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The spatiotemporal heterogeneity of urban vegetation phenology (UVP) has
intensified due to coupled urban expansion and climate change, yet the
systematic understanding of UVP responses along urban-rural gradients across
diverse climatic contexts and urban expansion remains limited. Therefore, this
study selected 31 Chinese cities across diverse climate zones and city sizes using
multi-source remote sensing data (2001-2020) to quantify the synergistic effects
of urban expansion and climate change on urban-rural UVP differences (AUVP).
First, UVP in China exhibited advanced start of growing season (SOS), delayed
end of growing season (EOS), and extended length of growing season (GSL), with
more pronounced shifts in southeastern regions compared to northwestern
zones. Furthermore, the magnitudes of SOS advancement, EOS delay, and GSL
extension gradually decreased along the urban-rural gradient. AUVP in large
cities was smaller than that in other city sizes, whereas arid and semi-arid zones
exhibited significantly greater AUVP than humid and semi-humid zones. Second,
ASQOS, AEOS, and AGSL demonstrated predominantly negative, positive, and
positive correlations with both urban heat island intensity (ALST) and urban
expansion intensity (AISP), respectively. Medium cities demonstrated the
maximum response magnitudes of AUVP to ALST compared to other city sizes,
whereas small towns demonstrated the maximum response magnitudes of AUVP
to AISP. The response magnitudes of AUVP to both ALST and AISP were
significantly greater in arid and semi-arid zones than in humid and semi-humid
zones. Finally, principal component analysis confirmed that urban factors
predominantly drive AUVP variations, with AISP identified as the primary
regulatory factor. These findings provide critical insights into urban vegetation
dynamics under rapid expansion and climate change.
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1 Introduction

Vegetation phenology, as a biological rhythm indicator formed
by plants adapted to periodic environmental changes, serves as a
sensitive indicator of ecosystem responses to climate change (Shen
etal, 2018; Gong et al., 2024). Current research indicates that global
warming has caused significant shifts in the spatiotemporal patterns
of UVP (Liang et al., 2024; Mo et al., 2024; Chen and Zhang, 2023).
Furthermore, widespread urban expansion globally has intensified
the complexity of this process through modifications in the land-use
patterns and the local urban climate (e.g., heat island effects) (Liu
et al., 2023). Specifically, anthropogenic activities serve as the
primary drivers through which urban expansion influences the
spatiotemporal patterns of vegetation phenology. Practices such
as land-use conversion, anthropogenic heat emissions, artificial
irrigation, and fertilization can all alter vegetation phenological
processes in and around urban areas. In contrast, the impact of
climate change on vegetation phenology is a coupled process of
nature and human activities. For instance, the increase in
greenhouse gas concentrations, global warming, and changes in
precipitation patterns can also affect the phenological processes of
vegetation on a regional or even global scale. Although the driving
pathways of urban expansion and climate change on vegetation
phenology are different, they also interact with each other to jointly
regulate vegetation phenology. Firstly, the synergistic effect of the
urban heat island (UHI) and global warming leads to increased
urban temperatures, which may significantly alter the
spatiotemporal differentiation patterns of UVP (Cheval et al,
2024). Secondly, the influences of climate change and urban
expansion on vegetation phenology may also exhibit antagonistic
effects. For instance, decreased precipitation frequency may lead to
an earlier EOS of vegetation in the Northern Hemisphere (Zhang
et al, 2025), whereas urban vegetation, sustained by artificial
irrigation that maintains soil moisture and promotes
carbohydrate accumulation, may experience a delayed EOS
(Bithler et al, 2006). In summary, urban expansion and climate
change interact through different mechanistic pathways to co-
regulate vegetation phenology. Meanwhile, changes in vegetation
phenology can, in turn, affect the urban ecological environment.
Studies have shown that the ecosystem services provided by
vegetation (e.g., thermal regulation) can significantly enhance
urban resilience and serve as effective solutions to mitigate
environmental issues like UHI effects (Tan et al, 2021). For
instance, a 16% reduction in vegetation coverage in Guangzhou’s
urban area increased land surface temperature by 2.5°C (Hu and Jia,
2010), while vegetation in London reduced summer nighttime UHI
intensity by 1.1°C (Doick et al., 2014). Although cities occupy only
3%-5% of the global land surface, research on UVP changes can
better capture the impacts of urban development on the natural
vegetated environment, providing early signals of future changes in
the natural biosphere. Additionally, despite being insular
ecosystems, urban areas are intricately connected to the global
biosphere through flows of materials, energy, and species. The
stability of UVP directly influences the integrity of regional
ecological networks and can progressively affect larger regions,
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even the global ecological sphere (Yang et al., 2023b). Therefore,
investigating UVP variations induced by multi-scale climate drivers
and urban expansion is crucial for developing climate-resilient
urban ecological management frameworks (Qiu et al., 2020).

Conventional urban vegetation phenology studies primarily rely
on ground-based manual phenological observations, yet the uneven
spatial distribution and low density of urban phenological stations
impose significant limitations on observational accuracy (Li et al.,
2021). In contrast, satellite-based phenological monitoring offers
substantial potential for quantifying vegetation phenological
changes across local-to-global scales due to its spatiotemporal
continuity (Kato et al., 2021; Zeng et al., 2020).Within the current
context of rapid global urban expansion and climate warming,
numerous studies utilizing long-term satellite data have identified
the spatiotemporal differentiation patterns of UVP and their multi-
scale driving mechanisms.

First, previous studies have identified vegetation SOS and EOS
as the phenological parameters most sensitive to environmental
changes, primarily manifested as SOS advancement and EOS delay
(Liu et al., 2016). For instance, climate change has caused significant
SOS advancement in 11.5% of global vegetation and extended GSL
in 12.6% of vegetation (Fang et al., 2023). Additionally, climatic
factors (e.g., temperature, precipitation) have been confirmed as the
primary drivers of long-term phenological changes due to their
fundamental roles in plant morphological and physiological
adaptations (Gao and Zhao, 2022; Ranjan and Gorai, 2022). It is
noteworthy that previous studies have extensively confirmed that in
mid- to high-latitude or temperate regions, when ambient
temperature is below the species-specific optimal growth
threshold, rising temperatures promote an earlier SOS and a later
EOS. However, when temperature exceeds the thermal threshold,
elevated temperatures inhibit the activity of photosynthetic
enzymes and exacerbate water loss through transpiration,
consequently leading to a delayed SOS or an advanced EOS (Liu
et al., 2024). Furthermore, this temperature-driven phenological
response is additionally modulated by water stress in arid and semi-
arid regions. Relevant studies indicate that the arid regions of
Northwest China, being highly sensitive to global climate change,
exhibit vegetation phenology that is co-controlled by the dual
factors of temperature and water, with the regulatory effect of
moisture often surpassing that of temperature (Wang et al,
2021). For instance, in areas of the Loess Plateau in Gansu
Province with relatively sufficient precipitation, rising
temperatures can still promote an earlier SOS and a later EOS. In
contrast, in other regions where precipitation is insufficient,
vegetation subjected to water stress exhibits a delayed SOS and an
advanced EOS in response to temperature increases (Zhou et al,
2025). In arid and semi-arid regions, however, artificial irrigation
contributes to maintaining the stability of urban vegetation
phenological rhythms by partially alleviating water stress.
Meanwhile, spatial variations in climate and vegetation types
across latitudinal, longitudinal, and altitudinal gradients further
modulate UVP (Gao et al., 2020). However, these studies
predominantly focus on macroclimatic effects while overlooking
localized climatic alterations induced by urban expansion (e.g.,
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urban expansion intensity, heat island intensity) that drive
phenological divergence between urban and non-urban
vegetation. Secondly, current UVP research exhibits
methodological limitations in spatial representation. Most studies
concentrate on intra-urban phenological variations by taking the
entire city as a single entity or using a simplistic urban-rural
dichotomy. For example, 51% of 196 selected mid-latitude
Northern Hemisphere cities demonstrated urban vegetation SOS
advancement during post-urban expansion periods compared to
pre-urban expansion phases, with 53% exhibiting EOS delays. And
climate change remains the dominant driver of interannual UVP
variations (Qiu et al., 2020). An urban-rural dichotomy analysis
revealed that urban warming induced SOS advancement in 78% of
urban backgrounds and 73% of rural backgrounds across 292
Chinese cities, with urban areas exhibiting significantly higher
SOS advancement rates than rural counterparts (Wang et al,
2022). Nevertheless, the high intra-urban heterogeneity renders
simplistic city-scale approaches or urban-rural dichotomies
inadequate for characterizing continuous phenological responses
along urban expansion gradients. Finally, some studies have
adopted refined urban zoning strategies to investigate
phenological variations across urban-rural gradients. These
approaches typically partition cities into urban core, suburban,
and rural areas, quantifying spatiotemporal differences in
vegetation phenology along impervious surface percentage (ISP)
gradients. Analysis of over 4500 U.S. urban clusters demonstrated
distinct phenological responses to urbanization across gradient
regions, with urban cores exhibiting earlier SOS, later EOS, and
thus longer GSL compared to peripheral areas. A tenfold increase in
city size was correlated with SOS advancement (~1.3 days), EOS
delay (~2.4 days), and GSL extension (~3.6 days), indicating scale-
dependent phenological response magnitudes to urbanization (Li
etal., 2017). In over 1500 Chinese cities, SOS advancement and EOS
delay along urban-rural gradients followed unimodal curves
peaking in new urban districts (ASOS = -12.4 + 18.5 days, AEOS
= 3.8 £ 9.9 days). Climate change predominated over urbanization
in driving interannual UVP variations across all urban zones (Ji
et al, 2023). Despite adopting gradient-based zoning strategies,
these studies still treated individual zones as discrete entities rather
than continuous spatial gradients.

