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Introduction: Under global climate change and intensified human activities,

species distributions are undergoing significant shifts. Marmota baibacina, a

representative keystone species among Central Asian high-altitude species,

exacerbates vegetation degradation and soil erosion through herbivory and

burrowing activities. As the primary reservoir of Yersinia pestis, it poses a

significant public health threat.

Methods: This study integrated five machine learning models (XGBoost, RF, SVM,

LogBoost) and the MaxEnt model to predict the current (1970–2000) and future

(2041–2100) distribution of Marmota baibacina under three climate scenarios

(SSP126, SSP370, SSP585), utilizing 111 occurrence records and 29 environmental

variables spanning climatic, topographic, edaphic, and vegetation dimensions.

Results: The results indicated that (1) All five models demonstrated high

predictive accuracy with AUC values exceeding 0.9. After screening 29

environmental variables, machine learning models identified 10 key variables

with high feature importance, while MaxEnt selected 16 environmental variables;

(2) Dominant drivers revealed that Bio18 (warmest quarter precipitation), Bio2

(diurnal temperature range), Bio11 (coldest quarter temperature), and Bio15

(precipitation seasonality) collectively contributed >70% to machine learning

models, whereas MaxEnt prioritized slope, NDVI, and Bio18; (3) Under current

climatic conditions, the potential suitable habitats of Marmota baibacina in

Xinjiang are primarily concentrated in the central Tianshan Mountains, with

core distribution centers in Bayingolin Mongolian Autonomous Prefecture

(Hejing County), Ili Kazakh Autonomous Prefecture, and the western part of

Bortala Mongolian Autonomous Prefecture, The total suitable habitat area

estimated by the five models ranged from 2.75 × 104 km² to 13.59 × 104 km²

under the current climate; (4) Future projections under all scenarios indicated an

overall decreasing trend in suitable habitat area, with habitat contraction

particularly pronounced in the southern Tianshan under SSP585.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2025.1608071/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1608071/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1608071/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1608071/full
https://www.frontiersin.org/articles/10.3389/fevo.2025.1608071/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2025.1608071&domain=pdf&date_stamp=2025-10-31
mailto:zhaojin@ms.xjb.ac.cn
https://doi.org/10.3389/fevo.2025.1608071
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution


Shao et al. 10.3389/fevo.2025.1608071

Frontiers in Ecology and Evolution
Discussion: Such distributional shifts may intensify competition between

marmots and livestock, accelerate alpine meadow degradation, and elevate

zoonotic plague transmission risks due to population aggregation. This study

provides critical insights for balancing alpine ecosystem conservation and plague

prevention strategies, offering actionable guidance for safeguarding ecological

security and public health in Xinjiang’s ethnically diverse pastoral regions.
KEYWORDS

models, Marmota baibacina, climate change, suitable habitat, ecological
security, conservation
1 Introduction

Plague is a serious infectious and zoonotic disease whose

primary host is rodents (Eisen et al., 2007; Stenseth et al., 2008).

It has caused at least three large-scale epidemics (Stenseth et al.,

2008). China is the largest and most extensive source of plague, and

rodents are widely distributed across mountains, deserts, forests,

and steppe (Addink et al., 2010), and most of them live in

subterranean burrowing systems, which cause massive soil

erosion and lead to degradation of ecosystems (Linné Kausrud

et al., 2007; Addink et al., 2010; Prakash and Ghosh, 2012). Under

global warming and intensified anthropogenic activities, shifts in

Marmota baibacina’s habitat range and population dynamics may

further threaten ecological balance and pastoral livelihoods.

Therefore, accurately predicting its potential distribution and

responses to climate change is crucial for balancing alpine

ecosystem conservation and plague prevention in Xinjiang.

The Marmota baibacina is a representative keystone species

among Central Asian high-altitude species. This large, social rodent

primarily inhabits alpine meadows and steppes at elevations

between 2,500 and 4,000 meters, where it constructs complex

burrow systems (Koshkina et al., 2020). Its foraging and extensive

burrowing activities significantly influence soil properties,

hydrology, and plant community structure, classifying it as an

ecosystem engineer (Addink et al., 2010). Beyond its ecological

role,Marmota baibacina is the primary natural reservoir of Yersinia

pestis, the bacterium responsible for plague, posing a substantial

zoonotic threat to human populations (Davis et al., 2004). While

not currently assessed on the IUCN Red List, its populations face

growing pressures from climate change and anthropogenic

activities. Its conservation status is intrinsically linked to its role

as a disease reservoir, often leading to population control measures

that may disrupt its ecological function. The primary threats to

Marmota baibacina include climate-driven habitat shifts, which

may alter the availability of its preferred mesic environments, and

intensified competition with livestock for forage in degraded

grasslands (Wang et al., 2024). Understanding its habitat

requirements and distribution is therefore critical not only for

biodiversity conservation but also for public health planning.
02
Xinjiang’s steppe covers an area of approximately 513,000 square

kilometers, accounting for 30% of the total area of the region (An

et al., 2023). Xinjiang’s grasslands are not only a critical component of

Central Asian alpine ecosystems but also the cornerstone of

livelihoods for local ethnic minorities, particularly Kazakh and

Mongolian herders who rely heavily on livestock grazing. The

degradation of grasslands caused by marmot burrowing and

foraging directly threatens the sustainability of mutton and beef

production, which are primary protein sources for these

communities. Given the dual role of Marmota baibacina as an

ecosystem engineer and a zoonotic reservoir, its population

dynamics under climate change could exacerbate both ecological

and socio-economic vulnerabilities in this ethnically diverse region.

Marmota baibacina’s burrowing and foraging behaviors cause steppe

degradation and soil erosion, and competition with livestock

exacerbates this degradation (Davis et al., 2004; Addink et al.,

2010). Furthermore, Marmota baibacina is a primary host for the

plague bacterium, transmitting the disease to humans and other

animals through fleas, posing a severe public health threat (Davis

et al., 2004; Jäkel et al., 2016). With the intensification of climate

change, Marmota baibacina’s habitat range and behaviors may

change, leading to even greater impacts on ecosystems and human

life (Koshkina et al., 2020). Therefore, studying the potential suitable

habitat of Marmota baibacina under future climate scenarios will

help to assess the effects of climate change on steppe ecological

balance and provides scientific evidence for plague prevention.

Species distribution models (SDMs) serve as core tools for

analyzing species-environment relationships and projecting

habitat suitability (Yang et al., 2023; Zhao et al., 2023). Currently,

increasing researches use SDMs to predict species distribution

dynamics (Liu et al., 2023; Mo et al., 2023). SDMs utilize species

occurrence data and predictor variables to model potential species

distributions under changing climatic conditions (Jia et al., 2017;

Zhang et al., 2023). With the development of computer technology

and ecological modeling methods, multiple SDMs have been

developed and applied to different research scenarios, such as

Extreme Gradient Boosting (XGBoost), Random Forest (RF),

Support Vector Machine (SVM), Logistic Boosting (LogBoost),

and Maximum Entropy Model (MaxEnt). Depending on the data
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requirements for species distribution, models can be divided into

two categories: profile techniques (e.g., BIOCLIM, MaxEnt, and

GARP) requiring only species presence data; and group

discrimination techniques (e.g., RF, SVM, ANN, and GBM)

needing presence-absence data. Since the advent of R language,

most algorithms used for species distribution analysis and

prediction can run on the same data platform, making R the

most commonly used modeling environment in species

distribution modeling (Guisan et al., 2017). For example, Li et al.

