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Within the multidisciplinary framework of historical ecology, in this study plant

morphology, oral history, and soil analyses are combined with phytoliths to

reconstruct shifts in management and environment of historical and living olive

agroecosystems on the island of Sicily (Italy). The use of phytoliths in the study of

historical agroecosystems is still a developing field. We present the collaborative

work done on three historical olive agroecosystems (Bosco Pisano, a wild olive

wood; Cozzo del Lampo, a Mediterranean olive orchard; Malìa, remnant of past

agroforestry), where we have collected and analyzed phytolith assemblages to

trace correlations between environmental dynamics and (agri)culture, as

unfolding over the latest six millennia. We demonstrate that the cumulative

ecological legacies in historical agroecosystems are traceable through phytolith

analyses. Bosco Pisano allows for a calibration of the tree cover density, based on

phytolith evidence. Meanwhile, Cozzo del Lampo and Malìa have evolved from a

shrubland-type of environment to fruit gardens and open grasslands, with

establishment of olive trees in between as key vegetation elements. Both these

examples show the longevity of combined land uses, especially the grazing

adapted olive cultivation in Malìa. In gaining clues on clear variations in land use,

as abandonment and intensification, our results demonstrate that phytoliths can

shed light also in local past intercultural exchange of knowledge. The integrated

methodology presented here allows to appreciate how the biological and

cultural diversity in historical agroecosystems has shaped their current state

and inspires present-future management.
KEYWORDS

plant morphology, Olea, past analogues, biocultural heritage, soil analysis, historical
ecology, land use change
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1 Introduction

Studies on historical agroecosystems are important for their

management in face of current environmental issues (e.g., climate

change, loss of biodiversity, soil impoverishment). Their cumulative

ecological legacies also contain clues to the range of practices possible

in the past and present. Currently, we still lack a deep understanding

of how and to what extent the present biological and cultural

diversity in historical agroecosystems has been shaped by land use

processes over time (Cevasco et al., 2015; Agnoletti and Emanueli,

2016). Perspectives examining the correlations between the long-

term presence of historical agroecosystems and the current states of

certain rural landscapes are still missing. Similarly, there is a void of

research on multiple baselines and drivers at different scales (Pauly,

1995; Ligtermoet et al., 2023). Historical agroecosystems tend to be

studied by different disciplines separately, while they would be better

understood through integrated and transdisciplinary approaches,

which can appreciate their wider array of spatial and temporal

processes. Studies have shown the potential in combining diverse

methods and sources (oral history, paleoecology, spatial analysis), as

epistemic perspectives, for the exploration of historical

agroecosystems (Crumley, 2012; Barthel et al., 2013a, 2013b) and

their key role for the maintenance of local biocultural diversity

(Baiamonte et al., 2015; Cohen et al., 2023; Gkisakis et al., 2018;

Ferrara, 2024).

Phytoliths have strong potential for the reconstruction and

assessment of past and present agroecosystems (e.g., Pokrovsky et al.,

2024; Witteveen et al., 2023), especially when combined with other

sources (traditional ecological knowledge, geospatial data, historical

maps, just to name a few). Research on the application of phytolith

analysis for the investigation of agricultural practices, species

domestication, food production, and their environmental impacts

through the Holocene is not new (e.g., Kealhofer, 2003; Iriarte et al.,

2010; Pearsall and Hastorf, 2011 for a general introduction on the

method; Dickau et al., 2016; Hill et al., 2023). While this strand of

research deals with the investigation of human-nature ecological

interactions at certain points in the past, the use of phytoliths in the

study of living historical agroecosystems is still a developing field. In

such respect, our work - for the first time - applies phytolith research in

the investigation of agroecosystems that have maintained certain

vegetation elements (i.e., century-old olive trees) over millennia,

which thus characterize these agroecosystems as historical elements

in an always-changing landscape. The scope of our work is to trace the

historical ecology of these agroecosystems by catching, through

phytolith analysis, variation patterns (as new and abrupt shifts or

gradual changes, both in land use and broader environmental

dynamics) within long-term stability trends represented by the very

persistence of these historical agroecosystems until today. From this

derived knowledge, we could gain insights on how these

agroecosystems have evolved and interacted with anthropogenic

disturbances (land use) and environmental (microclimate, vegetation

cover, local biodiversity) elements over time, while maintaining

essential features of stability over centuries, if not millennia.

In our work, we combine plant morphology, oral history, and

soil analyses with phytoliths (Ferrara et al., 2025). This paper in
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particular focuses on phytolith assemblage analysis in historical

olive (Olea europaea L.) agroecosystems still present on the island of

Sicily (Italy). These remnants of very old agroecosystems in today’s

landscape allow studying land use dynamics and broader

environmental changes over centennial and even millennial time

scales. A single gram of olive leaf can produce around 40,000

phytoliths, and they have been extracted from leaves, bark, wood

and fruits of Olea europaea L (Tsartsidou et al., 2007), as well as

from olive oil sediments (Loeta Tyree, 1994). Nonetheless, no

taxonomic demarcation by phytolith signature has been published

so far to understand which phytolith morphotypes could be

diagnostic of Olea. The main obstacle to research development

on Olea taxonomic demarcation via phytolith signature is the

difficulty of discriminating taxonomically phytoliths from woody

dicotyledons (Bremond et al., 2005a; Testé et al., 2020), and only a

few studies are available on the topic (An, 2016; Lisztes-Szabó et al.,

2019; Liu et al., 2021; An and Xie, 2022; Boyd et al., 2024). Due to

such limitations, in this paper we conceptualize plant microfossil

biogenic silica (phytoliths) stored in the soil of historical olive

agroecosystems as biocultural traces of past and present human-

nature interactions and environmental dynamics. Phytolith

assemblages are here considered as indicators of entangled

cultural land use practices and ecological dynamics over the long

term, in environmental contexts where other proxies (e.g., pollen,

macrofossils, charcoal) are not available.

Furthermore, as will be argued, as biocultural traces of past local

vegetation and land uses, phytoliths can inform about how the

historical olive agroecosystems under investigation have responded

to analogous shifts we face today or in the future. As such, they can

provide relevant evidence we may want to consider in our

management, when it comes to handle current and prospected

climatic variations and other forms of stress.

Section 2 in the paper describes the three areas on the island of

Sicily selected as case studies. These are remnants of historical olive

agroecosystems, each of them is unique in the local history of land

use and management of the olive tree. Section 3 is dedicated to our

methodological approach, based on the assumption that phytolith

assemblages stored in soil layers of historical olive agroecosystems

are biocultural records from previous local vegetation dynamics and

(agri)cultural practices. In Section 3, the local phytoliths ecology

is introduced as well, together with details on the sampling

method and analytical approaches adopted to investigate the

extracted assemblages.

The potential of phytolith analysis to estimate the openness of

historical olive agroecosystems, to understand how land uses in

different historical periods have contributed to shape the current

structure of ancient olive groves, and how biological diversity

can be correlated to human presence on a site are presented in

Section 4. These results are further interpreted in Section 5, within

a perspective that considers soil-extracted phytolith assemblages

as biocultural traces that can allow gaining new knowledge on

historical and intertwined ecological-cultural phenomena

happening on a site. The importance of past analogues to inform

agroecosystems management and conservation policies is

emphasized. The paper concludes by proposing further research
frontiersin.org
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on phytolith assemblages as biocultural proxies in agricultural soils

with a deep history.
2 Study areas

In this paper, we propose phytoliths as biocultural traces in

three historical olive agroecosystems on the island of Sicily chosen

as study areas: Bosco Pisano, represented by a wild olive patch

included in a mosaic forested area (in the municipality of Buccheri,

Siracusa Province), Cozzo del Lampo, a hill covered by century-old

olive trees in the municipality of Villarosa, Enna province, and

Contrada Malìa, within a rural district in the municipality of San

Mauro, Palermo province (Figure 1).