In summary, although current studies on UVP variations and
their driving factors are relatively comprehensive and have
confirmed that UVP is co-regulated by local urban expansion
intensity and background climate change (Jin et al, 2019; Luo
et al,, 2020; Zhang et al., 2022), critical issues remain unresolved.
Firstly, due to the significant heterogeneity of local landscapes
within a city, the intensity of urban expansion varies considerably
across different zones. Simply treating the city as a single entity or
employing a simplistic urban-rural dichotomy to investigate intra-
urban phenological changes may fail to accurately assess the
relationship between driving factors and vegetation phenology.
Concurrently, the peri-urban transitional zones (e.g., the urban-
rural fringe) are areas where vegetation phenology responds most
sensitively. Merging or overlooking these areas in an analysis could
also lead to significant errors in the assessment results. Secondly,
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while previous studies have optimized urban zoning strategies, they
have primarily focused on the interannual variations of UVP across
different gradients while overlooking its continuity along the urban-
rural gradient. This oversight leads to a failure in characterizing the
impact of local climate changes induced by urban expansion on
vegetation phenology. Consequently, such an approach may
underestimate the contribution of urban expansion to UVP
changes. Therefore, in this study, we established multiple buffers
and formulated a zoning strategy based on the vegetation
phenological changes within these different buffers to mitigate
errors associated with urban transitional zones. Simultaneously,
we assessed the continuous response of vegetation phenology to
changes in urban expansion intensity along the urban-rural
gradient, thereby enabling a more accurate characterization of the
influence of local climate changes, driven by urban expansion, on
vegetation phenology. In summary, a systematic understanding
remains lacking regarding whether the response mechanisms of
vegetation phenology to urban expansion along urban-rural
gradients differ across city sizes and climatic contexts. Moreover,
empirical evidence is still required to elucidate the gradient
evolution of UVP and its dynamic response mechanisms to
different urban expansion phases during prolonged urbanization
processes. Therefore, this study employs continuous remote sensing
data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) to quantitatively analyze the spatiotemporal
differentiation patterns of AUVP and its response mechanisms to
urban expansion under varying city sizes and climatic backgrounds.
By integrating multi-source urban expansion indicators (urban
population density, urban expansion intensity, and urban heat
island intensity) with climatic factors (temperature, precipitation,
and radiation), we specifically dissect the synergistic mechanisms of
urban and climatic factors on AUVP along urban-rural gradients.

2 Materials and methods

2.1 Study area

China is situated at the convergence zone between eastern
Eurasia and the western Pacific Rim (73°E-135°E, 19°N-55°N),
characterized by a three-step topographic ladder descending from
western highlands to eastern lowlands. The climate exhibits
complex diversity, spanning tropical to cold-temperate zones
from south to north, and transitioning from humid to arid zones
east to west. Temperature decreases latitudinally while precipitation
diminishes longitudinally from southeastern coasts to northwestern
inland, forming distinct latitudinal and longitudinal climatic
gradients. Vegetation distribution demonstrates latitudinal
zonality and vertical zonality patterns, dominated by grassland,
forest, cropland, and bare land ecosystems (as shown in Figure 1a).
Additionally, rapid urban expansion over recent decades has
significantly increased built-up areas and intensified urban heat
island effects (Peng et al., 2018). By 2020, China’s urban population
reached 1.41 billion, with its GDP reaching 103.49 trillion yuan. The
country’s diverse climatic settings and accelerated urbanization
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FIGURE 1

The distribution of (a) different vegetation types in China and (b) the locations of the 31 major cities. The land cover map was based on the MODIS

Land Cover Type product (MCD12Q1) at 500 m resolution in 2020.

provide an ideal laboratory for investigating long-term UVP
dynamics and their response mechanisms. Therefore, this study
selected 31 major Chinese cities (including 27 provincial capitals
and 4 municipalities) and their surrounding regions (Figure 1b).
These cities are distributed across distinct climate zones with
divergent urbanization trajectories.

2.2 Data source

This study utilized multi-source remote sensing data, including
Moderate Resolution Imaging Spectroradiometer (MODIS) data,
reanalysis data, and auxiliary datasets (Table 1). Specifically,
vegetation phenology data from 2001 to 2020 were obtained from
the MODIS Land Cover Dynamics Yearly product (MCD12Q2 v6)
at 500 m spatial resolution (https://Ipdaac.usgs.gov/), which
captures phenological metrics using the dynamic threshold
method based on the MODIS Enhanced Vegetation Index (EVI).
Since EVI reduces the effects of atmospheric and canopy
background and exhibits higher sensitivity to minor variations in
vegetation activity (Ishtiaque et al., 2016), it is a plausible source for
monitoring urban vegetation dynamics with sparse vegetation
(Dallimer et al,, 2011; Yao et al., 2019). The land cover type data
was derived from MODIS Land Cover data (MCD12Q1 v6) at 500
m spatial resolution over the same period with phenological
information (https://search.earthdata.nasa.gov/search/). The
University of Maryland (UMD) classification scheme was applied
to exclude pixels categorized as cropland. Land surface temperature
(LST) data from 2001 to 2020 were obtained from NASA’s Terra
satellite MODIS product (MOD11A2). This dataset provides 8-day
composite averages of clear-sky LST at 1 km spatial resolution. The
LST data were used to quantify surface urban heat island intensity
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and investigate the impacts of urban drivers on urban vegetation
phenology (https://earthdata.nasa.gov/).

