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Fluminense University, Niterói, Rio de Janeiro, Brazil, 2Earth Laboratory, Pharmacy College, Federal
University of Bahia, Salvador, Brazil, 3Laboratory of Natural Products and Biochemistry, Research
Department, Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro, Brazil
Since time immemorial, a wide range of terrestrial, aquatic, and marine organisms

have been used to treat illnesses and diseases, owing to the broad diversity of

natural products they produce. Although widely recognized for their medicinal

properties, natural products are fundamentally the result of adaptive chemistry -

or phenotypic expression - of the organisms that produce them, shaped by

evolutionary pressures from natural environmental enemies. This article examines

natural products through ecological, evolutionary, and conservation lenses,

highlighting how these perspectives add complexity to the already lengthy and

costly process of bioprospecting. Due to their origin and evolutionary history, only

a small fraction of the many screened natural products exhibits biological activity

relevant to human health, as these compounds did not evolve to possess

pharmacological properties. Our viewpoint emphasizes the true raison d’et̂re of

the vast diversity of natural products and argues that this perspective should be

integrated into bioprospecting efforts. We propose focus on the ecological roles

of natural products to offer a more rational, productive, and sustainable approach

to drug discovery - one that aligns with biodiversity conservation and

economic development.
KEYWORDS

secondary metabolites, bioprospection, chemical diversity, adaptive chemistry,
biodiversity conservation
1 Introduction

Medicinal plants have supported human health for millennia, as evidenced by ancient

records across cultures from Mesopotamia to China (Arya et al., 2022). Ethnobotanical

traditions and early pharmacological texts document extensive plant-based treatments,

while aquatic and marine organisms have also contributed bioactive compounds to

traditional medicine (Jia et al., 2004; Aasim et al., 2019). Over time, the isolation of
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plant secondary metabolites has led to major breakthroughs in

treating cancer, infections, and neurological diseases, positioning

natural products as vital resources in modern healthcare,

pharmacology, and biotechnology (Papon et al., 2022; Labes,

2023; Rojo et al., 2023; Silveria and Boylan, 2023.

This article does not aim to provide a historical overview, but

rather to reframe natural products not simply as drug leads, but as

evolved adaptive traits shaped by ecological and evolutionary

pressures. By highlighting their raison d’et̂re, we argue for a shift

toward a chemical ecology perspective - promoting sustainable,

efficient, and biodiversity-informed bioprospecting.
2 Search strategy for scientific articles
related to the raison d’e ̂tre of natural
products

To support our insights on the importance of considering the

raison d’et̂re of natural products in bioprospecting, a systematic search

was conducted with the aim of answering the question: How has the

integration of ecological and evolutionary approaches in marine,

aquatic, and/or terrestrial bioprospecting contributed to the discovery

of bioactive natural products with pharmaceutical potential? The

methodological design followed the recommendations of the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA, Moher et al., 2009) to ensure rigor, transparency, and

reproducibility through stages such as identification, screening,

eligibility, and inclusion of studies.

Data collection took place in August 2024 and used the

following indexed 4 databases: PubMed/MEDLINE, Scopus, Web

of Science, and SciELO/LILACS. The search strategy was structured

using a combination of controlled descriptors and keywords in

English, Portuguese, and Spanish, articulated by Boolean operators

(AND/OR). The main terms used were: ‘bioprospecting’, ‘natural

products’, ‘metabolites’, ‘marine organisms’, ‘terrestrial plants’,

‘aquatic organisms’ , ‘aquatic plants’, ‘chemical ecology’ ,

‘evolutionary approach’, ‘bioactive compounds’, ‘biotechnology’,

and ‘pharmaceuticals’. A detailed description of the procedures

used in the search (Supplementary Material) and workflow for

selecting the relevant articles can be found in the Supplementary

Material (Supplementary Table S1, Supplementary Material).

Despite all the methodological rigor employed, it is not our

intention to conduct a review, but rather to justify the innovative

approach of the present perspective article.