The case study areas are remnants of three specifically

different olive agroecosystems. Each represents individual spatial

and temporal tree arrangements, resulting from distinct local

historical land uses and intentionalities. Thus, each case study

area per se exemplifies a unique case of management and

maintenance history. Below, the morphological characteristics of

these historical olive agroecosystems and their ecology are briefly

introduced, based on surveys conducted in 2022, 2023 and 2024,

in combination with collected oral history and traditional

ecological knowledge.
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2.1 Bosco Pisano

Bosco Pisano is a patch of woodland located on the slopes of the

Iblei Mountains, nowadays a Nature 2000 site (ZSC ITA090022 –

Bosco Pisano). The landscape unit is a mosaic where open

woodlands and pasturelands alternate. The vegetation is

dominated by the presence of Olea europaea var. sylvestris-

dominated formations (EUNIS habitat type G2.41), Quercus suber

(EU Habitat Directive 9330) and Quercus pubescens (EUNIS

G1.732) woods, pseudo-steppe with grasses and annuals of the

Thero-Brachypodietea (EU Habitat Directive 6220), Sarcopoterium

spinosum phryganas (EU Habitat Directive 5420), and Western

Mediterranean and thermophilus scree (EU Habitat Directive

8130). Bosco Pisano lies on volcanic rock outcrops (Carbone

et al., 1986) with prevailing very shallow andic brown soils and

lithosols, where rock outcrop is abundant (Fierotti et al., 1988). The

area chosen as case study, 780 m2 large (Figure 2), includes an

unusual almost monospecific wild olive cluster (Figure 3). It is a

unique example of wild olive woodlands that might have been much

more widespread in the past and currently represented by few

fragmented patches occurring occasionally in the entire region.

As part of the study, an assessment was made of the tree

morphology and grafting events since the olive trees in Bosco

Pisano, even though wild olive, have the typical multistemmed
FIGURE 1

Location of the three study areas on the island of Sicily: Bosco Pisano, Cozzo del Lampo, Malìa (Image source: Ferrara, 2024).
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shape of coppiced cultivated individuals (as for instance in Cozzo

del Lampo, cf. 2.2). The olive wood was likely used for fuelwood,

fodder-branches, and timber. Coppicing practices (the cut of tree

branches and trunks at or near the ground level) are already

mentioned in written sources from the 17th century and there

may also be charcoal kilns in the vicinity (Garfì and Di Pasquale,

1988). Historical reconstructions of the local land use (cf. Di

Pasquale et al., 2004) dates from the 17th century onwards. Until

the last century, the local landscape spatial patterns probably

resembled present-day grazing areas, such as the Dehesas or
Frontiers in Ecology and Evolution 04
Montados (in Spain and Portugal respectively). During the 1940s

and 1950s, this territory became virtually abandoned, except for

cork harvesting and grazing. The area is today used for

overwintering of animals, as part of a transhumance practice (cf.

Garfì and Di Pasquale, 1988).

Di Pasquale et al. (2004) suggest that the wild olive dominated

stands are probably the most ancient and stable units, when

compared to other more recent forest communities, as the

macchia formations (estimated as c. 60-year-old), resulting from

the decline of coppicing, and the cork oak stands, most likely
FIGURE 3

(a) Bosco Pisano, with its cluster of wild olive trees, (b) Peculiar shapes of the olive trees branches in Bosco Pisano, due to the reiterated cuttings
done in the past to provide in situ fodder for grazing cattle.
FIGURE 2

Bosco Pisano case study location and its broader area (Image source: Ferrara, 2024).
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originated in its current settings at the end of the 19th century, now

largely senescent and unable to rejuvenate due to the lack of natural

regeneration owed to overgrazing.

Garfì and Di Pasquale (1988) further suggest that this woodland

is a relict of wider oak forests, existing until the classic age in Sicily

(i.e., Diodorus Siculus, Bibliotheca, 4–84). This wood made of wild

olive trees represents a now forgotten form of past land use of the

olive, and for this reason is an important case study.
2.2 Cozzo del Lampo

Cozzo del Lampo is a hill of approximately 1.28 km2, located in a

rural area of inner Sicily, and characterized by the abundance of large

size (c. 12–15 m in circumference) domesticated century-old olive

trees (Figure 4). These agroecosystems are Mediterranean formations

of Olea europaea var. europaea (EUNIS G2.91), with presence of

Mediterranean subnitrophilous grass communities (graminoid

formations that may cover post-cultural or pasture lands, EUNIS

E1.61), sub-Mediterranean deciduous thickets (EUNIS F3.2) and diss

formations (EUNIS E1.433). Along the slopes of the hill, these

agroecosystems are intermixed with Mediterranean tall-grasses

(EUNIS E1.4), evergreen sclerophyllous scrubs (EUNIS E1.2A) and

riparian thickets close to the water streams (EU Habitats Directive

92D0). The hill, as a mosaic of Olea europaea var. europaea groves in

terms of land use, is then surrounded by cereal and fallow fields. Since

the 1950s post-war land reorganization in Sicily, these olive groves

have been managed as small family holdings maintained for self-

consumption and/or recreation.
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Cozzo del Lampo is an elevated area with slopes and/or

protruding rocks of the Terravecchia Formation (i.e., interbedded

quartzite pebbles, sandstone and shale sequences, cf. Grasso and

Pedley, 1988). The size and configuration of the olive trees suggest

that they are century-old, though no exact dating is available. The

olive trees are found in places where it was extremely hard or

impossible to plough the land manually.

Field surveys were carried out in collaboration with farmers and

pruners (cf. Ferrara and Ingemark, 2023; Ferrara et al., 2024b). Trunk

and spout morphology was assessed, together with crown shape and

size, past grafting and pruning events if visible on the tree. Some trees

have likely been grafted from the roots of previous wild olive

individuals (sensu La Mantia, 2005), since no signs of grafting is

evident on the trunks. Several consecutive coppicing (tree cuts at or

near the ground level) and pollarding (tree cuts higher at the trunk

level) events are visible, resulting in the current multi-stemmed and

multi-branches habit of these century-old olives. Both coppicing and

pollarding as pruning techniques have the aim to foster self-renewal in

the tree (Rackham, 2018). According to the size and shape criteria

specified by Schicchi and Raimondo (2011), the olive trees in Cozzo del

Lampo could potentially be as old as 800 or 1,000 years (Figure 5).

Finally, their spatial arrangement is distinctive compared to more

recent olive orchards, resembling a mosaic of diverse configurations

unique to this area (Ferrara et al., 2024a).

The Morello valley, where the hill is located, has been inhabited

since prehistory (Giannitrapani et al., 2014). Archaeological surveys

in one olive orchard were carried out by Tegerdal Hune (2022),

resulting in the location of an undated site. Giannitrapani et al.

(2014) suggest an abandonment phase in the entire valley from
FIGURE 4

Cozzo del Lampo hill with its mosaic of different olive spatial arrangements (Image source: Ferrara, 2024).
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late Antiquity to the 14th century. This was followed by slow

repopulation and, from the 18th century, the consolidation

of an extensive feudal estate, characterized by intensive cereal

cultivation (Verga, 1993; Carocci, 2010). A redistribution of land

to peasants took place after the end of World War II. Based on

recent collection of oral histories and geonarratives (cf. Ferrara

et al., 2024b), until c. 1950 fruit trees (such as Pyrus pyraster L.