The reanalysis data, including temperature, precipitation, and
radiation data from 2001 to 2020, were obtained from the ERA5-
Land Monthly Averaged product. This product integrates
numerous observations worldwide into a global dataset with
strong integrity and consistency, with a spatial resolution of 0.1
degrees (approximately 11 km). These data were used to quantify
climate factors including temperature, precipitation and radiation,

TABLE 1 Data details used in this study.

Data .
S Data name Product Resolution
classification
EVI MCD12Q2 500 m
MODIS data LST MODI11A2 1 km
Land cover type = MCDI12Ql 500 m
EARS-
Temperature LAND 0.1 degree
EARS5-
lysi Precipitati .1
Reanalysis data recipitation LAND 0.1 degree
EAR5-
Radiation RS 0.1 degree
LAND
Urban GUB .
boundary
Auxiliary data ISP GAIA 30 m
Population WorldPop 100 m
Elevation DEM 1 km
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and to investigate the impacts of climate change on UVP (https://
cds.climate.copernicus.eu/).

The auxiliary datasets include urban boundaries, impervious
surface area (ISA), population density, and elevation data. Urban
boundaries were derived from the Global Urban Boundary (GUB)
dataset (http://data.ess.tsinghua.edu.cn/), which extracts vectorized
urban boundaries based on 30 m resolution global artificial
impervious surface data. Compared with manual interpretation,
the GUB dataset demonstrates superior capability in capturing
urban fringe morphology (Li et al., 2020). The 2001-2020 ISA
data were generated through time-series analysis of 30 m resolution
Landsat optical imagery combined with supplementary datasets
(VIIRS nighttime light data and Sentinel-1 SAR data) (https://
www.x-mol.com/groups/li_xuecao/dongtaizhitu). This 30 m
resolution dataset, characterized by relatively high overall
accuracy, was utilized to characterize urban impervious surface
increase dynamics (Gong et al, 2020). Population density data
(2001-2020) were obtained from the WorldPop 100-m gridded
population distribution dataset (https://www.worldpop.org/),
which integrates census data with multi-source remote sensing
observations. These data supported the analysis of urban factors’
impacts on vegetation phenology. Digital Elevation Model (DEM)
data (1 km resolution) acquired from the Resource and Environment
Science and Data Center (https://www.resdc.cn) were employed to
mitigate elevation-induced biases in urban heat island intensity
estimation and vegetation phenological parameter extraction.

All raster data were resampled to 500 m using the nearest
neighbor method to match the spatial resolution of the EVI data.

2.3 Methods

2.3.1 Vegetation phenology parameters

The MODIS Land Cover Dynamics Yearly Product
(MCD12Q2) was employed to extract vegetation phenological
parameters from 2001 to 2020, featuring 500 m spatial resolution
and annual temporal resolution. Vegetation transition dates were
identified through curvature extremum points derived from a
segmented logistic function fitted to the MODIS two-band
Enhanced Vegetation Index (EVI2) time series. In this study three
environmentally sensitive phenological parameters were selected:
SOS, EOS, and GSL. SOS and EOS represent the day of year (DOY)
counted from January Ist to respective phenophase transitions,
while GSL is defined as the duration between EOS and SOS. The
MCD12Q2 dataset defines the data when EVI2 first crossed 15% of
the segment EVI2 amplitude as Greenup and the date when EVI2
last crossed 15% of the segment EVI2 amplitude as Dormancy,
which corresponds the pixel values of SOS and EOS, respectively.
The pixel values of GSL were calculated by subtracting SOS from
EOS (Chen et al, 2023; Zhou et al, 2014a). According to the
previous research, pixels with SOS (DOY < 50 or DOY > 180), and
EOS (DOY < 240 or DOY > 330) were excluded as outliers to
mitigate uncertainties induced by urban landscape complexity
(Peng et al,, 2024; Yang et al, 2020). Additionally, agricultural
pixels were masked using contemporaneous MODIS Land Cover
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Type data (MCDI12Ql) to minimize anthropogenic vegetation
interference (Yin et al., 2023). And pixels exceeding 50 m above
the maximum urban areas elevation were removed through DEM
data to control for altitudinal effects on phenological variations
(Zhou et al,, 2016). The Theil-Sen estimator was applied to quantify
interannual trends (2001-2020) in SOS, EOS, and GSL due to its
non-parametric nature and robustness against outliers, with trend
significance assessed using the Mann-Kendall test (Miu et al., 2024).
Furthermore, this methodology was consistently applied to analyze
trends in LST and ISP. The Theil-Sen slope formula is as follows:

Xj—xi

. P

B = median

Viji>i

In the formula, X and x; represent time-series data. § > 0
indicates a delayed trend in phenological phases, 8 < 0 signifies an
advanced trend in phenological phases.

The Mann-Kendall trend test formula is as follows:

S-1

Tvaw 570
7= 0, s=o

S+1 ’S<0

A/ Var(S)

n-1 n

S=7 > sgnlx; - x;)

i=1j=i+1

L x-x>0

sgn(xj — x;) = 0, x-x=0
-1, x-x<0
n(n—-1)2n +5)

Var(S) = s

In the formula, S is the trend statistic, and x;, xj are the i-th and
j-th observations (j > i). n is the length of the time series and sgn (x;-
x;) is the signed function. Taking the significance level o = 0.05,
when | Z. | > | Z(1.¢)2 |, the null hypothesis is rejected, indicating a
significant changing trend.

2.3.2 Assess the response mechanisms of UVP to
urban expansion and climate change along the
urban-rural gradient

To quantify the gradient effects of urban expansion on
vegetation phenology, we developed a detailed zoning strategy.
First, based on quintennial GUB data spanning 2000-2020 (i.e.,
2000, 2005, 2010, 2015, and 2020), we aligned urban boundaries to
the latest available GUB year. The largest urban patch within each
city’s administrative boundary was selected as the core urban area,
excluding relatively small or densely distributed patches (Mo et al.,
2024; Zhou et al,, 2014b). Previous studies suggest that the average
urban influence footprint on vegetation phenology extends less than
30 km from urban peripheries (Zhang et al., 2004; Zhou et al., 2015,
2016; Yang et al, 2019). And treating non-urban areas as
homogeneous while neglecting suburban transitional zones may
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The average values of vegetation phenology in urban areas and buffer zones of 31 cities. 1 represent the urban area and others represent the buffer

zones extending outward.

underestimate urban impacts on vegetation phenology. We
therefore established 8 buffer zones (0-5 km, 5-10 km, 10-15 km,
15-20 km, 20-25 km, 25-30 km, 30-35km, 35-40km) from urban
area boundaries. As shown in Figure 2, vegetation phenology
parameters gradually stabilize beyond 20 km. To ensure sufficient
observations per zone, we designated the 20-25 km and 25-30 km
buffers as non-urban (rural) areas. The remaining buffers were
consistently categorized into suburban areas (0-5 km, 5-10 km)
and exurban arears (10-15 km, 15-20 km). Finally, univariate linear
regression was employed to assess gradient differences in UVP, LST,
and ISP along the urban-rural continuum and to assess vegetation
phenology’s responsiveness to urban and climatic factors. The
urban-rural gradient differences in LST were respectively used to
characterize urban heat island intensity (ALST). The percentage of
impervious surface area is often used to represent the level of
urbanization. Therefore, we use the urban-rural gradient differences
in ISP to characterize the intensity of urban expansion (AISP). The
univariate linear regression formula is as follows:

y=b+kx

In the formula, x denotes the urban-rural gradient or other
temporal sequence data as the independent variable, while y
represents the corresponding dependent variable time series. The
parameter b is defined as the intercept term, and k quantifies the
slope coefficient. When assessing the response of vegetation phenology
to urban factors, the parameter k represents the number of days by
which vegetation phenology advances or delays for each 1% increase in
the percentage of impervious surface or each 1°C increase in the land
surface temperature, with units of d/% or d/°C.