(2017) and Yang et al. (2015) used RF and SVM methods to

establish fish egg distribution and prediction models, comparing

them with traditional methods, and found that machine learning

models outperformed others. Peters et al. (2007) used RF and

multiple logistic regression models to predict vegetation species

distribution in the Belgian valley and found that RF outperformed

other models in terms of accuracy. Luo et al. (2017) used giant

panda data to evaluate the performance of Biomod and MaxEnt

distribution predictions, showing that Biomod performed better

when distribution points were sparse. Zhai and Li (2012) used nine

models in Biomod to simulate the suitable habitats of the crested

ibis from 1950 to 2000 and predict its potential habitat range in

2020, 2050, and 2080. Zhang et al. (2011) compared random forests,

generalized boosting methods, Neural Ensembles, generalized linear

models, generalized additive models, and classification regression

trees. They simulated and analyzed the suitable habitat of Masson

pine under future climate scenarios, with RF performing the best.

An et al. (2023) analyzed the impact of future climate change on the

suitable habitat area and distribution pattern of Eolagurus luteus in

Xinjiang, finding that its habitat area continued to decrease.

Moreover, the MaxEnt model has been used to predict suitable

habitats for plant species such as Parnassia wightiana (Dai et al.,

2022), Jatropha curcas (Liu and Mai, 2022), and Polygonatum

kingianum (Guo et al., 2023), achieving good results. These

studies not only predicted the effects of future climate change on

species’ suitable habitats but also explored the role of historical

climate change in species distribution, further deepening the

understanding of species’ mechanisms for responding to climate

change. Reliable species absence data are usually unavailable; thus,

background or pseudo-absence points are typically used instead.

Related research has shown that models based on species presence/

absence data typically outperform those based on species presence

data alone (Liu et al., 2013). Currently, species distribution

prediction models are widely applied in biogeography, and the

choice of model can significantly influence the prediction results.

MaxEnt is widely recognized for its robustness in handling

presence-only data, which is particularly valuable when reliable

absence data of species are scarce (Phillips et al., 2006). This

advantage makes it suitable for studies on Marmota baibacina, as

obtaining comprehensive absence records in the vast alpine regions

of Xinjiang is logistically challenging. In contrast, the four machine

learning models (XGBoost, RF, SVM, LogBoost) require presence-

absence data and excel at capturing complex nonlinear relationships

between species and environmental variables (Elith et al., 2008). By

integrating MaxEnt with these machine learning models, we can not

only leverage the strengths of each model—such as MaxEnt’s
Frontiers in Ecology and Evolution 03
adaptability to limited data and RF’s ability to handle high-

dimensional variables—but also conduct cross-validation to

reduce prediction biases, thereby improving the reliability of

habitat suitability assessments for Marmota baibacina.

Current research onMarmota baibacina’s habitat ecology remains

insufficient, particularly regarding its dual ecological roles as both an

ecosystem engineer through burrowing activities that exacerbate

steppe degradation and a zoonotic reservoir for plague transmission.

To address these knowledge gaps, this study employs an integrated

modeling approach, utilizing comprehensive occurrence data from

Xinjiang and 29 bioclimatic, topographic, and environmental

variables. Through the R software platform, we implemented five

distinct species distribution models (XGBoost, RF, SVM, LogBoost,

and MaxEnt) to predict current and future habitat suitability across

the Tianshan Mountains’ altitudinal gradient under multiple climate

scenarios (Guisan et al., 2017; Zhao et al., 2023). The study aims to: (1)

identify and quantify key environmental determinants of Marmota

baibacina distribution, establishing optimal ranges for critical

variables; (2) project spatiotemporal patterns of habitat suitability

shifts under climate change scenarios, providing evidence-based

insights for plague prevention strategies in Xinjiang; (3) conduct

comparative model performance evaluations to determine the most

reliable predictive framework for alpine species distribution modeling.
2 Materials and methods

2.1 Study area

The study area is located on the northern and southern of the

Tianshan Mountain range in Xinjiang, China, covering the central

section of the Tianshan Mountain and the surrounding regions on

both sides. This area is a key habitat for Marmota baibacina

(Figure 1). The Tianshan Mountain range runs through the

central part of Xinjiang, dividing the study area into northern and

southern regions, forming an ecological transition zone with

distinct dry and wet conditions (Wang et al., 2021). The northern

lies at the southern edge of the Tianshan Mountain and the Junggar

Basin. The climate is temperate and humid, with high annual

precipitation (200–800 mm). Forests, steppe, and alpine meadows

are mainly distributed here, making it a region rich in water

resources and biodiversity (Zhang et al., 2024). Areas such as the

Ili River Valley and the Bortala River Valley are known as the

“Jiangnan of the North,” with favorable natural conditions. The

southern of the Tianshan Mountain is characterized by a typical

arid continental climate, with low annual precipitation, dominated

by deserts, gobi, and oasis. The northern of the TianshanMountains

includes administrative regions such as Ili Kazakh Autonomous

Prefecture, Bortala Mongolian Autonomous Prefecture, Urumqi,

Changji Hui Autonomous Prefecture, and Turpan, which are

economically developed and are key agricultural, pastoral, and

industrial areas in Xinjiang (Fang et al., 2024). The southern of

the Tianshan Mountains includes parts of Bayingolin Mongolian

Autonomous Prefecture and Aksu Prefecture, with an economy

based on oasis agriculture and resource development, with Korla
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City as the core city on the southern. Overall, the northern and

southern of the Tianshan Mountains have significant differences in

natural geography and ecological environments, making them

important regions for studying climate change, biodiversity

conservation, and ecosystem services (Wang et al., 2024).

Marmota baibacina is widely distributed in the alpine meadows,

steppe, and surrounding mountainous areas of the Tianshan

Mountains, primarily inhabiting the high-altitude regions between

2,500 and 4,000 meters above sea level (Sun et al., 2018). It relies on

the unique ecological and climatic conditions of the area for survival

(Du et al., 2022), as shown in Figure 1.
2.2 Species occurrence data of Marmota
baibacina

In this study, we collected data on the natural distribution of 190

Marmota baibacina during a field survey conducted during the Third

Xinjiang Comprehensive Expedition in 2022-2023, in which the

precision, latitude and habitat characteristics of each sample site

were recorded in detail. To ensure data accuracy, duplicate points

within 1 km were removed using the SDM toolbox in Spatial analysis

tool to avoid spatial autocorrelation, and records with ambiguous

coordinates were excluded, and subsequent screening yielded a final
Frontiers in Ecology and Evolution 04
set of 111 sample points for Marmota baibacina (Figure 1). Spatial

thinning was performed to ensure the minimum distance between

any two occurrence points was ≥1 km. This threshold was

determined based on two considerations: (a) Habitat characteristics

of Marmota baibacina: As a colonial rodent with a home range of

0.8–1.2 km² per colony, a 1 km minimum distance avoids over-

representing a single colony and reduces sampling bias; (b) Model

resolution consistency: The threshold matches the 1 km spatial

resolution of environmental variables, ensuring each occurrence

point corresponds to an independent environmental grid and

avoids pseudo-replication. The thinning algorithm randomly

retained one point within each 1 km buffer until no points violated

the minimum distance constraint.
2.3 Handling of environment variables data

Considering previous studies (Koshkina et al., 2020; An et al.,

2023) and the habitat characteristics of Marmota baibacina, 29

environmental variables were selected potentially influencing its

distribution (see Table 1). These variables include historical climate

data obtained from Worldclim (https://worldclim.org), providing

30 arc-second (approximately 1 km) data for the period 1970-2000.