(Burgsd.), Punica granatum L., Prunus spinosa L. subsp. spinosa,

to name a few) were cultivated in between these olive trees,

resembling the intercropping system of the “Mediterranean

garden”. Outmigration from the area remains a problem today

(Fondazione Migrantes, 2022), though small-scale farming activities

persist, mainly involving cereal and livestock production (Ferrara

and Lindberg, 2023).
2.3 Malìa

The third study area presented in this paper is located in a rural

district called Malìa, in the Madonie Mountains, known as a

biodiversity hotspot due to remnants of semi-natural vegetation

(Baiamonte et al., 2015). The Olea europaea var. europaea

formations (EUNIS habitat type G2.91) in the Malìa study area

are found in permanent mesotrophic pastures and aftermath-

grazed meadows (EUNIS E2.1) dominated by Mediterranean

subnitrophilous grass communities (EUNIS E1.61), Calicotome

infesta (EUNIS F5.515), Ampelodesmos mauritanica dominant

formations (EUNIS F5.53), Medio-European rich-soil thickets

(EUNIS F3.11) and Spartium junceum scrubs (EUNIS S53). The

study area surveyed has an extension of approximately 550 m2

(Figure 6), and it is embedded in a tangled web ofQuercus pubescens

(EUNIS G1.732) Quercus suber (EU Habitat Directive 9330) woods

and Italic poplar galleries (EUNIS G1.314). Here too, during

fieldwork, we assessed the morphology and grafting events visible

on the century-old olive trees. Evidence of past grafting, done on

semi-mature wild and feral trunks at more than 1.5 meters from the

ground (Figure 7), suggests an adaptation of protect cultivated

olives to grazing animals. Based on their trunk size and overall

physiognomy, these olive trees are estimated to be century-old.
Frontiers in Ecology and Evolution 06
Numidian Flysch, a rare Oligocene to mid-Miocene deep-

marine sandstone and mudstone formation (Hubert Thomas,

2011; Pinter et al., 2016), emerges until the surface in certain

places, making the topography very steep and soil layers shallow.

In this agroecosystems, the spatial distribution of century-old olive

trees appears random, growing directly from and among the

bedrock, even in the steepest parts of the hill slope. In addition,

numerous olive trees are located in the most remote and

inaccessible places (Figure 8).

Local reconstructions of Holocene vegetation and fire dynamics

show the expansion of open grasslands from the 5th millennium

BCE onwards, on top of previously closed woodlands (Tinner et al.,

2016). This grassland expansion, alongside other evidence, has been

linked with human activities (Belvedere and Forgia, 2010; Forgia

et al., 2013, 2021). Unfortunately, documentation for the more

recent period remains scarce.

From interviews with local residents, the area had a similar socio-

economic history as Cozzo del Lampo. It was part of a large estate,

which after the end of World War II was parceled into small plots,

bought by the farmers already working the land.Malìa represents a past

multifunctional space, for cultivation and grazing, while also providing

fuelwood and timber (cf. Ferrara et al., 2023), which suggests this case

study to be representative of an old agroforestry model (similar to those

in Antiquity), characterized by the high presence of grazing activity and

sparsely planted olive trees.
3 Material and methods

A few scholars have tested the potential of multiproxy

vegetation reconstructions in millennial old olive agroecosystems.

Cohen et al. (2023) analyzed land use factors (spatial context,

management type and intensity) and environmental conditions.

Jouffroy-Bapicot et al. (2021) traced the transition from

Mediterranean woodlands to olive agroecosystems. Meanwhile,

Moriondo et al. (2013) used historical ranges of olive cultivation

as a paleoclimate proxy to model future environmental and

agricultural scenarios. These pioneering studies demonstrate how

multiproxy methods and interdisciplinary approaches are crucial to
FIGURE 5

A century-old olive tree (a) with its multiple stems (b) surrounding the main decaying stump (Image source: Ferrara, 2024).
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reconstruct the historical ecology not just of olive agroecosystems,

but of other types of agroecosystems with a deep history as well. As

reviewed above, the case studies presented here have been

investigated spatially (Ferrara and Wästfelt, 2021; Ferrara et al.,

2024a; Ferrara andWästfelt, 2025) and through oral narratives, local

ecological knowledge and written sources (Ferrara and Ingemark,

2023; Ferrara and Lindberg, 2023; Ferrara et al., 2023; Ferrara et al.,

2024b). In this paper, for the first time phytolith assemblage analysis

is integrated into a historical ecology study of ancient olive

agroecosystems still present in today’s landscape.
Frontiers in Ecology and Evolution 07
3.1 Phytoliths as biocultural traces

Phytoliths are used in this paper to reconstruct past vegetation,

land use and broader environmental dynamics (Pearsall and Trimble,

1984; Strömberg et al., 2007; Aleman et al., 2014; Feng et al., 2017).

Phytoliths have also been used to study erosion patterns and

paleoclimate (see review in Qader et al., 2023). In old soils,

phytoliths are preserved due to silica resistance to decay (Pearsall,

2015). Although phytoliths have an enormous potential in studying

and assessing agricultural soils, such field of research is underdeveloped
FIGURE 7

The difference between wild and domesticated olive trees can be appreciated from the different shades of green of the trees´ crown. Darker green
(as in (a)) indicates wild and/or feral olive. Lighter green are leaves from domesticated olives. The olive tree in (b) shows the coexistence of both,
wild and domesticated; it is also a good example of a grafting event happened on a semi-mature trunk at more than 1.5 meter of height. Note the
slope (Image source: Ferrara, 2024).
FIGURE 6

Location of the study area and its surrounding landscape in contrada Malìa (Image source: Ferrara, 2024).
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(though see Meunier et al., 1999; Fernández Honaine et al., 2006; Liang

et al., 2015; Hussain et al., 2023; Pokrovsky et al., 2024; Benvenuto et al.,

2025 for positive examples). Plants and soils act as a Si ‘filter’ (cf.

Vandevenne et al., 2012, 243), transforming the dissolved silica (DSi)

originated from mineral weathering into biogenic silica (BSi). Such

biogenic silica is then returned to the soil when plants decay. Along this

cycle, vegetation and soils changes caused by specific land use activities,

such as the removal of biomass during harvest, affect the Si quantity

and distribution (Barão et al., 2020). Through phytoliths analysis, we

can thus trace how vegetation composition and assemblages have been

shaped by land use practices. By approaching the historical olive

agroecosystems present in the study areas as containing legacies of

their past-present agricultural and silvicultural use, we developed a

methodological approach that would allow investigating this

biocultural heritage. By ideally following the roots of century-old

olive trees underground, we explored the memory of the soil through

the analysis of phytolith assemblages (Piperno, 2006). By comparing

the relative frequencies through time of all diagnostic phytoliths

(Strömberg, 2004), first of all we intended to observe if distinctive

assemblages along the stratigraphic profiles could lead to distinguish

patterns of change in vegetation and habitats structure (Strömberg

et al., 2013). Secondly, we considered if the correlation between

different vegetation communities represented by these assemblages

could offer new interpretative perspectives about past land use practices

(included successional trajectories along gradients of human

disturbance, cf. Witteveen et al., 2023), climatic and broader

environmental trends over the long term in these agroecosystems.
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Therefore, testpits were opened in each of the case study areas,

for the extraction of phytoliths from soil layers following a protocol

developed by Mazuy et al. (2024) specifically for these types of agro-

ecological contexts, as detailed in Section 3.2. Where available, 14C

dates were modeled to provide a relative age-depth.

The identification of phytolith morphotypes (Figure 9 for

examples) to categorize into assemblages has followed local

phytoliths ecology (Section 3.3) and phytolith assemblages ratios

have been interpreted according to four different indices (Section

3.4), in order to provide indication of specific plant communities

structures, composition and variation patterns along each profile

and when comparing the three different sites.
3.2 Sampling and laboratory procedure

Soil sampling for phytoliths extraction and analysis was adapted

to the specific geological features in each study area and the spatial

composition of their century-old olive trees.

In Bosco Pisano, two profiles of 20 cm depth were opened

(Figure 10a, Table 1), resulting in two samples. Sampling here aimed

to estimate tree cover density through phytoliths signature inOleawood

formations (cf. 2.1 for habitats characterization), so to employ it as a

local tree cover threshold when interpreting the results from the other

two case studies.

