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The spatiotemporal heterogeneity of urban vegetation phenology (UVP) has

intensified due to coupled urban expansion and climate change, yet the

systematic understanding of UVP responses along urban-rural gradients across

diverse climatic contexts and urban expansion remains limited. Therefore, this

study selected 31 Chinese cities across diverse climate zones and city sizes using

multi-source remote sensing data (2001-2020) to quantify the synergistic effects

of urban expansion and climate change on urban-rural UVP differences (DUVP).
First, UVP in China exhibited advanced start of growing season (SOS), delayed

end of growing season (EOS), and extended length of growing season (GSL), with

more pronounced shifts in southeastern regions compared to northwestern

zones. Furthermore, the magnitudes of SOS advancement, EOS delay, and GSL

extension gradually decreased along the urban-rural gradient. DUVP in large

cities was smaller than that in other city sizes, whereas arid and semi-arid zones

exhibited significantly greater DUVP than humid and semi-humid zones. Second,

DSOS, DEOS, and DGSL demonstrated predominantly negative, positive, and

positive correlations with both urban heat island intensity (DLST) and urban

expansion intensity (DISP), respectively. Medium cities demonstrated the

maximum response magnitudes of DUVP to DLST compared to other city sizes,

whereas small towns demonstrated themaximum response magnitudes of DUVP
to DISP. The response magnitudes of DUVP to both DLST and DISP were

significantly greater in arid and semi-arid zones than in humid and semi-humid

zones. Finally, principal component analysis confirmed that urban factors

predominantly drive DUVP variations, with DISP identified as the primary

regulatory factor. These findings provide critical insights into urban vegetation

dynamics under rapid expansion and climate change.
KEYWORDS

urban vegetation phenology, urban expansion, urban heat island, climate change,
urban-rural gradient
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1 Introduction

Vegetation phenology, as a biological rhythm indicator formed

by plants adapted to periodic environmental changes, serves as a

sensitive indicator of ecosystem responses to climate change (Shen

et al., 2018; Gong et al., 2024). Current research indicates that global

warming has caused significant shifts in the spatiotemporal patterns

of UVP (Liang et al., 2024; Mo et al., 2024; Chen and Zhang, 2023).

Furthermore, widespread urban expansion globally has intensified

the complexity of this process through modifications in the land-use

patterns and the local urban climate (e.g., heat island effects) (Liu

et al., 2023). Specifically, anthropogenic activities serve as the

primary drivers through which urban expansion influences the

spatiotemporal patterns of vegetation phenology. Practices such

as land-use conversion, anthropogenic heat emissions, artificial

irrigation, and fertilization can all alter vegetation phenological

processes in and around urban areas. In contrast, the impact of

climate change on vegetation phenology is a coupled process of

nature and human activities. For instance, the increase in

greenhouse gas concentrations, global warming, and changes in

precipitation patterns can also affect the phenological processes of

vegetation on a regional or even global scale. Although the driving

pathways of urban expansion and climate change on vegetation

phenology are different, they also interact with each other to jointly

regulate vegetation phenology. Firstly, the synergistic effect of the

urban heat island (UHI) and global warming leads to increased

urban temperatures, which may significantly alter the

spatiotemporal differentiation patterns of UVP (Cheval et al.,

2024). Secondly, the influences of climate change and urban

expansion on vegetation phenology may also exhibit antagonistic

effects. For instance, decreased precipitation frequency may lead to

an earlier EOS of vegetation in the Northern Hemisphere (Zhang

et al., 2025), whereas urban vegetation, sustained by artificial

irrigation that maintains soil moisture and promotes

carbohydrate accumulation, may experience a delayed EOS

(Bühler et al., 2006). In summary, urban expansion and climate

change interact through different mechanistic pathways to co-

regulate vegetation phenology. Meanwhile, changes in vegetation

phenology can, in turn, affect the urban ecological environment.

Studies have shown that the ecosystem services provided by

vegetation (e.g., thermal regulation) can significantly enhance

urban resilience and serve as effective solutions to mitigate

environmental issues like UHI effects (Tan et al., 2021). For

instance, a 16% reduction in vegetation coverage in Guangzhou’s

urban area increased land surface temperature by 2.5°C (Hu and Jia,

2010), while vegetation in London reduced summer nighttime UHI

intensity by 1.1°C (Doick et al., 2014). Although cities occupy only

3%-5% of the global land surface, research on UVP changes can

better capture the impacts of urban development on the natural

vegetated environment, providing early signals of future changes in

the natural biosphere. Additionally, despite being insular

ecosystems, urban areas are intricately connected to the global

biosphere through flows of materials, energy, and species. The

stability of UVP directly influences the integrity of regional

ecological networks and can progressively affect larger regions,
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even the global ecological sphere (Yang et al., 2023b). Therefore,

investigating UVP variations induced by multi-scale climate drivers

and urban expansion is crucial for developing climate-resilient

urban ecological management frameworks (Qiu et al., 2020).

Conventional urban vegetation phenology studies primarily rely

on ground-based manual phenological observations, yet the uneven

spatial distribution and low density of urban phenological stations

impose significant limitations on observational accuracy (Li et al.,

2021). In contrast, satellite-based phenological monitoring offers

substantial potential for quantifying vegetation phenological

changes across local-to-global scales due to its spatiotemporal

continuity (Kato et al., 2021; Zeng et al., 2020).Within the current

context of rapid global urban expansion and climate warming,

numerous studies utilizing long-term satellite data have identified

the spatiotemporal differentiation patterns of UVP and their multi-

scale driving mechanisms.

First, previous studies have identified vegetation SOS and EOS

as the phenological parameters most sensitive to environmental

changes, primarily manifested as SOS advancement and EOS delay

(Liu et al., 2016). For instance, climate change has caused significant

SOS advancement in 11.5% of global vegetation and extended GSL

in 12.6% of vegetation (Fang et al., 2023). Additionally, climatic

factors (e.g., temperature, precipitation) have been confirmed as the

primary drivers of long-term phenological changes due to their

fundamental roles in plant morphological and physiological

adaptations (Gao and Zhao, 2022; Ranjan and Gorai, 2022). It is

noteworthy that previous studies have extensively confirmed that in

mid- to high-latitude or temperate regions, when ambient

temperature is below the species-specific optimal growth

threshold, rising temperatures promote an earlier SOS and a later

EOS. However, when temperature exceeds the thermal threshold,

elevated temperatures inhibit the activity of photosynthetic

enzymes and exacerbate water loss through transpiration,

consequently leading to a delayed SOS or an advanced EOS (Liu

et al., 2024). Furthermore, this temperature-driven phenological

response is additionally modulated by water stress in arid and semi-

arid regions. Relevant studies indicate that the arid regions of

Northwest China, being highly sensitive to global climate change,

exhibit vegetation phenology that is co-controlled by the dual

factors of temperature and water, with the regulatory effect of

moisture often surpassing that of temperature (Wang et al.,

2021). For instance, in areas of the Loess Plateau in Gansu

Province with relatively sufficient precipitation, rising

temperatures can still promote an earlier SOS and a later EOS. In

contrast, in other regions where precipitation is insufficient,

vegetation subjected to water stress exhibits a delayed SOS and an

advanced EOS in response to temperature increases (Zhou et al.,

2025). In arid and semi-arid regions, however, artificial irrigation

contributes to maintaining the stability of urban vegetation

phenological rhythms by partially alleviating water stress.