While field surveys were conducted in 2022-2023, historical climate
FIGURE 1

Overview of the study area: (a) Point locations of Marmota baibacina on the north and south slopes of the Tianshan Mountain; (b) Typical habitat
landscape of Marmota baibacina in the alpine meadow and UAV images (middle). (The standard map number is GS (2022) 1873, the base map is not
modified, the following is the same).
frontiersin.org

https://worldclim.org
https://doi.org/10.3389/fevo.2025.1608071
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


TABLE 1 Environmental variables used in the study.

Variables Variable descriptions Unit Explanation
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Bio1 mean annual air temperature °C mean annual daily mean air temperatures averaged over 1 year

Bio2 average daily temperature range °C mean diurnal range of temperatures averaged over 1 year

Bio3 isothermality °C ratio of diurnal variation to annual variation in temperatures

Bio4 Temperature seasonality °C/100 standard deviation of the monthly mean temperatures

Bio5
mean daily maximum air temperature of the
warmest month

°C The highest temperature of any monthly daily mean maximum temper

Bio6
mean daily minimum air temperature of the
coldest month

°C The lowest temperature of any monthly daily mean maximum tempera

Bio7 annual range of air temperature °C The difference between the Maximum Temperature of Warmest month

Bio8
mean daily mean air temperatures of the wettest
quarter

°C The wettest quarter of the year is determined (to the nearest month)

Bio9
mean daily mean air temperatures of the driest
quarter

°C The driest quarter of the year is determined (to the nearest month)

Bio10
mean daily mean air temperatures of the warmest
quarter

°C The warmest quarter of the year is determined (to the nearest month)

Bio11
mean daily mean air temperatures of the coldest
quarter

°C The coldest quarter of the year is determined (to the nearest month)

Bio12 average annual precipitation kg m-2month-1 Accumulated precipitation amount over 1 year

Bio13 Precipitation amount of the wettest month kg m-2month-1 The precipitation of the wettest month.

Bio14 Precipitation amount of the driest month kg m-2month-1 The precipitation of the driest month.

Bio15 Precipitation seasonality kg m-2 The Coefficient of Variation is the standard deviation of the monthly p
estimates (i.e. the annual mean)

Bio16 monthly mean precipitation in the wettest season kg m-2month-1 The wettest quarter of the year is determined (to the nearest month)

Bio17 mean monthly precipitation in the driest quarter kg m-2month-1 The driest quarter of the year is determined (to the nearest month)

Bio18
mean monthly precipitation amount of the
warmest quarter

kg m-2month-1 The warmest quarter of the year is determined (to the nearest month)

Bio19
mean monthly precipitation amount of the coldest
quarter

kg m-2month-1 The coldest quarter of the year is determined (to the nearest month)

Elevation m Topographic elevation

Slope ° The degree of steepness of the surface element

Aspect ° The direction of the slope face
a

t
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data (1970-2000) were used to characterize long-term habitat

suitability, as short-term climate fluctuations (e.g., recent

warming) may not yet fully reflect species distribution shifts.

Future projections (2041-2100) account for ongoing climate

changes. Specifically, the environmental variables considered are

as follows:

(1) Terrain variables: slope, slope direction, and elevation data

sourced from the geospatial data cloud (http://www.gscloud.cn/).

(2) Soil variables: two soil variables crucial for Marmota baibacina

habitat—soil pH value (Soil_ph) and soil symbol (Soil_symbol)—

extracted from global soil pH data and China’s 1:400,000 soil

symbol map compiled by the Nanjing Institute of Soil Science,

Chinese Academy of Sciences. The soil map includes 72 soil classes

and 247 subclasses, with Xinjiang covering 23 soil symbols, such as

thin layer soil, glacier, alluvial soil, water body, calcareous gray soil,

calcareous soil, chestnut soil, dune quicksand, sandy soil, impinged

soil, anthropogenic soil, black soil, gley soil, embryonic soil, saline

soil, denatured soil, gypsum soil, alkaline earth, salt works, urban

industrial and mining areas, loose lithologic soil, and leaky rock. (3)

Geomor: geomorphic data specific to Xinjiang (https://

www.geodata.cn/). (4) River: distance from rivers, centered on

river channels, with a 1 km buffer (https://ngcc.cn/). (5) NDVI

(Normalized Difference Vegetation Index): maximum NDVI

dataset for China from 2000 to 2020, processed on the Google

Earth Engine platform using Landsat5/7/8 remote sensing data.

This dataset, with a spatial resolution of 30 meters and annual

temporal resolution, involved cloud and shadow removal, followed

by NDVI extraction using linear interpolation and S-G smoothing

methods. (6) Vegetation: Xinjiang vegetation symbol data and grass

symbol data (https://www.geodata.cn/). These variables were

selected based on their relevance to the habitat preferences and

ecological requirements of Marmota baibacina, with the aim of

providing a comprehensive analysis of its distribution patterns in

the Tianshan Mountains of Xinjiang.

Future climate variable data for this study were derived from

CHELSA CMIP6 scenario data, a high-resolution climate database

for global land surface areas (https://chelsa-climate.org/) (Karger

et al., 2017). Furthermore, the CMIP6 scenarios represent the most

advanced generation of climate projections, offering improvements

over the previous CMIP5 framework. The SSP scenarios integrate

socioeconomic narratives with emission pathways, providing a

more realistic and comprehensive basis for modeling future

climate impacts compared to the Representative Concentration

Pathways (RCPs) used in CMIP5. This makes CMIP6 the current

state-of-the-art for assessing biodiversity responses to climate

change. The dataset has a spatial resolution of 30 arc-seconds

(approximately 1 km × 1 km) and it includes bioclimatic

variables projected for two future time periods: 2041–2070 and

2071-2100.These future climate scenarios are based on the Shared

Socio-Economic Pathways (SSP), which represent different socio-

economic development trajectories and their implications for

greenhouse gas emissions and climate change impacts: SSP126:

represents a sustainable development pathway with low greenhouse

gas emissions, aiming for a radiative forcing of 2.6 W/m² by 2100.

SSP370: represents a middle to high-end emission scenario, leading
T
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to moderate levels of warming with a radiative forcing of 7.0 W/m²

by 2100. SSP585: represents a high-emission scenario with extensive

fossil fuel use, resulting in high greenhouse gas concentrations and a

radiative forcing of 8.5 W/m² by 2100 (Li et al., 2025). These climate

scenarios provide essential data for assessing potential future

impacts on ecological systems, including habitat suitability for

species like Marmota baibacina in Xinjiang, considering varying

levels of climate change and greenhouse gas emissions.