The systematic search identified 115 records in the selected

databases, PubMed/MEDLINE (n= 10), Scopus (n= 55), Web of

Science (n= 49) and SciELO/LILACS (n= 1). After removing 29

duplicates, 86 records remained for initial evaluation. Of these, 14

studies were excluded for not meeting the minimum eligibility

criteria. Thus, 72 records proceeded to the title and abstract

screening phase, during which 24 were eliminated for not directly

addressing bioprospecting or for not employing an ecological/

evolutionary approach. In the full-text reading phase, 48 studies

were assessed, with 24 excluded (4 due to being of an unsuitable study

type and 20 for presenting a methodological approach outside the
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defined scope). In the end, 24 studies were included in the systematic

review and comprised the analysis corpus (Supplementary Table S2,

Supplementary Material). However, none of these 24 articles

(Supplementary Table S2, Supplementary Material) explored the

purpose of natural products or the importance of considering their

ecological roles and evolution in the bioprospecting of natural

products. This finding underscores the relevance of our insight,

emphasizing the importance of incorporating the raison d’et̂re of

natural products into bioprospecting.
3 General aspects on the
development of pharmaceuticals

In the early stages of drug discovery, the process typically

consists of two main steps: the collection of biological samples

and the evaluation of its extracts for bioactivities. However,

identifying promising biological activity is only the beginning of a

long, expensive and complex process (Firn, 2003). Drug

development is notoriously costly – estimate at approximately $

900 million – and can take around 14 years from discovery to

market approval. Moreover, only a small number of potential

candidates, referred to as “hits”, exhibit sufficient bioactivity to

warrant further investigation as viable drug candidates (DiMasi

et al., 2003). From these hits, a “lead” compound is selected for

preclinical studies (Hunt and Vicent, 2006).

Screening of bioactive chemicals is generally conducted through

one or more of the following approaches: (1) Random screening, (2)

Ethnopharmacological knowledge or (3) The examination of chemical

diversity within a particular taxon in comparison to another

previously studied bioactive compounds. However, all these

approaches, bioprospecting can lead to significative negative

ecological consequences. For example, large-scale bioprospecting can

lead to populations decline, loss of genetic diversity, genetic drift, and

even local extinction of source species (DiMasi, 2001). These concerns

raise important questions about the sustainability of a widespread

biological sampling. Therefore, these bioprospecting strategies –

whether random, ethnopharmacological, or taxonomically guided –

may not always be environmentally sustainable.

In recent years, the advanced analytical tools such as Gas

Chromatography-Mass Spectrometry (CG-MS) and/or Liquid

Chromatography-Mass Spectrometry in tandem (LC-MS/MS),

often combined with bioinformatics database resources like the

Global Natural Products Social Molecular Networking (GNPS) have

helped to mitigate these impacts (Cachet et al., 2015; Raina et al.,

2022). These methods require only a few milligrams of material and

allow for high throughput, environmentally conscious screening.

Additionally, artificial intelligence and advanced in vitro

technologies are being employed to streamline the drug

development pipeline and reduce associated costs and timelines –

though many challenges remain (Singh et al., 2023).

Once a promising compound is identified, however, the process

of isolation and characterization represent a major bottleneck.

Bioactive compounds are typically produced in very small

quantities by their source organisms. For instance, several
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marine-derived secondary metabolites - including ecteinascidin 743

from the ascidian Ecteinascidia turbinata, bryostatins from the

bryozoan Bugula neritina, and halichondrins from the sponge

Lissodendoryx, can only be isolated in trace quantities (Pereira

and Costa-Lotufo, 2012). As a specific example, therapeutic use of

halichondrins in cancer treatment would require 1–5 kg annually,

which would necessitate harvesting between 3,000 –16,000 metric

tons of sponge biomass per year (Proksch et al., 2003).

In summary, although bioprospecting has led to important

discoveries, its current models remain conceptually fragmented and

environmentally unsustainable. The predominant reliance on

random screening or ethnopharmacological knowledge often fails

to incorporate ecological principles, leading to costly and low-yield

outcomes. Moreover, these approaches typically overlook the adaptive

nature of natural products, treating them as pharmacological candidates

rather than evolved traits. This disconnect highlights the need for

transdisciplinary frameworks that not only integrate chemical,

biological, and ecological knowledge, but also reframe bioprospecting

as a process informed by eco-evolutionary logic (Rotter et al., 2020).

However, it is necessary andurgent that bioprospecting and its associated

costs be minimized through the recognition of the true origin and

evolution of natural products in the organisms that produce them.

Despite more than a century of research, many questions

remain about the functions and ecological roles of natural

products in the organisms that produce them (Dixon et al., 2024).