In the two study areas Cozzo del Lampo and Malìa, five testpits

1.5 m deep were opened in each area, and soil sampled every 10 cm,
FIGURE 8

(a) Local vegetation, including wild olive, growing on Numidian Flysch bedrock; (b–d) Domesticated olive trees growing among the bedrock. Note
the slope and the natural bedrock terraces in Figures 7c and d (Image source: Ferrara, 2024).
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resulting in a total of 75 samples per study area (Table 1). In Cozzo

del Lampo, the testpits followed the slope transect with an interval

of 40 meters (Figure 10b). In Malìa, a transect was not possible due

to the shallow soil depth in recurrent places. The testpits were

placed near olive trees in an area with relative soil thickness and
Frontiers in Ecology and Evolution 09
were local residents said there had been cereal and/or legumes

cultivation and pasture (Figure 10c, Table 1).

Stratigraphic analyses were carried out for the profiles excavated

in Cozzo del Lampo and Malìa (Supplementary Material S1). Three

charcoal samples fromCozzo del Lampo and two samples fromMalìa
FIGURE 9

Examples of phytoliths morphotypes extracted from the case study areas: elongate sinuate (a), crenate (b), and dendritic (c) from Malìa (Image
source: Ferrara, 2024); blocky (d) from Bosco Pisano (Image source: Ferrara et al., 2025).
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were submitted for radiocarbon dating at the Ångström Laboratory,

Uppsala University. Dates were calibrated by the laboratory using

IOSACal v0.4.1 and the IntCal20 calibration curve (Reimer et al.,

2020). A Bayesian age-depth model was produced in R (R Core

Team, 2021) using the package Bacon (Blaauw et al., 2022) and the

uncalibrated dates for Cozzo del Lampo samples are published

already in Ferrara and Wästfelt (2025).
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Phytolith extraction was done at the Paleobiology Laboratory

(Department of Earth Sciences, Uppsala University), following the

protocol developed in Mazuy et al. (2024). This protocol allows

extracting quantities of biogenic silica suitable for phytolith

morphotypes analysis, from soils and contexts with low phytoliths

concentrations. The samples have been first deflocculated through

magnetic stirring. Thereafter, the fine fraction (200 mm) is treated
FIGURE 10

Location of the soil profiles excavated in each study area for sampling. (a) Bosco Pisano; (b) Cozzo del Lampo; (c) Malìa (Image source: Ferrara, 2024).
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with hydrochloric acid 33% (to remove carbonates) and then boiled

in a hot bath (80°C) with potassium hydroxide 10% for 15 minutes

(to remove organic matter). Phytoliths are then extracted by heavy

liquid flotation (using sodium polytungstate, SPT at 2.35 density)

and in a hot bath (80°C) with hydrogen peroxide 30% for 1 hour to

remove further organic matter.

Being collected on the island of Sicily, where the volcano Etna

has been active for thousands of years, our soil samples contain a

high amount of cryptotephra, which is silica glass (GSi). The density

of cryptotephra is similar to that of phytoliths and biogenic silica

more in general (BSi) (≤ 2.3 g cm-3), consequently silica glass is also

separated together with phytoliths during the heavy liquid

extraction process. In our specific case, the final BSi residue

represents thus the sum of phytoliths and cryptotephra.

Consequently, whatever quantitative assessment of the silica
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fraction extracted from our samples would be misleading in terms

of specifying the exact amount of phytoliths content. A further

separation between tephra particles and phytoliths would have been

necessary to obtain such specific measures, which however could

have caused partial loss of the already phytolith-low content of the

studied samples (cf. Mazuy et al., 2024). Since cryptotephra is

clearly distinguishable from phytoliths under microscope and

being mainly interested in analyzing relative abundance of

phytolith morphotypes and their assemblages variability to gain

qualitative information about changes in vegetation composition,

land use and plant behavior, the quantitative determination of the

biogenic silica content in our samples was out of the scope of the

work presented in this paper.
3.3 Local phytoliths ecology

Though different parts of a plant produce diverse phytolith

morphotypes, several phytoliths can be commonly identified to

subfamily level (Table 2). Phytoliths attributed to dicotyledonous

(plants having two embryonic leaves in their seeds, such as trees and
TABLE 1 Coordinates, elevation and slope values of soil profiles in each
of the three study areas (Bosco Pisano, Cozzo del Lampo, Malìa)
(Ferrara, 2024).

Bosco Pisano

Profile Coordinates
Elevation
(m.a.s.l.)

Slope (%)

1
37° 10’ 57.88” N
14° 52’ 31.04” E

468.8 9.9

2
37° 10’ 59.13” N
14° 52’ 31.12”

453.4 7.2

Cozzo del Lampo

Profile Coordinates
Elevation
(m.a.s.l.)

Slope (%)

1
37° 35’ 12.43” N
14° 11’ 34.14” E

474.4 8.3

2
37° 35’ 13.54” N
14° 11’ 34.74” E

467.2 11.4

3
37° 35’ 14.79” N
14° 11’ 35.32” E

458.7 9.6

4
37° 35’ 15.92” N
14° 11’ 35.90” E

453.5 15.2

5
37° 35’ 17.17” N
14° 11’ 36.74” E

444.4 18.8

Malìa

Profile Coordinates
Elevation
(m.a.s.l.)

Slope (%)

1
37° 53’ 18.73” N
14° 12’ 33.99” E

622.5 9.4

2
37° 53’ 16.59” N
14° 12’ 34.27” E

607.4 8

3
37° 53’ 16.35” N
14° 12’ 38.76” E

616.6 9.4

4
37° 53’ 16.77” N
14° 12’ 39.04” E

620.5 9.6

5
37° 53’ 17.18” N
14° 12’ 37.58” E

618.9 18.5
TABLE 2 Attribution of phytolith morphotypes to plant taxa and plant
parts (Ferrara, 2024).

Morphotypes Source plant taxa
Plant organs
or parts

Bulliform Poaceae Leaf/Culm

Elongate entire Monocotyledon Leaf

Elongate sinuate Poaceae Leaf/Culm

Elongate dendritic Poaceae Inflorescence

Trapeziform
Poaceae (Panicoideae/Pooideae
C3 subfamily)

Leaf

Rondel
Poaceae (Pooideae
C3 subfamily)

Leaf, straw

Crenate
Poaceae (Pooideae C3
sub-family)

Leaf

Saddle
Poaceae (Chloridoideae
C4 subfamily)

Leaf

Bilobate
Poaceae (Panicoideae/
Pooideae) C4

Leaf, stem

Polylobate
Poaceae (Panicoideae/
Pooideae) C4

Leaf, stem

Cross
Poaceae (Panicoideae/
Pooideae) C4

Leaf, stem

Spheroid psilate Dicotyledons Wood/bark

Spheroid ornate Dicotyledons Wood/bark

Tracheary Dicotyledons Leaf

Blocky Dicotyledons Wood/bark

Jigsaw Dicotyledons Leaf

Acute bulbosus
Monocotyledon
and Dicotyledons

Hair and/or
epidermal cells
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shrubs) from temperate areas, as our case studies, are globular (or

spheroid) (Bozarth, 1992; Alexandre et al., 1997; Albert et al., 1999;

Runge, 1999; Delhon et al., 2003) and tracheary (Bozarth, 1992;

Alexandre et al., 1997; Madella et al., 1998; Albert et al., 1999;

Runge, 1999; Delhon et al., 2003; Jarl and Bruch, 2023). They can

also be jigsaw (Carnelli et al., 2004; Kawano et al., 2006; Gu et al.,

2008; An and Lu, 2015; Potì et al., 2019; Hayashi et al., 2021) and

blocky (Tsartsidou et al., 2015; An, 2016; Boixadera et al., 2016;

Ntinou and Tsartsidou, 2017; Burguet-Coca et al., 2020; Kraushaar

et al., 2021; Tencariu et al., 2022). Even relatively modest

percentages of these morphotypes can be interpreted as

substantial, as dicots have a low phytolith production (Carnelli

et al., 2004; Tsartsidou et al., 2007).