Meanwhile, spatial variations in climate and vegetation types

across latitudinal, longitudinal, and altitudinal gradients further

modulate UVP (Gao et al., 2020). However, these studies

predominantly focus on macroclimatic effects while overlooking

localized climatic alterations induced by urban expansion (e.g.,
frontiersin.org

https://doi.org/10.3389/fevo.2025.1637210
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yang et al. 10.3389/fevo.2025.1637210
urban expansion intensity, heat island intensity) that drive

phenological divergence between urban and non-urban

vegetat ion. Secondly , current UVP research exhibi ts

methodological limitations in spatial representation. Most studies

concentrate on intra-urban phenological variations by taking the

entire city as a single entity or using a simplistic urban-rural

dichotomy. For example, 51% of 196 selected mid-latitude

Northern Hemisphere cities demonstrated urban vegetation SOS

advancement during post-urban expansion periods compared to

pre-urban expansion phases, with 53% exhibiting EOS delays. And

climate change remains the dominant driver of interannual UVP

variations (Qiu et al., 2020). An urban-rural dichotomy analysis

revealed that urban warming induced SOS advancement in 78% of

urban backgrounds and 73% of rural backgrounds across 292

Chinese cities, with urban areas exhibiting significantly higher

SOS advancement rates than rural counterparts (Wang et al.,

2022). Nevertheless, the high intra-urban heterogeneity renders

simplistic city-scale approaches or urban-rural dichotomies

inadequate for characterizing continuous phenological responses

along urban expansion gradients. Finally, some studies have

adopted refined urban zoning strategies to investigate

phenological variations across urban-rural gradients. These

approaches typically partition cities into urban core, suburban,

and rural areas, quantifying spatiotemporal differences in

vegetation phenology along impervious surface percentage (ISP)

gradients. Analysis of over 4500 U.S. urban clusters demonstrated

distinct phenological responses to urbanization across gradient

regions, with urban cores exhibiting earlier SOS, later EOS, and

thus longer GSL compared to peripheral areas. A tenfold increase in

city size was correlated with SOS advancement (~1.3 days), EOS

delay (~2.4 days), and GSL extension (~3.6 days), indicating scale-

dependent phenological response magnitudes to urbanization (Li

et al., 2017). In over 1500 Chinese cities, SOS advancement and EOS

delay along urban-rural gradients followed unimodal curves

peaking in new urban districts (DSOS = -12.4 ± 18.5 days, DEOS
= 3.8 ± 9.9 days). Climate change predominated over urbanization

in driving interannual UVP variations across all urban zones (Ji

et al., 2023). Despite adopting gradient-based zoning strategies,

these studies still treated individual zones as discrete entities rather

than continuous spatial gradients.

In summary, although current studies on UVP variations and

their driving factors are relatively comprehensive and have

confirmed that UVP is co-regulated by local urban expansion

intensity and background climate change (Jin et al., 2019; Luo

et al., 2020; Zhang et al., 2022), critical issues remain unresolved.

Firstly, due to the significant heterogeneity of local landscapes

within a city, the intensity of urban expansion varies considerably

across different zones. Simply treating the city as a single entity or

employing a simplistic urban-rural dichotomy to investigate intra-

urban phenological changes may fail to accurately assess the

relationship between driving factors and vegetation phenology.

Concurrently, the peri-urban transitional zones (e.g., the urban-

rural fringe) are areas where vegetation phenology responds most

sensitively. Merging or overlooking these areas in an analysis could

also lead to significant errors in the assessment results. Secondly,
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while previous studies have optimized urban zoning strategies, they

have primarily focused on the interannual variations of UVP across

different gradients while overlooking its continuity along the urban-

rural gradient. This oversight leads to a failure in characterizing the

impact of local climate changes induced by urban expansion on

vegetation phenology. Consequently, such an approach may

underestimate the contribution of urban expansion to UVP

changes. Therefore, in this study, we established multiple buffers

and formulated a zoning strategy based on the vegetation

phenological changes within these different buffers to mitigate

errors associated with urban transitional zones. Simultaneously,

we assessed the continuous response of vegetation phenology to

changes in urban expansion intensity along the urban-rural

gradient, thereby enabling a more accurate characterization of the

influence of local climate changes, driven by urban expansion, on

vegetation phenology. In summary, a systematic understanding

remains lacking regarding whether the response mechanisms of

vegetation phenology to urban expansion along urban-rural

gradients differ across city sizes and climatic contexts. Moreover,

empirical evidence is still required to elucidate the gradient

evolution of UVP and its dynamic response mechanisms to

different urban expansion phases during prolonged urbanization

processes. Therefore, this study employs continuous remote sensing

data from the Moderate Resolution Imaging Spectroradiometer

(MODIS) to quantitatively analyze the spatiotemporal

differentiation patterns of DUVP and its response mechanisms to

urban expansion under varying city sizes and climatic backgrounds.

By integrating multi-source urban expansion indicators (urban

population density, urban expansion intensity, and urban heat

island intensity) with climatic factors (temperature, precipitation,

and radiation), we specifically dissect the synergistic mechanisms of

urban and climatic factors on DUVP along urban-rural gradients.
2 Materials and methods

2.1 Study area

China is situated at the convergence zone between eastern

Eurasia and the western Pacific Rim (73°E–135°E, 19°N–55°N),

characterized by a three-step topographic ladder descending from

western highlands to eastern lowlands. The climate exhibits

complex diversity, spanning tropical to cold-temperate zones

from south to north, and transitioning from humid to arid zones

east to west. Temperature decreases latitudinally while precipitation

diminishes longitudinally from southeastern coasts to northwestern

inland, forming distinct latitudinal and longitudinal climatic

gradients. Vegetation distribution demonstrates latitudinal

zonality and vertical zonality patterns, dominated by grassland,

forest, cropland, and bare land ecosystems (as shown in Figure 1a).

Additionally, rapid urban expansion over recent decades has

significantly increased built-up areas and intensified urban heat

island effects (Peng et al., 2018). By 2020, China’s urban population

reached 1.41 billion, with its GDP reaching 103.49 trillion yuan. The

country’s diverse climatic settings and accelerated urbanization
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provide an ideal laboratory for investigating long-term UVP

dynamics and their response mechanisms. Therefore, this study

selected 31 major Chinese cities (including 27 provincial capitals

and 4 municipalities) and their surrounding regions (Figure 1b).

These cities are distributed across distinct climate zones with

divergent urbanization trajectories.
2.2 Data source

This study utilized multi-source remote sensing data, including

Moderate Resolution Imaging Spectroradiometer (MODIS) data,

reanalysis data, and auxiliary datasets (Table 1). Specifically,

vegetation phenology data from 2001 to 2020 were obtained from

the MODIS Land Cover Dynamics Yearly product (MCD12Q2 v6)

at 500 m spatial resolution (https://lpdaac.usgs.gov/), which

captures phenological metrics using the dynamic threshold

method based on the MODIS Enhanced Vegetation Index (EVI).

Since EVI reduces the effects of atmospheric and canopy

background and exhibits higher sensitivity to minor variations in

vegetation activity (Ishtiaque et al., 2016), it is a plausible source for

monitoring urban vegetation dynamics with sparse vegetation

(Dallimer et al., 2011; Yao et al., 2019). The land cover type data

was derived from MODIS Land Cover data (MCD12Q1 v6) at 500

m spatial resolution over the same period with phenological

information (https://search.earthdata.nasa.gov/search/). The

University of Maryland (UMD) classification scheme was applied

to exclude pixels categorized as cropland. Land surface temperature

(LST) data from 2001 to 2020 were obtained from NASA’s Terra

satellite MODIS product (MOD11A2). This dataset provides 8-day

composite averages of clear-sky LST at 1 km spatial resolution. The

LST data were used to quantify surface urban heat island intensity
Frontiers in Ecology and Evolution 04
and investigate the impacts of urban drivers on urban vegetation

phenology (https://earthdata.nasa.gov/).

The reanalysis data, including temperature, precipitation, and

radiation data from 2001 to 2020, were obtained from the ERA5-

Land Monthly Averaged product. This product integrates

numerous observations worldwide into a global dataset with

strong integrity and consistency, with a spatial resolution of 0.1

degrees (approximately 11 km). These data were used to quantify

climate factors including temperature, precipitation and radiation,
FIGURE 1

The distribution of (a) different vegetation types in China and (b) the locations of the 31 major cities. The land cover map was based on the MODIS
Land Cover Type product (MCD12Q1) at 500 m resolution in 2020.
TABLE 1 Data details used in this study.