2.3.3 Classification of city sizes and climate
backgrounds based on the Jenks natural breaks
classification method

The Jenks natural breaks classification method identifies
inherent natural groupings within datasets by optimally
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partitioning values into classes with maximized inter-class
variance. This algorithm establishes class boundaries at positions
where significant data value discontinuities occur (Li and Xu, 2020).
We therefore applied this method to categorize China’s 31 cities
into four city size based on mean annual permanent urban
population, and four climatic contexts according to mean annual
precipitation, as detailed in Tables 2, 3.

2.3.4 Assess the contributions of urban and
climatic factors to AUVP on the urban-rural
gradient

As AUVP is co-regulated by local urban expansion intensity and
background climate change, we selected six relevant factors to
investigate their contributions to AUVP. These factors comprise
three urban factors (urban heat island intensity, urban expansion
intensity, and urban population density) and three climatic factors
(temperature, precipitation, and radiation). However, collinearity
frequently exists among urban and climatic factors influencing
AUVP, and conventional correlation analysis cannot adequately
disentangle their combined effects. Therefore, we employed partial
correlation analysis to differentiate the relative contributions of
these 6 factors (Wang et al., 2019). Furthermore, to ensure result
robustness, we implemented Random Forest modeling to assess the

TABLE 2 The classification results of the city sizes.

Permanent
urban resident
population/10*

Classification result

City size

Large city > 1000 BJ CD CQ GZ SH T]

Medium city | 600-1000 CS HEB HZ JN NJ SY WH XA ZZ KM
Small city 300-600 CC FZ GY HF NC NN §JZ TY WLMQ
Small town < 300 HHHT HK LS LZ XN YC

The name of the city is an abbreviation of the first letter.
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TABLE 3 The classification results of the climate backgrounds.

Climate background

Precipitation/mm

10.3389/fevo.2025.1637210

Classification result

Humid zone > 1300
Se-humid zone 1000-1300
Se-arid zone 500-1000
arid zone < 500

The name of the city is an abbreviation of the first letter.

relative importance of each factor in driving AUVP. The complete
dataset was partitioned into training and testing subsets at an 8:2
ratio. To optimize model performance and prevent overfitting, we
employed 5-fold cross-validation with grid search to tune
hyperparameters using R* as the evaluation metric. The optimal
combination was identified as 100 decision trees with a maximum
depth of 10. This configuration achieved a R* score of 0.82 on the
test set, demonstrating strong predictive performance and
generalizability of the model.

3 Results

3.1 Spatio-temporal patterns and trends of
UVP based on urban-rural gradient

3.1.1 The spatial distribution characteristics of
annual mean of UVP

Using MCD12Q2 EVI phenological data, we analyzed the
spatial distribution characteristics of annual mean vegetation
phenology across 31 Chinese cities from 2001 to 2020. Across
urban-rural gradients (Figures 3a-1), the GSL of vegetation in the 31
cities ranged between 161-233 days, exhibiting a spatial pattern of
“longer in southern regions and shorter in northern areas”. The
vegetation SOS and EOS primarily occurred between 76-169 DOY,
289-322 DOY, respectively. Cities in relatively humid southeastern
regions with lower latitudes and elevations demonstrated earlier
SOS and slightly later EOS, whereas cities in arid northwestern
regions with higher latitudes and elevations exhibited later SOS and
marginally earlier EOS.

Overall analysis (Figures 4a-c) revealed that urban areas
exhibited the earliest vegetation SOS (SOS = 101), followed by
suburban areas (SOS = 109) and exurban areas (SOS = 111), with
rural areas showing the latest SOS (SOS = 113). The vegetation SOS
of urban areas occurred 12 days earlier than that in rural areas.
Urban areas demonstrated the latest vegetation EOS (EOS = 307),
followed by suburban areas (EOS = 303) and exurban areas (EOS =
302), while rural areas showed the earliest EOS (EOS = 301). The
vegetation EOS of urban areas was delayed by 6 days compared to
rural areas. Urban areas displayed the longest vegetation GSL (GSL
= 206 d), followed by suburban areas (GSL = 194 d) and exurban
areas (GSL = 191 d), with rural areas showing the shortest GSL (GSL
= 188 d). The vegetation GSL of urban areas was prolonged by 18
days compared to rural areas. Furthermore, the SOS, EOS, and GSL
distributions in urban areas of these 31 cities exhibited the lowest
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HK GZ CS FZ HZ NC SH WH
CD CQ GY HF KM NJ NN
77 XA TY TJ SY SJZ JN HRB CC BJ

YC XN WLMQ LZ LS HHHT

dispersion compared to other zones, indicating a relative
consistency in vegetation phenology responses to urban expansion.

3.1.2 The interannual variation of UVP and its
trend spatial distribution

The Theil-Sen slope estimator and Mann-Kendall test were
applied to quantify interannual vegetation phenology trends along
urban-rural gradients in 31 Chinese cities (2001-2020). Figures 5a-c
presents the spatiotemporal patterns of vegetation SOS, EOS, and
GSL across four zones (urban areas, suburban areas, exurban areas,
and rural areas). Nationwide, urban vegetation exhibited an
advanced SOS, a delayed EOS, and a prolonged GSL.The
vegetation SOS advanced significantly (P < 0.05) at 0.77 d/a
(urban areas), 0.46 d/a (suburban areas), 0.33 d/a (exurban areas),
and 0.32 d/a (rural areas); EOS delayed significantly (P < 0.05) at
0.72 d/a, 0.45 d/a, 0.38 d/a, and 0.36 d/a respectively; GSL prolonged
significantly (P < 0.05) at 1.50 d/a, 0.88 d/a, 0.72 d/a, and 0.69 d/a
correspondingly. This demonstrates a gradual attenuation in
vegetation phenology change rates with increasing distance from
urban cores.

The spatial distribution of vegetation phenology trends across
31 cities showed no distinct north-south regional divergence
(Figures 6a-1). However, cities exhibiting delayed SOS, advanced
EOS, and shortened GSL were predominantly clustered in the
humid southeastern coastal region and the Tibetan Plateau.
Furthermore (Figures 7a-c), the proportion of cities with
significantly advanced SOS progressively decreased along the
urban-rural gradient from urban zones (71%), while cities
showing non-significant advancement, significant delay, and non-
significant delay gradually increased. Cities with significantly
delayed EOS declined gradientally from urban zones (87%),
accompanied by increasing proportions of non-significantly
delayed, significantly advanced, and non-significantly advanced
cases. The percentage of cities with significantly prolonged GSL
decreased from urban zones (90%) along the urban-rural gradient,
while those with non-significant prolongation, significant
shortening, and non-significant shortening showed incremental
trends. This indicates diminishing urban influence on vegetation
phenology with increasing distance from urban zones.

3.1.3 The spatial distribution of AUVP along the
urban-rural gradient

The urban vegetation phenology (ASOSyy 1, AEOSyy1, and
AGSLyyr) along urban-rural gradients across 31 Chinese cities
from 2001 to 2020 exhibited pronounced spatial heterogeneity.
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FIGURE 3

The spatial distribution characteristics of annual average values of (a-d) SOS, (e-h) EOS and (i-1) GSL on different urban-rural gradients in 31 cities of
China.

Overall analysis (Figures 8a-c) indicates that except for a few coastal ~ were generally larger than those in relatively humid
humid cities where vegetation SOS in urban areas was delayed  southern regions.

