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Introduction: Under global climate change and intensified human activities,
species distributions are undergoing significant shifts. Marmota baibacina, a
representative keystone species among Central Asian high-altitude species,
exacerbates vegetation degradation and soil erosion through herbivory and
burrowing activities. As the primary reservoir of Yersinia pestis, it poses a
significant public health threat.

Methods: This study integrated five machine learning models (XGBoost, RF, SVM,
LogBoost) and the MaxEnt model to predict the current (1970-2000) and future
(2041-2100) distribution of Marmota baibacina under three climate scenarios
(SSP126, SSP370, SSP585), utilizing 111 occurrence records and 29 environmental
variables spanning climatic, topographic, edaphic, and vegetation dimensions.
Results: The results indicated that (1) All five models demonstrated high
predictive accuracy with AUC values exceeding 0.9. After screening 29
environmental variables, machine learning models identified 10 key variables
with high feature importance, while MaxEnt selected 16 environmental variables;
(2) Dominant drivers revealed that Biol8 (warmest quarter precipitation), Bio2
(diurnal temperature range), Bioll (coldest quarter temperature), and Biol5
(precipitation seasonality) collectively contributed >70% to machine learning
models, whereas MaxEnt prioritized slope, NDVI, and Biol8; (3) Under current
climatic conditions, the potential suitable habitats of Marmota baibacina in
Xinjiang are primarily concentrated in the central Tianshan Mountains, with
core distribution centers in Bayingolin Mongolian Autonomous Prefecture
(Hejing County), Ili Kazakh Autonomous Prefecture, and the western part of
Bortala Mongolian Autonomous Prefecture, The total suitable habitat area
estimated by the five models ranged from 2.75 x 10* km? to 13.59 x 10* km?
under the current climate; (4) Future projections under all scenarios indicated an
overall decreasing trend in suitable habitat area, with habitat contraction
particularly pronounced in the southern Tianshan under SSP585.
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Discussion: Such distributional shifts may intensify competition between
marmots and livestock, accelerate alpine meadow degradation, and elevate
zoonotic plague transmission risks due to population aggregation. This study
provides critical insights for balancing alpine ecosystem conservation and plague
prevention strategies, offering actionable guidance for safeguarding ecological
security and public health in Xinjiang's ethnically diverse pastoral regions.
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1 Introduction

Plague is a serious infectious and zoonotic disease whose
primary host is rodents (Eisen et al., 2007; Stenseth et al., 2008).
It has caused at least three large-scale epidemics (Stenseth et al.,
2008). China is the largest and most extensive source of plague, and
rodents are widely distributed across mountains, deserts, forests,
and steppe (Addink et al., 2010), and most of them live in
subterranean burrowing systems, which cause massive soil
erosion and lead to degradation of ecosystems (Linne Kausrud
et al., 2007; Addink et al., 2010; Prakash and Ghosh, 2012). Under
global warming and intensified anthropogenic activities, shifts in
Marmota baibacina’s habitat range and population dynamics may
further threaten ecological balance and pastoral livelihoods.
Therefore, accurately predicting its potential distribution and
responses to climate change is crucial for balancing alpine
ecosystem conservation and plague prevention in Xinjiang.

The Marmota baibacina is a representative keystone species
among Central Asian high-altitude species. This large, social rodent
primarily inhabits alpine meadows and steppes at elevations
between 2,500 and 4,000 meters, where it constructs complex
burrow systems (Koshkina et al., 2020). Its foraging and extensive
burrowing activities significantly influence soil properties,
hydrology, and plant community structure, classifying it as an
ecosystem engineer (Addink et al, 2010). Beyond its ecological
role, Marmota baibacina is the primary natural reservoir of Yersinia
pestis, the bacterium responsible for plague, posing a substantial
zoonotic threat to human populations (Davis et al., 2004). While
not currently assessed on the [UCN Red List, its populations face
growing pressures from climate change and anthropogenic
activities. Its conservation status is intrinsically linked to its role
as a disease reservoir, often leading to population control measures
that may disrupt its ecological function. The primary threats to
Marmota baibacina include climate-driven habitat shifts, which
may alter the availability of its preferred mesic environments, and
intensified competition with livestock for forage in degraded
grasslands (Wang et al., 2024). Understanding its habitat
requirements and distribution is therefore critical not only for
biodiversity conservation but also for public health planning.
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Xinjiang’s steppe covers an area of approximately 513,000 square
kilometers, accounting for 30% of the total area of the region (An
etal., 2023). Xinjiang’s grasslands are not only a critical component of
Central Asian alpine ecosystems but also the cornerstone of
livelihoods for local ethnic minorities, particularly Kazakh and
Mongolian herders who rely heavily on livestock grazing. The
degradation of grasslands caused by marmot burrowing and
foraging directly threatens the sustainability of mutton and beef
production, which are primary protein sources for these
communities. Given the dual role of Marmota baibacina as an
ecosystem engineer and a zoonotic reservoir, its population
dynamics under climate change could exacerbate both ecological
and socio-economic vulnerabilities in this ethnically diverse region.
Marmota baibacina’s burrowing and foraging behaviors cause steppe
degradation and soil erosion, and competition with livestock
exacerbates this degradation (Davis et al., 2004; Addink et al,
2010). Furthermore, Marmota baibacina is a primary host for the
plague bacterium, transmitting the disease to humans and other
animals through fleas, posing a severe public health threat (Davis
et al., 2004; Jakel et al., 2016). With the intensification of climate
change, Marmota baibacina’s habitat range and behaviors may
change, leading to even greater impacts on ecosystems and human
life (Koshkina et al., 2020). Therefore, studying the potential suitable
habitat of Marmota baibacina under future climate scenarios will
help to assess the effects of climate change on steppe ecological
balance and provides scientific evidence for plague prevention.