But while the origin of secondary metabolites is not fully

understood, it is widely accepted that they evolved to facilitate

chemical defense, inter-organism communication, and competition

within ecological communities. Thus, regardless of the procedure

used in the search for bioactive substances, the origin and evolution

of natural products cannot be disregarded, as this is the main

foundation of our current insight.
4 Ecological and evolutionary views
on the bioprospecting area

Among the major challenges in natural product bioprospecting is

the low success rate in discovering new drug leads (Liu et al., 2019).

For over two decades, bioprospecting has been viewed as

economically discouraging due to high costs and the low

probability that a given compound will display meaningful

biological activity (Firn, 2003; Liu et al., 2019). However, in our

view, a more fundamental limitation lies in the fact that natural

products have evolved – through natural selection – to function

primarily as chemical mediators in ecological contexts in the natural

environments (terrestrial, marine, and aquatic), rather than as

therapeutic agents for human use. For this simple reason, many

molecules are tested, but only a small fraction exhibit biological

activity. This outcome is not surprising if one considers that current

screening strategies are largely blind to the ecological context in

which natural products evolved. The assumption that any given

metabolite might display therapeutic activity disregards its original

adaptive function. This methodological oversight represents a critical

limitation in traditional bioprospecting pipelines, which often
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prioritize pharmacological potential over ecological relevance. A

more productive strategy would reverse this logic, beginning with

ecological function as a filter before pharmacological testing, thereby

increasing both efficiency and sustainability.

This idea is encapsulated in the known screening hypothesis,

which suggest that potent biological activity is an uncommon

property among natural products, given that most evolved to exhibit

ecological roles rather than interact with human disease targets (Jones

and Firn, 1991). This hypothesis was a pioneering attempt to

conceptualize an evolutionary scenario in which significant

constraints on the evolution of natural product diversity would have

existed, given that most natural products did not possess a potent

biological activity beneficial to the producer (Firn and Jones, 2003). As

a result, bioprospecting screens tens of thousands of molecules, but

only a small fraction shows promise as drug candidates. There is an

evolutionary history behind the phenotypic expression of thousands of

small molecules (natural products) that serve as chemical mediators in

various ecological interactions among organisms and in their

relationships with the environment. For many years, natural

products have been repeatedly recognized as adaptive traits that have

been shaped by natural selection during evolution (e.g. Wink, 2003;

Erb and Kliebenstein, 2020). Assuming this is true, the organism that

produce natural products have evolved distinct or unique types of these

chemicals as selective response to numerous environmental factors or

natural enemies. For example, the marine environments are significant

variability in conditions such as pressure (1 atm for every 10 meters

depth), salinity (salinities well below or above the average of 35),

temperature (ranging from Antarctic waters and cold seeps to tropical

regions and thermal vents), nutrient availability (from eutrophic to

oligotrophic areas) and light, such as photic to aphotic zone (Rotter

et al., 2021). It is therefore essential to consider the ecological rationale

- or raison d’et̂re - for the existence of these compounds when

exploring their pharmacological potential. Unlike ecological

functions, therapeutic activity in humans typically results from

chance interactions, as most organisms producing natural products

have not co-evolved with human pathogens or disease targets.

Contrary to ecological roles of evolved chemicals, biological

activities may result from chance encounters, as most organisms

have never had an evolutionary relationship with human diseases.

Nevertheless, some biological activities help bridge the fields of

bioprospecting and chemical ecology closer together. For this

reason, studies on allelopathy have been suggested as promising

avenues for the discovery and development of cytotoxic substances

(Singh and Thakur, 2016), since this ecological role is often

expressed through biological activities, such as: modification of

membrane structure and transport receptors, changes in cell

morphology, disruption of the cell cycle, altered phytohormone

activity, disturbed energy metabolism, impaired water balance and

stomata function, inhibited pigment synthesis, and blockage of key

enzymes, especially regulatory ones. Chemicals from seaweeds

(Alves et al., 2018) and marine sponges (Singh and Thakur, 2016)

are known to influence cellular and biochemical processes, such as

ATPase inhibition, microtubule stabilization, apoptosis,

angiogenesis, migration and invasion. These biological activities

have been observed in both in vitro and in vivo models, with some
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manifesting as allelopathic effects. In Table 1, we include some

examples of allelopathic substances from aquatic marine organisms

and terrestrial plants, along with the biological activities they exhibit

and, therefore, their defensive role against competition. More

recently, a review highlighted several findings from marine
Frontiers in Ecology and Evolution 04
chemical ecology studies offer crucial insights for the sustainable

discovery of new therapeutic pharmaceuticals (Tan, 2023). While

these and other aspects are essential to advancing the field, they are

not the only considerations. Bioprospecting must also incorporate

evolutionary principles, as we discuss here. Objectively, it can
TABLE 1 Examples of ecological roles of allelochemicals derived from terrestrial and aquatic plants, as well as marine organisms, along with their
modes of action in various biological activities.