(Guangzhou and Fuzhou), EOS advanced (Haikou and The urban vegetation phenology differences (AUVP),) varied
Guangzhou), and GSL shortened (Haikou and Guangzhou) under different city sizes and climatic backgrounds (Figures 9a-f).
compared to rural areas, the majority of cities demonstrated  Specifically, maximum vegetation ASOSy; (5.2 d) and AGSLy
earlier SOS, delayed EOS, and prolonged GSL in urban areas  (-8.3 d) were observed in small towns, followed by medium cities
relative to rural areas. Concurrently, the vegetation ASOSy;,  (ASOSy = 4.3 d, AGSLy; = -5.9 d) and small cities (ASOSy; = 3.3 d,
AEOSy;, and AGSLy, values in relatively arid northern regions  AGSLy = -5.2 d), with large cities exhibiting the minimum values
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FIGURE 4

The annual average values of vegetation (a) SOS, (b) EOS and (c) GSL on different urban-rural gradients.

(ASOSy; =2.0 d, AGSLy; = -3.4 d). The vegetation AEOSy, peaked in
small towns (-3.2 d), followed by small cities (-2.0 d) and medium
cities (-1.7 d), while large cities showed the smallest AEOSy; (-1.5 d).
Furthermore, maximum vegetation ASOSy; (6.0 d), AEOSy, (-3.8 d),
and AGSLy; (-9.8 d) occurred in arid zones, followed by semi-arid
zones (ASOSy; = 4.8 d, AEOSy; = -2.2 d, AGSLy; = -7.0 d) and semi-
humid zones (ASOSy; = 2.7 d, AEOSy; = -1.4 d, AGSLy; = -4.1 d),
with the lowest values in humid zones (ASOSy; = 1.5 d, AEOSy; =
1.0 d, AGSLy = -2.4 d).

Among all studied cities, 29 exhibited positive ASOS_Trend,
negative AEOS_Trend, and negative AGSL_Trend values
(Figures 10a-c), indicating that urban areas generally experienced
faster rates of SOS advancement, EOS delay, and GSL extension
compared to rural areas. The urban vegetation phenology trends
(AUPV_Trend) also varied across city sizes and climatic contexts
(Figures 11a-f). Specifically, the maximum ASOS_Trend (0.21 d),
AEOS_Trend (-0.15 d), and AGSL_Trend (-0.35 d) were observed in
small towns, followed by medium cities (ASOS_Trend = 0.20 d,
AEOS_Trend = -0.11 d, AGSL_Trend = -0.33 d) and small cities
(ASOS_Trend = 0.17 d, AEOS_Trend = -0.11 d, AGSL_Trend =
-0.26 d), with large cities showing the smallest values (ASOS_Trend
= 0.10 d, AEOS_Trend = -0.09 d, AGSL_Trend = -0.21 d).
Additionally, the ASOS_Trend, AEOS_Trend, and AGSL_Trend
were greater in arid zones (ASOS_Trend = 0.24 d, AEOS_Trend =

-0.21 d, AGSL_Trend = -0.43 d) and semi-arid zones (ASOS_Trend
=0.21d, AEOS_Trend =-0.13 d, AGSL_Trend = -0.36 d) compared
to semi-humid zones (ASOS_Trend = 0.16 d, AEOS_Trend = -0.12
d, AGSL_Trend =-0.27 d) and humid zones (ASOS_Trend = 0.09 d,
AEOS_Trend = -0.04 d, AGSL_Trend = -0.13 d).

3.2 Response of AUVP to urban expansion
in different climatic contexts

3.2.1 The spatial distribution of ALST and AISP
along the urban-rural gradient

To quantify the impact of urban expansion on vegetation
phenology along urban-rural gradients, we assessed the spatial
distribution characteristics of urban factors including urban
expansion intensity (AISP) and urban heat island intensity
(ALST). As shown in Figures 12a-l, ALSTy;r and AISPyyr values
in all 31 cities were negative, indicating higher LST and ISP in urban
areas compared to rural zones, along with faster warming and
expansion rates.

Specifically, ALST); reached the highest magnitude in large cities
(ALSTy; = -0.58°C), followed by small towns (ALSTy; = -0.51°C)
and small cities (ALSTy; = -0.45°C), with medium cities showing
the lowest value (ALSTy; = -0.44°C). Specifically, ALST); reached
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FIGURE 5

The interannual variation trend of (a) SOS, (b) EOS and (c) GSL on different urban-rural gradients.
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FIGURE 6

The spatial distribution characteristics of interannual variation trend of (a-d) SOS, (e-h) EOS and (i-1) GSL on different urban-rural gradients in 31

cities of China.

the highest magnitude in arid zones (ALSTy; = -0.52°C), followed
by semi-humid zones (ALSTy; = -0.49°C) and semi-arid zones
(ALSTy; = -0.47°C), with humid zones showing the lowest value
(ALSTy; = -0.46°C). For ALSTy, the highest values occurred in
large cities (ALSTt = -0.017°C), followed by small towns (ALSTt =
-0.015°C) and medium cities (ALSTy = -0.012°C), with small cities
showing the lowest values (ALSTy = -0.011°C). ALSTy showed
minor variations across climatic contexts: arid zones (ALSTp
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-0.0138°C), semi-arid zones (ALST; = -0.0127°C), semi-humid
zones (ALST = -0.0128°C), and humid zones (ALST} = -0.0133°C).

Furthermore, urban expansion intensity peaked in small towns
(AISPy; = -17.1%), followed by small cities (AISPy; = -15.5%) and
medium cities (AISPy; = -13.3%), with large cities exhibiting the
lowest values (AISPy; = -10.8%). AISPy; reached maximum values in
arid zones (AISPy; = -18.8%), followed by semi-arid zones (AISPy; =
-14.9%) and semi-humid zones (AISPy -13.0%), with the
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The significance of the interannual variation trend of (a) SOS, (b) EOS and (c) GSL on different urban-rural gradients.

minimum in humid zones (AISPy; = -10.9%). AISP was highest in
small towns (AISPr = -0.87%), followed by small cities (AISPy =
-0.75%) and medium cities (AISPp = -0.73%), with large cities
showing the lowest values (AISPt = -0.56%). AISPt peaked in arid
zones (AISPt = -0.85%), followed by semi-humid zones (AISPy =
-0.76%) and semi-arid zones (AISPt = -0.70%), with the minimum
in humid zones (AISPt = -0.66%).

3.2.2 Effect of ALST on vegetation phenology
along urban-rural gradient

To assess the response mechanisms of AUVP to urban expansion,
we quantify the response amplitude of AUVP to urban heat island
intensity and urban expansion intensity across 31 cities under varying
city sizes and climatic contexts along urban-rural gradient.