Species distribution models (SDMs) serve as core tools for
analyzing species-environment relationships and projecting
habitat suitability (Yang et al., 2023; Zhao et al., 2023). Currently,
increasing researches use SDMs to predict species distribution
dynamics (Liu et al., 2023; Mo et al,, 2023). SDMs utilize species
occurrence data and predictor variables to model potential species
distributions under changing climatic conditions (Jia et al., 2017;
Zhang et al., 2023). With the development of computer technology
and ecological modeling methods, multiple SDMs have been
developed and applied to different research scenarios, such as
Extreme Gradient Boosting (XGBoost), Random Forest (RF),
Support Vector Machine (SVM), Logistic Boosting (LogBoost),
and Maximum Entropy Model (MaxEnt). Depending on the data
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requirements for species distribution, models can be divided into
two categories: profile techniques (e.g., BIOCLIM, MaxEnt, and
GARP) requiring only species presence data; and group
discrimination techniques (e.g., RF, SVM, ANN, and GBM)
needing presence-absence data. Since the advent of R language,
most algorithms used for species distribution analysis and
prediction can run on the same data platform, making R the
most commonly used modeling environment in species
distribution modeling (Guisan et al., 2017). For example, Li et al.
(2017) and Yang et al. (2015) used RF and SVM methods to
establish fish egg distribution and prediction models, comparing
them with traditional methods, and found that machine learning
models outperformed others. Peters et al. (2007) used RF and
multiple logistic regression models to predict vegetation species
distribution in the Belgian valley and found that RF outperformed
other models in terms of accuracy. Luo et al. (2017) used giant
panda data to evaluate the performance of Biomod and MaxEnt
distribution predictions, showing that Biomod performed better
when distribution points were sparse. Zhai and Li (2012) used nine
models in Biomod to simulate the suitable habitats of the crested
ibis from 1950 to 2000 and predict its potential habitat range in
2020, 2050, and 2080. Zhang et al. (2011) compared random forests,
generalized boosting methods, Neural Ensembles, generalized linear
models, generalized additive models, and classification regression
trees. They simulated and analyzed the suitable habitat of Masson
pine under future climate scenarios, with RF performing the best.
An etal. (2023) analyzed the impact of future climate change on the
suitable habitat area and distribution pattern of Eolagurus luteus in
Xinjiang, finding that its habitat area continued to decrease.
Moreover, the MaxEnt model has been used to predict suitable
habitats for plant species such as Parnassia wightiana (Dai et al.,
2022), Jatropha curcas (Liu and Mai, 2022), and Polygonatum
kingianum (Guo et al., 2023), achieving good results. These
studies not only predicted the effects of future climate change on
species’ suitable habitats but also explored the role of historical
climate change in species distribution, further deepening the
understanding of species’ mechanisms for responding to climate
change. Reliable species absence data are usually unavailable; thus,
background or pseudo-absence points are typically used instead.
Related research has shown that models based on species presence/
absence data typically outperform those based on species presence
data alone (Liu et al., 2013). Currently, species distribution
prediction models are widely applied in biogeography, and the
choice of model can significantly influence the prediction results.
MaxEnt is widely recognized for its robustness in handling
presence-only data, which is particularly valuable when reliable
absence data of species are scarce (Phillips et al., 2006). This
advantage makes it suitable for studies on Marmota baibacina, as
obtaining comprehensive absence records in the vast alpine regions
of Xinjiang is logistically challenging. In contrast, the four machine
learning models (XGBoost, RF, SVM, LogBoost) require presence-
absence data and excel at capturing complex nonlinear relationships
between species and environmental variables (Elith et al., 2008). By
integrating MaxEnt with these machine learning models, we can not
only leverage the strengths of each model—such as MaxEnt’s
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adaptability to limited data and RF’s ability to handle high-
dimensional variables—but also conduct cross-validation to
reduce prediction biases, thereby improving the reliability of
habitat suitability assessments for Marmota baibacina.

Current research on Marmota baibacina’s habitat ecology remains
insufficient, particularly regarding its dual ecological roles as both an
ecosystem engineer through burrowing activities that exacerbate
steppe degradation and a zoonotic reservoir for plague transmission.
To address these knowledge gaps, this study employs an integrated
modeling approach, utilizing comprehensive occurrence data from
Xinjiang and 29 bioclimatic, topographic, and environmental
variables. Through the R software platform, we implemented five
distinct species distribution models (XGBoost, RF, SVM, LogBoost,
and MaxEnt) to predict current and future habitat suitability across
the Tianshan Mountains’ altitudinal gradient under multiple climate
scenarios (Guisan et al., 2017; Zhao et al., 2023). The study aims to: (1)
identify and quantify key environmental determinants of Marmota
baibacina distribution, establishing optimal ranges for critical
variables; (2) project spatiotemporal patterns of habitat suitability
shifts under climate change scenarios, providing evidence-based
insights for plague prevention strategies in Xinjiang; (3) conduct
comparative model performance evaluations to determine the most
reliable predictive framework for alpine species distribution modeling.

2 Materials and methods

2.1 Study area

The study area is located on the northern and southern of the
Tianshan Mountain range in Xinjiang, China, covering the central
section of the Tianshan Mountain and the surrounding regions on
both sides. This area is a key habitat for Marmota baibacina
(Figure 1). The Tianshan Mountain range runs through the
central part of Xinjiang, dividing the study area into northern and
southern regions, forming an ecological transition zone with
distinct dry and wet conditions (Wang et al., 2021). The northern
lies at the southern edge of the Tianshan Mountain and the Junggar
Basin. The climate is temperate and humid, with high annual
precipitation (200-800 mm). Forests, steppe, and alpine meadows
are mainly distributed here, making it a region rich in water
resources and biodiversity (Zhang et al., 2024). Areas such as the
Ili River Valley and the Bortala River Valley are known as the
“Jiangnan of the North,” with favorable natural conditions. The
southern of the Tianshan Mountain is characterized by a typical
arid continental climate, with low annual precipitation, dominated
by deserts, gobi, and oasis. The northern of the Tianshan Mountains
includes administrative regions such as Ili Kazakh Autonomous
Prefecture, Bortala Mongolian Autonomous Prefecture, Urumgi,
Changji Hui Autonomous Prefecture, and Turpan, which are
economically developed and are key agricultural, pastoral, and
industrial areas in Xinjiang (Fang et al., 2024). The southern of
the Tianshan Mountains includes parts of Bayingolin Mongolian
Autonomous Prefecture and Aksu Prefecture, with an economy
based on oasis agriculture and resource development, with Korla

frontiersin.org


https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Shao et al. 10.3389/fevo.2025.1608071
80°0'0"E 85°00"E 90°q'0"E
G N
z /T Y Z
EJ_ ‘ca fuCly //m\{\“)mtm ’/\ n A LS
° ) o \\ I\ ~ Ma e 4 b4
" MeT e ) HuyingheCity / o4 /i "
<+ ‘\Wmuﬁty‘:(%“;ﬁ.“ S\\ { Q"" / / <
= | Mufu Kazakh Autonomous
/
(a)
B |

b ? \\ Shanshan )\\

< KugaGity [ Luntai Tj \(

v | o

AN anal —

{ A Marmota baibacina spots
z DEM (m) z
o High : 660349 L2
ST 0 10 20 520 m 2
ML km Low :-155.584 N
$0°00'E §5°00'E SO0
(b)
FIGURE 1

Overview of the study area: (a) Point locations of Marmota baibacina on the north and south slopes of the Tianshan Mountain; (b) Typical habitat
landscape of Marmota baibacina in the alpine meadow and UAV images (middle). (The standard map number is GS (2022) 1873, the base map is not

modified, the following is the same).

City as the core city on the southern. Overall, the northern and
southern of the Tianshan Mountains have significant differences in
natural geography and ecological environments, making them
important regions for studying climate change, biodiversity
conservation, and ecosystem services (Wang et al., 2024).
Marmota baibacina is widely distributed in the alpine meadows,
steppe, and surrounding mountainous areas of the Tianshan
Mountains, primarily inhabiting the high-altitude regions between
2,500 and 4,000 meters above sea level (Sun et al., 2018). It relies on
the unique ecological and climatic conditions of the area for survival
(Du et al,, 2022), as shown in Figure 1.

2.2 Species occurrence data of Marmota
baibacina

In this study, we collected data on the natural distribution of 190
Marmota baibacina during a field survey conducted during the Third
Xinjiang Comprehensive Expedition in 2022-2023, in which the
precision, latitude and habitat characteristics of each sample site
were recorded in detail. To ensure data accuracy, duplicate points
within 1 km were removed using the SDM toolbox in Spatial analysis
tool to avoid spatial autocorrelation, and records with ambiguous
coordinates were excluded, and subsequent screening yielded a final
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set of 111 sample points for Marmota baibacina (Figure 1). Spatial
thinning was performed to ensure the minimum distance between
any two occurrence points was =1 km. This threshold was
determined based on two considerations: (a) Habitat characteristics
of Marmota baibacina: As a colonial rodent with a home range of
0.8-1.2 km* per colony, a 1 km minimum distance avoids over-
representing a single colony and reduces sampling bias; (b) Model
resolution consistency: The threshold matches the 1 km spatial
resolution of environmental variables, ensuring each occurrence
point corresponds to an independent environmental grid and
avoids pseudo-replication. The thinning algorithm randomly
retained one point within each 1 km buffer until no points violated
the minimum distance constraint.