Spatial analysis tool was used to process the original data,

including the removal of invalid data, filling in missing values,

standardizing the data, and unifying its resolution and projection

(WGS1984) for subsequent analysis and modeling (Guisan et al.,

2017). For the environmental raster data, the preprocessing

included: (1) masking all layers to the unified study area extent;

(2) converting all layers to a consistent spatial resolution of 30 arc-

seconds (1 km) and the WGS 1984 geographic coordinate system

using the bilinear resampling method (for continuous variables) or

the nearest neighbor method (for categorical variables); and (3)

ensuring no cells contained NoData values within the study area

mask. This process resulted in a harmonized and analysis-ready

dataset. The resampled environmental variables were then

converted to ASCII format using the SDM Toolbox v2.5

extension tool (An et al., 2023).

Given the differences in input sample data between machine

learning models and the MaxEnt model, and to avoid the influence

of variable correlation on prediction results, the screening process

for the 29 environmental variables was systematically optimized: all

models first performed basic variable screening, where for machine

learning models, the 29 environmental variables in species

presence-absence data were extracted, with variables of low

importance removed after calculating their importance scores (An

et al., 2023); for the MaxEnt model, the 29 environmental variables

and sample points were input into the model for preliminary

computation, with variables and sample points showing zero

contribution eliminated, ensuring that variables entering

subsequent analyses had basic ecological relevance (Koshkina

et al., 2020). Following initial screening, machine learning models

further tested for multicollinearity using the Variance Inflation

Factor (VIF) - multicollinearity refers to high linear correlation

between two or more independent variables in a regression model,

which may cause unstable regression coefficients and reduced

model interpretability (Guisan et al., 2017). With a threshold of

VIF = 10, variables with VIF>10 were excluded, leaving 10

core variables.

For the MaxEnt model, after initial screening, variables were

refined through Principal Component Analysis (PCA) and

importance evaluation: the PCA tool analyzed remaining

variables, and if the absolute correlation coefficient between two

variables exceeded 0.8, the one with lower contribution was

removed to reduce information redundancy; meanwhile, variable

importance was comprehensively assessed using contribution rates,

permutation importance, and the Jackknife test, ultimately retaining

16 variables to ensure the model preserved ecologically significant

drivers while eliminating redundancy (Phillips et al., 2006).
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2.4 Species distribution modeling process
and model evaluation

This study used the R software platform to implement four

commonly applied machine learning models (XGBoost, RF, SVM,

and LogBoost) and one species distribution model (MaxEnt) to

investigate the suitable habitat distribution of Marmota baibacina.

The five models selected for this study each have unique advantages

in classification and prediction tasks, with different theoretical

foundations. RF and XGBoost are powerful ensemble learning

algorithms adept at capturing complex nonlinear relationships and

handling high-dimensional data (Zhang et al., 2011). SVM is effective

in high-dimensional spaces and for cases where the number of

dimensions exceeds the number of samples (Li et al., 2017).

LogBoost (LogitBoost) is a boosting algorithm designed for

classification. MaxEnt is particularly robust for presence-only data,

making it a standard in SDM studies (Phillips et al., 2006; Elith et al.,

2008). To ensure optimal performance of both the individual

machine learning models and the MaxEnt model, the presence and

absence point datasets ofMarmota baibacinawere randomly divided,

with 25% allocated for validation and 75% for training (Li et al.,

2019). Ten repeated experiments (Logistic format) were conducted,

which enhanced the model’s ability to accurately predict the species’

potential range. Finally, all models were evaluated for accuracy using

the Receiver Operating Characteristic (ROC) curve and the Area

under the Curve (AUC) (Koshkina et al., 2020). The ROC curve is a

graphical tool for assessing the performance of binary classification

models, while the AUC represents the area under the ROC curve,

with values ranging from 0 to 1 (Luo et al., 2017). A higher AUC

value indicates better model performance. The impact of

environmental variables was comprehensively assessed using the

percentage contribution, permutation importance, and Jackknife

test from the MaxEnt model (An et al., 2023). The percentage

contribution represents the contribution of each climatic variable to

the geographic distribution ofMarmota baibacina during the training

process, while the permutation importance quantifies the decrease in

the model’s AUC value when the climatic variables in the training

points are randomly replaced (Araújo and New, 2007). The Jackknife

method is similar to cross-validation; it involves excluding one or

more sample points at a time and calculating a corresponding statistic

using the remaining sample points. This method analyzes the

importance of each individual variable in constructing the

distribution model (Dai et al., 2022).
2.5 Classification of suitable habitual level

The classification of model simulation results was performed

using the reclassification tool in spatial analysis, employing the

Jenks natural breaks classification method (He et al., 2023). The

Jenks natural breaks classification method is a technique that

minimizes within-class variance and maximizes between-class

variance when categorizing data (Zhai and Li, 2012; An et al.,

2023). This method ensures that the differences within each
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category are as small as possible, while the differences between

categories are as large as possible. The simulation results were

divided into four categories: unsuitable (0-0.2), low suitability (0.2-

0.3), moderate suitability (0.3-0.5), and high suitability (>0.5) (Jiang

et al., 2022), to determine the potential geographic distribution of

Marmota baibacina in the Tianshan region. After reclassification,

the number of grids in each category was calculated, and the area of

suitable habitat for Marmota baibacina under different climate

scenarios was computed.
3 Results

3.1 Model evaluation and contribution of
variables

The AUC results of the models used in this study were all above

0.9, indicating high accuracy (Figure 2). Machine learning models

identified 10 key variables for simulations, while MaxEnt selected 16

variables based on feature importance and correlation metrics. To

ensure comparability between MaxEnt and machine learning

approaches, MaxEnt was executed using both the 10-variable

subset and its native 16-variable set. All models achieved AUC

values exceeding 0.9, with Random Forest exhibiting the highest

AUC, followed by the 16 variables MaxEnt configuration. LogBoost

demonstrated the lowest accuracy among the evaluated models.

3.1.1 Impact of variables on the machine learning
model

For machine learning models, the importance of environmental

variables showed that the most significant variables for predicting

the suitable habitat of Marmota baibacina were Bio12 (11.21%),
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Grass symbol (10.86%), Elevation (10.26%), and Bio18 (10.25%) as

shown in Figure 3. After considering both the importance of each

variable and the VIF, the following variables were selected for the

five models: Bio18, Bio2, Bio11, Bio15, Grass symbol, Geomor,

River, Soil pH, Soil symbol and Vegetation, as shown in Figure 4.

This selection process ensured that the models retained ecologically

relevant predictors while minimizing multicollinearity, thereby

enhancing predictive accuracy.

3.1.2 Impact of variables on the MaxEnt model
The analysis of the importance of individual variables using the

Jackknife method (Figure 5). The contribution percentage and

permutation importance of Bio18, both demonstrating significant

influence, with a single-variable contribution rate of 42.8%

(Figure 6). The following variables, in order of importance, are

Soil symbol, Bio11, Bio15, Slope, NDVI, Geomor, Vegetation and

Grass symbol, with a total contribution rate exceeding 90%. In the

permutation importance ranking, the five most important variables

are Bio18, Bio15, Bio7, Slope, and River.