Grasses (monocotyledon plants, i.e. having only one embryonic

leaf in the seeds) of the Poaceae family produce elongate, papillate,

acute bulbosus and bulliform flabellate forms (Twiss et al., 1969;

Fredlund and Tieszen, 1994; Piperno, 1988; Ball et al., 2001;

Neumann et al., 2019). Elongate phytoliths present morphological

variations in vegetative parts (the elongate sinuate type is formed in

leaves, and simple elongate in stems). Elongate dendritic and

papillate forms are produced by the flowering parts of Poaceae

(glumes, lemma and palea, also named inflorescence). Dendritic

long cells are commonly associated with the chaff of domesticated

Pooideae, such as wheat, barley and oat (Rosen, 1992; Ball et al.,

1999; Portillo et al., 2006; Albert et al., 2008). However, dendritic

forms are also found in wild grasses (Novello and Barboni, 2015),

thus their attribution must be carefully assessed.

Acute bulbosus is a morphotype produced in the interior part of

the hair cells, above all in grasses (Alexandre et al., 1997; Barboni

et al., 2007). Being produced in sedges and dicots as well, this

morphotype is not considered here diagnostic. Nonetheless, it has

been included in the counted morphotypes due to the limited

amount of phytoliths in certain layers correlated with the

stratigraphy (cf. Supplementary Material S1).

Bulliform flabellate and blocky morphotypes are produced in

the bulliform cells of leaves (Mader et al., 2020), which usually

silicify in a later stage of plant life (Moulia, 1994). Bulliform

flabellate phytoliths allow leaves to bend to avoid excessive water

loss, and their formation is directly influenced by environmental

conditions such as high evapotranspiration (Bremond et al., 2005b;

Novello et al., 2012).

Specific grass silica short cell phytoliths (hereafter GSSCPs,

Neumann et al., 2019) can be diagnostic of the following Poaceae

subfamilies (Table 2). C3 grasses in cool moist/temperate climate

(Pooideae) are associated with rondels (Twiss et al., 1969; Fredlund

and Tieszen, 1994; Piperno and Pearsall, 1998; Barboni and

Bremond, 2009). Rondels are produced also in the Arundinoideae

(cf. Tencariu et al., 2022). The trapezoid (Barboni and Bremond,

2009) and Crenate morphotypes (Twiss et al., 1969; Fredlund and

Tieszen, 1994; Barboni et al., 2007) are mainly produced in

Festucoid grasses (Tsartsidou et al., 2007).

Chloridoideae are C4 grasses found in dry and hot environments.

These are dominated by saddle forms (Piperno, 2006; Madella et al.,

2016) and rondels found together with saddles (cf. Bamford et al.,
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2006; Barboni and Bremond, 2009). Warm and wet environments

tend to support C4 Panicoideae where species have many

morphotypes as bilobate (Twiss et al., 1969; Fredlund and Tieszen,

1994; Barboni and Bremond, 2009), polylobate (Twiss et al., 1969;

Fredlund and Tieszen, 1994; Neumann et al., 2019) and cross

morphotypes. Bilobate phytoliths can also occur in a few Festucoid

grasses and some Chloridoid grasses (as pointed out by Metcalfe,

1960; Danu et al., 2020).
3.4 Phytolith assemblage analysis

Phytoliths were identified and counted using light microscopy

at ×400 magnification. Their morphotypes were categorized into

plant taxonomic groups according to the International Code for

Phytolith Nomenclature (ICPN) (Neumann et al., 2019) and the

PhytCore online database (Albert et al., 2016). In addition, the

UMR 7264 CEPAM CNRS-Université Côte d’Azur (Nice, France)

was consulted for identifications. Only those recognized

morphotypes listed in the International Code for Phytolith

Nomenclature (ICPN) (Neumann et al., 2019) were counted, with

a minimum of 200 phytoliths per sample. Such an amount is

attested to give statistically interpretable assemblages (cf.

Strömberg, 2009; Zurro Hernández, 2018), above all in soil

samples coming from specific contexts (e.g., farming systems,

arboriculture) where the concentration of phytoliths can be lower

if compared with their higher concentration in soils of very specific

environments, such as grasslands and archaeological sites (Cabanes

et al., 2011).

The relative abundance of each phytolith morphotypes per soil

layer was calculated based on the total sum. Along each excavated

profile, phytolith assemblages were analyzed using four indices, to

assess if the diachronic variability in their ratios could be informative

of changes in vegetation structure and compositions, as well as land

use practices and plant behavior to climatic disturbances.

The long/short cell index measures the ratio of long cells vs short

cells. Short cells phytoliths are impregnated with silica as soon as

they form (Sangster, 1970), while silicification of long cells become

more intense with age (Rencheng et al., 2017). Thus, the ratio of long

cells to short cells in a phytolith assemblage may provide information

about the composition of grasses in terms of mature versus young

grasses (Delhon et al., 2024). The formula used to calculate the long/

short cell index here is Long/short cell index = long cells (elongate

entire + sinuate + dentate + dendritic)/short cells (GSSCPs).

The Fs-index (Bremond et al., 2005b, 2008) can provide

information on local microhabitats and/or climatic conditions,

since an abundance of bulliform flabellate phytoliths is correlated

with an increase in evapotranspiration and/or prolonged water

stress (cf. Bremond et al., 2005b; Mader et al., 2020).

The formula used to calculate the Fs-index here is Fs-index =

bulliform/GSSCPs (Bremond et al., 2005b, 2008).

The Dicot/Poaceae index (D/P index) measures the ratio of

dicotyledons morphotypes (D) versus Poaceae morphotypes (P).

This index allows to estimate the tree cover density (Alexandre
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et al., 1997), since based on the assumption that open habitats have

a higher proportion of grass phytoliths (Strömberg et al., 2018). The

lower the D/P value, the more open the habitat. In Mediterranean

environments, 0.1 is the lower limit in the D/P index to distinguish

between dicotyledon- and grass-dominated assemblages (Delhon

et al., 2003).

Even though the D/P index has a standard formula (D/P) (cf.

Alexandre et al., 1997), the variables indicating Poaceae and Dicots

have been interpreted by scholars in slightly different ways (for a

detailed review cf. Ferrara, 2024). Building on the standard D/P

index (called here Da/P index, considering as diagnostic of dicots

only spheroid and tracheary morphotypes), Ferrara (2024) has

developed also a local D/P index (Db/P index), which includes

also the blocky (blocky polyhedral and cubic) and jigsaw

morphotypes as diagnostic of dicots from local samples.

The formulas used to calculate the D/P index are the following:

Da=P index (cf:  Bremond et al:,  2005a;  2008)

=  Spheroid  +  Tracheary=GSSCPs

Db=P index =  Spheroid  +  Tracheary  +  Jigsaw  +  Blocky=GSSCPs

The inflorescence/culm-leaves index measures the ratio of

Elongate dendritic phytoliths (from inflorescence bracts) versus

Elongate entire and Elongate sinuate (from culms and leaves)

(Piperno, 1988; Tsartsidou et al., 2007; Delhon et al., 2020). The

ratio of the index varies according to the presence of the whole plant

or residues from straws and spikelets, and this information can be

indicative of local agricultural practices (e.g., harvest) and/or cereal

processing (Delhon et al., 2020).

The formula used is Inflorescence/culm-leaves index = elongate

dendritic + dentate/elongate entire + sinuate.

Results are presented in diagrams drawn using the software

TILIA 3.03 (Grimm, 1993) (Section 4).
4 Results

Dating semi-natural soil profiles in open agricultural environments

is difficult due to frequent and constant anthropogenic land use.