Data
classification

Data name Product Resolution

MODIS data

EVI MCD12Q2 500 m

LST MOD11A2 1 km

Land cover type MCD12Q1 500 m

Reanalysis data

Temperature
EAR5-
LAND

0.1 degree

Precipitation
EAR5-
LAND

0.1 degree

Radiation
EAR5-
LAND

0.1 degree

Auxiliary data

Urban
boundary

GUB —

ISP GAIA 30 m

Population WorldPop 100 m

Elevation DEM 1 km
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and to investigate the impacts of climate change on UVP (https://

cds.climate.copernicus.eu/).

The auxiliary datasets include urban boundaries, impervious

surface area (ISA), population density, and elevation data. Urban

boundaries were derived from the Global Urban Boundary (GUB)

dataset (http://data.ess.tsinghua.edu.cn/), which extracts vectorized

urban boundaries based on 30 m resolution global artificial

impervious surface data. Compared with manual interpretation,

the GUB dataset demonstrates superior capability in capturing

urban fringe morphology (Li et al., 2020). The 2001–2020 ISA

data were generated through time-series analysis of 30 m resolution

Landsat optical imagery combined with supplementary datasets

(VIIRS nighttime light data and Sentinel-1 SAR data) (https://

www.x-mol.com/groups/li_xuecao/dongtaizhitu). This 30 m

resolution dataset, characterized by relatively high overall

accuracy, was utilized to characterize urban impervious surface

increase dynamics (Gong et al., 2020). Population density data

(2001–2020) were obtained from the WorldPop 100-m gridded

population distribution dataset (https://www.worldpop.org/),

which integrates census data with multi-source remote sensing

observations. These data supported the analysis of urban factors’

impacts on vegetation phenology. Digital Elevation Model (DEM)

data (1 km resolution) acquired from the Resource and Environment

Science and Data Center (https://www.resdc.cn) were employed to

mitigate elevation-induced biases in urban heat island intensity

estimation and vegetation phenological parameter extraction.

All raster data were resampled to 500 m using the nearest

neighbor method to match the spatial resolution of the EVI data.
2.3 Methods

2.3.1 Vegetation phenology parameters
The MODIS Land Cover Dynamics Yearly Product

(MCD12Q2) was employed to extract vegetation phenological

parameters from 2001 to 2020, featuring 500 m spatial resolution

and annual temporal resolution. Vegetation transition dates were

identified through curvature extremum points derived from a

segmented logistic function fitted to the MODIS two-band

Enhanced Vegetation Index (EVI2) time series. In this study three

environmentally sensitive phenological parameters were selected:

SOS, EOS, and GSL. SOS and EOS represent the day of year (DOY)

counted from January 1st to respective phenophase transitions,

while GSL is defined as the duration between EOS and SOS. The

MCD12Q2 dataset defines the data when EVI2 first crossed 15% of

the segment EVI2 amplitude as Greenup and the date when EVI2

last crossed 15% of the segment EVI2 amplitude as Dormancy,

which corresponds the pixel values of SOS and EOS, respectively.

The pixel values of GSL were calculated by subtracting SOS from

EOS (Chen et al., 2023; Zhou et al., 2014a). According to the

previous research, pixels with SOS (DOY < 50 or DOY > 180), and

EOS (DOY < 240 or DOY > 330) were excluded as outliers to

mitigate uncertainties induced by urban landscape complexity

(Peng et al., 2024; Yang et al., 2020). Additionally, agricultural

pixels were masked using contemporaneous MODIS Land Cover
Frontiers in Ecology and Evolution 05
Type data (MCD12Q1) to minimize anthropogenic vegetation

interference (Yin et al., 2023). And pixels exceeding 50 m above

the maximum urban areas elevation were removed through DEM

data to control for altitudinal effects on phenological variations

(Zhou et al., 2016). The Theil-Sen estimator was applied to quantify

interannual trends (2001-2020) in SOS, EOS, and GSL due to its

non-parametric nature and robustness against outliers, with trend

significance assessed using the Mann-Kendall test (Miu et al., 2024).

Furthermore, this methodology was consistently applied to analyze

trends in LST and ISP. The Theil-Sen slope formula is as follows:

  b = median
xj − xi
j − i 

;     ∀ j > i

In the formula, xj and xi represent time-series data. b > 0

indicates a delayed trend in phenological phases, b < 0 signifies an

advanced trend in phenological phases.

The Mann-Kendall trend test formula is as follows:

Zc =

S−1ffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)    

p , S > 0

    0 , S = 0

S+1
 

ffiffiffiffiffiffiffiffiffiffi
Var(S)

p
 
, S < 0

8>>>>><
>>>>>:
S = o
n−1

i=1
o
n

j=i+1
sgn(xj − xi)

sgn(xj − xi) =

  1,   xj − xi > 0

  0,   xj − xi = 0

−1,   xj − xi < 0

8>><
>>:

Var(S) =
n(n − 1)(2n + 5)

18

In the formula, S is the trend statistic, and xi, xj are the i-th and

j-th observations (j > i). n is the length of the time series and sgn (xj-

xi) is the signed function. Taking the significance level a = 0.05,

when | Zc | > | Z(1-a)/2 |, the null hypothesis is rejected, indicating a

significant changing trend.

2.3.2 Assess the response mechanisms of UVP to
urban expansion and climate change along the
urban-rural gradient

To quantify the gradient effects of urban expansion on

vegetation phenology, we developed a detailed zoning strategy.

First, based on quintennial GUB data spanning 2000-2020 (i.e.,

2000, 2005, 2010, 2015, and 2020), we aligned urban boundaries to

the latest available GUB year. The largest urban patch within each

city’s administrative boundary was selected as the core urban area,

excluding relatively small or densely distributed patches (Mo et al.,

2024; Zhou et al., 2014b). Previous studies suggest that the average

urban influence footprint on vegetation phenology extends less than

30 km from urban peripheries (Zhang et al., 2004; Zhou et al., 2015,

2016; Yang et al., 2019). And treating non-urban areas as

homogeneous while neglecting suburban transitional zones may
frontiersin.org
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underestimate urban impacts on vegetation phenology. We

therefore established 8 buffer zones (0–5 km, 5–10 km, 10–15 km,

15–20 km, 20–25 km, 25–30 km, 30-35km, 35-40km) from urban

area boundaries. As shown in Figure 2, vegetation phenology

parameters gradually stabilize beyond 20 km. To ensure sufficient

observations per zone, we designated the 20–25 km and 25–30 km

buffers as non-urban (rural) areas. The remaining buffers were

consistently categorized into suburban areas (0–5 km, 5–10 km)

and exurban arears (10–15 km, 15–20 km). Finally, univariate linear

regression was employed to assess gradient differences in UVP, LST,

and ISP along the urban-rural continuum and to assess vegetation

phenology’s responsiveness to urban and climatic factors. The

urban-rural gradient differences in LST were respectively used to

characterize urban heat island intensity (DLST). The percentage of
impervious surface area is often used to represent the level of

urbanization. Therefore, we use the urban-rural gradient differences

in ISP to characterize the intensity of urban expansion (DISP). The
univariate linear regression formula is as follows:

y = b + kx

In the formula, x denotes the urban-rural gradient or other

temporal sequence data as the independent variable, while y

represents the corresponding dependent variable time series. The

parameter b is defined as the intercept term, and k quantifies the

slope coefficient. When assessing the response of vegetation phenology

to urban factors, the parameter k represents the number of days by

which vegetation phenology advances or delays for each 1% increase in

the percentage of impervious surface or each 1°C increase in the land

surface temperature, with units of d/% or d/°C.

2.3.3 Classification of city sizes and climate
backgrounds based on the Jenks natural breaks
classification method

The Jenks natural breaks classification method identifies

inherent natural groupings within datasets by optimally
Frontiers in Ecology and Evolution 06
partitioning values into classes with maximized inter-class

variance. This algorithm establishes class boundaries at positions

where significant data value discontinuities occur (Li and Xu, 2020).