The results of the Jackknife cross-validation experiments

(Figure 5) show that the environmental variable that provides the

highest gain when used alone is Bio18, followed by Bio1, Grass

symbol, Soil pH and Bio11. This indicates that these environmental

variables contain information not captured by others. Moreover,

Bio18 has the highest regularized training gain, test gain, and AUC

value, with a regularized training gain greater than 1.6, a test gain

greater than 1.7, and an area under the receiver operating

characteristic curve (AUC) greater than 0.90. Taking into account

the contribution percentages, permutation importance values, and

Jackknife analysis, Bio18, Soil symbol, Bio11, Bio15, Slope, NDVI,

Geomor, Vegetation, and Grass symbol play key roles in the

construction of the MaxEnt model.
FIGURE 2

ROC curve and AUC values for the model for Marmota baibacina: (a) MaxEnt outputs using 10 machine learning-filtered variables; (b) MaxEnt
outputs using 16 algorithm-selected variables.
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FIGURE 3

Importance of environmental variables used for machine learning models.
FIGURE 4

Variance inflation factor (VIF) of the 10 selected environmental variables.
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3.2 Variables influencing the potential
geographic distribution of Marmota baibacina

3.2.1 Response curves of 10 major variables in
models

By plotting the response curves, a better understanding of the

dominant variables influencing the distribution of Marmota
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baibacina can be achieved. The relationship between the presence

probability of Marmota baibacina and the environmental variables

is determined based on the response curves. When the presence

probability exceeds 0.5, it is considered that the corresponding

environmental variable is favorable for the species’ habitat.

The response curves revealed consistent optimal ranges for

the key environmental variables across most machine learning
FIGURE 5

Jackknife test of the importance of environment variables for MaxEnt. Note: for each variable, the red bar represents the score obtained when all
climatic variables are used to simulate the distribution of Marmota baibacina; the dark blue bar represents the score obtained when only a single climatic
variable is used to simulate the distribution, where a higher score indicates greater importance of the variable. The light green bar represents the score
obtained when the climatic variable is excluded, and other climatic variables are used to model the geographic distribution of Marmota baibacina.
FIGURE 6

Percent contribution and permutation importance of environmental variables influencing the distribution of the Marmota baibacina.
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models (XGBoost, RF, SVM), with some variations observed

for LogBoost (Figure 7). The probability of presence peaked at

Bio18 (Precipitation of Warmest Quarter) values between 150 and

180 mm. Similarly, optimal ranges were identified for Bio2 (Mean

Diurnal Range) at approximately 14°C, Bio11 (Mean Temperature

of Coldest Quarter) below -15°C, and Bio15 (Precipitation

Seasonality) with a coefficient of variation around 90. For

categorical and semi-quantitative variables (Vegetation, Grass

symbol, Geomor, Soil symbol), the models consistently predicted

high probabilities of presence in alpine steppe, alpine meadows,

river valleys, alluvial regions, and specific soil types like alpine

meadow soils. The response to Soil pH generally showed a peak

near neutral conditions (pH ~7.0). Notably, the SVMmodel showed

a more gradual increase in probability with increasing Bio18, Bio2,

and Bio15 compared to the sharper peaks in XGBoost and RF.

Conversely, the LogBoost model predicted an exceptionally high

and stable probability of presence for most variables, with a sharp

decline only when Bio18 exceeded 160 mm.
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3.2.2 Response curves of major variables in
MaxEnt model

Analysis of response curves from both the machine learning

ensemble and the MaxEnt model identified Bio18 as the most

influential driver of habitat suitability for Marmota baibacina

(Figure 7). Both modeling approaches converged on an optimal

precipitation range of approximately 150–180 mm, beyond which

suitability declined.

The response curves of environmental variables selected through

MaxEnt modeling are presented in Figure 8. The distribution

probability of Marmota baibacina increases and then decreases as

Bio18 increases. Precipitation around 150–200 mm in the warmest

quarter is favorable for Marmota baibacina’s survival, with the

distribution probability reaching its maximum of 60% when

precipitation is around 165 mm. When precipitation exceeds 165

mm, the distribution probability gradually declines. The Soil symbol

response curve shows that alpine cold desert soils, alpine meadow

soils, chestnut-calcareous soils, and steppe soils are more suitable for
FIGURE 7

Response curves and prediction probabilities of each dominant variable for machine learning models.
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Marmota baibacina’s habitat. The distribution probability is highest

(60%) when the soil symbol is steppe soil. The response curves for the

Bio11 and Bio15 show that when the temperature is below -15°C and

the precipitation seasonality coefficient exceeds 80, the distribution

probability of Marmota baibacina gradually increases. The slope

response curve shows that the slope range of 2°–8° is most suitable for

Marmota baibacina’s habitat. The distribution probability sharply

increases between 2° and 4°, reaching a maximum of 70%, and then

sharply decreases when the slope exceeds 4°. From the NDVI

response curve, Marmota baibacina is most suited to areas with an

NDVI value between 0.1 and 0.55. The maximum distribution

probability of about 60% occurs when the NDVI is around 0.45.

According to the Geomor response curve, Marmota baibacina is

more likely to occur in river valleys, alluvial plains, and colluvial

regions, with a distribution probability exceeding 0.5. Furthermore,

the response curves for vegetation symbol and steppe variables show

that alpine steppe, alpine meadows, and temperate steppe are more

suitable for Marmota baibacina’s survival. Overall, these dominant

variables suggest those summer moisture and soil symbols are the

primary limiting factors for Marmota baibacina’s habitat in the

Tianshan Mountains of Xinjiang. Factors such as the Bio11, Slope,

NDVI, Vegetation, and Grass symbol also play important roles.
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3.3 Potential geographical distribution of
Marmota baibacina in Xinjiang under
present climatic condition

The potential distribution area of Marmota baibacina is shown

in Figure 9. Under the current climate scenario, its potential suitable

habitat is primarily distributed across Bayingolin Mongolian

Autonomous Prefecture, Hejing County, Ili Kazakh Autonomous

Prefecture, and the western part of Bortala Mongolian Autonomous

Prefecture. The total suitable habitat area forMarmota baibacina in

the Tianshan Mountains of Xinjiang ranges from 2.75×104 km² to

13.59×104 km². The area predicted by the MaxEnt model is the

smallest, while the area predicted by RF is the largest, mainly

composed of low suitability and moderate suitability areas, which

cover 3.55×104 km² and 6.40×104 km², respectively. These areas are

mainly distributed in the northern and southern regions of the

Tianshan Mountains in Xinjiang, including the Bogda Peak in

the northern Tianshan. The area of high suitability predicted by

the XGBoost model is the largest, covering 3.88×104 km², and is

mainly distributed in Bayingolin Mongolian Autonomous

Prefecture HeJing County. Among high-suitability zones

predicted by five machine learning models after variable
FIGURE 8

Response curves and prediction probabilities of each dominant variable for MaxEnt.
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screening, MaxEnt produced the smallest area covering 0.62×104

km²; this value further decreased to 0.42×104 km² when using

MaxEnt’s native 16-variable set.
3.4 Potential suitable areas for Marmota
baibacina in Xinjiang under future climatic
change scenarios

Based on three common socio-economic pathways proposed by

the IPCC (SSP1~RCP2.6, SSP3~RCP7.0, SSP5~RCP8.5), the

geographic distribution of Marmota baibacina was predicted

under three future climate change scenarios for the periods of

2041–2070 and 2071–2100, as shown in Figure 10. A comparison in

Table 2 indicates that, under all five models, the area of future

potential suitable habitats for Marmota baibacina continues to
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decrease, although the overall spatial patterns remain highly

consistent with the current period.