As shown in Figures 13a-i, the responses of ASOSy;, AEOSys, and
AGSLy; to urban heat island intensity exhibited spatial heterogeneity
across the 31 cities. Vegetation ASOSy; demonstrated positive
correlations with heat island intensity in individual cities
(Guangzhou, Fuzhou), whereas negative correlations predominated
in most cities. For vegetation AEOSy; and AGSLy;, positive
correlations with heat island intensity prevailed across all cities
except Guangzhou and Haikou. Integrated analysis revealed that

per 1°C increase in ALST); along the urban-rural gradient, vegetation
ASOSy; advanced by 7.5 days, AEOSy, delayed by 4.3 days, and
AGSLy; prolonged by 12.0 days. Medium cities exhibited the
maximum AUVP response amplitude, with ASOSy; advancement
of 8.9 days, AEOS); delay of 4.9 days, and AGSLy extension of 14.0
days per 1°C ALST); increase. Secondary responses occurred in small
towns (k; = -8.3 d/°C, k, = 4.6 d/°C, ks = 13.0 d/°C) and small cities
(k; = -7.0 d/°C, k, = 4.1 d/°C, k; = 11.2 d/°C), whereas large cities
showed minimal response amplitude (k; = -4.7 d/°C, k, = 3.5 d/°C,
k; = 8.3 d/°C). Additionally, across cities with distinct climatic
contexts, semi-arid zones (k; = -11.0 d/°C, k, = 6.0 d/°C, k3 = 17.1
d/°C) and arid zones (k; = -9.6 d/°C, k, = 5.9 d/°C, k; = 15.6 d/°C)
exhibited greater response magnitudes compared to semi-humid
zones (k; = -5.3 d/°C, k, = 3.7 d/°C, k; = 9.1 d/°C) and humid
zones (k, = -3.4 d/°C, k, = 1.6 d/°C, k3 = 5.1 d/°C).

Comparatively, the response mechanisms of AUVPy to urban

heat island intensity remained fundamentally consistent with
AUVP,y; across city sizes and climatic contexts (Figures 14a-i).
The response magnitudes of vegetation ASOS_Trend,
AEOS_Trend, and AGSL_Trend to urban heat island intensity
were most pronounced in medium cities, with ASOS_Trend
advanced by 13.3 days, AEOS_Trend delayed by 10.1 days, and

N
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FIGURE 8

The spatial distribution characteristics of (a) ASOSu, (b) AEOSym and (c) AGSLy along urban-rural gradient in 31 cities of China.
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FIGURE 9

The distribution of (a, d) ASOSy, (b, €) AEOSy and (c, f) AGSLy under different city sizes and climatic zones in 31 cities of China.

AGSL_Trend prolonged by 23.5 days per 1°C increase in ALST.
Small towns (k; = -12.9 d/°C, k, = 8.3 d/°C, k; = 21.1 d/°C) and
small cities (k; = -11.6 d/°C, k, = 7.4 d/°C, k3 = 19.0 d/°C) showed
secondary responses, while large cities (k; = -5.3 d/°C, k, = 3.9 d/°C,
ks = 9.3 d/°C) exhibited the smallest. Additionally, for cities with
different climatic backgrounds, semi-arid zones (k; = -14.8 d/°C, k,
=10.9 d/°C, ks = 25.5 d/°C) and arid zones (k;=-13.7 d/°C, k, = 9.8
d/°C, k; = 23.7 d/°C) exhibited significantly greater magnitudes of
vegetation ASOS_Trend, AEOS_Trend, and AGSL_Trend responses
to urban heat island intensity compared to semi-humid zones (k,
-10.9 d/°C, k, =7.9 d/°C, k3 = 18.8 d/°C) and humid zones (k, = -5.3
d/°C, k, = 2.1 d/°C, ks = 7.5 d/°C).

3.2.3 Effect of AISP on vegetation phenology
along urban-rural gradient

Comparatively, the response mechanisms of AUVPy; to urban
expansion intensity showed variations across 31 cities with different
city sizes and climatic zones (Figures 15a-i). Vegetation ASOSy
showed positive correlations with urban expansion intensity in
specific cities (Guangzhou, Fuzhou), while negative correlations
prevailed in most cities. Vegetation AEOSy; and AGSLy, exhibited
positive correlations in all cities except Guangzhou and Haikou.
Overall, along the urban-rural gradient, each 1% increase in AISPy
advanced vegetation ASOSy, by 0.19 days, delayed AEOSy, by 0.11
days, and prolonged AGSLy; by 0.30 days across the 31 cities.
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FIGURE 10

The spatial distribution characteristics of (a) ASOSy, (b) AEOSt and (c) AGSLy along urban-rural gradient in 31 cities of China.
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FIGURE 11

The distribution of (a, d) ASOSr, (b, €) AEOS+ and (c, f) AGSLy under different city sizes and climatic zones in 31 cities of China.

The response of AUVPy; to urban expansion intensity among
different city sizes, the response amplitudes of ASOSy; and AGSLy
of vegetation in small towns to urban expansion intensity are the
largest. For every 1% increase in AISPy;, vegetation ASOSy
advanced by 0.25 days and AGSLy, prolonged by 0.39 days.
Medium cities (k; = -0.23 d/%, ks = 0.32 d/%) and small cities (k;
= -0.17 d/%, k; = 0.27 d/%) exhibited moderate responses, with
large cities (k; = -0.12 d/%, k; = 0.20 d/%) demonstrating the
smallest. The vegetation AEOSy; response peaked in small towns
(0.15 days advancement per 1% AISP,, increase), followed by small
(k, = 0.10 d/%) and medium cities (k, = 0.10 d/%), while large cities
showed minimal response (k, = 0.08 d/%). Additionally, arid zones
(k; =-0.28 d/%, k, = 0.17 d/%, ks = 0.45 d/%) and semi-arid zones
(k; = -0.25 d/%, k, = 0.12 d/%, ks = 0.37 d/%) demonstrated
significantly stronger ASOSy;, AEOSM, and AGSLM responses than
semi-humid zones (k; = -0.16 d/%, k, = 0.08 d/%, ks = 0.24 d/%)
and humid zones (k; = -0.10 d/%, k, = 0.05 d/%, ks = -0.15 d/%).

For AUVPr (Figures 16a-i), small towns demonstrated the
maximum response amplitude of ASOS_Trend and AGSL_Trend
to urban expansion intensity, with vegetation ASOS_Trend
advancing 0.28 days and AGSL_Trend prolonging 0.45 days per
1% ISPy increase. Moderate responses were observed in medium
cities (k; = -0.25 d/%, ks = 0.37 d/%) and small cities (k; = -0.19 d/
%, ks = 0.32 d/%), whereas large cities exhibited the smallest
responses (k; = -0.15 d/%, ks = 0.27 d/%). Regarding
AEOS_Trend responses, small towns showed maximum
sensitivity with 0.16 days advancement per 1% ISPr increase,
followed by small cities (k, = 0.13 d/%) and medium cities (k, =
0.111 d/%), while large cities displayed minimal responses (k, = 0.11
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d/%). Additionally, cities in arid zones (k; = -0.29 d/%, k, = 0.22 d/
%, ks = 0.52 d/%) and semi-arid zones (k; = -0.27 d/%, k, = 0.14 d/
%, k3 = 0.42 d/%) exhibited stronger ASOS_Trend, AEOS_Trend,
and AGSL_Trend responses to expansion intensity compared to
those in semi-humid zones (k; = -0.20 d/%, k, = 0.13 d/%, k3 = 0.33
d/%) and humid zones (k; = -0.12 d/%, k, = 0.03 d/%, k; = 0.16
d/%).

3.2.4 The contribution of urban and climatic
factors to AUVP

To assess the contributions of urban and climatic factors to
AUVP along the urban-rural gradient, three urban factors (ALST,
AISP, APOP) and three climatic factors (ATEM, APRE, ARAD)
were selected. Partial correlation analysis revealed negative
correlations between ALST, AISP, APRE, ARAD, and vegetation
ASOS, while positive correlations were observed for APOP and
ATEM (Figures 17a-c). ALST, AISP, APRE, and ARAD showed
positive correlations with vegetation AEOS and AGSL, whereas
APOP and ATEM exhibited negative correlations. AISP
demonstrated the most significant effects on vegetation ASOS (r =
-0.32, P < 0.05), AEOS (r = 0.23, P < 0.05), and AGSL (r = -0.38, P <
0.05). Urban factors overall showed stronger correlations with
urban vegetation phenology than climatic factors along the
urban-rural gradients.