Compound Source Organism
type

Mode of biological action Reference

Dysidea avara Marine sponge Superoxide production and single strand DNA damage.
Inhibition of the signaling molecule eicosanoid, which
regulates inflammation and suppresses superoxide
generation. Inhibition of NF-kB translocation to the
nucleus.

Ferrandiz
et al., 1994;
Müller et al.,
1985, 1987.

Laurencia
species

Red seaweed Activation of autophagic and apoptotic cell death pathways
induced by an imbalance in the parasite's redox metabolism.

Desoti et al.,
2014.

Plocamium
hamatum

Red seaweed Tissue necrosis. De Nys et al.,
1991.

Myriophyllum
spicatum

Aquatic
Angiosperm

Inhibition of the PSII by interfering with the electron
transfer.

Addisie and
Medellin,
2012.

Carex
distachya

Aquatic
Angiosperm

Toxic effect on plant germination Fiorentino et
al. 2008.

Pistia
stratiotes

Aquatic
Angiosperm

Inhibition of microalgae growth. Alliota et al.,
1991.

(Continued)
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argue that natural products were not primarily selected to function

as drugs for treating human diseases, despite being commonly

evaluated for this purpose in bioprospecting research.

Since natural products represent evolutionary and ecological

responses to various environmental selective pressures, it is

understandable why bioprospecting remains so costly; for

example, 50,000 - 100,000 compounds may be required to obtain

a single hit (Kuhlmann, 1997).

To illustrate this point, consider the example antifouling

bioprospecting, which is considerably more efficient than drug

discovery. Marine organisms such as seaweeds face similar

selection pressures as man-made submerged structures (e.g., piers

and boats) and have evolved natural antifouling compounds do

deter colonization by epibionts. These compounds protect against

threats that include reduced growth (Meichssner et al., 2020),

impaired reproduction (Saier and Chapman, 2004), increased

drag during storms (Dixon et al., 1981), and higher susceptibility

to consumers (Da Gama et al., 2008). Thus, antifouling compounds

offer a clear case of evolved chemical function aligned with potential

applied use, demonstrating the benefit of integrating ecological

understanding into bioprospecting.

The concept of integrating bioprospecting with chemical ecology

is not entirely new. For instance, Ledoux and Antunes (2018)

proposed a functional workflow that prioritizes the ecological roles

of marine natural products before chemical identification, in order to

narrow the existing gap between the growing number of known these

chemicals and the limited understanding of their ecological roles.

However, what we emphasize here is the pressing need to take into

account the origin and evolution of natural products in

bioprospecting initiatives, given the various aspects highlighted in

this discussion. Moreover, understanding the mechanisms and

evolutionary pathways underlying the occurrence of natural
Frontiers in Ecology and Evolution 05
products in nature will ultimately enable the efficient

bioengineering of desirable metabolic traits in the organisms that

produce them (Weng et al., 2021).

However, we are not aware of bioprospecting approaches that

emphasize the fact that natural products are adaptive chemistry -

phenotypic expressions of the species that produce them. Over the

course of the evolution, genes encoding enzymes involved in

primary metabolism have been duplicated, recruited, and

diversified to perform new functions in response to the ever-

changing selective pressures of the environment (Hartmann,

2007). Therefore, for these evolutionary reasons, a metabolite that

exhibits an ecological role will not necessarily exhibit biological

activity (such as anti-cancer or anti-viral effects); on the contrary.
5 Concluding remarks – future
perspectives and limitations

Undoubtedly, bioprospecting efforts have expanded our

understanding of the vast chemical diversity produced by terrestrial,

marine, and aquatic organisms. However, only a small fraction of this

diversity has had its ecological role elucidated. If, instead of focusing

predominantly on drug discovery, bioprospecting efforts over the past

decades had been directed toward understanding the ecological roles of

these compounds, we might today possess deeper knowledge of how

these chemicals operate at multiple levels - from cells to entire

ecosystems. Such understanding could have provided critical scientific

support for biodiversity conservation of across global ecosystems.