Under the three future climate scenarios, in the SSP126 scenario,

the XGBoost model predicts an increase in low suitability areas and a

decrease in high and moderate suitability areas, with the total suitable

habitat area reducing by 0.7×104 km² by 2041–2070. The RF model

shows an increase in low andmoderate suitability areas, with a decrease

in high suitability areas, resulting in an overall increase of 2.87×104 km²

in suitable habitat area. In contrast, the SVM and MaxEnt models

predict a decrease in low, moderate, and high suitability areas, with

total suitable habitat areas decreasing by 5.21×104 km², 0.58×104 km²,

and 0.35×104 km², respectively. The LogBoost model predicts a

reduction in low and moderate suitability areas but an increase in

high suitability areas, leading to a total increase of 0.53×104 km² in

suitable habitat area. By 2071–2100, these trends are somewhat

mitigated, and the total suitable habitat area slightly increases.
FIGURE 9

Geographical distribution of Marmota baibacina under present climate condition: (a) MaxEnt outputs using 10 machine learning-filtered variables;
(b) MaxEnt outputs using 16 algorithm-selected variables.
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Under the SSP370 and SSP585 scenarios, these trends intensify

further. The XGBoost, SVM, LogBoost, and two MaxEnt models

predict a reduction in the total suitable habitat area for Marmota

baibacina, with the decrease being particularly pronounced under

the high emission scenario (SSP585). High suitability areas shrink

further to 0.35×104–3.02×104 km², and the regions where suitable

habitats decrease are mainly concentrated in Bayingolin Mongolian

Autonomous Prefecture HeJing County. Spatially, the contraction

of suitable habitats is most pronounced in southern Tianshan, this

migration may compress available grazing lands for livestock,

intensify competition between marmots and domestic herbivores,

and further degrade already fragile alpine meadows. The reduced

habitat area coupled with concentration in specific regions could

elevate human exposure to plague-infected fleas, particularly in

pastoral zones where herders and livestock frequently interact with

marmot burrows.

Based on the predictions of the five models, the suitable

distribution area of the Tianshan marmot under current climatic

conditions and different future climate scenarios shows significant

differences, as illustrated in Table 2. Under current climatic
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conditions, the RF model predicts the largest total suitable habitat

area, reaching 13.59×104 km². In contrast, the MaxEnt model

predicts the smallest total suitable habitat area, with only

2.75×104 km², and the high-suitability area is limited to 0.42×104

km². Under future climate scenarios, the predictions of suitable

habitat areas exhibit diverse trends across models. In the SSP126

scenario for 2041–2070, the RF model predicts the largest total

suitable habitat area, reaching 16.46×104 km², the highest among

the five models, including a high-suitability area of 2.54×104 km².

Compared to the current climate scenario, the high-suitability area

decreases slightly. Conversely, the MaxEnt model predicts the

smallest total suitable habitat area at 2.40×104 km², with the high-

suitability area further reduced to 0.39×104 km². As emission

intensity increases under the SSP585 scenario, the high-suitability

area predicted by all models shrinks further. For example, the high-

suitability area predicted by the XGBoost model decreases from

3.88×104 km² under current conditions to 2.71×104 km².

In terms of regional distribution, the high-suitability areas

under current climatic conditions are mainly concentrated in

parts of Bayingolin Mongolian Autonomous Prefecture, Ili
FIGURE 10

Geographical distribution of Marmota baibacina under future climate conditions: (a) MaxEnt outputs using 10 machine learning-filtered variables;
(b) MaxEnt outputs using 16 algorithm-selected variables.
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TABLE 2 Area of suitable habitat area of Marmota baibacina under different scenarios in 2041–2070 and 2071-2100.

Model Time_scenarios
Unsuitable area

(×104km2)
Low suitable area

(×104km2)
Moderately suitable

area (×104km2)
High suitable area

(×104km2)

XGBoost

present 32.02 1.79 2.62 3.88

2041-2070_SSP126 32.73 2.00 2.18 3.39

2041-2070_SSP370 33.30 1.90 2.03 3.07

2041-2070_SSP585 33.45 1.86 2.08 2.91

2071-2100_SSP126 32.37 2.03 2.27 3.64

2071-2100_SSP370 33.58 1.82 2.10 2.81

2071-2100_SSP585 33.70 1.87 2.03 2.71

RF

present 26.71 3.55 6.40 3.64

2041-2070_SSP126 23.85 7.02 6.90 2.54

2041-2070_SSP370 24.43 7.13 6.41 2.33

2041-2070_SSP585 24.18 7.46 6.44 2.23

2071-2100_SSP126 24.24 6.52 6.77 2.78

2071-2100_SSP370 24.31 7.69 6.08 2.22

2071-2100_SSP585 24.41 7.85 5.85 2.20

SVM

present 29.98 3.07 3.59 3.67

2041-2070_SSP126 35.19 1.49 1.47 2.15

2041-2070_SSP370 35.73 1.36 1.20 2.02

2041-2070_SSP585 35.73 1.36 1.24 1.98

2071-2100_SSP126 34.56 1.62 1.72 2.40

2071-2100_SSP370 35.99 1.11 1.17 2.04

2071-2100_SSP585 36.02 0.99 1.17 2.13

LogBoost

present 32.94 2.77 1.93 2.66

2041-2070_SSP126 32.41 2.14 1.75 4.00

2041-2070_SSP370 33.31 1.90 1.58 3.52

2041-2070_SSP585 33.36 1.93 1.53 3.48

2071-2100_SSP126 32.32 2.18 1.73 4.08

2071-2100_SSP370 33.66 1.96 1.47 3.22

2071-2100_SSP585 34.00 1.89 1.39 3.02

(a)MaxENT

present 35.52 3.24 1.31 0.67

2041-2070_SSP126 36.13 2.96 0.96 0.62

2041-2070_SSP370 36.66 2.30 1.03 0.68

2041-2070_SSP585 36.50 2.38 1.06 0.73

2071-2100_SSP126 36.67 2.27 1.07 0.66

2071-2100_SSP370 36.49 2.46 1.05 0.66

2071-2100_SSP585 36.60 2.36 1.05 0.66

(b)MaxENT

present 37.53 1.32 1.01 0.42

2041-2070_SSP126 37.87 1.09 0.92 0.39

2041-2070_SSP370 38.05 1.05 0.81 0.36

(Continued)
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Kazakh Autonomous Prefecture, and Bortala Mongolian

