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Biological recycling theory: a
cyclic network framework for
evolutionary innovation and
recovery

Sameh Mesallum*

Department of Medicine, Tufts University School of Medicine, Boston, MA, United States

Introduction: Life's macroevolutionary patterns—rapid post-extinction
recoveries and bursts of novelty—are not fully explained by mutation and
vertical descent alone. | introduce Biological Recycling Theory (BRT), a cyclic,
network-based framework.

Methods: An agent-based model compared four scenarios (classical, cryptic-
only, HGT-only, full BRT), with extinction pulses and explicit constraints on DNA
uptake/compatibility; code and runs are archived.

Results: Under 50% extinction, BRT restored ~90% of pre-event diversity in ~
fewer generations than classical models and yielded ~3,600 novel genotype
combinations (vs. ~2,800 cryptic-only; ~700 HGT-only; ~O mutation-only).
Longer eDNA half-life increased diversity retention and innovation.

Discussion: BRT integrates balancing selection, cryptic genetic variation, and
genetic recycling via HGT/eDNA to expand the effective genetic search space
across time, offering a testable framework for macroevolutionary resilience.
Conclusion: Evolution is better modeled as a cyclic network, where alleles
circulate across populations, environments, and time, complementing
Darwinian microevolution.
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1 Introduction

Darwinian evolution has provided a robust framework for understanding biological
change for more than 150 years. Natural selection acting on heritable variation remains one
of the most powerful and empirically validated explanations for microevolutionary
dynamics—the emergence of small-scale adaptations within species (Endler, 1986;
Futuyma, 2013). Classic cases such as antibiotic resistance in bacteria or beak
diversification in Darwin’s finches confirm the power of mutation and selection to shape
traits within populations over relatively short timescales (Grant and Grant, 2008; Davies
and Davies, 2010).
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However, macroevolutionary transitions—such as the origin of
new lineages, adaptive radiations after mass extinctions, and the
persistence of ancient alleles across deep time—often unfold faster
and at scales that mutation and vertical inheritance alone cannot fully
explain (Gould and Eldredge, 1977; Lynch, 2007). Metagenomic
surveys reveal large pools of uncharacterized genes circulating in
environmental samples (Louca et al,, 2018). Paleogenomic evidence
shows that DNA can persist for long periods under favorable
conditions (e.g., permafrost and sediments) (Kjeer et al, 2022;
Murchie et al,, 2022). Genomic analyses also report horizontal gene
transfer (HGT) in eukaryotes once thought resistant to it (Redmond
and McLysaght, 2023). Together, these findings suggest that evolution
cannot be fully captured by a one-way, branching “tree of life” alone.

Here I propose the Biological Recycling Theory (BRT): a cyclic,
network-based view in which genetic material is passed vertically and
recycled across temporal and taxonomic boundaries. BRT integrates
three empirically grounded pillars—balancing selection (Andreés et al,
2009), cryptic genetic variation (Paaby and Rockman, 2014; Humayun
et al, 2017)., and genetic recycling via HGT/eDNA (Davidsen et al,
2004; Gilbert and Maumus, 2022). reservoirs—to explain rapid
recoveries and bursts of innovation after crises. We evaluate BRT
with an agent-based simulation and provide a reproducible archived
run (release v1.1.0) with code, parameters, and raw outputs (see
Supplementary Information S2-S5).

1.1 Historical network models of life

Over the past five decades, diverse traditions have framed life as
networked and cyclic rather than strictly tree-like (Adami et al,
2000; Christensen et al., 2002; Demetrius, 2013; Dyson, 1982; Eigen
and Schuster, 1977; Ganti, 2003; Kauffman, 1993; Maturana and
Varela, 1980; Mindell, 2009; Rosen, 1991). Early origin-of-life
theories emphasized autocatalytic organization and closure;
systems views described living entities as self-maintaining
networks with repair; and ecological/digital network models
showed how reticulate interactions can yield punctuated
dynamics. What has been missing is a framework that links these
network concepts to empirical signals of biodiversity recovery,
cryptic variation, and environmental DNA. BRT advances this
synthesis by coupling these processes into a single cyclic
architecture with testable predictions.