We therefore applied this method to categorize China’s 31 cities

into four city size based on mean annual permanent urban

population, and four climatic contexts according to mean annual

precipitation, as detailed in Tables 2, 3.

2.3.4 Assess the contributions of urban and
climatic factors to DUVP on the urban-rural
gradient

As DUVP is co-regulated by local urban expansion intensity and

background climate change, we selected six relevant factors to

investigate their contributions to DUVP. These factors comprise

three urban factors (urban heat island intensity, urban expansion

intensity, and urban population density) and three climatic factors

(temperature, precipitation, and radiation). However, collinearity

frequently exists among urban and climatic factors influencing

DUVP, and conventional correlation analysis cannot adequately

disentangle their combined effects. Therefore, we employed partial

correlation analysis to differentiate the relative contributions of

these 6 factors (Wang et al., 2019). Furthermore, to ensure result

robustness, we implemented Random Forest modeling to assess the
FIGURE 2

The average values of vegetation phenology in urban areas and buffer zones of 31 cities. 1 represent the urban area and others represent the buffer
zones extending outward.
TABLE 2 The classification results of the city sizes.

City size
Permanent
urban resident
population/104

Classification result

Large city > 1000 BJ CD CQ GZ SH TJ

Medium city 600-1000 CS HEB HZ JN NJ SY WH XA ZZ KM

Small city 300-600 CC FZ GY HF NC NN SJZ TY WLMQ

Small town < 300 HHHT HK LS LZ XN YC
The name of the city is an abbreviation of the first letter.
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relative importance of each factor in driving DUVP. The complete

dataset was partitioned into training and testing subsets at an 8:2

ratio. To optimize model performance and prevent overfitting, we

employed 5-fold cross-validation with grid search to tune

hyperparameters using R² as the evaluation metric. The optimal

combination was identified as 100 decision trees with a maximum

depth of 10. This configuration achieved a R² score of 0.82 on the

test set, demonstrating strong predictive performance and

generalizability of the model.
3 Results

3.1 Spatio-temporal patterns and trends of
UVP based on urban-rural gradient

3.1.1 The spatial distribution characteristics of
annual mean of UVP

Using MCD12Q2 EVI phenological data, we analyzed the

spatial distribution characteristics of annual mean vegetation

phenology across 31 Chinese cities from 2001 to 2020. Across

urban-rural gradients (Figures 3a-l), the GSL of vegetation in the 31

cities ranged between 161–233 days, exhibiting a spatial pattern of

“longer in southern regions and shorter in northern areas”. The

vegetation SOS and EOS primarily occurred between 76–169 DOY,

289–322 DOY, respectively. Cities in relatively humid southeastern

regions with lower latitudes and elevations demonstrated earlier

SOS and slightly later EOS, whereas cities in arid northwestern

regions with higher latitudes and elevations exhibited later SOS and

marginally earlier EOS.

Overall analysis (Figures 4a-c) revealed that urban areas

exhibited the earliest vegetation SOS (SOS = 101), followed by

suburban areas (SOS = 109) and exurban areas (SOS = 111), with

rural areas showing the latest SOS (SOS = 113). The vegetation SOS

of urban areas occurred 12 days earlier than that in rural areas.

Urban areas demonstrated the latest vegetation EOS (EOS = 307),

followed by suburban areas (EOS = 303) and exurban areas (EOS =

302), while rural areas showed the earliest EOS (EOS = 301). The

vegetation EOS of urban areas was delayed by 6 days compared to

rural areas. Urban areas displayed the longest vegetation GSL (GSL

= 206 d), followed by suburban areas (GSL = 194 d) and exurban

areas (GSL = 191 d), with rural areas showing the shortest GSL (GSL

= 188 d). The vegetation GSL of urban areas was prolonged by 18

days compared to rural areas. Furthermore, the SOS, EOS, and GSL

distributions in urban areas of these 31 cities exhibited the lowest
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dispersion compared to other zones, indicating a relative

consistency in vegetation phenology responses to urban expansion.

3.1.2 The interannual variation of UVP and its
trend spatial distribution

The Theil-Sen slope estimator and Mann-Kendall test were

applied to quantify interannual vegetation phenology trends along

urban-rural gradients in 31 Chinese cities (2001–2020). Figures 5a-c

presents the spatiotemporal patterns of vegetation SOS, EOS, and

GSL across four zones (urban areas, suburban areas, exurban areas,

and rural areas). Nationwide, urban vegetation exhibited an

advanced SOS, a delayed EOS, and a prolonged GSL.The

vegetation SOS advanced significantly (P < 0.05) at 0.77 d/a

(urban areas), 0.46 d/a (suburban areas), 0.33 d/a (exurban areas),

and 0.32 d/a (rural areas); EOS delayed significantly (P < 0.05) at

0.72 d/a, 0.45 d/a, 0.38 d/a, and 0.36 d/a respectively; GSL prolonged

significantly (P < 0.05) at 1.50 d/a, 0.88 d/a, 0.72 d/a, and 0.69 d/a

correspondingly. This demonstrates a gradual attenuation in

vegetation phenology change rates with increasing distance from

urban cores.

The spatial distribution of vegetation phenology trends across

31 cities showed no distinct north-south regional divergence

(Figures 6a-l). However, cities exhibiting delayed SOS, advanced

EOS, and shortened GSL were predominantly clustered in the

humid southeastern coastal region and the Tibetan Plateau.

Furthermore (Figures 7a-c), the proportion of cities with

significantly advanced SOS progressively decreased along the

urban-rural gradient from urban zones (71%), while cities

showing non-significant advancement, significant delay, and non-

significant delay gradually increased. Cities with significantly

delayed EOS declined gradientally from urban zones (87%),

accompanied by increasing proportions of non-significantly

delayed, significantly advanced, and non-significantly advanced

cases. The percentage of cities with significantly prolonged GSL

decreased from urban zones (90%) along the urban-rural gradient,

while those with non-significant prolongation, significant

shortening, and non-significant shortening showed incremental

trends. This indicates diminishing urban influence on vegetation

phenology with increasing distance from urban zones.

3.1.3 The spatial distribution of DUVP along the
urban-rural gradient

The urban vegetation phenology (DSOSM/T, DEOSM/T, and

DGSLM/T) along urban-rural gradients across 31 Chinese cities

from 2001 to 2020 exhibited pronounced spatial heterogeneity.
TABLE 3 The classification results of the climate backgrounds.

Climate background Precipitation/mm Classification result

Humid zone > 1300 HK GZ CS FZ HZ NC SH WH

Se-humid zone 1000-1300 CD CQ GY HF KM NJ NN

Se-arid zone 500-1000 ZZ XA TY TJ SY SJZ JN HRB CC BJ

arid zone < 500 YC XN WLMQ LZ LS HHHT
The name of the city is an abbreviation of the first letter.
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Overall analysis (Figures 8a-c) indicates that except for a few coastal

humid cities where vegetation SOS in urban areas was delayed

(Guangzhou and Fuzhou), EOS advanced (Haikou and

Guangzhou), and GSL shortened (Haikou and Guangzhou)

compared to rural areas, the majority of cities demonstrated

earlier SOS, delayed EOS, and prolonged GSL in urban areas

relative to rural areas. Concurrently, the vegetation DSOSM,

DEOSM, and DGSLM values in relatively arid northern regions
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were general ly larger than those in relat ively humid

southern regions.

The urban vegetation phenology differences (DUVPM) varied
under different city sizes and climatic backgrounds (Figures 9a-f).