Consequently, our age-depth model must be considered as tentative.

The age depth model resulting from the radiocarbon dates suggests

that the historical period under investigation through phytolith

assemblage analysis may cover however several millennia.
4.1 Woodland (Bosco Pisano)

Two testpits (20 cm deep) were opened in two locations with a

different density of tree cover (Figure 10a): Profile 1 is characterized

by a dense tree cover; Profile 2 is located in a more open space but

still inside the olive wood. Phytoliths are abundant in both the

samples from Bosco Pisano, which is somewhat surprising

considering its vegetation (woodland), but less surprising if we
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take into consideration the low historical anthropogenic impact on

the soil of this area.

Pooideae morphotypes dominated with the high percentage of

short cells phytoliths (on average 34% vs long cells 46%). The most

common morphotype are rondel and trapezoid. These phytoliths

were formed mainly in the leaves and the stems of grasses.

Phytoliths from grass inflorescence (dendritic) are not present in

the phytolith records. Phytoliths from woody and herbaceous

dicotyledons are present in the two samples representing, on

average, 9% (including also the blocky morphotype, cf. Section

3.3 for Db/P index specifications), nonetheless, phytoliths from

grasses are still dominant. Morphotypes related to other

monocotyledons are low, with C4 grass phytoliths at only 1.25%.

An analysis of phytolith morphotypes assemblages was done

using the Da/P and Db/P indices and the results are indicative.

Overall, both indices result above the standard threshold of 0.1 for

woodland estimation, except for Da/P of Profile 2 (less dense tree

cover), which is 0.08. Furthermore, Profile 1 (with dense tree cover)

has higher values of both indices than Profile 2 (Da/P = 0.13 vs 0.08;

Db/P = 0.34 vs 0.17). Results from Bosco Pisano, despite lack of soil

depth, allowed for a calibration of the D/P index in relation to the

other case study areas.
4.2 Shrubland to olive orchard (Cozzo del
Lampo)

Phytolith morphotypes are abundant in most of the samples

throughout the five profiles from Cozzo del Lampo. The only layers

where it was not possible to extract phytoliths were samples taken in

eroded bedrock (Profile 2, 56–150 cm; Profile 4; Profile 5, 92–150

cm) (cf. Strömberg et al., 2018). We begin here giving an overview

of the results from all profiles analyzed and then focus on

specific profiles.

4.2.1 General results
The phytolith morphotypes of Cozzo del Lampo are

predominantly from the Pooideae subfamily (C3), with a high

percentage of short cells phytoliths (in average 32.55% vs long

cells 35.56%), above all rondel and trapezoid, formed mainly in the

leaves and stems of these plants. Phytoliths from grass inflorescence

(the dendritic morphotype, cf. Figure 9c) are present in very low

percentages (0.6%). In the literature, dendritics are usually

indicators of domestic crops and high water availability (Rosen

and Weiner, 1994; Ball et al., 1999; Albert et al., 2008; Jenkins et al.,

2011a, b). Their limited presence here may suggest that only wild

grasses were predominant in the site.

Morphotypes related to other monocotyledons, such as C4

grasses phytoliths, are scarce (0.42%) or absent.

Meanwhile, phytoliths from woody and herbaceous dicotyledons

are also present in all the samples, although in small amounts

(7.15%). This value is, however, significant since dicotyledonous

plants are minor phytolith producers (Albert and Weiner, 2001;

Carnelli et al., 2001; Tsartsidou et al., 2007). Within this group,
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phytoliths from the wood and bark (spheroids) are more abundant

(6.76%) than those from leaves (tracheary and jigsaw, 0.38%), quite

probably due to preservation issues that dicots phytoliths have

(Albert and Weiner, 2001; Tsartsidou et al., 2007).

4.2.2 Profile 1
Only Profile 1 had identifiable charcoal sufficient for dating.

This profile was dated at 13 cm, 110 cm and 142 cm below the

ground surface. Since the dates obtained at 110 cm (6475 ± 41 BP)

and 142 cm (5619 ± 35 BP) show a reverse chronology, not unusual

for these heavily impacted soils, an age-depth model was generated

based on the younger date (Ferrara and Wästfelt, 2025). Based on

the age-depth model the oldest age is c. 6700 years ago, with an

average sediment accumulation rate (i.e., sedimentation time) of ca.

35 years/cm.

From the phytolith diagram of Profile 1, we can distinguish at

least five different temporal phases (Figure 11). The oldest phase,

Phase 1 (150–130 cm), is characterized by a slight increase of the

three indices long/short cell index, Fs-index and D/P index. This tells

that a higher presence of mature grasses and dicots (observed in the

long/short cell index and D/P index curves) is accompanied by an

increase in their evapotranspiration rates (suggested by the Fs-index

curve). Such an increase in the curve of the Fs-index may attest the

beginning of a substantial variation in local climatic conditions

towards more warm and dry conditions. According to the age-

depth model, this phase could have covered the period 4849–3854

BCE. What shown by the phytoliths evidence in this phase is

coherent with published palynology and paleoclimate

reconstructions, which have attested in the region droughts at

around ca. 5550–4550 BCE (Zanchetta et al., 2007; Carroll et al.,

2012; Peyron et al., 2013).
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Phase 2 (130–110 cm, 3854 BCE – 2871 BCE, end of Neolithic -

beginning of Bronze Age) is characterized by a marked correlation

between land cover and climate, as we see peaks in both the D/P

indices and the Fs-index. These peaks may signify the natural

expansion of xerophilous taxa (e.g., Olea, Pistacia), attested by

palynological and paleoclimatic reconstructions as well telling

that, around ca. 4050 BCE, there were reduced rainfall,

progressive increasing dryness and aridification (Zanchetta et al.,

2007; Sadori et al., 2008; Carroll et al., 2012; Peyron et al., 2013).

In Phase 3 (110–90 cm, 2871–1882 BCE, Bronze Age), the

presence of trees is slightly reduced, while there is an increase in

both mature grasses (but no evidence of flowering) and grasses cut

in their young stage. The water stress signal of plants remains

however strong. Paleoclimatic records (Sadori et al., 2015) attest

these dry conditions, predominant until a cooler phase starting

approximately at 2600 BCE.

Phase 4 (90–40 cm) corresponds to a period between 1882 BCE

to CE 576, covering a wide temporal range of Sicilian history (from

Early Bronze Age to late Antiquity). This phase is characterised by

the substantial reduction of trees (cf. Db/P index) and an increase in

grasses reaching their maturing stage, but flowering evidence is

absent (cf. long cell/short cell index). There is a notable increase in

grasses cut instead in their young phase (indicated above all by the

high presence of the rondel morphotype).

The last temporal phase (Phase 5, 40–0 cm) may cover the

period from CE 576, thus from Late Antiquity, until today,

according to the age-depth model. In this phase, we see a further

reduction of dicot plants (attested by the reduction of blocky

morphotypes) from the previous phase. There is, moreover, a

reduction of grasses kept mature accompanied by an increase in

the presence of young grasses.
FIGURE 11

Phytolith diagram showing percentages of morphotypes from Cozzo del Lampo, Profile 1. Yellow and orange bars: grass phytoliths; green bars:
dicots phytoliths. Dots indicate morphotypes < 1%. Inflorescence/culm-leaves index shown with exaggeration factor (60x). Note the difference in
scale between the indices (Image source Ferrara and Wästfelt, 2025).
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In Profile 1 of Cozzo del Lampo, the stratigraphic layers from

Phase 1 to Phase 4 are dominated by grass phytoliths produced in

the stems and leaves of these grasses, while the representation of

grass inflorescences is very low (only present on the most recent

layer, 10–0 cm). This is not surprising in natural grassland contexts,

where the proportion of elongate dendritic phytoliths (indicators of

grass spikelets) usually remains low (Novello and Barboni, 2015). In

Cozzo del Lampo, the very low input of grass inflorescences, either

domesticated or wild, might suggest on one side the harvesting of

grasses before the complete formation and silicification of the

inflorescence bracts. On the other side, such a low amount of

inflorescence bract phytoliths could also be evidence of intense

grazing before grasses reach their mature inflorescence (Delhon

et al., 2020). Furthermore, the long/short cell index confirms a

higher percentage of mature grasses in the older phases of the

profile, and their progressive reduction over time. This might be due

to preservation issues of short cell phytoliths along the profile or be

related to historical changes in land use towards practices that have

favored a more increased presence of young grasses (this could have

been the case of heavy tilling practices). However, even though

elongate entire phytoliths are very common in grass leaves,

especially stem and culm epidermis, they are also formed in non-

grass vegetation (Neumann et al., 2019, 9). Unfortunately, this is an

understudied issue, thus our interpretation of the results from the

long/short cell index must be considered with caution.