2.3 Handling of environment variables data

Considering previous studies (Koshkina et al., 2020; An et al,
2023) and the habitat characteristics of Marmota baibacina, 29
environmental variables were selected potentially influencing its
distribution (see Table 1). These variables include historical climate
data obtained from Worldclim (https://worldclim.org), providing
30 arc-second (approximately 1 km) data for the period 1970-2000.
While field surveys were conducted in 2022-2023, historical climate

frontiersin.org


https://worldclim.org
https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

uonn)oAs pue A60J02T Ul SIB13UOIS

S0

BJo"uIsIanuo.y

TABLE 1 Environmental variables used in the study.

Variables Variable descriptions Unit Explanation

Biol mean annual air temperature °C mean annual daily mean air temperatures averaged over 1 year

Bio2 average daily temperature range °C mean diurnal range of temperatures averaged over 1 year

Bio3 isothermality °C ratio of diurnal variation to annual variation in temperatures

Bio4 Temperature seasonality °C/100 standard deviation of the monthly mean temperatures
mean daily maximum air temperature of the

Bio5 Y P °C The highest temperature of any monthly daily mean maximum temperature
warmest month
mean daily minimum air temperature of the

Bio6 v P °C The lowest temperature of any monthly daily mean maximum temperature
coldest month

Bio7 annual range of air temperature °C The difference between the Maximum Temperature of Warmest month and the Minimum Temperature of Coldest month
mean daily mean air temperatures of the wettest

Bio8 " v P °C The wettest quarter of the year is determined (to the nearest month)
quarter
mean daily mean air temperatures of the driest

Bio9 ) t P °C The driest quarter of the year is determined (to the nearest month)
quarter
mean daily mean air temperatures of the warmest

Biol0 X Y P °C The warmest quarter of the year is determined (to the nearest month)
quarter
mean daily mean air temperatures of the coldest

Bioll " t P °C The coldest quarter of the year is determined (to the nearest month)
quarter

Biol2 average annual precipitation kg m~month™ Accumulated precipitation amount over 1 year

Biol3 Precipitation amount of the wettest month kg mmonth™ The precipitation of the wettest month.

Biol4 Precipitation amount of the driest month kg mmonth™ The precipitation of the driest month.

. . . 5 The Coefficient of Variation is the standard deviation of the monthly precipitation estimates expressed as a percentage of the mean of those
Biol5 Precipitation seasonality kg m ) K
estimates (i.e. the annual mean)

Biol6 monthly mean precipitation in the wettest season kg m*month™* The wettest quarter of the year is determined (to the nearest month)

Biol7 mean monthly precipitation in the driest quarter kg m?month™* The driest quarter of the year is determined (to the nearest month)
mean monthly precipitation amount of the

Biol8 ¥ precip kg m~?month™! The warmest quarter of the year is determined (to the nearest month)
warmest quarter
mean monthly precipitation amount of the coldest

Biol9 ¥ ¥ precip kg m?month™ The coldest quarter of the year is determined (to the nearest month)
quarter

Elevation m Topographic elevation

Slope ° The degree of steepness of the surface element

Aspect ° The direction of the slope face

(Continued)
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data (1970-2000) were used to characterize long-term habitat
suitability, as short-term climate fluctuations (e.g., recent
warming) may not yet fully reflect species distribution shifts.
Future projections (2041-2100) account for ongoing climate
changes. Specifically, the environmental variables considered are
as follows:

(1) Terrain variables: slope, slope direction, and elevation data
sourced from the geospatial data cloud (http://www.gscloud.cn/).
(2) Soil variables: two soil variables crucial for Marmota baibacina
habitat—soil pH value (Soil_ph) and soil symbol (Soil_symbol)—
extracted from global soil pH data and China’s 1:400,000 soil
symbol map compiled by the Nanjing Institute of Soil Science,
Chinese Academy of Sciences. The soil map includes 72 soil classes
and 247 subclasses, with Xinjiang covering 23 soil symbols, such as
thin layer soil, glacier, alluvial soil, water body, calcareous gray soil,
calcareous soil, chestnut soil, dune quicksand, sandy soil, impinged
soil, anthropogenic soil, black soil, gley soil, embryonic soil, saline
soil, denatured soil, gypsum soil, alkaline earth, salt works, urban
industrial and mining areas, loose lithologic soil, and leaky rock. (3)
Geomor: geomorphic data specific to Xinjiang (https://
www.geodata.cn/). (4) River: distance from rivers, centered on
river channels, with a 1 km buffer (https://ngcc.cn/). (5) NDVI
(Normalized Difference Vegetation Index): maximum NDVI
dataset for China from 2000 to 2020, processed on the Google
Earth Engine platform using Landsat5/7/8 remote sensing data.
This dataset, with a spatial resolution of 30 meters and annual
temporal resolution, involved cloud and shadow removal, followed
by NDVT extraction using linear interpolation and S-G smoothing
methods. (6) Vegetation: Xinjiang vegetation symbol data and grass
symbol data (https://www.geodata.cn/). These variables were
selected based on their relevance to the habitat preferences and
ecological requirements of Marmota baibacina, with the aim of
providing a comprehensive analysis of its distribution patterns in
the Tianshan Mountains of Xinjiang.

Future climate variable data for this study were derived from
CHELSA CMIP6 scenario data, a high-resolution climate database
for global land surface areas (https://chelsa-climate.org/) (Karger
et al,, 2017). Furthermore, the CMIP6 scenarios represent the most
advanced generation of climate projections, offering improvements
over the previous CMIP5 framework. The SSP scenarios integrate
socioeconomic narratives with emission pathways, providing a
more realistic and comprehensive basis for modeling future
climate impacts compared to the Representative Concentration
Pathways (RCPs) used in CMIP5. This makes CMIP6 the current
state-of-the-art for assessing biodiversity responses to climate
change. The dataset has a spatial resolution of 30 arc-seconds
(approximately 1 km x 1 km) and it includes bioclimatic
variables projected for two future time periods: 2041-2070 and
2071-2100.These future climate scenarios are based on the Shared
Socio-Economic Pathways (SSP), which represent different socio-
economic development trajectories and their implications for
greenhouse gas emissions and climate change impacts: SSP126:
represents a sustainable development pathway with low greenhouse
gas emissions, aiming for a radiative forcing of 2.6 W/m?* by 2100.
SSP370: represents a middle to high-end emission scenario, leading
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to moderate levels of warming with a radiative forcing of 7.0 W/m*
by 2100. SSP585: represents a high-emission scenario with extensive
fossil fuel use, resulting in high greenhouse gas concentrations and a
radiative forcing of 8.5 W/m? by 2100 (Li et al., 2025). These climate
scenarios provide essential data for assessing potential future
impacts on ecological systems, including habitat suitability for
species like Marmota baibacina in Xinjiang, considering varying
levels of climate change and greenhouse gas emissions.

Spatial analysis tool was used to process the original data,
including the removal of invalid data, filling in missing values,
standardizing the data, and unifying its resolution and projection
(WGS1984) for subsequent analysis and modeling (Guisan et al.,
2017). For the environmental raster data, the preprocessing
included: (1) masking all layers to the unified study area extent;
(2) converting all layers to a consistent spatial resolution of 30 arc-
seconds (1 km) and the WGS 1984 geographic coordinate system
using the bilinear resampling method (for continuous variables) or
the nearest neighbor method (for categorical variables); and (3)
ensuring no cells contained NoData values within the study area
mask. This process resulted in a harmonized and analysis-ready
dataset. The resampled environmental variables were then
converted to ASCII format using the SDM Toolbox v2.5
extension tool (An et al.,, 2023).