Specifically, maximum vegetation DSOSM (5.2 d) and DGSLM
(-8.3 d) were observed in small towns, followed by medium cities

(DSOSM = 4.3 d, DGSLM = -5.9 d) and small cities (DSOSM = 3.3 d,

DGSLM = -5.2 d), with large cities exhibiting the minimum values
FIGURE 3

The spatial distribution characteristics of annual average values of (a-d) SOS, (e-h) EOS and (i-l) GSL on different urban-rural gradients in 31 cities of
China.
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(DSOSM = 2.0 d, DGSLM = -3.4 d). The vegetation DEOSM peaked in

small towns (-3.2 d), followed by small cities (-2.0 d) and medium

cities (-1.7 d), while large cities showed the smallest DEOSM (-1.5 d).

Furthermore, maximum vegetation DSOSM (6.0 d), DEOSM (-3.8 d),

and DGSLM (-9.8 d) occurred in arid zones, followed by semi-arid

zones (DSOSM = 4.8 d, DEOSM = -2.2 d, DGSLM = -7.0 d) and semi-

humid zones (DSOSM = 2.7 d, DEOSM = -1.4 d, DGSLM = -4.1 d),

with the lowest values in humid zones (DSOSM = 1.5 d, DEOSM =

-1.0 d, DGSLM = -2.4 d).

Among all studied cities, 29 exhibited positive DSOS_Trend,
negative DEOS_Trend, and negative DGSL_Trend values

(Figures 10a-c), indicating that urban areas generally experienced

faster rates of SOS advancement, EOS delay, and GSL extension

compared to rural areas. The urban vegetation phenology trends

(DUPV_Trend) also varied across city sizes and climatic contexts

(Figures 11a-f). Specifically, the maximum DSOS_Trend (0.21 d),

DEOS_Trend (-0.15 d), and DGSL_Trend (-0.35 d) were observed in
small towns, followed by medium cities (DSOS_Trend = 0.20 d,

DEOS_Trend = -0.11 d, DGSL_Trend = -0.33 d) and small cities

(DSOS_Trend = 0.17 d, DEOS_Trend = -0.11 d, DGSL_Trend =

-0.26 d), with large cities showing the smallest values (DSOS_Trend
= 0.10 d, DEOS_Trend = -0.09 d, DGSL_Trend = -0.21 d).

Additionally, the DSOS_Trend, DEOS_Trend, and DGSL_Trend
were greater in arid zones (DSOS_Trend = 0.24 d, DEOS_Trend =
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-0.21 d, DGSL_Trend = -0.43 d) and semi-arid zones (DSOS_Trend
= 0.21 d, DEOS_Trend = -0.13 d, DGSL_Trend = -0.36 d) compared

to semi-humid zones (DSOS_Trend = 0.16 d, DEOS_Trend = -0.12

d, DGSL_Trend = -0.27 d) and humid zones (DSOS_Trend = 0.09 d,

DEOS_Trend = -0.04 d, DGSL_Trend = -0.13 d).
3.2 Response of DUVP to urban expansion
in different climatic contexts

3.2.1 The spatial distribution of DLST and DISP
along the urban-rural gradient

To quantify the impact of urban expansion on vegetation

phenology along urban-rural gradients, we assessed the spatial

distribution characteristics of urban factors including urban

expansion intensity (DISP) and urban heat island intensity

(DLST). As shown in Figures 12a-l, DLSTM/T and DISPM/T values

in all 31 cities were negative, indicating higher LST and ISP in urban

areas compared to rural zones, along with faster warming and

expansion rates.

Specifically, DLSTM reached the highest magnitude in large cities

(DLSTM = -0.58°C), followed by small towns (DLSTM = -0.51°C)

and small cities (DLSTM = -0.45°C), with medium cities showing

the lowest value (DLSTM = -0.44°C). Specifically, DLSTM reached
FIGURE 4

The annual average values of vegetation (a) SOS, (b) EOS and (c) GSL on different urban-rural gradients.
FIGURE 5

The interannual variation trend of (a) SOS, (b) EOS and (c) GSL on different urban-rural gradients.
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the highest magnitude in arid zones (DLSTM = -0.52°C), followed

by semi-humid zones (DLSTM = -0.49°C) and semi-arid zones

(DLSTM = -0.47°C), with humid zones showing the lowest value

(DLSTM = -0.46°C). For DLSTT, the highest values occurred in

large cities (DLSTT = -0.017°C), followed by small towns (DLSTT =

-0.015°C) and medium cities (DLSTT = -0.012°C), with small cities

showing the lowest values (DLSTT = -0.011°C). DLSTT showed

minor variations across climatic contexts: arid zones (DLSTT =
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-0.0138°C), semi-arid zones (DLSTT = -0.0127°C), semi-humid

zones (DLSTT = -0.0128°C), and humid zones (DLSTT = -0.0133°C).

Furthermore, urban expansion intensity peaked in small towns

(DISPM = -17.1%), followed by small cities (DISPM = -15.5%) and

medium cities (DISPM = -13.3%), with large cities exhibiting the

lowest values (DISPM = -10.8%). DISPM reached maximum values in

arid zones (DISPM = -18.8%), followed by semi-arid zones (DISPM =

-14.9%) and semi-humid zones (DISPM = -13.0%), with the
FIGURE 6

The spatial distribution characteristics of interannual variation trend of (a-d) SOS, (e-h) EOS and (i-l) GSL on different urban-rural gradients in 31
cities of China.
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minimum in humid zones (DISPM = -10.9%). DISPT was highest in

small towns (DISPT = -0.87%), followed by small cities (DISPT =

-0.75%) and medium cities (DISPT = -0.73%), with large cities

showing the lowest values (DISPT = -0.56%). DISPT peaked in arid

zones (DISPT = -0.85%), followed by semi-humid zones (DISPT =

-0.76%) and semi-arid zones (DISPT = -0.70%), with the minimum

in humid zones (DISPT = -0.66%).

3.2.2 Effect of DLST on vegetation phenology
along urban-rural gradient

To assess the response mechanisms of DUVP to urban expansion,

we quantify the response amplitude of DUVP to urban heat island

intensity and urban expansion intensity across 31 cities under varying

city sizes and climatic contexts along urban-rural gradient.

As shown in Figures 13a-i, the responses of DSOSM, DEOSM, and
DGSLM to urban heat island intensity exhibited spatial heterogeneity

across the 31 cities. Vegetation DSOSM demonstrated positive

correlations with heat island intensity in individual cities

(Guangzhou, Fuzhou), whereas negative correlations predominated

in most cities. For vegetation DEOSM and DGSLM, positive

correlations with heat island intensity prevailed across all cities

except Guangzhou and Haikou. Integrated analysis revealed that
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per 1°C increase in DLSTM along the urban-rural gradient, vegetation

DSOSM advanced by 7.5 days, DEOSM delayed by 4.3 days, and

DGSLM prolonged by 12.0 days. Medium cities exhibited the

maximum DUVP response amplitude, with DSOSM advancement

of 8.9 days, DEOSM delay of 4.9 days, and DGSLM extension of 14.0

days per 1°C DLSTM increase. Secondary responses occurred in small

towns (k1 = -8.3 d/°C, k2 = 4.6 d/°C, k3 = 13.0 d/°C) and small cities

(k1 = -7.0 d/°C, k2 = 4.1 d/°C, k3 = 11.2 d/°C), whereas large cities

showed minimal response amplitude (k1 = -4.7 d/°C, k2 = 3.5 d/°C,

k3 = 8.3 d/°C). Additionally, across cities with distinct climatic

contexts, semi-arid zones (k1 = -11.0 d/°C, k2 = 6.0 d/°C, k3 = 17.1

d/°C) and arid zones (k1 = -9.6 d/°C, k2 = 5.9 d/°C, k3 = 15.6 d/°C)

exhibited greater response magnitudes compared to semi-humid

zones (k1 = -5.3 d/°C, k2 = 3.7 d/°C, k3 = 9.1 d/°C) and humid

zones (k1 = -3.4 d/°C, k2 = 1.6 d/°C, k3 = 5.1 d/°C).

Comparatively, the response mechanisms of DUVPT to urban

heat island intensity remained fundamentally consistent with

DUVPM across city sizes and climatic contexts (Figures 14a-i).