Along the profile, the Fs-index curve indicate periods of water

stress experienced by local vegetation, which may be linked with

warmer and drier climatic conditions, particularly in Phase 2. In

coincidence with this period of water stress, both the D/P indices
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peak and this may indicate the natural expansion of xerophilous

taxa in the area. Furthermore, even though phytolith production is

far more important in grass than in dicots (Delhon, 2010), the

presence of high percentages of dicot phytoliths in Phase 2 and 3

can suggest the presence of a semi-open habitat resembling a

shrubland-type of environment. As both the D/P indices curves

significantly decrease with time from 90 cm (beginning of Phase 4)

until today, we can then infer the disappearance of certain species of

arboreal vegetation (shrubs)? and the further opening of this

landscape. Similar patterns were observed by Blinnikov (2005) in

the historical boundaries between open grasslands and conifer

forests in USA, as well as by Silantyeva et al. (2018) and

Solomonova et al. (2019) who, relying on the floristic

composition of forest vs. meadow vs. steppe in the Russian Altay,

demonstrated the utility of using rondels as indicators of

open habitats.

4.2.3 Profile 3
Profile 3 (Figure 12) show the historical transition from

agroforestry model of land use into the present olive orchard.

This is attested by the prevalent presence of grasses, accompanied

with a constant low presence of dicots phytoliths along the entire

profile, if not in the uppermost layer.

At the bottom of the profile (from 150 to 111 cm), we see

simultaneous peaks of all four indices, telling that in this phase land

cover may have been characterized by the presence of both mature

grasses (attested by the peak in the inflorescence/culm-leaves and

long/short cells index) and arboreal vegetation (peak in the D/P

indices), within an overall increase in dryness conditions (cf. peak of
FIGURE 12

Phytolith diagram showing percentages of morphotypes from Cozzo del Lampo – Profile 3. See diagram legend in Figure 11 caption (Image source:
Ferrara and Wästfelt, 2025).
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the Fs-index). At 90 cm (Phase 2), there are slight peaks in both the

Fs-index and the Da/P index (above 0.1), again associated with

a peak of the inflorescence/culm-leaves index and the long/short

cell index. The potential land use pattern could resemble an

agroforestry model, with intercropping practices.

Another interesting phase along the profile could be at 75–45

cm (Phase 3), characterized by a higher peak of the inflorescence/

culm-leaves index, but now associated with a slight decrease of

dicots and long cells grasses, transitioning into a further slight

decrease of dicots (< 1%). This trend may suggest the progressive

opening of the local environment, now featured by the presence of

less trees. The soil in between 70 and 60 cm is also characterized by

the inclusion of highly fragmented and minute pottery shards,

which suggests anthropogenic presence at the site at those levels.

The topsoil layer in Profile 3 (Phase 4) is characterized by a

higher presence of dicots phytoliths, which may attest the presence

of fruit trees in the area until recently (Ferrara et al., 2024b; Ferrara

and Wästfelt, 2025).
4.3 Agroforestry (Malìa)

In Malìa, the only 14C age obtained from collected charcoal is

very recent, consequently it was not possible to date any of the

profiles. Even with the absence of a tentative chronology, the

phytolith record in Malìa still provides diachronic information.

Phytoliths are abundant in most samples, apart from those

layers with eroded bedrock (Profile 1, 60–150 cm; Profile 2; Profile

3, 80 cm and 100–150 cm; Profile 4, 50 cm and 80–150 cm; Profile 5,
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150 cm). Detailed stratigraphic descriptions of each single profile

are provided in Supplementary Material S1.

Similar to Cozzo del Lampo, all the phytolith records in Malìa are

characterized by a morphological predominance of grasses from the

Pooideae subfamily (C3), given by the high percentage of short cells

phytoliths (31.4%) vs long cells (46.76%). The most common

morphotypes recognized are rondel and trapezoid, formed mainly in

the leaves and the stems. Phytoliths from grass inflorescence (dendritic)

are present in low percentages, values which are however higher than in

Cozzo del Lampo (3% vs 0.6%). Morphotypes related to other

monocotyledons are scarce (0.45%). Phytoliths from woody and

herbaceous dicotyledons are omnipresent in small amounts (5.83%).

Wood and bark types (spheroids) are more abundant (5.71%) than

from leaves (tracheary, 0.11%).

The assemblage analysis of the phytolith record from Malìa

indicates specific environmental and land use history dynamics,

which can be correlated with alternate periods of land

abandonment. Profiles 4 and 5, described in details below,

represent the most indicative cases of these dynamics.

4.3.1 Profile 5
As in Cozzo del Lampo, in the lowest and earliest layers, the

profiles in Malìa show simultaneous peaks in the three indices long/

short cells, Fs-index and D/P index, which may indicate a phase of

shrubland growth due to warmer and drier conditions (Figure 13).

At that time, vegetation composition was dominated by trees/

shrubs and mature grasses.

Phases 2 and 4 are both characterized by a reduction of the two

indices featuring overgrowing of tall grasses, shrubs and trees (long/
FIGURE 13

Phytolith diagram showing percentages of morphotypes from Malìa – Profile 5. See diagram legend in Figure 11 (Image source: Ferrara, 2024).
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short cell index, D/P index), while there is an increase in the

presence of inflorescence phytoliths, which may attest the use of

the site for cultivation purposes.

The presence of inflorescence, associated with phytoliths

indicating the clearing out of other grasses (cf. the long/short cell

index decrease) and bushes (cf. the D/P index decrease), may be

highly indicative of specific cultivation practices that kept certain

grasses (crops)? reaching their maturation stage, while removing/

clearing out some other types of grasses and bushes.

In between Phase 2 and 4, Phase 3 is on the contrary

characterized by simultaneous peaks in long/short cells index, Fs-

index and Db/P index, accompanied by a decrease in the

inflorescence index. This may be linked to mature grasses being

harvested or grazed before reaching their inflorescence stage.

In the last and more recent phase of Profile 5 (Phase 5), there is

an increase in dicots (0.5) and long grass cells, followed by their

reduction associated with an increase again in inflorescence, which

may attest first an abandonment phase and then a re-use of the site

(possibly for the combination of olive cultivation and grazing, based

on the owners´ information on the land use since last century).

4.3.2 Profile 4
The location of this profile is a large open space among olive

trees. Phases of use and abandonment, similar to Profile 5, can be

deduced also here from the phytolith analysis (Figure 14). The

oldest Phase 1 displays peaks in both the long/short cell index, Fs-

index and D/P index, followed by their decrease in Phase 2. A
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second peak in all these three indices occurs in Phase 3,

characterized also by the presence of inflorescence phytoliths that

continues in Phase 4. Phase 3 shows a potential abandonment of the

site, suggested by an increase in late-season grasses (i.e., in their year

of growth; cf. long/short cell index) and in the presence of dicots

(indicated by peaks in the long/short cell index, inflorescence index

and D/P indices).

