cell
morphology, disruption of the cell cycle, altered phytohormone
activity, disturbed energy metabolism, impaired water balance and
stomata function, inhibited pigment synthesis, and blockage of key
enzymes, especially regulatory ones. Chemicals from seaweeds
(Alves et al., 2018) and marine sponges (Singh and Thakur, 2016)
are known to influence cellular and biochemical processes, such as
ATPase inhibition, microtubule stabilization, apoptosis,
angiogenesis, migration and invasion. These biological activities
have been observed in both in vitro and in vivo models, with some
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manifesting as allelopathic effects. In Table 1, we include some  chemical ecology studies offer crucial insights for the sustainable
examples of allelopathic substances from aquatic marine organisms  discovery of new therapeutic pharmaceuticals (Tan, 2023). While
and terrestrial plants, along with the biological activities they exhibit  these and other aspects are essential to advancing the field, they are
and, therefore, their defensive role against competition. More  not the only considerations. Bioprospecting must also incorporate
recently, a review highlighted several findings from marine  evolutionary principles, as we discuss here. Objectively, it can

TABLE 1 Examples of ecological roles of allelochemicals derived from terrestrial and aquatic plants, as well as marine organisms, along with their
modes of action in various biological activities.

Compound Organism  Mode of biological action Reference
type
HO Dysidea avara ~ Marine sponge = Superoxide production and single strand DNA damage. Ferrandiz
O Inhibition of the signaling molecule eicosanoid, which et al,, 1994;
OH regulates inflammation and suppresses superoxide Miiller et al.,
generation. Inhibition of NF-kB translocation to the 1985, 1987.
,‘ nucleus.
Avarol
HO Laurencia Red seaweed Activation of autophagic and apoptotic cell death pathways Desoti et al.,
o species induced by an imbalance in the parasite's redox metabolism. | 2014.
Br
=
Cl
Elatol
N 41 Plocamium Red seaweed Tissue necrosis. De Nys et al,,
cr N\ hamatum 1991.
cl ca ©
Chloromertensene
OH Myriophyllum | Aquatic Inhibition of the PSII by interfering with the electron Addisie and

HO OH spicatum Angiosperm transfer. Medellin,
OH 2012.
H
OH ©
HO O,

Carex Aquatic Toxic effect on plant germination Fiorentino et
distachya Angiosperm al. 2008.

o~ Pistia Aquatic Inhibition of microalgae growth. Alliota et al.,

o stratiotes Angiosperm 1991.
X
o<
a-Asarone
(Continued)

Frontiers in Ecology and Evolution 04 frontiersin.org


https://doi.org/10.3389/fevo.2025.1658630
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Pereira et al.

TABLE 1 Continued

10.3389/fevo.2025.1658630

Reference

Mode of biological action

Compound Source Organism
type
Several plant Terrestrial
species Angiosperm
G plants
a-Pinene
Several plant Terrestrial
A species Angiosperm
plants
| °
Citral
A Sorgum Terrestrial
bicolor Angiosperm
| plants
OH
A OH
HO
o<
Sorgoleone

argue that natural products were not primarily selected to function
as drugs for treating human diseases, despite being commonly
evaluated for this purpose in bioprospecting research.
Since natural products represent evolutionary and ecological
responses to various environmental selective pressures, it is
understandable why bioprospecting remains so costly; for
example, 50,000 - 100,000 compounds may be required to obtain
a single hit (Kuhlmann, 1997).

To illustrate this point, consider the example antifouling
bioprospecting, which is considerably more efficient than drug
discovery. Marine organisms such as seaweeds face similar
selection pressures as man-made submerged structures (e.g., piers
and boats) and have evolved natural antifouling compounds do
deter colonization by epibionts. These compounds protect against
threats that include reduced growth (Meichssner et al, 2020),
impaired reproduction (Saier and Chapman, 2004), increased
drag during storms (Dixon et al., 1981), and higher susceptibility
to consumers (Da Gama et al., 2008). Thus, antifouling compounds
offer a clear case of evolved chemical function aligned with potential
applied use, demonstrating the benefit of integrating ecological
understanding into bioprospecting.

The concept of integrating bioprospecting with chemical ecology
is not entirely new. For instance, Ledoux and Antunes (2018)
proposed a functional workflow that prioritizes the ecological roles
of marine natural products before chemical identification, in order to
narrow the existing gap between the growing number of known these
chemicals and the limited understanding of their ecological roles.
However, what we emphasize here is the pressing need to take into
account the origin and evolution of natural products in
bioprospecting initiatives, given the various aspects highlighted in
this discussion. Moreover, understanding the mechanisms and
evolutionary pathways underlying the occurrence of natural
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Oxidative stress to the plasma membrane and disruption of | Singh et al.,

its structural integrity, ultimately leading to cell death. 2016.
Effective in inhibiting seedling metabolism and Grana et al.,
photosynthesis, as well as suppressing adult plant growth 2013.

and altering oxidative balance.