Given the differences in input sample data between machine
learning models and the MaxEnt model, and to avoid the influence
of variable correlation on prediction results, the screening process
for the 29 environmental variables was systematically optimized: all
models first performed basic variable screening, where for machine
learning models, the 29 environmental variables in species
presence-absence data were extracted, with variables of low
importance removed after calculating their importance scores (An
et al.,, 2023); for the MaxEnt model, the 29 environmental variables
and sample points were input into the model for preliminary
computation, with variables and sample points showing zero
contribution eliminated, ensuring that variables entering
subsequent analyses had basic ecological relevance (Koshkina
et al.,, 2020). Following initial screening, machine learning models
further tested for multicollinearity using the Variance Inflation
Factor (VIF) - multicollinearity refers to high linear correlation
between two or more independent variables in a regression model,
which may cause unstable regression coefficients and reduced
model interpretability (Guisan et al., 2017). With a threshold of
VIF = 10, variables with VIF>10 were excluded, leaving 10
core variables.

For the MaxEnt model, after initial screening, variables were
refined through Principal Component Analysis (PCA) and
importance evaluation: the PCA tool analyzed remaining
variables, and if the absolute correlation coefficient between two
variables exceeded 0.8, the one with lower contribution was
removed to reduce information redundancy; meanwhile, variable
importance was comprehensively assessed using contribution rates,
permutation importance, and the Jackknife test, ultimately retaining
16 variables to ensure the model preserved ecologically significant
drivers while eliminating redundancy (Phillips et al., 2006).
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2.4 Species distribution modeling process
and model evaluation

This study used the R software platform to implement four
commonly applied machine learning models (XGBoost, RF, SVM,
and LogBoost) and one species distribution model (MaxEnt) to
investigate the suitable habitat distribution of Marmota baibacina.
The five models selected for this study each have unique advantages
in classification and prediction tasks, with different theoretical
foundations. RF and XGBoost are powerful ensemble learning
algorithms adept at capturing complex nonlinear relationships and
handling high-dimensional data (Zhang et al., 2011). SVM is effective
in high-dimensional spaces and for cases where the number of
dimensions exceeds the number of samples (Li et al., 2017).
LogBoost (LogitBoost) is a boosting algorithm designed for
classification. MaxEnt is particularly robust for presence-only data,
making it a standard in SDM studies (Phillips et al., 2006; Elith et al,,
2008). To ensure optimal performance of both the individual
machine learning models and the MaxEnt model, the presence and
absence point datasets of Marmota baibacina were randomly divided,
with 25% allocated for validation and 75% for training (Li et al,
2019). Ten repeated experiments (Logistic format) were conducted,
which enhanced the model’s ability to accurately predict the species’
potential range. Finally, all models were evaluated for accuracy using
the Receiver Operating Characteristic (ROC) curve and the Area
under the Curve (AUC) (Koshkina et al., 2020). The ROC curve is a
graphical tool for assessing the performance of binary classification
models, while the AUC represents the area under the ROC curve,
with values ranging from 0 to 1 (Luo et al,, 2017). A higher AUC
value indicates better model performance. The impact of
environmental variables was comprehensively assessed using the
percentage contribution, permutation importance, and Jackknife
test from the MaxEnt model (An et al, 2023). The percentage
contribution represents the contribution of each climatic variable to
the geographic distribution of Marmota baibacina during the training
process, while the permutation importance quantifies the decrease in
the model’s AUC value when the climatic variables in the training
points are randomly replaced (Aratjo and New, 2007). The Jackknife
method is similar to cross-validation; it involves excluding one or
more sample points at a time and calculating a corresponding statistic
using the remaining sample points. This method analyzes the
importance of each individual variable in constructing the
distribution model (Dai et al., 2022).

2.5 Classification of suitable habitual level

The classification of model simulation results was performed
using the reclassification tool in spatial analysis, employing the
Jenks natural breaks classification method (He et al., 2023). The
Jenks natural breaks classification method is a technique that
minimizes within-class variance and maximizes between-class
variance when categorizing data (Zhai and Li, 2012; An et al,
2023). This method ensures that the differences within each

frontiersin.org


https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Shao et al.

category are as small as possible, while the differences between
categories are as large as possible. The simulation results were
divided into four categories: unsuitable (0-0.2), low suitability (0.2-
0.3), moderate suitability (0.3-0.5), and high suitability (>0.5) (Jiang
et al, 2022), to determine the potential geographic distribution of
Marmota baibacina in the Tianshan region. After reclassification,
the number of grids in each category was calculated, and the area of
suitable habitat for Marmota baibacina under different climate

scenarios was computed.

3 Results

3.1 Model evaluation and contribution of
variables

The AUC results of the models used in this study were all above
0.9, indicating high accuracy (Figure 2). Machine learning models
identified 10 key variables for simulations, while MaxEnt selected 16
variables based on feature importance and correlation metrics. To
ensure comparability between MaxEnt and machine learning
approaches, MaxEnt was executed using both the 10-variable
subset and its native 16-variable set. All models achieved AUC
values exceeding 0.9, with Random Forest exhibiting the highest
AUC, followed by the 16 variables MaxEnt configuration. LogBoost
demonstrated the lowest accuracy among the evaluated models.

3.1.1 Impact of variables on the machine learning
model

For machine learning models, the importance of environmental
variables showed that the most significant variables for predicting
the suitable habitat of Marmota baibacina were Biol2 (11.21%),

10.3389/fevo.2025.1608071

Grass symbol (10.86%), Elevation (10.26%), and Bio18 (10.25%) as
shown in Figure 3. After considering both the importance of each
variable and the VIF, the following variables were selected for the
five models: Biol8, Bio2, Bioll, Biol5, Grass symbol, Geomor,
River, Soil pH, Soil symbol and Vegetation, as shown in Figure 4.
This selection process ensured that the models retained ecologically
relevant predictors while minimizing multicollinearity, thereby
enhancing predictive accuracy.

3.1.2 Impact of variables on the MaxEnt model

The analysis of the importance of individual variables using the
Jackknife method (Figure 5). The contribution percentage and
permutation importance of Biol8, both demonstrating significant
influence, with a single-variable contribution rate of 42.8%
(Figure 6). The following variables, in order of importance, are
Soil symbol, Bioll, Biol5, Slope, NDVI, Geomor, Vegetation and
Grass symbol, with a total contribution rate exceeding 90%. In the
permutation importance ranking, the five most important variables
are Biol8, Biol5, Bio7, Slope, and River.

The results of the Jackknife cross-validation experiments
(Figure 5) show that the environmental variable that provides the
highest gain when used alone is Biol8, followed by Biol, Grass
symbol, Soil pH and Bioll. This indicates that these environmental
variables contain information not captured by others. Moreover,
Bio18 has the highest regularized training gain, test gain, and AUC
value, with a regularized training gain greater than 1.6, a test gain
greater than 1.7, and an area under the receiver operating
characteristic curve (AUC) greater than 0.90. Taking into account
the contribution percentages, permutation importance values, and
Jackknife analysis, Biol8, Soil symbol, Bioll, Biol5, Slope, NDVI,
Geomor, Vegetation, and Grass symbol play key roles in the
construction of the MaxEnt model.
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FIGURE 2

ROC curve and AUC values for the model for Marmota baibacina: (a) MaxEnt outputs using 10 machine learning-filtered variables; (b) MaxEnt

outputs using 16 algorithm-selected variables.
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FIGURE 3
Importance of environmental variables used for machine learning models.
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FIGURE 4
Variance inflation factor (VIF) of the 10 selected environmental variables.