Autonomous Prefecture. These regions are also where the

reduction in suitable habitats is most pronounced under future

climate conditions. Particularly under the SSP585 scenario, the

high-suitability areas in these regions decrease sharply.
4 Discussion

4.1 Model evaluation

The AUC values of the models used in this study were all above

0.9, indicating a high level of accuracy, but significant performance

differences were observed across the models. The RF model

predicted the largest total suitable habitat area, attributable to its

ensemble structure that aggregates predictions from multiple

decision trees through bootstrap aggregation (bagging). This

approach effectively captures complex nonlinear interactions

among environmental variables while mitigating overfitting,

thereby maximizing habitat inclusivity. In contrast, the XGBoost

model, being highly sensitive to parameter settings and suitable for

complex variable structures, performs slightly worse than the RF

model. The SVM model, which performs well on high-dimensional

data, requires extensive parameter tuning, which led to its slightly

inferior performance in this study. The LogBoost model performed

relatively poorly, possibly due to its dependence on the distribution

of training samples, which caused overfitting and reduced its ability

to fit nonlinear relationships. The models predicted the distribution

ofMarmota baibacina under current and future conditions, and the

results indicate that climate change will have a significant impact on

the species’ habitat area and this finding were consistent with (An

et al., 2023). A comparative analysis revealed that using the 16

environmental variables screened by the MaxEnt model alone

yielded slightly higher prediction accuracy than the RF model,

followed by the XGBoost and SVM models. The LogBoost model

showed the poorest performance among all (Zhang et al., 2011; Luo

et al., 2017). This hierarchy in performance can be briefly attributed

to the respective algorithms’ strengths: MaxEnt’s probabilistic

framework is particularly adept at handling presence-only data

and capturing niche boundaries, which may explain its superior

accuracy with its own variable set (Elith et al., 2008). RF, while

robust and capable of modeling complex interactions, might be

slightly less optimized for this specific data structure than the

specially tuned MaxEnt (Zhang et al., 2011). The poorer

performance of LogBoost could stem from its higher sensitivity to
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noisy data and potential overfitting in this ecological modeling

context. The LogBoost model showed the poorest performance

among all (Li et al., 2019). In terms of predicted suitable habitat

area, the RF model estimated the largest total suitable area, while the

two MaxEnt models predicted the smallest total suitable area.

However, further validation indicated that despite its superior

statistical accuracy, the MaxEnt model yielded conservative

predictions of suitable habitats, deviating from field survey data

(Guo et al., 2023). In contrast, the RF model demonstrated excellent

agreement with actual sampling data, particularly in accurately

delineating highly suitable areas on the northern of the Tianshan

Mountains (Koshkina et al., 2020; An et al., 2023). Therefore,

considering both model accuracy and ecological plausibility, the

RF model was identified as the optimal predictive tool.

Ecologically, MaxEnt’s focus on slope (2°–8°) and NDVI (0.1–

0.55) aligns with field observations of marmots’ preference for

gentle terrain and moderate vegetation cover—critical for burrow

stability and predator detection (Koshkina et al., 2020). In contrast,

machine learning models emphasized climatic variables (Bio18,

Bio2, Bio11, Bio15) contributing >70% to predictions, reflecting

the dominance of seasonal water and temperature dynamics in

shaping broad-scale marmot distribution. This divergence is not a

limitation but a strength: MaxEnt captures fine-scale microhabitat

features that machine learning models may overlook, while

machine learning models identify macroclimatic constraints that

presence-only models cannot fully resolve (Araújo and New, 2007).
4.2 Environmental variables evaluation

The study considered 29 environmental variables, and after

selection, 10 key variables with higher contributions to the five

models were chosen, as well as 16 key environmental variables for

the MaxEnt model. Machine learning models (RF, XGBoost)

prioritized climatic variables (Bio18, Bio2, Bio11, Bio15),

collectively contributing >70% to predictions, reflecting the

dominance of seasonal water and temperature dynamics in alpine

ecosystems (Zhang et al., 2011). In contrast, MaxEnt emphasized

slope, NDVI, and Bio18, indicating that presence-only models rely

more on proximate habitat features like vegetation productivity and

microtopography (An et al., 2023). This divergence underscores the

impact of data type: models requiring presence-absence data excel

at detecting broad climatic constraints, while presence-only models

depend on fine-scale environmental proxies (Araújo and New,

2007). Notably, Bio18 emerged as a universal driver, with optimal
TABLE 2 Continued

Model Time_scenarios
Unsuitable area

(×104km2)
Low suitable area

(×104km2)
Moderately suitable

area (×104km2)
High suitable area

(×104km2)

2041-2070_SSP585 37.99 1.08 0.86 0.34

2071-2100_SSP126 37.95 1.09 0.86 0.37

2071-2100_SSP370 38.01 1.08 0.80 0.38

2071-2100_SSP585 37.94 1.10 0.88 0.35
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values at 150–180 mm, aligning with field observations ofMarmota

baibacina’s preference for mesic alpine meadows (Koshkina et al.,

2020). Soil symbol and slope (2°- 8°) were critical in MaxEnt,

suggesting that edaphic properties and terrain gradient are essential

for modeling species presence in data-scarce environments (Wang

et al., 2024). In contrast, the study by Liao et al. (2020) used fewer

key variables, focusing primarily on the effects of temperature and

precipitation. This study not only included these climatic variables

but also comprehensively considered factors such as symbol,

vegetation, and topography, making the model more

comprehensive and the predictions more precise (Zhao et al.,

2023). Furthermore, although Li et al. (2022) also considered

different climate scenarios (e.g., RCP2.6 and RCP6.0), their time

frame only extended to 2080. In this study, more climate scenarios

(e.g., SSP126, SSP370, SSP585) and a longer time span (up to 2100)

were included, providing a deeper insight into the far-reaching

effects of climate change on the future distribution of Marmota

baibacina (Wang et al., 2021). This detailed approach not only

improved the spatial accuracy of the model but also further

demonstrated the long-term impact of climate change on species

survival over time, ensuring the comprehensiveness and objectivity

of the analysis (Li et al., 2025). Existing studies on the potential

distribution ofMarmota baibacina show that future climate change

will significantly affect the species’ suitable habitat area, with a

decreasing trend (An et al., 2023). This study’s findings are

consistent with previous research results (Wang et al., 2024).

However, an increasing number of studies are now focusing on

ensemble modeling of individual models. Thuiller et al. (2009)

proposed the first computational platform framework, BIOMOD,

which integrates multiple species distribution models to improve

classification accuracy and precision. Ensemble models, through

weighted averaging or voting mechanisms, mitigate single-model

biases and enhance robustness (Araújo and New, 2007; Marmion

et al., 2009). For instance, Banda et al. (2024) significantly improved

the accuracy of endangered Apalis flavigularis distribution

predictions by integrating MaxEnt, RF, and GLM. Our focus on

standalone models aimed to rigorously assess algorithm-specific

suitability for alpine species habitat modeling, rather than

optimizing predictive accuracy. Future studies could build on our

multi-model comparison to explore Bayesian averaging or dynamic

weighting strategies, reconciling discrepancies to enhance

ecological plausibility.
4.3 Main environmental variables affecting
the distribution of the Marmota baibacina

The machine learning models and the MaxEnt model differ in the

selection of variables. The MaxEnt model assumes the independence of

variables and directly analyzes the contribution of environmental

factors (Phillips et al., 2006), while machine learning models are

based on data training and assess the interactions between variables

through feature importance (Peters et al., 2007; Zhang et al., 2011).

Future research could further integrate the advantages of both

approaches to improve prediction accuracy and spatial adaptability.
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The dominant variables driving Marmota baibacina’s distribution—

identified via machine learning models (10 variables) and MaxEnt

(16 variables)—are ecologically meaningful, supported by both habitat

requirements of the species and field-validated evidence, rather than

mere repetition of model results. Bio18 (150–180 mm optimal) is the

universal primary driver (42.8% contribution in MaxEnt; >25%

cumulative in machine learning models) because it directly controls

soil moisture—an essential factor for alpine grass growth (the core food

source of Marmota baibacina) (Koshkina et al., 2020). Field surveys

confirm that mesic meadows (Bio18: 150–180 mm) support 2–3 times

higher marmot burrow density than arid steppes (Bio18 < 100 mm)

(An et al., 2023). Bio11 (coldest quarter temperature < -15°C) ensures

sufficient hibernation duration (6–8 months at high elevations),

a physiological adaptation to conserve energy in alpine cold

(Wang et al., 2024). Bio15 > 55 in MaxEnt; >80 in machine learning

reflects stable moisture supply, avoiding extreme droughts/floods that

disrupt foraging and burrow stability (Stenseth et al., 2008).