Furthermore, this study utilized a random forest model to assess
the relative importance of urban and climatic factors on AUVP. As
shown in Figures 18a-c, among the six factors, AISP contributed the
most to vegetation ASOS, while ARAD contributed the least. Urban
factors collectively accounted for 69% of the contribution to
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The spatial distribution characteristics of (a, d) ALSTw,r and (g, j) AISPuw/r along urban-rural gradient in 31 cities of China. The distribution of
(b, c, e, f) ALSTp/7 and (h, i, k, 1) AISPy,r under different city sizes and climatic zones in 31 cities of China

vegetation ASOS along the urban-rural gradient, compared to 31%
from climatic factors. For vegetation AEOS, ALST showed the
highest contribution among the six factors, with ARAD exhibiting
the lowest contribution. Urban factors accounted for 77% of the
contribution to vegetation AEOS across the urban-rural gradient,
whereas climatic factors contributed only 23%. Regarding urban
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vegetation AGSL, AISP demonstrated the maximum contribution
among the six factors, and APRE showed the minimum
contribution. Along the urban-rural gradient, urban factors
contributed 78% to urban vegetation AGSL, contrasting with 22%
from climatic factors. The results indicate that although climate
change has significant impacts on vegetation phenology at large
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scales, but localized climate changes induced by urban expansion
along the urban-rural gradient may be the primary cause of urban-
rural differences in vegetation phenology. Additionally, urban
vegetation ASOS exhibited relatively higher sensitivity to climate
change compared to other phenological parameters.

4 Discussion
4.1 The synergistic regulatory effect of
urban expansion and climate change on
urban vegetation phenology

This study employed MCD12Q2 EVI phenology data to analyze

spatiotemporal patterns of vegetation phenology across urban-rural
gradients in 31 Chinese cities from 2001 to 2020. The vegetation
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SOS, EOS, and GSL exhibited significant spatial heterogeneity along
urban-rural gradients in all 31 cities. Cities in more humid zones
showed earlier SOS, later EOS, compared to more arid zones. And
the vegetation GSL shows a spatial pattern of “longer in the south
and shorter in the north”. These findings align with previous
vegetation phenology studies in China (Ji et al., 2023; Ge et al,
2016; Fu et al., 2022), indicating significant climatic regulation on
phenological processes.

Notably, some cities (e.g., Guangzhou, Haikou, Xinjiang)
exhibited reversed vegetation phenology trends compared to
others. Previous studies indicate that rising temperatures can
interfere with the cold chilling process of vegetation during
winter, excessively high temperatures reduce the accumulated
cold chilling required for vegetation to enter dormancy, that may
result in delayed SOS (Cannell and Smith, 1983; Okie and
Blackburn, 2011). Consequently, when temperatures rise beyond
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a certain threshold, the advancing effect of temperature on
vegetation SOS may diminish or even reverse. For instance, the
relatively high and gradually increasing average temperatures
during winter and spring in the three provinces of South China
may be a key factor leading to the delayed SOS of substantial
vegetation (Ma et al, 2023). And Guangzhou, designated as a
“National Garden City,” experiences a significantly higher
intensity of anthropogenic intervention compared to other cities.
The combined effects of rising temperatures and frequent artificial
pruning may directly reverse vegetation phenological rhythms.
Furthermore, in subtropical coastal cities such as Haikou and
Guangzhou, typhoon-induced disturbances to vegetation are also
likely to disrupt local vegetation phenology. Besides, water stress in
extremely arid zones diminishes vegetation’s light and heat
utilization efficiency, potentially delaying SOS and advancing EOS
(He et al, 2018). Additionally, urban areas demonstrated more
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pronounced phenological changes than other regions. This might
be because human activities in urban areas are more frequent and
the degree of urban expansion is higher, resulting in a more
significant urban heat island effect and transformation of surface
cover types (Yang et al., 2023a). Meanwhile, suburban and exurban
areas within urban expansion spheres showed moderate
phenological impacts, though weaker than urban areas.
Specifically, SOS advancement days, EOS delay days, and GSL
extension days decreased in peri-urban areas compared to urban
cores, with impacts diminishing with distance from city centers.
This indicates urban vegetation phenology is regulated by both
climate change and urban expansion.

The gradient responses of UVP exhibited significant variations
across city sizes and climatic backgrounds. Small towns
demonstrated significantly greater vegetation ASOS, AEOS, and
AGSL compared to other city types, potentially associated with
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distinct urban expansion patterns. Divergent urban expansion
intensities revealed that small towns predominantly expanded in
urban areas with higher ISP values, resulting in higher AISP
magnitudes. In contrast, large cities displayed relatively smaller
AISP values due to their advanced urbanization stages characterized
by peripheral expansion. Previous studies confirm that urban
expansion intensity significantly modulates phenological changes
(Li et al,, 2017; Peng et al., 2024) explaining the more pronounced
AUVP in small towns. Additionally, cities in arid and semi-arid
zones exhibited substantially greater AUVP magnitudes than those
in humid and semi-humid zones. This disparity may originate from
precipitation constraints suppressing vegetation growth in arid
zones, while urban irrigation alleviates water stress, amplifying
phenological differentiation.

Across China’s 31 cities, ALST showed negative correlations
with urban vegetation ASOS but positive correlations with AEOS
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and AGSL along urban-rural gradients, consistent with prior
findings (Zhang et al., 2024; Kabano et al, 2021). Significant
differences emerged in AUVP responses to ALST across city sizes
and climatic contexts along the gradient. Medium cities displayed
the most pronounced vegetation responses (ASOS, AEOS, AGSL) to
ALST variations. Notably, large cities exhibited attenuated
phenological responses to ALST compared to other city types.
Previous research suggests that enhanced green infrastructure
implementation during large city development mitigates
urbanization impacts, despite their advanced urbanization levels
(Qiu et al,, 2021). Although we excluded agricultural pixels during
the extraction of vegetation phenological parameters to minimize
interference from managed vegetation, both urban agriculture
(primarily seasonal short-term crops) and urban green spaces
(with relatively stable phenological rhythms) may still influence
the extracted parameters. Moreover, the cooling effect generated by
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the high proportion and quality of artificial green spaces in large
cities could result in vegetation experiencing lower temperatures
than the overall LST, leading to variations in the derived
phenological parameters (as shown in Figure 19). Simultaneously,
artificial water supplementation systems, such as green space
irrigation and municipal watering, may reduce the responsiveness
of vegetation phenology to changes in LST. Consequently, large
cities demonstrate reduced AUVP sensitivity to ALST compared to
smaller cities. It is important to note, however, that the scattered
distribution and relatively small-scale nature of urban agriculture
and green spaces makes accurate differentiation challenging with
the land use product employed in this study. While higher-
resolution land use products (e.g., the 10-m GlobeLand30) could
identify these features, their available time series are often
insufficient to meet our study’s requirements, and significant scale
discrepancies exist when matching them with the 500-m
phenological data. Besides, our analysis revealed stronger AUVP
responses to ALST in arid and semi-arid zones than in humid and
semi-humid zones. This is likely because water availability acts as
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the primary limiting factor for vegetation growth in arid and semi-
arid regions. Moreover, artificial irrigation systems and other water
supplementation measures in cities may also be a contributing
factor to the stronger response of AUVP to ALST in arid regions. In
arid and semi-arid areas, vegetation under water stress exhibits
reduced sensitivity of phenology to land surface temperature.
Artificial irrigation significantly alleviates this stressor. For
example, in cities like Lanzhou, the core urban areas have a much
higher irrigation coverage compared to the peripheral zones. This
leads to a considerably greater magnitude of phenological change in
the urban core vegetation than in the surrounding areas, thereby
amplifying the response magnitude of AUVP to ALST. Meanwhile,
the response amplitude of AUVP to ALST in arid areas is slightly
lower than that in semi-arid areas. This implies that while aridity
enhances temperature sensitivity, extreme drought conditions may
constrain AUVP responses to ALST. Moreover, vegetation ASOS
showed negative correlations with AISP along the gradient, whereas
AEOS and AGSL maintained positive correlations. These patterns
align with findings from previous studies where increasing ISP
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correlated with advanced SOS, delayed EOS, and prolonged GSL in
urban vegetation (Zhang et al., 2022; Yuan et al, 2022).
Furthermore, large cities demonstrated significantly weaker
phenological responses to AISP variations along the gradient
compared to other city types.