Frontiers in Ecology and Evolution 09 frontiersin.org


https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Shao et al.

10.3389/fevo.2025.1608071

Environmental variables

Variables Score

FIGURE 5

I With only variable

I Without variable

B With all variables

Aspect
Geomor
NDVI
River
Slope

Soil pH
Soil symbol
Vegetation
Biol
Bioll
Biol2
Biol5
Biol8
Bio2

Bio7

Grass symbol

L

T

!

!

T T T T T

s I L !

I
=)

0.5 1.0 1.5 2.0

regularized training

N
98

=
=3
=
n

0 15
test gain

g
=3

2.5

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

AUC

Jackknife test of the importance of environment variables for MaxEnt. Note: for each variable, the red bar represents the score obtained when all
climatic variables are used to simulate the distribution of Marmota baibacina; the dark blue bar represents the score obtained when only a single climatic
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3.2 Variables influencing the potential

geographic distribution of Marmota baibacina

3.2.1 Response curves of 10 major variables in

models

By plotting the response curves, a better understanding of the
dominant variables influencing the distribution of Marmota

FIGURE 6

River

baibacina can be achieved. The relationship between the presence

probability of Marmota baibacina and the environmental variables

is determined based on the response curves. When the presence

probability exceeds 0.5, it is considered that the corresponding

environmental variable is favorable for the species’ habitat.

The response curves revealed consistent optimal ranges for
the key environmental variables across most machine learning
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models (XGBoost, RF, SVM), with some variations observed
for LogBoost (Figure 7). The probability of presence peaked at
Biol8 (Precipitation of Warmest Quarter) values between 150 and
180 mm. Similarly, optimal ranges were identified for Bio2 (Mean
Diurnal Range) at approximately 14°C, Bioll (Mean Temperature
of Coldest Quarter) below -15°C, and Biol5 (Precipitation
Seasonality) with a coefficient of variation around 90. For
categorical and semi-quantitative variables (Vegetation, Grass
symbol, Geomor, Soil symbol), the models consistently predicted
high probabilities of presence in alpine steppe, alpine meadows,
river valleys, alluvial regions, and specific soil types like alpine
meadow soils. The response to Soil pH generally showed a peak
near neutral conditions (pH ~7.0). Notably, the SVM model showed
a more gradual increase in probability with increasing Biol8, Bio2,
and Biol5 compared to the sharper peaks in XGBoost and RF.
Conversely, the LogBoost model predicted an exceptionally high
and stable probability of presence for most variables, with a sharp
decline only when Biol8 exceeded 160 mm.

10.3389/fevo.2025.1608071

3.2.2 Response curves of major variables in
MaxEnt model

Analysis of response curves from both the machine learning
ensemble and the MaxEnt model identified Biol8 as the most
influential driver of habitat suitability for Marmota baibacina
(Figure 7). Both modeling approaches converged on an optimal
precipitation range of approximately 150-180 mm, beyond which
suitability declined.

The response curves of environmental variables selected through
MaxEnt modeling are presented in Figure 8. The distribution
probability of Marmota baibacina increases and then decreases as
Biol8 increases. Precipitation around 150-200 mm in the warmest
quarter is favorable for Marmota baibacina’s survival, with the
distribution probability reaching its maximum of 60% when
precipitation is around 165 mm. When precipitation exceeds 165
mm, the distribution probability gradually declines. The Soil symbol
response curve shows that alpine cold desert soils, alpine meadow
soils, chestnut-calcareous soils, and steppe soils are more suitable for
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Response curves and prediction probabilities of each dominant variable for machine learning models.
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Response curves and prediction probabilities of each dominant variable for MaxEnt.

Marmota baibacina’s habitat. The distribution probability is highest
(60%) when the soil symbol is steppe soil. The response curves for the
Bioll and Biol5 show that when the temperature is below -15°C and
the precipitation seasonality coefficient exceeds 80, the distribution
probability of Marmota baibacina gradually increases. The slope
response curve shows that the slope range of 2°~8° is most suitable for
Marmota baibacina’s habitat. The distribution probability sharply
increases between 2° and 4°, reaching a maximum of 70%, and then
sharply decreases when the slope exceeds 4°. From the NDVI
response curve, Marmota baibacina is most suited to areas with an
NDVI value between 0.1 and 0.55. The maximum distribution
probability of about 60% occurs when the NDVTI is around 0.45.
According to the Geomor response curve, Marmota baibacina is
more likely to occur in river valleys, alluvial plains, and colluvial
regions, with a distribution probability exceeding 0.5. Furthermore,
the response curves for vegetation symbol and steppe variables show
that alpine steppe, alpine meadows, and temperate steppe are more
suitable for Marmota baibacina’s survival. Overall, these dominant
variables suggest those summer moisture and soil symbols are the
primary limiting factors for Marmota baibacina’s habitat in the
Tianshan Mountains of Xinjiang. Factors such as the Bioll, Slope,
NDVI, Vegetation, and Grass symbol also play important roles.
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3.3 Potential geographical distribution of
Marmota baibacina in Xinjiang under
present climatic condition

The potential distribution area of Marmota baibacina is shown
in Figure 9. Under the current climate scenario, its potential suitable
habitat is primarily distributed across Bayingolin Mongolian
Autonomous Prefecture, Hejing County, Ili Kazakh Autonomous
Prefecture, and the western part of Bortala Mongolian Autonomous
Prefecture. The total suitable habitat area for Marmota baibacina in
the Tianshan Mountains of Xinjiang ranges from 2.75x10* km? to
13.59x10* km? The area predicted by the MaxEnt model is the
smallest, while the area predicted by RF is the largest, mainly
composed of low suitability and moderate suitability areas, which
cover 3.55x10* km? and 6.40x10* km?, respectively. These areas are
mainly distributed in the northern and southern regions of the
Tianshan Mountains in Xinjiang, including the Bogda Peak in
the northern Tianshan. The area of high suitability predicted by
the XGBoost model is the largest, covering 3.88x10* km? and is
mainly distributed in Bayingolin Mongolian Autonomous
Prefecture HeJing County. Among high-suitability zones
predicted by five machine learning models after variable
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Geographical distribution of Marmota baibacina under present climate condition: (@) MaxEnt outputs using 10 machine learning-filtered variables;
(b) MaxEnt outputs using 16 algorithm-selected variables.

screening, MaxEnt produced the smallest area covering 0.62x10*
km?; this value further decreased to 0.42x10" km? when using
MaxEnt’s native 16-variable set.

3.4 Potential suitable areas for Marmota
baibacina in Xinjiang under future climatic
change scenarios

Based on three common socio-economic pathways proposed by
the IPCC (SSP1~RCP2.6, SSP3~RCP7.0, SSP5~RCP8.5), the
geographic distribution of Marmota baibacina was predicted
under three future climate change scenarios for the periods of
2041-2070 and 2071-2100, as shown in Figure 10. A comparison in
Table 2 indicates that, under all five models, the area of future
potential suitable habitats for Marmota baibacina continues to
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decrease, although the overall spatial patterns remain highly
consistent with the current period.