Bioprospecting has long been heralded as a dual solution for drug

discovery and biodiversity conservation. However, this narrative has

proven overly optimistic. In practice, the economic and ecological costs

of current strategies often outweigh their benefits, and industry
TABLE 1 Continued

Compound Source Organism
type

Mode of biological action Reference

Several plant
species

Terrestrial
Angiosperm
plants

Oxidative stress to the plasma membrane and disruption of
its structural integrity, ultimately leading to cell death.

Singh et al.,
2016.

Several plant
species

Terrestrial
Angiosperm
plants

Effective in inhibiting seedling metabolism and
photosynthesis, as well as suppressing adult plant growth
and altering oxidative balance.

Graña et al.,
2013.

Sorgum
bicolor

Terrestrial
Angiosperm
plants

Affects electron transport in both chloroplasts and
mitochondria and acts as a potent in vitro inhibitor of
photosystem II.

Dayan et al.,
2009.
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investment remains minimal. This disconnects stems largely from the

failure to critically assess the ecological foundations of natural product

diversity. Without a conceptual shift (one that recognizes natural

products as evolved chemical traits rather than mere repositories of

bioactivity) the full potential of biodiversity will remain underexploited

and poorly protected (Firn, 2003).

Considering the reasons that separate and connect chemical

ecology and bioprospecting areas, we argue that there are strong

reasons for integrating them. Some key reasons include: 1) Improved

cost/benefit ratio, as investigating ecological roles may lead to more

positive outcomes; 2) Bridging the gap between the number of known

metabolites and the understanding of their ecological roles; 3) Lowering

research costs, as a single metabolite could be tested both for biological

activity and ecological roles, making one organism or collection serve

dual purposes and increase the meaningful results through ecological

“screening”; 4) Ecological Investigation can provide libraries of

chemicals (e.g., Nocchi et al., 2017) that may later be explored for

pharmacological and other biological properties (e.g., Desoti et al.,

2014). Thus, a workflow that integrates ecological approaches - either

prior to or alongside traditional bioprospecting methods (see Figure 1)

- could be both scientifically productive and mutually beneficial for the

fields of bioprospecting and chemical ecology.

Reflecting on the bioprospecting strategy proposed here, we suggest

that screening based on the ecological roles of secondary metabolites
Frontiers in Ecology and Evolution 06
represents a more rational and strategic alternative to conventional

bioprospecting approaches.Moreover, this approach has the potential to

foster sustainable development and biodiversity conservation while also

supporting the economic development of biodiversity-rich countries.

While we argue that integrating eco-evolutionary reasoning into

bioprospecting is a promising avenue, this approach is not without its

challenges. One limitation lies in the current lack of standardized

methodologies to systematically evaluate the ecological roles of

natural products in situ or in complex community contexts.

Furthermore, many organisms remain poorly studied from an

ecological perspective, particularly in marine and microbial

ecosystems, limiting our ability to formulate predictive frameworks.

The development of functional ecological assays, metabolomic

databases annotated with ecological metadata, and interdisciplinary

collaborations will be critical to advance this field. Additionally,

scaling this approach requires institutional support, funding

mechanisms, and training in chemical ecology, areas that remain

underrepresented in many bioprospecting programs. Nevertheless,

the convergence of ecological theory, evolutionary biology, and

chemical analytics offers a fertile ground for reimagining natural

product discovery. Future research should focus on validating

ecological screening models, developing bioinformatic tools for

ecological annotation, and assessing the conservation implications

of targeting ecologically functional compounds.
FIGURE 1

Ecological workflow depicting the integration of omics studies with ecological roles, processes, and patterns for the isolation and characterization of
natural products. It includes sections on spatial and temporal variation, bioassays, ecological factors, and the development of therapeutic bioassays
and lead molecules. Arrows connect these elements, highlighting the processes for preclinical and clinical studies. Adapted from Ledoux and
Antunes, 2018.
frontiersin.org

https://doi.org/10.3389/fevo.2025.1658630
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Pereira et al. 10.3389/fevo.2025.1658630
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author/s.
Author contributions

RP: Writing – review & editing, Writing – original draft,

Funding acquisition, Conceptualization. YR: Visualization,

Conceptual izat ion, Writ ing – review & edit ing. DM:

Methodology, Conceptualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This study was partially
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