Affects electron transport in both chloroplasts and Dayan et al.,

mitochondria and acts as a potent in vitro inhibitor of 2009.

photosystem II

products in nature will ultimately enable the efficient
bioengineering of desirable metabolic traits in the organisms that
produce them (Weng et al,, 2021).

However, we are not aware of bioprospecting approaches that
emphasize the fact that natural products are adaptive chemistry -
phenotypic expressions of the species that produce them. Over the
course of the evolution, genes encoding enzymes involved in
primary metabolism have been duplicated, recruited, and
diversified to perform new functions in response to the ever-
changing selective pressures of the environment (Hartmann,
2007). Therefore, for these evolutionary reasons, a metabolite that
exhibits an ecological role will not necessarily exhibit biological
activity (such as anti-cancer or anti-viral effects); on the contrary.

5 Concluding remarks — future
perspectives and limitations

Undoubtedly, bioprospecting efforts have expanded our
understanding of the vast chemical diversity produced by terrestrial,
marine, and aquatic organisms. However, only a small fraction of this
diversity has had its ecological role elucidated. If, instead of focusing
predominantly on drug discovery, bioprospecting efforts over the past
decades had been directed toward understanding the ecological roles of
these compounds, we might today possess deeper knowledge of how
these chemicals operate at multiple levels - from cells to entire
ecosystems. Such understanding could have provided critical scientific
support for biodiversity conservation of across global ecosystems.

Bioprospecting has long been heralded as a dual solution for drug
discovery and biodiversity conservation. However, this narrative has
proven overly optimistic. In practice, the economic and ecological costs
of current strategies often outweigh their benefits, and industry
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investment remains minimal. This disconnects stems largely from the
failure to critically assess the ecological foundations of natural product
diversity. Without a conceptual shift (one that recognizes natural
products as evolved chemical traits rather than mere repositories of
bioactivity) the full potential of biodiversity will remain underexploited
and poorly protected (Firn, 2003).

Considering the reasons that separate and connect chemical
ecology and bioprospecting areas, we argue that there are strong
reasons for integrating them. Some key reasons include: 1) Improved
cost/benefit ratio, as investigating ecological roles may lead to more
positive outcomes; 2) Bridging the gap between the number of known
metabolites and the understanding of their ecological roles; 3) Lowering
research costs, as a single metabolite could be tested both for biological
activity and ecological roles, making one organism or collection serve
dual purposes and increase the meaningful results through ecological
“screening”; 4) Ecological Investigation can provide libraries of
chemicals (e.g., Nocchi et al,, 2017) that may later be explored for
pharmacological and other biological properties (e.g, Desoti et al,
2014). Thus, a workflow that integrates ecological approaches - either
prior to or alongside traditional bioprospecting methods (see Figure 1)
- could be both scientifically productive and mutually beneficial for the
fields of bioprospecting and chemical ecology.

Reflecting on the bioprospecting strategy proposed here, we suggest
that screening based on the ecological roles of secondary metabolites

Isolation and characterization of secondary metabolites
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represents a more rational and strategic alternative to conventional
bioprospecting approaches. Moreover, this approach has the potential to
foster sustainable development and biodiversity conservation while also
supporting the economic development of biodiversity-rich countries.

While we argue that integrating eco-evolutionary reasoning into
bioprospecting is a promising avenue, this approach is not without its
challenges. One limitation lies in the current lack of standardized
methodologies to systematically evaluate the ecological roles of
natural products in situ or in complex community contexts.
Furthermore, many organisms remain poorly studied from an
ecological perspective, particularly in marine and microbial
ecosystems, limiting our ability to formulate predictive frameworks.
The development of functional ecological assays, metabolomic
databases annotated with ecological metadata, and interdisciplinary
collaborations will be critical to advance this field. Additionally,
scaling this approach requires institutional support, funding
mechanisms, and training in chemical ecology, areas that remain
underrepresented in many bioprospecting programs. Nevertheless,
the convergence of ecological theory, evolutionary biology, and
chemical analytics offers a fertile ground for reimagining natural
product discovery. Future research should focus on validating
ecological screening models, developing bioinformatic tools for
ecological annotation, and assessing the conservation implications
of targeting ecologically functional compounds.

Therapeutic
directed

)

Sexual pheromones,
signals, cues, etc

Isolation and characterization
of lead molecules

snnnes)

Best harvest
time

Ecological workflow depicting the integration of omics studies with ecological roles, processes, and patterns for the isolation and characterization of
natural products. It includes sections on spatial and temporal variation, bioassays, ecological factors, and the development of therapeutic bioassays
and lead molecules. Arrows connect these elements, highlighting the processes for preclinical and clinical studies. Adapted from Ledoux and

Antunes, 2018.
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