Under the three future climate scenarios, in the SSP126 scenario,
the XGBoost model predicts an increase in low suitability areas and a
decrease in high and moderate suitability areas, with the total suitable
habitat area reducing by 0.7x10* km? by 2041-2070. The RF model
shows an increase in low and moderate suitability areas, with a decrease
in high suitability areas, resulting in an overall increase of 2.87x10" km?
in suitable habitat area. In contrast, the SVM and MaxEnt models
predict a decrease in low, moderate, and high suitability areas, with
total suitable habitat areas decreasing by 5.21x10* km?, 0.58x10* km?,
and 0.35x10* km?, respectively. The LogBoost model predicts a
reduction in low and moderate suitability areas but an increase in
high suitability areas, leading to a total increase of 0.53x10" km? in
suitable habitat area. By 2071-2100, these trends are somewhat
mitigated, and the total suitable habitat area slightly increases.
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Geographical distribution of Marmota baibacina under future climate conditions: (a) MaxEnt outputs using 10 machine learning-filtered variables;
(b) MaxEnt outputs using 16 algorithm-selected variables.

Under the SSP370 and SSP585 scenarios, these trends intensify
further. The XGBoost, SVM, LogBoost, and two MaxEnt models
predict a reduction in the total suitable habitat area for Marmota
baibacina, with the decrease being particularly pronounced under
the high emission scenario (SSP585). High suitability areas shrink
further to 0.35x10%*-3.02x10* km?, and the regions where suitable
habitats decrease are mainly concentrated in Bayingolin Mongolian
Autonomous Prefecture HeJing County. Spatially, the contraction
of suitable habitats is most pronounced in southern Tianshan, this
migration may compress available grazing lands for livestock,
intensify competition between marmots and domestic herbivores,
and further degrade already fragile alpine meadows. The reduced
habitat area coupled with concentration in specific regions could
elevate human exposure to plague-infected fleas, particularly in
pastoral zones where herders and livestock frequently interact with
marmot burrows.

Based on the predictions of the five models, the suitable
distribution area of the Tianshan marmot under current climatic
conditions and different future climate scenarios shows significant
differences, as illustrated in Table 2. Under current climatic
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conditions, the RF model predicts the largest total suitable habitat
area, reaching 13.59x10* km? In contrast, the MaxEnt model
predicts the smallest total suitable habitat area, with only
2.75x10* km?, and the high-suitability area is limited to 0.42x10*
km? Under future climate scenarios, the predictions of suitable
habitat areas exhibit diverse trends across models. In the SSP126
scenario for 2041-2070, the RF model predicts the largest total
suitable habitat area, reaching 16.46x10* km? the highest among
the five models, including a high-suitability area of 2.54x10* km?
Compared to the current climate scenario, the high-suitability area
decreases slightly. Conversely, the MaxEnt model predicts the
smallest total suitable habitat area at 2.40x10* km?2, with the high-
suitability area further reduced to 0.39x10* km? As emission
intensity increases under the SSP585 scenario, the high-suitability
area predicted by all models shrinks further. For example, the high-
suitability area predicted by the XGBoost model decreases from
3.88x10* km? under current conditions to 2.71x10* km?.

In terms of regional distribution, the high-suitability areas
under current climatic conditions are mainly concentrated in
parts of Bayingolin Mongolian Autonomous Prefecture, Ili
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TABLE 2 Area of suitable habitat area of Marmota baibacina under different scenarios in 2041-2070 and 2071-2100.

e caaie o Unsuita4ble :Zarea Low suitfblezarea Moderately Euitgble High sui’c4able2 area
(x10%km") (x10%km®) area (x10"km®) (x10%km*®)

present 32.02 1.79 2.62 3.88
2041-2070_SSP126 3273 2.00 2.18 3.39
2041-2070_SSP370 3330 1.90 2.03 3.07
XGBoost 2041-2070_SSP585 3345 1.86 2.08 291
2071-2100_SSP126 3237 2.03 2.27 3.64
2071-2100_SSP370 33.58 1.82 2.10 2.81
2071-2100_SSP585 33.70 1.87 2.03 271
present 26.71 3.55 6.40 3.64
2041-2070_SSP126 23.85 7.02 6.90 2.54
2041-2070_SSP370 24.43 7.13 6.41 2.33
RF 2041-2070_SSP585 24.18 7.46 6.44 223
2071-2100_SSP126 24.24 6.52 6.77 278
2071-2100_SSP370 24.31 7.69 6.08 2.22
2071-2100_SSP585 24.41 7.85 5.85 2.20
present 29.98 3.07 3.59 3.67
2041-2070_SSP126 35.19 1.49 147 2.15
2041-2070_SSP370 3573 1.36 1.20 2.02
SVM 2041-2070_SSP585 3573 1.36 124 1.98
2071-2100_SSP126 34.56 1.62 172 2.40
2071-2100_SSP370 35.99 111 117 2.04
2071-2100_SSP585 36.02 0.99 117 2.13
present 32.94 2.77 1.93 2.66
2041-2070_SSP126 3241 2.14 1.75 4.00
2041-2070_SSP370 33.31 1.90 1.58 3.52
LogBoost 2041-2070_SSP585 33.36 1.93 1.53 348
2071-2100_SSP126 3232 218 1.73 4.08
2071-2100_SSP370 33.66 1.96 147 3.22
2071-2100_SSP585 34.00 1.89 1.39 3.02
present 35.52 3.24 1.31 0.67
2041-2070_SSP126 36.13 2.96 0.96 0.62
2041-2070_SSP370 36.66 2.30 1.03 0.68
(a)MaxENT 2041-2070_SSP585 36.50 238 1.06 0.73
2071-2100_SSP126 36.67 2.27 1.07 0.66
2071-2100_SSP370 36.49 2.46 1.05 0.66
2071-2100_SSP585 36.60 2.36 1.05 0.66
present 37.53 1.32 1.01 0.42
(b)MaxENT 2041-2070_SSP126 37.87 1.09 0.92 0.39
2041-2070_SSP370 38.05 1.05 0.81 0.36

(Continued)
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TABLE 2 Continued

Model Unsuitable area

Time_scenarios

Low suitable area

10.3389/fevo.2025.1608071

Moderately suitable = High suitable area

(x10*km?)
2041-2070_SSP585 37.99
‘ 2071-2100_SSP126 37.95
‘ 2071-2100_SSP370 38.01
‘ 2071-2100_SSP585 37.94

Kazakh Autonomous Prefecture, and Bortala Mongolian
Autonomous Prefecture. These regions are also where the
reduction in suitable habitats is most pronounced under future
climate conditions. Particularly under the SSP585 scenario, the
high-suitability areas in these regions decrease sharply.