1.2 The biological recycling theory

BRT models evolution as a cyclic network process in which alleles
circulate across populations, environments, and time. Three
empirically supported mechanisms operate together: balancing
selection maintains allelic diversity across long timescales (e.g.,
trans-species polymorphisms at immune loci); cryptic genetic
variation remains phenotypically silent until environmental shifts
expose it (e.g., insertion-sequence activation or regulatory rewiring);
and genetic recycling occurs when alleles archived in eDNA
reservoirs re-enter living genomes via natural transformation, viral
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transduction, endosymbiont-mediated routes, or ingestion. What
distinguishes BRT is explicit connectivity: reservoirs act as a
temporal extension of gene flow, and a compatibility filter (ORF >
100 bp; promoter proximity < 1 kb; codon-usage distance < 6; no
premature stops; basic folding plausibility) constrains integrations to
realistic candidates (see Methods/Supplementary Information).

1.3 BRT and originality

Horizontal gene transfer is well established; BRT’s novelty lies
in uniting HGT with balancing selection and cryptic variation into a
time-spanning cyclic model and quantifying their non-additive
integration. In BRT, extinction events recycle archived alleles,
cryptic variants supply latent adaptability, and balancing selection
preserves polymorphisms that would otherwise be lost—together
explaining rapid rebounds and bursts of novelty after crises.

1.4 Testability and information-theoretic
constraints

BRT is directly falsifiable. We outline four tests: (1) decay limits
—if authentic ancient DNA is not recoverable beyond specified
ages/integrity thresholds, BRT’s temporal scope is constrained; (2)
genomic signatures—if post-disturbance lineages lack predicted
introgression, recycling is disfavored; (3) microcosm assays—
communities seeded with ancient/exogenous DNA should adapt
faster than DNA-deprived controls; (4) compatibility filters—only
DNA fragments passing basic integrity/compatibility screens
should recycle successfully. Following Yockey’s channel-capacity
framing, we incorporate explicit decay half-lives and compatibility
thresholds (Supplementary Information 52-54).

1.5 Broader synthesis

BRT resonates with non-Darwinian variability perspectives (e.g.,
Implicit Genome) and recent modeling of alternate mutation
modalities, but embeds them in a broader cyclic framework that
extends into environmental time reservoirs. Finally, while Darwinian
processes explain within-species change, BRT clarifies how speciation
and higher-level diversification can be accelerated by cyclic recycling of
alleles across time and environments—consistent with conceptual
discussions of monophyly and lineage emergence (Gordon, 1999).

2 Methods
2.1 Statistical and reproducibility details

Each scenario was replicated n = 3 times (seeds 100-102;
experimental unit: replicate run). Recovery time was quantified as

T90 (generations to regain 90% of pre-extinction diversity); innovation
was the count of novel genotype combinations relative to initialization.
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We report medians with 95% percentile bootstrap Cls across replicates.
Time-points were not treated as independent observations. Update
schedule per generation: reproduction — mutation — exchange/
uptake — selection. Stopping rule: 900 generations or earlier if
Adiversity < 0.1% across 50 generations. Per-run commands and
environment are recorded in results/ RUN_LOG.txt and results/
RUN_TIMESTAMP.txt in the archived bundle.

2.2 Model overview

We implemented an agent-based simulation framework in Python
(open-source, available on Zenodo DOI: 10.5281/zenodo.16862739).
Populations of digital lineages were tracked over discrete generations,
with processes of mutation, extinction, recolonization, horizontal gene
transfer (HGT), and activation of cryptic genetic variation. Each
lineage was modeled as a vector of binary alleles across multiple
loci. Lineages replicate, mutate, and occasionally exchange alleles. In
“classical” Darwinian scenarios, lineages evolve by vertical inheritance
with de novo mutations. In BRT scenarios, three additional modules
operate simultaneously: (1) balancing selection at certain loci preserves
allelic diversity; (2) cryptic alleles remain phenotypically neutral until
exposed by environmental change; and (3) environmental DNA
(eDNA) recycling allows alleles shed into external reservoirs to be
reabsorbed via uptake or viral transfer. All modules can be activated
individually or in combination, allowing direct comparison of classical
vs. cryptic-only vs. HGT-only vs. full BRT scenarios.

2.3 Extinction and recolonization

Extinction pulses removed a fraction of alive lineages at fixed
intervals. Default settings for the archived run were: extinction fraction
0.5, periodicity 300 generations. Recolonization proceeded gradually at
~0.4 of dead lineages per generation by copying surviving parents, with
cryptic activation and lateral acquisition applied as specified below.

2.4 Balancing selection

Balancing selection was modeled as a fitness bonus for
heterozygosity or multi-allelic states at key loci, based on
empirical data from MHC trans-species polymorphisms (Andres
et al,, 2009). Alleles under balancing selection thus avoided rapid
fixation or loss, maintaining latent diversity across runs.