The response magnitudes of vegetation DSOS_Trend,

DEOS_Trend, and DGSL_Trend to urban heat island intensity

were most pronounced in medium cities, with DSOS_Trend

advanced by 13.3 days, DEOS_Trend delayed by 10.1 days, and
FIGURE 7

The significance of the interannual variation trend of (a) SOS, (b) EOS and (c) GSL on different urban-rural gradients.
FIGURE 8

The spatial distribution characteristics of (a) DSOSM, (b) DEOSM and (c) DGSLM along urban-rural gradient in 31 cities of China.
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DGSL_Trend prolonged by 23.5 days per 1°C increase in DLSTT.

Small towns (k1 = -12.9 d/°C, k2 = 8.3 d/°C, k3 = 21.1 d/°C) and

small cities (k1 = -11.6 d/°C, k2 = 7.4 d/°C, k3 = 19.0 d/°C) showed

secondary responses, while large cities (k1 = -5.3 d/°C, k2 = 3.9 d/°C,

k3 = 9.3 d/°C) exhibited the smallest. Additionally, for cities with

different climatic backgrounds, semi-arid zones (k1 = -14.8 d/°C, k2
= 10.9 d/°C, k3 = 25.5 d/°C) and arid zones (k1= -13.7 d/°C, k2 = 9.8

d/°C, k3 = 23.7 d/°C) exhibited significantly greater magnitudes of

vegetation DSOS_Trend, DEOS_Trend, and DGSL_Trend responses
to urban heat island intensity compared to semi-humid zones (k1 =

-10.9 d/°C, k2 = 7.9 d/°C, k3 = 18.8 d/°C) and humid zones (k1 = -5.3

d/°C, k2 = 2.1 d/°C, k3 = 7.5 d/°C).
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3.2.3 Effect of DISP on vegetation phenology
along urban-rural gradient

Comparatively, the response mechanisms of DUVPM to urban

expansion intensity showed variations across 31 cities with different

city sizes and climatic zones (Figures 15a-i). Vegetation DSOSM
showed positive correlations with urban expansion intensity in

specific cities (Guangzhou, Fuzhou), while negative correlations

prevailed in most cities. Vegetation DEOSM and DGSLM exhibited

positive correlations in all cities except Guangzhou and Haikou.

Overall, along the urban-rural gradient, each 1% increase in DISPM
advanced vegetation DSOSM by 0.19 days, delayed DEOSM by 0.11

days, and prolonged DGSLM by 0.30 days across the 31 cities.
FIGURE 9

The distribution of (a, d) DSOSM, (b, e) DEOSM and (c, f) DGSLM under different city sizes and climatic zones in 31 cities of China.
FIGURE 10

The spatial distribution characteristics of (a) DSOST, (b) DEOST and (c) DGSLT along urban-rural gradient in 31 cities of China.
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The response of DUVPM to urban expansion intensity among

different city sizes, the response amplitudes of DSOSM and DGSLM
of vegetation in small towns to urban expansion intensity are the

largest. For every 1% increase in DISPM, vegetation DSOSM
advanced by 0.25 days and DGSLM prolonged by 0.39 days.

Medium cities (k1 = -0.23 d/%, k3 = 0.32 d/%) and small cities (k1
= -0.17 d/%, k3 = 0.27 d/%) exhibited moderate responses, with

large cities (k1 = -0.12 d/%, k3 = 0.20 d/%) demonstrating the

smallest. The vegetation DEOSM response peaked in small towns

(0.15 days advancement per 1% DISPM increase), followed by small

(k2 = 0.10 d/%) and medium cities (k2 = 0.10 d/%), while large cities

showed minimal response (k2 = 0.08 d/%). Additionally, arid zones

(k1 = -0.28 d/%, k2 = 0.17 d/%, k3 = 0.45 d/%) and semi-arid zones

(k1 = -0.25 d/%, k2 = 0.12 d/%, k3 = 0.37 d/%) demonstrated

significantly stronger DSOSM, DEOSM, and DGSLM responses than

semi-humid zones (k1 = -0.16 d/%, k2 = 0.08 d/%, k3 = 0.24 d/%)

and humid zones (k1 = -0.10 d/%, k2 = 0.05 d/%, k3 = -0.15 d/%).

For DUVPT (Figures 16a-i), small towns demonstrated the

maximum response amplitude of DSOS_Trend and DGSL_Trend
to urban expansion intensity, with vegetation DSOS_Trend

advancing 0.28 days and DGSL_Trend prolonging 0.45 days per

1% ISPT increase. Moderate responses were observed in medium

cities (k1 = -0.25 d/%, k3 = 0.37 d/%) and small cities (k1 = -0.19 d/

%, k3 = 0.32 d/%), whereas large cities exhibited the smallest

responses (k1 = -0.15 d/%, k3 = 0.27 d/%). Regarding

DEOS_Trend responses, small towns showed maximum

sensitivity with 0.16 days advancement per 1% ISPT increase,

followed by small cities (k2 = 0.13 d/%) and medium cities (k2 =

0.111 d/%), while large cities displayed minimal responses (k2 = 0.11
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d/%). Additionally, cities in arid zones (k1 = -0.29 d/%, k2 = 0.22 d/

%, k3 = 0.52 d/%) and semi-arid zones (k1 = -0.27 d/%, k2 = 0.14 d/

%, k3 = 0.42 d/%) exhibited stronger DSOS_Trend, DEOS_Trend,
and DGSL_Trend responses to expansion intensity compared to

those in semi-humid zones (k1 = -0.20 d/%, k2 = 0.13 d/%, k3 = 0.33

d/%) and humid zones (k1 = -0.12 d/%, k2 = 0.03 d/%, k3 = 0.16

d/%).

3.2.4 The contribution of urban and climatic
factors to DUVP

To assess the contributions of urban and climatic factors to

DUVP along the urban-rural gradient, three urban factors (DLST,
DISP, DPOP) and three climatic factors (DTEM, DPRE, DRAD)
were selected. Partial correlation analysis revealed negative

correlations between DLST, DISP, DPRE, DRAD, and vegetation

DSOS, while positive correlations were observed for DPOP and

DTEM (Figures 17a-c). DLST, DISP, DPRE, and DRAD showed

positive correlations with vegetation DEOS and DGSL, whereas
DPOP and DTEM exhibited negative correlations. DISP
demonstrated the most significant effects on vegetation DSOS (r =

-0.32, P < 0.05), DEOS (r = 0.23, P < 0.05), and DGSL (r = -0.38, P <

0.05). Urban factors overall showed stronger correlations with

urban vegetation phenology than climatic factors along the

urban-rural gradients.

Furthermore, this study utilized a random forest model to assess

the relative importance of urban and climatic factors on DUVP. As
shown in Figures 18a-c, among the six factors, DISP contributed the

most to vegetation DSOS, while DRAD contributed the least. Urban

factors collectively accounted for 69% of the contribution to
FIGURE 11

The distribution of (a, d) DSOST, (b, e) DEOST and (c, f) DGSLT under different city sizes and climatic zones in 31 cities of China.
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vegetation DSOS along the urban-rural gradient, compared to 31%

from climatic factors. For vegetation DEOS, DLST showed the

highest contribution among the six factors, with DRAD exhibiting

the lowest contribution. Urban factors accounted for 77% of the

contribution to vegetation DEOS across the urban-rural gradient,

whereas climatic factors contributed only 23%. Regarding urban
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vegetation DGSL, DISP demonstrated the maximum contribution

among the six factors, and DPRE showed the minimum

contribution. Along the urban-rural gradient, urban factors

contributed 78% to urban vegetation DGSL, contrasting with 22%

from climatic factors. The results indicate that although climate

change has significant impacts on vegetation phenology at large
FIGURE 12

The spatial distribution characteristics of (a, d) DLSTM/T and (g, j) DISPM/T along urban-rural gradient in 31 cities of China. The distribution of
(b, c, e, f) DLSTM/T and (h, i, k, l) DISPM/T under different city sizes and climatic zones in 31 cities of China.
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scales, but localized climate changes induced by urban expansion

along the urban-rural gradient may be the primary cause of urban-

rural differences in vegetation phenology. Additionally, urban

vegetation DSOS exhibited relatively higher sensitivity to climate

change compared to other phenological parameters.
4 Discussion

4.1 The synergistic regulatory effect of
urban expansion and climate change on
urban vegetation phenology

This study employed MCD12Q2 EVI phenology data to analyze

spatiotemporal patterns of vegetation phenology across urban-rural

gradients in 31 Chinese cities from 2001 to 2020. The vegetation
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SOS, EOS, and GSL exhibited significant spatial heterogeneity along

urban-rural gradients in all 31 cities. Cities in more humid zones

showed earlier SOS, later EOS, compared to more arid zones. And

the vegetation GSL shows a spatial pattern of “longer in the south

and shorter in the north”. These findings align with previous

vegetation phenology studies in China (Ji et al., 2023; Ge et al.,

2016; Fu et al., 2022), indicating significant climatic regulation on

phenological processes.