4 Discussion
4.1 Model evaluation

The AUC values of the models used in this study were all above
0.9, indicating a high level of accuracy, but significant performance
differences were observed across the models. The RF model
predicted the largest total suitable habitat area, attributable to its
ensemble structure that aggregates predictions from multiple
decision trees through bootstrap aggregation (bagging). This
approach effectively captures complex nonlinear interactions
among environmental variables while mitigating overfitting,
thereby maximizing habitat inclusivity. In contrast, the XGBoost
model, being highly sensitive to parameter settings and suitable for
complex variable structures, performs slightly worse than the RF
model. The SVM model, which performs well on high-dimensional
data, requires extensive parameter tuning, which led to its slightly
inferior performance in this study. The LogBoost model performed
relatively poorly, possibly due to its dependence on the distribution
of training samples, which caused overfitting and reduced its ability
to fit nonlinear relationships. The models predicted the distribution
of Marmota baibacina under current and future conditions, and the
results indicate that climate change will have a significant impact on
the species’ habitat area and this finding were consistent with (An
et al, 2023). A comparative analysis revealed that using the 16
environmental variables screened by the MaxEnt model alone
yielded slightly higher prediction accuracy than the RF model,
followed by the XGBoost and SVM models. The LogBoost model
showed the poorest performance among all (Zhang et al., 2011; Luo
etal., 2017). This hierarchy in performance can be briefly attributed
to the respective algorithms’ strengths: MaxEnt’s probabilistic
framework is particularly adept at handling presence-only data
and capturing niche boundaries, which may explain its superior
accuracy with its own variable set (Elith et al.,, 2008). RF, while
robust and capable of modeling complex interactions, might be
slightly less optimized for this specific data structure than the
specially tuned MaxEnt (Zhang et al., 2011). The poorer
performance of LogBoost could stem from its higher sensitivity to
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noisy data and potential overfitting in this ecological modeling
context. The LogBoost model showed the poorest performance
among all (Li et al., 2019). In terms of predicted suitable habitat
area, the RF model estimated the largest total suitable area, while the
two MaxEnt models predicted the smallest total suitable area.
However, further validation indicated that despite its superior
statistical accuracy, the MaxEnt model yielded conservative
predictions of suitable habitats, deviating from field survey data
(Guo et al., 2023). In contrast, the RF model demonstrated excellent
agreement with actual sampling data, particularly in accurately
delineating highly suitable areas on the northern of the Tianshan
Mountains (Koshkina et al., 2020; An et al,, 2023). Therefore,
considering both model accuracy and ecological plausibility, the
RF model was identified as the optimal predictive tool.
Ecologically, MaxEnt’s focus on slope (2°-8°) and NDVI (0.1-
0.55) aligns with field observations of marmots’ preference for
gentle terrain and moderate vegetation cover—critical for burrow
stability and predator detection (Koshkina et al., 2020). In contrast,
machine learning models emphasized climatic variables (Biol8,
Bio2, Bioll, Biol5) contributing >70% to predictions, reflecting
the dominance of seasonal water and temperature dynamics in
shaping broad-scale marmot distribution. This divergence is not a
limitation but a strength: MaxEnt captures fine-scale microhabitat
features that machine learning models may overlook, while
machine learning models identify macroclimatic constraints that
presence-only models cannot fully resolve (Aratjo and New, 2007).

4.2 Environmental variables evaluation

The study considered 29 environmental variables, and after
selection, 10 key variables with higher contributions to the five
models were chosen, as well as 16 key environmental variables for
the MaxEnt model. Machine learning models (RF, XGBoost)
prioritized climatic variables (Biol8, Bio2, Bioll, Biol5),
collectively contributing >70% to predictions, reflecting the
dominance of seasonal water and temperature dynamics in alpine
ecosystems (Zhang et al., 2011). In contrast, MaxEnt emphasized
slope, NDVT, and Bio18, indicating that presence-only models rely
more on proximate habitat features like vegetation productivity and
microtopography (An et al., 2023). This divergence underscores the
impact of data type: models requiring presence-absence data excel
at detecting broad climatic constraints, while presence-only models
depend on fine-scale environmental proxies (Aratjo and New,
2007). Notably, Biol8 emerged as a universal driver, with optimal
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values at 150-180 mm, aligning with field observations of Marmota
baibacina’s preference for mesic alpine meadows (Koshkina et al.,
2020). Soil symbol and slope (2°- 8°) were critical in MaxEnt,
suggesting that edaphic properties and terrain gradient are essential
for modeling species presence in data-scarce environments (Wang
et al,, 2024). In contrast, the study by Liao et al. (2020) used fewer
key variables, focusing primarily on the effects of temperature and
precipitation. This study not only included these climatic variables
but also comprehensively considered factors such as symbol,
vegetation, and topography, making the model more
comprehensive and the predictions more precise (Zhao et al,
2023). Furthermore, although Li et al. (2022) also considered
different climate scenarios (e.g., RCP2.6 and RCP6.0), their time
frame only extended to 2080. In this study, more climate scenarios
(e.g., SSP126, SSP370, SSP585) and a longer time span (up to 2100)
were included, providing a deeper insight into the far-reaching
effects of climate change on the future distribution of Marmota
baibacina (Wang et al., 2021). This detailed approach not only
improved the spatial accuracy of the model but also further
demonstrated the long-term impact of climate change on species
survival over time, ensuring the comprehensiveness and objectivity
of the analysis (Li et al., 2025). Existing studies on the potential
distribution of Marmota baibacina show that future climate change
will significantly affect the species’ suitable habitat area, with a
decreasing trend (An et al., 2023). This study’s findings are
consistent with previous research results (Wang et al, 2024).
However, an increasing number of studies are now focusing on
ensemble modeling of individual models. Thuiller et al. (2009)
proposed the first computational platform framework, BIOMOD,
which integrates multiple species distribution models to improve
classification accuracy and precision. Ensemble models, through
weighted averaging or voting mechanisms, mitigate single-model
biases and enhance robustness (Aratijo and New, 2007; Marmion
etal., 2009). For instance, Banda et al. (2024) significantly improved
the accuracy of endangered Apalis flavigularis distribution
predictions by integrating MaxEnt, RF, and GLM. Our focus on
standalone models aimed to rigorously assess algorithm-specific
suitability for alpine species habitat modeling, rather than
optimizing predictive accuracy. Future studies could build on our
multi-model comparison to explore Bayesian averaging or dynamic
weighting strategies, reconciling discrepancies to enhance
ecological plausibility.

4.3 Main environmental variables affecting
the distribution of the Marmota baibacina

The machine learning models and the MaxEnt model differ in the
selection of variables. The MaxEnt model assumes the independence of
variables and directly analyzes the contribution of environmental
factors (Phillips et al., 2006), while machine learning models are
based on data training and assess the interactions between variables
through feature importance (Peters et al., 2007; Zhang et al, 2011).
Future research could further integrate the advantages of both
approaches to improve prediction accuracy and spatial adaptability.
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The dominant variables driving Marmota baibacina’s distribution—
identified via machine learning models (10 variables) and MaxEnt
(16 variables)—are ecologically meaningful, supported by both habitat
requirements of the species and field-validated evidence, rather than
mere repetition of model results. Biol8 (150-180 mm optimal) is the
universal primary driver (42.8% contribution in MaxEnt; >25%
cumulative in machine learning models) because it directly controls
soil moisture—an essential factor for alpine grass growth (the core food
source of Marmota baibacina) (Koshkina et al., 2020). Field surveys
confirm that mesic meadows (Bio18: 150-180 mm) support 2-3 times
higher marmot burrow density than arid steppes (Biol8 < 100 mm)
(An et al,, 2023). Bioll (coldest quarter temperature < -15°C) ensures
sufficient hibernation duration (6-8 months at high elevations),
a physiological adaptation to conserve energy in alpine cold
(Wang et al, 2024). Biol5 > 55 in MaxEnt; >80 in machine learning
reflects stable moisture supply, avoiding extreme droughts/floods that
disrupt foraging and burrow stability (Stenseth et al., 2008).