2.5 Cryptic genetic variation

Cryptic alleles were modeled as conditionally neutral. Under
baseline conditions, they contributed nothing to fitness. During
simulated environmental perturbations, the trait-fitness mapping
shifted, revealing cryptic alleles as beneficial or deleterious.
Mechanistic parallels include insertion-sequence activation of
silent genes (Humayun et al, 2017) and regulatory rewiring
exposing previously neutral loci (Paaby & Rockman, 2014).
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2.6 Horizontal gene transfer and
environmental DNA uptake

HGT was implemented in v1.1.0 as a unified rate applied during
recolonization and within-generation exchange; acquired alleles
passed a compatibility threshold 8 = 0.5 (codon-usage/functional
plausibility screen). Environmental uptake is represented within this
unified process; details and code are provided at the DOI archive.

2.7 Simulation parameters

* Initial number of lineages: 400.

* Generations per run: 900.

 Extinction fraction: 0.5; periodicity: 300 generations.
* Recolonization rate: ~0.4 per generation.

* Replicates per scenario: 3 (seeds 100-102).

Scenarios compared: Classical (mutation + selection only);
Cryptic-only; HGT-only (unified HGT); Full BRT (balancing +
cryptic + unified HGT + eDNA).

2.8 Output metrics/statistical treatment

Each run produced per-generation diversity, T90, and an
innovation count. Uncertainty is summarized as medians with 95%
percentile bootstrap CIs across replicates; sensitivity analyses varied
extinction fraction and eDNA half-life in the Supplementary
Information. Further replication details (environment, commands,
per-figure outputs) are provided in Supplementary Information S2-S5.

3 Results
3.1 Biodiversity recovery dynamics

Across all scenarios, BRT accelerated biodiversity recovery
relative to the mutation-only baseline. After a 50% die-off every
300 generations, the Classical model required ~120 generations
(median) to regain 90% of pre-event diversity. Adding cryptic
variation shortened recovery by ~30%, HGT-only by ~40%, and
Full BRT by ~65%, while also reducing between-replicate variance.
Figure 1 plots median trajectories with 95% percentile ribbons
(n = 3); extinction pulses are indicated by dashed lines.

3.2 Innovation and novel trait
combinations

Mutation-only runs produced negligible novelty; cryptic-only
yielded ~2,800 novel combinations; HGT-only ~700; and Full BRT
~3,600 (Figure 2). The combination under BRT is synergistic:

Synergy = I_BRT — (I_cryptic-only + I_HGT-only — I_classical).

Using these medians, synergy =~ +100; 95% percentile CIs are
reported in Supplementary Information S4.
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FIGURE 1

Post-extinction recovery trajectories across scenarios. Median normalized diversity through time (n = 3 runs) under a 50% extinction pulse (vertical
dashed line). Classical (mutation + selection), cryptic-only, HGT-only, and full BRT (balancing + cryptic + HGT + eDNA) are shown with 95%
confidence ribbons.

3.3 Role of environmental DNA reservoirs or sedimentary environments (hundreds to thousands of generations),
populations recycled alleles from extinct lineages, effectively

A critical novelty of BRT is the inclusion of eDNA as a long-term  expanding the system’s memory. Extending DNA half-life increased
reservoir. When the eDNA half-life was extended to reflect permafrost ~ both baseline diversity retention (smaller post-extinction bottlenecks)
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FIGURE 2
Innovation (novel genotype combinations per run) by scenario. Distribution of novelty across Classical, Cryptic-only, HGT-only, and full BRT. BRT
yields the highest innovation; cryptic-only contributes the majority of combinations; HGT-only adds unique architectures.
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and innovation potential (greater access to rare alleles from prior 3.4 Mechanistic integ ration
eras), consistent with eDNA acting as a temporal extension of gene

flow. Figure 3 shows how longer DNA persistence translates into A schematic (Figure 4) clarifies how the BRT pillars integrate
higher post-extinction diversity trajectories: short half-lives converge  into a single cyclic network: balancing selection maintains allelic
toward the cryptic/HGT-only results, while long half-lives maintain ~ pools within lineages; cryptic alleles remain silent until

elevated innovation for hundreds of generations. environmental shifts expose them; eDNA stores alleles beyond
i
1.0
0.8
2
£
o
2 0.6f
T
el
9]
N !
© 1
€041 l
S |
z i
1
1
|
0.2 !
1
1
! == Short half-life (A_short = 50 gen)
i — Long half-life (A\_long = 1000 gen)
0'00 100 200 300 400 500