In Phase 4, the phytoliths from dicots decrease, thus these dicot

plants were not likely to be olive trees. The increasing (in Phase 3)

and then decreasing trend of the D/P indices (in Phase 4) could

signify that the dicot vegetation present in Phase 3 was rather the

result of abandonment (e.g. shrubs), successively cleared out for

cultivation purposes around the existing olive trees (visible in Phase

4 and potentially a similar shift also took place in the previous

Phase 2).
5 Discussion

As shown from our results, phytolith assemblage analysis provides

the possibility to distinguish between close and open environment in

historical olive agroecosystems and, furthermore, to differentiate

between periods of anthropogenic occupation and abandonment of

a site. Phytoliths as biocultural traces can also reveal previously

unknown dimensions of local land use, linked to traditional

ecological practices of the past. Phytolith assemblage analysis can

then allow us to understand how land uses in diverse historical times
FIGURE 14

Phytolith diagram showing percentages of morphotypes from Malìa – Profile 4. See diagram legend in Figure 11 (Image source: Ferrara, 2024).
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have contributed to shape the current configurations of ancient olive

trees in present space.

The results from Bosco Pisano are reference for comparisons

with the other study areas based on the agricultural use of Olea,

since they can be representative of the tree cover density typical

of an olive woodland. In the case of Bosco Pisano, phytolith

assemblage analysis aimed to establish a reference for the local

calibration of the threshold in tree cover density calculated by the

D/P index, which was applied to interpret evidence from the

other sites.

In Cozzo del Lampo, the results from phytolith analysis have

shown that the site transitioned – through at least six millennia –

from a shrubland into the olive orchard we see today. A similar

transition is also shown in the Malìa site, where we gain further

knowledge into how biological diversity in plant composition was

positively correlated with human practices and negatively affected

by anthropogenic abandonment. Phytoliths as biocultural proxies

in the soil can therefore allow us to gain new knowledge on the land

use and management of a site happening as a historical process,

helping see more clearly how different historical phases are

interlinked and dependent to each other.

The results presented here also suggest both shifts and

maintenance in land use. In Malìa, the phytolith results show that

a predominant grass vegetation cover has been the norm, as in the

phytolith diagrams we see no drastic change from natural or semi-

natural grassland to today´s olive orchards. This result suggests that

a grass layer was maintained, either via grazing (thus we could

advance also the hypothesis that phytoliths may have been

introduced through the dung of grazing livestock) or by cutting

grass (meadowing). This could have been probably also a practice in

other olive agroecosystems in the Madonie Mountains. In this area

of Sicily, olive orchards were organized to provide grazing and

fodder, alongside cultigens; a multifunctional land use which may

have been necessitated by the local extremely harsh topography.

Moreover, the Malìa phytolith records, if compared with other

proxies, may shed light on the correlation between certain land use

practices and specific cultural phases in local history. In Profile 5,

the peaks of the inflorescence/culm-leaves index are simultaneous

with the presence of C4 phytoliths (bilobate and cross), indicative of

certain plant varieties that may have been associated with specific

cultural land use practices. This is the case, for instance, of the

introduction of C4 plants for both humans and animals’ diet during

early Medieval times (as attested in the archaeological record

elsewhere in Sicily, cf. Egli et al., 2013), which in the Madonie

Mountains may be linked to the Islamic settlers´ agricultural

practices reshaping the local landscape during the 9th–11th

centuries BCE (cf. Barbera, 2013). The Malìa case is therefore

inspiring for further integrated investigations into correlation

dynamics between plant diversity traced from soil layers of the

past and the diverse historical phases of cultural contaminations on

the island. Furthermore, since peaks in inflorescence with C4

grasses (thriving in more warm and wet environments) occur

together with a decreasing trend of water stress (cf. Fs-index) in

Profile 5, we may infer that these grasses reaching an inflorescence

stage could have been favored somehow by local access to water.
Frontiers in Ecology and Evolution 18
In conclusion, our work demonstrates that phytoliths

assemblages conceived as biocultural traces stored in soil layers

can be analyzed for the investigation of past land uses in historical

agroecosystems. Phytoliths in the soil reflect local plant

communities and, studied as biocultural heritage and within a

historical perspective, they can be interpreted as the accumulated

outcomes of local plants´ responses to both external and internal

inputs/stresses. Even though the deposition and preservation of

phytoliths in agricultural soils are affected by several environmental

and anthropogenic disturbances over time, the analysis presented

here shows that phytoliths assemblages can be informative on how

land use practices in a place at different periods are correlated to the

alternate states and historical conditions of these agroecosystems

over time. In such respect, results show that these historical

agroecosystems have experienced significant shifts in both

conditions and compositions of local vegetation over the past

millennia (as indicated in particular in Cozzo del Lampo, where

chronology is available). Such historical dimension can be highly

informative not only to better understand past land use practices,

but also to advance knowledge about how local plants (and humans

managing them) have acted and re-acted in front of changing

environmental circumstances (e.g., climate). In Cozzo del Lampo

andMalìa profiles, the oldest changes in land cover, driven probably

by environmental shifts (i.e., climate), have preceded and

potentially partly driven the coming land use and its further

changes. The phytolith records presented in this paper inform us

of an initial shrubland, which could have been favored by certain

climatic and environmental conditions. Among the local

xerophilous taxa occurring naturally in this environment, the

selection of Olea was surely shaped by pragmatism alongside

cultural influences, since it is one of the most resistant trees/

shrubs for agricultural and silvo-pastoral use. In simple words,

the phytolith record in Cozzo del Lampo, when combined with local

palynological and paleoclimatic data, suggests the hypothesis that,

without the environmental conditions favoring a certain type of

vegetation to spread at ca. 5550–4050 BCE (cf. Cozzo del Lampo,

Profile 1), we would not have had the beginning of olive-linked land

use. Furthermore, an herbaceous undergrowth has been the local

land cover in these olive agroecosystems for centuries, until most

recent phases in which grasses are present in their young stage.

The analysis of phytolith assemblages stored in the soil as

biocultural heritage can, therefore, be used to infer land use

dynamics at the whole agroecosystem level, particularly in

remnants of old systems. This method opens up the possibility of

expanding phytoliths research as proxies to understand past land

use practices in historical agricultural soils. This allows for a better

understanding of not only past land uses but, what is even more

important, their ecological legacies on current soils and ecosystem

conditions. Information on the silica cycle in agroecosystems over

the long term is important to reconstruct long-term anthropogenic

drivers and their impacts of land use practices. The analysis of

phytoliths as biocultural evidence can thus operationalize the

investigation of past land uses in historical agroecosystems to

address current management issues, since along the (deep) history

of a site we may find past analogues to future scenarios of local
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environmental changes. These we may want to bear in mind when

reflecting on how future adaptations of land use and agriculture

could be shaped. Knowing how these agroecosystems have locally

responded to similar shifts and challenges we face today or we may

face in the future, can provide us with crucial evidence that we can

immediately operationalize in our current management. This could

be the case, for instance, of ecosystems´ reaction to an increase in

local temperatures and progressive dryness, or to the anthropogenic

abandonment of a site. More importantly, we may start noticing the

evidence of an incredible interdependence between gradients of

variation along millennia (in microclimatic conditions, land cover,

land use, biodiversity, occupation) and longer stability trends

(represented by the maintenance of certain vegetation elements,

i.e. century-old olive trees); and advance the interpretative

hypothesis that exactly such persistence could have been the

prolonged response to disturbances. The novel contribution of

our work relies on showing that agriculture in itself is an

ecological practice, which over the long term have contributed

to maintain certain agroecosystems structures and functions,

including their biocultural diversity. Such a historically

informed perspective can inspire us practitioners for present day

management and future adaptation, as well as inform public

policies on the urgent need to promote the conservation of these

historical agroecosystems.
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