Field observations revealed that, in addition to climate variables,
soil also play a role in species distribution. Therefore, these
environmental variables were included in the model construction
for this study. Vegetation provides essential food and habitat for
Marmota baibacina, influencing their nutritional status and ability
to avoid predators (Wang et al, 2024). As vegetation height and
coverage decrease, Marmota baibacina become better able to detect
predators, thus reducing predation risks (Chen et al., 2017). Soil
type (alpine meadow/steppe soils preferred) and slope (2°-8°
optimal) are critical in MaxEnt due to their roles in burrow
construction and foraging efficiency. Alpine meadow soils have
high organic matter content (10-15% higher than desert soils) and
good drainage, reducing burrow collapse risk (An et al, 2023).
Gentle slopes (2°-8°) balance two needs: steep slopes increase
burrow instability, while flat areas have dense shrub cover that
obstructs predator detection. NDVT (0.1-0.55 optimal) serves as a
proxy for vegetation productivity—values <0.1 indicate sparse
forage, and >0.55 indicate excessive shrubs, both unsuitable for
marmots. Compared with other studies Liao et al. (2020), this study
includes more environmental variables, such as Soil symbol and
topography, making the models more comprehensive and the
predictions more accurate. From the results of all five models, it
is evident that Biol8 is the primary factor affecting the distribution
of Marmota baibacina. The species thrives in areas with dense
vegetation, such as alpine steppe and alpine meadows, where
precipitation directly impacts soil moisture and vegetation
growth. According to the response curves, Biol8 values between
150 and 180 mm are more suitable for Marmota baibacina’s
survival. This is consistent with the study’s findings that Marmota
baibacina is most likely to be found in alpine cold desert soils, alpine
meadow soils, chestnut-calcareous soils, and steppe soils, with the
highest distribution probability at slopes between 2° and 8° and
NDVI values between 0.1 and 0.55. According to Li et al. (2022),
vegetation and Soil symbol also play key roles in marmot habitat
selection, consistent with the findings in this study. The potential
distribution of Marmota baibacina is not only influenced by
climate, topography, soil, and vegetation but also by human
activities. Human infrastructure, such as villages and roads,

frontiersin.org


https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Shao et al.

causes wildlife to avoid these areas, potentially negatively impacting
their behavior, reproduction, or survival (Bergstrom and Skarpe,
1999). The construction of buildings and roads can lead to soil
compaction and reduced vegetation coverage (Chen et al., 2017).
Therefore, the predicted suitable habitats in this study may be
overestimated. Future research should integrate climate, biological
and human activity factors to improve the accuracy of
habitat predictions.

4.4 Impact of climate change on the
potential distribution of the Marmota
baibacina’s suitable habitat

The suitable habitat of Marmota baibacina is primarily
concentrated in mid- to high-altitude areas, ranging from 1,500
meters to above 3,500 meters, which is consistent with the
distribution point coordinates collected in the field, indicating a
good model simulation. Under both current and future climate
scenarios, the potential suitable habitat of Marmota baibacina is
mainly distributed in the central part of the Tianshan Mountains in
Xinjiang, including regions such as Bayingolin Mongolian
Autonomous Prefecture HeJing County, Ili Kazakh Autonomous
Prefecture, and the western part of Bortala Mongolian Autonomous
Prefecture. These areas show a higher probability of Marmota
baibacina’s presence.

According to the predictions under future climate scenarios,
climate change will lead to significant ecological changes. Rising
temperatures and changes in precipitation patterns will cause both
the expansion and contraction of habitats (Jiang et al., 2023; Kang
et al., 2023). Previous studies have shown that, by the mid-21st
century, precipitation in Xinjiang is expected to increase by 10% to
25%, with temperatures rising by 1.5°C to 2°C; by the end of the
century, precipitation could increase by more than 25%, and
temperatures may rise by 4°C to 6°C (Wang et al, 2021). This
warming shortens Marmota baibacina’s hibernation period by 10-
14 days (An et al,, 2023), reducing energy storage for reproduction
and lowering juvenile survival by 22%. Additionally, advanced plant
phenology reduces overlap between peak forage quality (grasses,
sedges) and the marmot’s active period, limiting fat accumulation
before hibernation (Parmesan and Yohe, 2003; Post et al., 2008).
While total precipitation in Xinjiang may increase by 10%-25% by
mid-century, the intensification of precipitation seasonality poses
significant threats (Stenseth et al., 2008). More frequent summer
droughts reduce grass cover by 10%-15%, while heavy winter
snowfall blocks burrow entrances, causing substantial juvenile
mortality (Linne Kausrud et al, 2007). Under the high-emission
SSP585 scenario, precipitation in the warmest quarter decreases by
15%-20% in the southern Tianshan, transforming crucial mesic
meadows into arid steppes with insufficient forage (Wang
et al., 2021).

Climate warming drives progressive upward shifts of alpine
vegetation belts at 30-50 meters per decade, compressing Marmota
baibacina habitat into increasingly isolated high-elevation patches
(Chen et al., 2017). This fragmentation is most severe in the arid
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southern Tianshan (e.g., Hejing County), where habitat contraction
exceeds northern regions by 2-3 times (An et al., 2023). These
isolated patches curtail gene flow and intensify competition with
livestock for dwindling forage resources, further exacerbating alpine
meadow degradation (Prakash and Ghosh, 2012). Our findings,
particularly those derived from the MaxEnt model, resonate with
other studies on steppe rodents in the region (An et al, 2023),
reinforcing that climate change poses substantial threats to species
habitats through significant range reduction. The variation in
predictions between models reflects their different sensitivities to
environmental variable interactions and habitat definitions (Aratjo
and New, 2007; Zhang et al, 2011). Future research should
prioritize ensemble modeling approaches to reconcile these
differences and yield more robust forecasts.

4.5 Limitations and future directions

This study has three primary limitations. First, the pseudo-
absence points generated through random sampling may introduce
spatial bias, and future studies could optimize this process using
environmental stratification. While our occurrence data were
collected during a single-year expedition, the use of long-term
climate normals (1970-2000) for modeling mitigates the direct
impact of interannual climatic variability on our projections.
Nevertheless, multi-year survey data would be beneficial to
account for potential population fluctuations and further validate
model stability over time. Second, the exclusion of human
disturbances (e.g., roads, grazing intensity) from the models may
lead to overestimations of high-suitability areas. Third, the static
time frame fails to account for lag effects in species migration and
vegetation succession, potentially underestimating habitat
fragmentation. While ensemble modeling was not adopted in this
work, the study establishes a methodological foundation for multi-
algorithm comparisons in alpine species research. Future efforts
could combine ensemble predictions with dispersal models to
dynamically simulate distribution shifts (Beaumont et al., 2016).
Additionally, incorporating participatory GIS (PGIS) to merge
herder traditional knowledge with spatial data could significantly
enhance the practical applicability of predictions.

5 Conclusions

This study successfully constructed five species distribution
models, including XGBoost, RF, SVM, LogBoost, and MaxEnt, by
considering factors such as climate, soil, topography, geomorphology,
hydrology, and vegetation. These individual models were used to
analyze the potential suitable habitat of Marmota baibacina under
current and future climate change scenarios. The results show that
key environmental factors influencing the geographic distribution of
Marmota baibacina include Biol8, Bioll, Biol5, Grass symbol,
Geomor, Soil pH, Soil symbol, and Vegetation. The study also
predicted the potential geographic distribution of Marmota
baibacina under the three shared socio-economic pathways
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(SSP126, SSP370, and SSP585) for the future. The results show that
climate change will continue to impact the potential distribution of
Marmota baibacina during the periods of 2041-2070 and 2071-2100.
Currently, Marmota baibacina is mainly distributed across the
northern and southern of the Tianshan Mountains in Xinjiang.
Under future climate scenarios, the extent of low, moderate, and
high suitability habitats for Marmota baibacina will change to
varying degrees across different models, with high-suitability areas
continually shrinking. Although the predicted suitable habitat for
Marmota baibacina may decrease, its ecological adaptability and
reproductive capacity may still pose a threat to steppe ecosystem
security. The multi-model framework employed here not only
quantifies climate-driven risks but also provides a decision matrix
for balancing biodiversity conservation and public health priorities in
Xinjiang’s ethnic pastoral communities. Therefore, this study
provides scientific evidence for the monitoring of the potential
distribution of Marmota baibacina and plague prevention.
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