Notably, some cities (e.g., Guangzhou, Haikou, Xinjiang)

exhibited reversed vegetation phenology trends compared to

others. Previous studies indicate that rising temperatures can

interfere with the cold chilling process of vegetation during

winter, excessively high temperatures reduce the accumulated

cold chilling required for vegetation to enter dormancy, that may

result in delayed SOS (Cannell and Smith, 1983; Okie and

Blackburn, 2011). Consequently, when temperatures rise beyond
FIGURE 13

The spatial distribution characteristics of the response amplitudes of (a) DSOSM, (d) DEOSM, (g) DSOSM to DLSTM in 31 cities of China. The distribution
of the response amplitudes of (b, c) DSOSM, (e, f) DEOSM, (h, i) DSOSM to DLSTM under different city sizes and climatic zones in 31 cities of China.
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a certain threshold, the advancing effect of temperature on

vegetation SOS may diminish or even reverse. For instance, the

relatively high and gradually increasing average temperatures

during winter and spring in the three provinces of South China

may be a key factor leading to the delayed SOS of substantial

vegetation (Ma et al., 2023). And Guangzhou, designated as a

“National Garden City,” experiences a significantly higher

intensity of anthropogenic intervention compared to other cities.

The combined effects of rising temperatures and frequent artificial

pruning may directly reverse vegetation phenological rhythms.

Furthermore, in subtropical coastal cities such as Haikou and

Guangzhou, typhoon-induced disturbances to vegetation are also

likely to disrupt local vegetation phenology. Besides, water stress in

extremely arid zones diminishes vegetation’s light and heat

utilization efficiency, potentially delaying SOS and advancing EOS

(He et al., 2018). Additionally, urban areas demonstrated more
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pronounced phenological changes than other regions. This might

be because human activities in urban areas are more frequent and

the degree of urban expansion is higher, resulting in a more

significant urban heat island effect and transformation of surface

cover types (Yang et al., 2023a). Meanwhile, suburban and exurban

areas within urban expansion spheres showed moderate

phenological impacts, though weaker than urban areas.

Specifically, SOS advancement days, EOS delay days, and GSL

extension days decreased in peri-urban areas compared to urban

cores, with impacts diminishing with distance from city centers.

This indicates urban vegetation phenology is regulated by both

climate change and urban expansion.

The gradient responses of UVP exhibited significant variations

across city sizes and climatic backgrounds. Small towns

demonstrated significantly greater vegetation DSOS, DEOS, and
DGSL compared to other city types, potentially associated with
FIGURE 14

The spatial distribution characteristics of the response amplitudes of (a) DSOST, (d) DEOST, (g) DSOST to DLSTT in 31 cities of China. The distribution
of the response amplitudes of (b, c) DSOST, (e, f) DEOST, (h, i) DSOST to DLSTT under different city sizes and climatic zones in 31 cities of China.
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distinct urban expansion patterns. Divergent urban expansion

intensities revealed that small towns predominantly expanded in

urban areas with higher ISP values, resulting in higher DISP
magnitudes. In contrast, large cities displayed relatively smaller

DISP values due to their advanced urbanization stages characterized

by peripheral expansion. Previous studies confirm that urban

expansion intensity significantly modulates phenological changes

(Li et al., 2017; Peng et al., 2024) explaining the more pronounced

DUVP in small towns. Additionally, cities in arid and semi-arid

zones exhibited substantially greater DUVP magnitudes than those

in humid and semi-humid zones. This disparity may originate from

precipitation constraints suppressing vegetation growth in arid

zones, while urban irrigation alleviates water stress, amplifying

phenological differentiation.

Across China’s 31 cities, DLST showed negative correlations

with urban vegetation DSOS but positive correlations with DEOS
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and DGSL along urban-rural gradients, consistent with prior

findings (Zhang et al., 2024; Kabano et al., 2021). Significant

differences emerged in DUVP responses to DLST across city sizes

and climatic contexts along the gradient. Medium cities displayed

the most pronounced vegetation responses (DSOS, DEOS, DGSL) to
DLST variations. Notably, large cities exhibited attenuated

phenological responses to DLST compared to other city types.

Previous research suggests that enhanced green infrastructure

implementation during large city development mitigates

urbanization impacts, despite their advanced urbanization levels

(Qiu et al., 2021). Although we excluded agricultural pixels during

the extraction of vegetation phenological parameters to minimize

interference from managed vegetation, both urban agriculture

(primarily seasonal short-term crops) and urban green spaces

(with relatively stable phenological rhythms) may still influence

the extracted parameters. Moreover, the cooling effect generated by
FIGURE 15

The spatial distribution characteristics of the response amplitudes of (a) DSOSM, (d) DEOSM, (g) DSOSM to DISPM in 31 cities of China. The distribution
of the response amplitudes of (b, c) DSOSM, (e, f) DEOSM, (h, i) DSOSM to DISPM under different city sizes and climatic zones in 31 cities of China.
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the high proportion and quality of artificial green spaces in large

cities could result in vegetation experiencing lower temperatures

than the overall LST, leading to variations in the derived

phenological parameters (as shown in Figure 19). Simultaneously,

artificial water supplementation systems, such as green space

irrigation and municipal watering, may reduce the responsiveness

of vegetation phenology to changes in LST. Consequently, large

cities demonstrate reduced DUVP sensitivity to DLST compared to

smaller cities. It is important to note, however, that the scattered

distribution and relatively small-scale nature of urban agriculture

and green spaces makes accurate differentiation challenging with

the land use product employed in this study. While higher-

resolution land use products (e.g., the 10-m GlobeLand30) could

identify these features, their available time series are often

insufficient to meet our study’s requirements, and significant scale

discrepancies exist when matching them with the 500-m

phenological data. Besides, our analysis revealed stronger DUVP
responses to DLST in arid and semi-arid zones than in humid and

semi-humid zones. This is likely because water availability acts as
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the primary limiting factor for vegetation growth in arid and semi-

arid regions. Moreover, artificial irrigation systems and other water

supplementation measures in cities may also be a contributing

factor to the stronger response of DUVP to DLST in arid regions. In

arid and semi-arid areas, vegetation under water stress exhibits

reduced sensitivity of phenology to land surface temperature.

Artificial irrigation significantly alleviates this stressor. For

example, in cities like Lanzhou, the core urban areas have a much

higher irrigation coverage compared to the peripheral zones. This

leads to a considerably greater magnitude of phenological change in

the urban core vegetation than in the surrounding areas, thereby

amplifying the response magnitude of DUVP to DLST. Meanwhile,

the response amplitude of DUVP to DLST in arid areas is slightly

lower than that in semi-arid areas. This implies that while aridity

enhances temperature sensitivity, extreme drought conditions may

constrain DUVP responses to DLST. Moreover, vegetation DSOS
showed negative correlations with DISP along the gradient, whereas

DEOS and DGSL maintained positive correlations. These patterns

align with findings from previous studies where increasing ISP
FIGURE 16

The spatial distribution characteristics of the response amplitudes of (a) DSOST, (d) DEOST, (g) DSOST to DISPT in 31 cities of China. The distribution
of the response amplitudes of (b, c) DSOST, (e, f) DEOST, (h, i) DSOST to DISPT under different city sizes and climatic zones in 31 cities of China.
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correlated with advanced SOS, delayed EOS, and prolonged GSL in

urban vegetation (Zhang et al., 2022; Yuan et al., 2022).