Analysis of influencing factors on urban vegetation phenology
along the urban-rural gradient revealed differential impacts of urban
and climatic drivers. Partial correlation analysis identified AISP as the
dominant urban factor affecting ASOS, AEOS, and AGSL, while other
factors showed parameter-specific influences. Beyond AISP
regulation, ALST and APOP exhibited substantial contributions to
vegetation ASOS variations. For vegetation AEOS, significant
modulation by ALST and ATEM was observed, whereas most
factors demonstrated comparable contributions to AGSL. These
findings align with previous studies suggesting that urban
expansion primarily drives AUVP through localized climatic
modifications (Wang et al., 2019). Random forest modeling
confirmed this conclusion through quantitative importance
assessment of AUVP determinants. Divergently, AISP showed peak
contributions to ASOS and AGSL, whereas ALST dominated AEOS
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variations. Consistently, urban factors constituted the principal
determinants of AUVP patterns along the urban-rural gradients.
Furthermore, Climatic factors exerted stronger influences on ASOS
than on AEOS and AGSL, indicating heightened climate sensitivity of
vegetation SOS, consistent with established research. Conversely, the
study by Ji et al. suggested that the interannual trends of vegetation
phenology across discrete urban zones follow a unimodal pattern,
peaking in newly urbanized areas. They concluded that climate
change, rather than urbanization, plays the dominant role in
driving interannual UVP variations across all urban zones—a
finding that diverges from our results. This discrepancy arises
because Ji et al’s research quantitatively analyzed interannual
vegetation phenology trends within areas of differing urban
expansion intensity. In contrast, our study focuses on quantitatively
assessing how vegetation phenology changes along an urban-rural
gradient in response to spatial variations in urban expansion
intensity. Specifically, we investigate how the impact of urban
expansion on vegetation phenology varies with increasing distance
from the city center as the intensity of urban expansion changes.

4.2 Limitations and uncertainties

Our study may be subject to the following uncertainties. The
vegetation indices derived from moderate spatial resolution remote
sensing imagery cannot capture high-precision details of urban
vegetation growth dynamics. Meanwhile, the dynamic threshold
method with 15% threshold for phenology extraction lacks
validation due to insufficient ground-based phenological
observations in Chinese cities, potentially introducing errors in
remote sensing-derived phenological parameters. Our focus on
large-scale phenological variations overlooks region-specific
species characteristics, which may contribute to uncertainties.
Finally, although agricultural pixels were excluded, extensive
artificial green space construction in large cities and arid zones
may influence AUVP assessments. Furthermore, the meteorological
data selected for this study were obtained from the ERA5-LAND
monthly average product. It is important to note that its relatively
coarse spatial resolution (0.1 degrees, approximately 11 km) may
limit the accurate differentiation of intra-urban variations.
However, due to the sparse distribution of ground-based
meteorological observation stations and frequent data gaps in the
arid regions of Northwest China, the ERA5-LAND dataset was
selected for its continuous, gap-free spatiotemporal records since
2001, offering superior temporal continuity and spatial coverage
compared to alternative data sources. Although we resampled the
data to a 500m resolution to mitigate associated errors, we
acknowledge that this process may still introduce certain
inaccuracies. Therefore, we recommend that future studies
employ integrated techniques such as “machine learning-based
downscaling combined with multi-source data assimilation” to
fuse ERA5 reanalysis data with high-resolution remote sensing
products and ground-based station observations, thereby
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generating high-resolution meteorological datasets for more
precise research outcomes.

5 Conclusions

This study systematically revealed the spatiotemporal
differentiation patterns of UVP along urban-rural gradients and
their response mechanisms to urban expansion in 31 Chinese cities
using multi-source remote sensing data (2001-2020). And the
synergistic regulatory effects of urban expansion and climate
change on AUVP along urban-rural gradients were further
investigated. The main conclusions are as follows:

1. Across 31 Chinese cities, vegetation SOS showed systematic
advancement, EOS exhibited delayed occurrence, and GSL
demonstrated extension, with phenological variation
magnitudes diminishing along the urban-rural gradient.
Concurrently, cities in humid southeastern regions
displayed earlier SOS, later EOS, and longer GSL
compared to arid northwestern counterparts. This spatial
pattern suggests synergistic regulation of UVP by urban
expansion and climate change, with urbanization impacts
attenuating with increasing distance from urban cores.

2. Under varying city sizes and climatic contexts, large cities
exhibited smaller ASOS, AEOS, and AGSL magnitudes
compared to medium cities, small cities, and small towns.
And the vegetation ASOS, AEOS and AGSL in small towns
were the largest. Arid and semi-arid zones showed
significantly greater ASOS, AEOS, and AGSL than humid
and semi-humid zones. Additionally, negative ALSTyr
and AISPyyr values across all 31 cities indicated the LST
and ISP in the urban area are higher than those in the
surrounding areas, and the warming and expansion rates
are faster. Therefore, small towns and cities should strictly
control their expansion intensity and patterns, prioritizing
the protection of native vegetation patches to maintain
natural phenological rhythms. For large cities, it is
imperative to construct multi-tiered green space networks
to enhance connectivity and prevent habitat fragmentation,
which can lead to compromised ecological functionality. In
arid and semi-arid regions, urban areas should improve
fundamental irrigation infrastructure to stabilize vegetation
phenological rhythms across both urban and peri-
urban areas.

3. Vegetation ASOS was negatively correlated with ALST on the
urban-rural gradient in 94% of the cities, AEOS was
positively correlated with ALST, and AGSL was positively
correlated with ALST. Medium cities displayed maximum
response magnitudes, followed by small towns and small
cities, with large cities showing minimal sensitivity. The
response amplitudes of vegetation ASOS, AEOS and AGSL
to ALST in arid and semi-arid areas were significantly
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greater than those in humid and semi-humid areas.
Furthermore, vegetation ASOS was negatively correlated
with AISP on the urban-rural gradient in 94% of the cities,
AEOS was positively correlated with ALST, and AGSL was
positively correlated with ALST. And the response
amplitude of large cities is significantly smaller than that
of small towns, small cities and medium cities. The
response amplitudes of vegetation ASOS, AEOS and
AGSL to AISP in arid and semi-arid areas are significantly
greater than those in humid and semi-humid areas.

4. Among urban and climatic factors, AISP was identified as the
principal regulator of AUVP. Additionally, Urban factors
collectively accounted for 69% of the contribution to
vegetation ASOS, 77% to AEOS, and 78% to AGSL
variations along the urban-rural gradient. Climatic factors
contributed 31% to ASOS, 23% to AEOS, and 22% to AGSL
variability across the gradient. The vegetation ASOS, AEOS,
and AGSL in all 31 cities were predominantly influenced by
urban factors along the urban-rural gradient. Comparatively,
vegetation ASOS was more sensitive to climate change than
AEOS and AGSL.
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