Generations

FIGURE 3
Post-extinction recovery.
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(permafrost /' sediments) . usage; no premature stops)

FIGURE 4

Mechanistic schematic of Biological Recycling Theory (BRT). Vertical descent + selection maintain lineages; balancing selection preserves
polymorphisms; cryptic variation remains latent until environmental shifts; alleles shed to eDNA reservoirs (permafrost/sediments) re-enter via HGT/
uptake (transformation, transduction, endosymbionts, ingestion) subject to a compatibility filter (e.g., ORF > 100 bp, promoter proximity < 1 kb,
codon usage compatibility, no premature stops).
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source lifespans; and HGT/uptake reintroduces these alleles into
new contexts. Solid arrows denote vertical inheritance and active
transfer; dashed arrows denote shedding and later reintegration.
The schematic underscores that BRT is not a replacement for
Darwinian microevolution but an overlaying network that
expands the effective genetic search space.

4 Discussion

4.1 Positioning BRT within evolutionary
theory

BRT complements microevolution by adding a cyclic, time-
spanning network that helps explain macroevolutionary patterns
(rapid post-extinction recovery, convergent radiations) while
retaining mutation, selection, and vertical descent. Darwinian
evolution—vertical inheritance filtered by natural selection—
remains the most robust explanation for microevolutionary
change; laboratory systems, long-term evolution experiments, and
ecological studies confirm its predictive power within the “species
band”(Lenski, 2017). BRT extends this architecture to better
account for rapid recoveries, convergent radiations, and the
persistence of ancient allelic lineages.

An important question is how cryptic alleles, balancing selection,
and archived eDNA connect mechanistically to horizontal
acquisition. BRT addresses this by coupling long-term retention
(balancing), conditional exposure (cryptic), temporal extension of
gene flow (eDNA), and uptake/exchange pathways (HGT), forming
a cyclic gene pool (Figure 4). In the archived run (v1.1.0), HGT is
implemented as a unified rate with a compatibility threshold (), and
cryptic activation operates during recolonization and within-
generation updates (see Supplementary Information S2-54).

4.2 Relationship to earlier network models
of life

Multiple network frameworks—from hypercycles and
autopoiesis to digital ecological models and directionality theory
—anticipated aspects of cyclic connectivity. BRT scales these
concepts to macroevolution by explicitly incorporating balancing
selection, cryptic variation, and eDNA/HGT recycling into a
predictive framework with quantitative outputs.

4.3 Limitations and next steps
Our archived bundle uses a unified HGT rate (rather than

separate within-population and eDNA uptake rates) and n = 3
replicates for the main run; both choices are transparent in the code
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and Supplementary Information (v1.1.0). Future tagged runs will
expose separate r_e and r_u and n = 10 replicates to mirror the
expanded design in the Methods. Ecological structure and trait-
fitness mappings were kept minimal to isolate the effect of cyclic
connectivity; richer ecological modules are straightforward to add
without changing the core predictions.

4.4 Testable predictions (summary)

BRT remains directly falsifiable: (i) decay limits—authentic
ancient DNA should be recoverable beyond model thresholds
only under exceptional preservation; (ii) genomic signatures—
lineages experiencing disturbance should exhibit introgression
from archived/neighboring pools; (iii) microcosm assays—
communities seeded with ancient/exogenous DNA should adapt
faster than DNA-deprived controls; (iv) compatibility filters—only
DNA fragments passing basic integrity/compatibility screens
should recycle successfully. Supplementary Information S3-S5
provide the operational details for these tests.

5 Conclusion

In sum, BRT synthesizes network-based views of life with
empirical mechanisms—balancing selection, cryptic alleles, and
environmental DNA/HGT—to explain how cyclic recycling
accelerates post-extinction recovery and expands the adaptive
search space beyond vertical descent alone. By integrating
molecular mechanisms, ecological network thinking, and
information-theoretic bounds, BRT offers a predictive and
falsifiable framework for macroevolutionary resilience. The
archived run (v1.1.0) and Supplementary Information S2-S5 make
these claims reproducible, documenting parameters, code, and raw
outputs. Future work—separating within-population exchange and
eDNA uptake rates, increasing replicate counts, and adding richer
ecological structure—will sharpen the quantitative tests while
preserving the framework’s core predictions.
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