Furthermore, large cities demonstrated significantly weaker

phenological responses to DISP variations along the gradient

compared to other city types.

Analysis of influencing factors on urban vegetation phenology

along the urban-rural gradient revealed differential impacts of urban

and climatic drivers. Partial correlation analysis identified DISP as the

dominant urban factor affecting DSOS, DEOS, and DGSL, while other
factors showed parameter-specific influences. Beyond DISP
regulation, DLST and DPOP exhibited substantial contributions to

vegetation DSOS variations. For vegetation DEOS, significant

modulation by DLST and DTEM was observed, whereas most

factors demonstrated comparable contributions to DGSL. These
findings align with previous studies suggesting that urban

expansion primarily drives DUVP through localized climatic

modifications (Wang et al., 2019). Random forest modeling

confirmed this conclusion through quantitative importance

assessment of DUVP determinants. Divergently, DISP showed peak

contributions to DSOS and DGSL, whereas DLST dominated DEOS
FIGURE 17

The partial correlation coefficient between (a) DSOS, (b) DEOS, (c) DGSL and 6 factors (DLST, DISP, DPOP, DTEM, DPRE and DRAD). * represents P <
0.05.
FIGURE 18

The relative importance between (a) DSOS, (b) DEOS, (c) DGSL and 6 factors (DLST, DISP, DPOP, DTEM, DPRE and DRAD).
FIGURE 19

The percentage of green space area under different city sizes.
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variations. Consistently, urban factors constituted the principal

determinants of DUVP patterns along the urban-rural gradients.

Furthermore, Climatic factors exerted stronger influences on DSOS
than on DEOS and DGSL, indicating heightened climate sensitivity of

vegetation SOS, consistent with established research. Conversely, the

study by Ji et al. suggested that the interannual trends of vegetation

phenology across discrete urban zones follow a unimodal pattern,

peaking in newly urbanized areas. They concluded that climate

change, rather than urbanization, plays the dominant role in

driving interannual UVP variations across all urban zones—a

finding that diverges from our results. This discrepancy arises

because Ji et al.’s research quantitatively analyzed interannual

vegetation phenology trends within areas of differing urban

expansion intensity. In contrast, our study focuses on quantitatively

assessing how vegetation phenology changes along an urban-rural

gradient in response to spatial variations in urban expansion

intensity. Specifically, we investigate how the impact of urban

expansion on vegetation phenology varies with increasing distance

from the city center as the intensity of urban expansion changes.
4.2 Limitations and uncertainties

Our study may be subject to the following uncertainties. The

vegetation indices derived from moderate spatial resolution remote

sensing imagery cannot capture high-precision details of urban

vegetation growth dynamics. Meanwhile, the dynamic threshold

method with 15% threshold for phenology extraction lacks

validation due to insufficient ground-based phenological

observations in Chinese cities, potentially introducing errors in

remote sensing-derived phenological parameters. Our focus on

large-scale phenological variations overlooks region-specific

species characteristics, which may contribute to uncertainties.

Finally, although agricultural pixels were excluded, extensive

artificial green space construction in large cities and arid zones

may influence DUVP assessments. Furthermore, the meteorological

data selected for this study were obtained from the ERA5-LAND

monthly average product. It is important to note that its relatively

coarse spatial resolution (0.1 degrees, approximately 11 km) may

limit the accurate differentiation of intra-urban variations.

However, due to the sparse distribution of ground-based

meteorological observation stations and frequent data gaps in the

arid regions of Northwest China, the ERA5-LAND dataset was

selected for its continuous, gap-free spatiotemporal records since

2001, offering superior temporal continuity and spatial coverage

compared to alternative data sources. Although we resampled the

data to a 500m resolution to mitigate associated errors, we

acknowledge that this process may still introduce certain

inaccuracies. Therefore, we recommend that future studies

employ integrated techniques such as “machine learning-based

downscaling combined with multi-source data assimilation” to

fuse ERA5 reanalysis data with high-resolution remote sensing

products and ground-based station observations, thereby
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generating high-resolution meteorological datasets for more

precise research outcomes.
5 Conclusions

This study systematically revealed the spatiotemporal

differentiation patterns of UVP along urban-rural gradients and

their response mechanisms to urban expansion in 31 Chinese cities

using multi-source remote sensing data (2001-2020). And the

synergistic regulatory effects of urban expansion and climate

change on DUVP along urban-rural gradients were further

investigated. The main conclusions are as follows:
1. Across 31 Chinese cities, vegetation SOS showed systematic

advancement, EOS exhibited delayed occurrence, and GSL

demonstrated extension, with phenological variation

magnitudes diminishing along the urban-rural gradient.

Concurrently, cities in humid southeastern regions

displayed earlier SOS, later EOS, and longer GSL

compared to arid northwestern counterparts. This spatial

pattern suggests synergistic regulation of UVP by urban

expansion and climate change, with urbanization impacts

attenuating with increasing distance from urban cores.

2. Under varying city sizes and climatic contexts, large cities

exhibited smaller DSOS, DEOS, and DGSL magnitudes

compared to medium cities, small cities, and small towns.

And the vegetation DSOS, DEOS and DGSL in small towns

were the largest. Arid and semi-arid zones showed

significantly greater DSOS, DEOS, and DGSL than humid

and semi-humid zones. Additionally, negative DLSTM/T

and DISPM/T values across all 31 cities indicated the LST

and ISP in the urban area are higher than those in the

surrounding areas, and the warming and expansion rates

are faster. Therefore, small towns and cities should strictly

control their expansion intensity and patterns, prioritizing

the protection of native vegetation patches to maintain

natural phenological rhythms. For large cities, it is

imperative to construct multi-tiered green space networks

to enhance connectivity and prevent habitat fragmentation,

which can lead to compromised ecological functionality. In

arid and semi-arid regions, urban areas should improve

fundamental irrigation infrastructure to stabilize vegetation

phenological rhythms across both urban and peri-

urban areas.

3. Vegetation DSOS was negatively correlated with DLST on the

urban-rural gradient in 94% of the cities, DEOS was

positively correlated with DLST, and DGSL was positively

correlated with DLST. Medium cities displayed maximum

response magnitudes, followed by small towns and small

cities, with large cities showing minimal sensitivity. The

response amplitudes of vegetation DSOS, DEOS and DGSL
to DLST in arid and semi-arid areas were significantly
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greater than those in humid and semi-humid areas.

Furthermore, vegetation DSOS was negatively correlated

with DISP on the urban-rural gradient in 94% of the cities,

DEOS was positively correlated with DLST, and DGSL was

positively correlated with DLST. And the response

amplitude of large cities is significantly smaller than that

of small towns, small cities and medium cities. The

response amplitudes of vegetation DSOS, DEOS and

DGSL to DISP in arid and semi-arid areas are significantly

greater than those in humid and semi-humid areas.

4. Among urban and climatic factors, DISP was identified as the

principal regulator of DUVP. Additionally, Urban factors

collectively accounted for 69% of the contribution to

vegetation DSOS, 77% to DEOS, and 78% to DGSL
variations along the urban-rural gradient. Climatic factors

contributed 31% to DSOS, 23% to DEOS, and 22% to DGSL
variability across the gradient. The vegetation DSOS, DEOS,
and DGSL in all 31 cities were predominantly influenced by

urban factors along the urban-rural gradient. Comparatively,

vegetation DSOS was more sensitive to climate change than

DEOS and DGSL.
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