Field observations revealed that, in addition to climate variables,

soil also play a role in species distribution. Therefore, these

environmental variables were included in the model construction

for this study. Vegetation provides essential food and habitat for

Marmota baibacina, influencing their nutritional status and ability

to avoid predators (Wang et al., 2024). As vegetation height and

coverage decrease, Marmota baibacina become better able to detect

predators, thus reducing predation risks (Chen et al., 2017). Soil

type (alpine meadow/steppe soils preferred) and slope (2°–8°

optimal) are critical in MaxEnt due to their roles in burrow

construction and foraging efficiency. Alpine meadow soils have

high organic matter content (10–15% higher than desert soils) and

good drainage, reducing burrow collapse risk (An et al., 2023).

Gentle slopes (2°–8°) balance two needs: steep slopes increase

burrow instability, while flat areas have dense shrub cover that

obstructs predator detection. NDVI (0.1–0.55 optimal) serves as a

proxy for vegetation productivity—values <0.1 indicate sparse

forage, and >0.55 indicate excessive shrubs, both unsuitable for

marmots. Compared with other studies Liao et al. (2020), this study

includes more environmental variables, such as Soil symbol and

topography, making the models more comprehensive and the

predictions more accurate. From the results of all five models, it

is evident that Bio18 is the primary factor affecting the distribution

of Marmota baibacina. The species thrives in areas with dense

vegetation, such as alpine steppe and alpine meadows, where

precipitation directly impacts soil moisture and vegetation

growth. According to the response curves, Bio18 values between

150 and 180 mm are more suitable for Marmota baibacina’s

survival. This is consistent with the study’s findings that Marmota

baibacina is most likely to be found in alpine cold desert soils, alpine

meadow soils, chestnut-calcareous soils, and steppe soils, with the

highest distribution probability at slopes between 2° and 8° and

NDVI values between 0.1 and 0.55. According to Li et al. (2022),

vegetation and Soil symbol also play key roles in marmot habitat

selection, consistent with the findings in this study. The potential

distribution of Marmota baibacina is not only influenced by

climate, topography, soil, and vegetation but also by human

activities. Human infrastructure, such as villages and roads,
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causes wildlife to avoid these areas, potentially negatively impacting

their behavior, reproduction, or survival (Bergström and Skarpe,

1999). The construction of buildings and roads can lead to soil

compaction and reduced vegetation coverage (Chen et al., 2017).

Therefore, the predicted suitable habitats in this study may be

overestimated. Future research should integrate climate, biological

and human activity factors to improve the accuracy of

habitat predictions.
4.4 Impact of climate change on the
potential distribution of the Marmota
baibacina’s suitable habitat

The suitable habitat of Marmota baibacina is primarily

concentrated in mid- to high-altitude areas, ranging from 1,500

meters to above 3,500 meters, which is consistent with the

distribution point coordinates collected in the field, indicating a

good model simulation. Under both current and future climate

scenarios, the potential suitable habitat of Marmota baibacina is

mainly distributed in the central part of the Tianshan Mountains in

Xinjiang, including regions such as Bayingolin Mongolian

Autonomous Prefecture HeJing County, Ili Kazakh Autonomous

Prefecture, and the western part of Bortala Mongolian Autonomous

Prefecture. These areas show a higher probability of Marmota

baibacina’s presence.

According to the predictions under future climate scenarios,

climate change will lead to significant ecological changes. Rising

temperatures and changes in precipitation patterns will cause both

the expansion and contraction of habitats (Jiang et al., 2023; Kang

et al., 2023). Previous studies have shown that, by the mid-21st

century, precipitation in Xinjiang is expected to increase by 10% to

25%, with temperatures rising by 1.5°C to 2°C; by the end of the

century, precipitation could increase by more than 25%, and

temperatures may rise by 4°C to 6°C (Wang et al., 2021). This

warming shortens Marmota baibacina’s hibernation period by 10–

14 days (An et al., 2023), reducing energy storage for reproduction

and lowering juvenile survival by 22%. Additionally, advanced plant

phenology reduces overlap between peak forage quality (grasses,

sedges) and the marmot’s active period, limiting fat accumulation

before hibernation (Parmesan and Yohe, 2003; Post et al., 2008).

While total precipitation in Xinjiang may increase by 10%-25% by

mid-century, the intensification of precipitation seasonality poses

significant threats (Stenseth et al., 2008). More frequent summer

droughts reduce grass cover by 10%-15%, while heavy winter

snowfall blocks burrow entrances, causing substantial juvenile

mortality (Linné Kausrud et al., 2007). Under the high-emission

SSP585 scenario, precipitation in the warmest quarter decreases by

15%-20% in the southern Tianshan, transforming crucial mesic

meadows into arid steppes with insufficient forage (Wang

et al., 2021).

Climate warming drives progressive upward shifts of alpine

vegetation belts at 30–50 meters per decade, compressing Marmota

baibacina habitat into increasingly isolated high-elevation patches

(Chen et al., 2017). This fragmentation is most severe in the arid
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southern Tianshan (e.g., Hejing County), where habitat contraction

exceeds northern regions by 2–3 times (An et al., 2023). These

isolated patches curtail gene flow and intensify competition with

livestock for dwindling forage resources, further exacerbating alpine

meadow degradation (Prakash and Ghosh, 2012). Our findings,

particularly those derived from the MaxEnt model, resonate with

other studies on steppe rodents in the region (An et al., 2023),

reinforcing that climate change poses substantial threats to species

habitats through significant range reduction. The variation in

predictions between models reflects their different sensitivities to

environmental variable interactions and habitat definitions (Araújo

and New, 2007; Zhang et al., 2011). Future research should

prioritize ensemble modeling approaches to reconcile these

differences and yield more robust forecasts.
4.5 Limitations and future directions

This study has three primary limitations. First, the pseudo-

absence points generated through random sampling may introduce

spatial bias, and future studies could optimize this process using

environmental stratification. While our occurrence data were

collected during a single-year expedition, the use of long-term

climate normals (1970-2000) for modeling mitigates the direct

impact of interannual climatic variability on our projections.

Nevertheless, multi-year survey data would be beneficial to

account for potential population fluctuations and further validate

model stability over time. Second, the exclusion of human

disturbances (e.g., roads, grazing intensity) from the models may

lead to overestimations of high-suitability areas. Third, the static

time frame fails to account for lag effects in species migration and

vegetation succession, potentially underestimating habitat

fragmentation. While ensemble modeling was not adopted in this

work, the study establishes a methodological foundation for multi-

algorithm comparisons in alpine species research. Future efforts

could combine ensemble predictions with dispersal models to

dynamically simulate distribution shifts (Beaumont et al., 2016).

Additionally, incorporating participatory GIS (PGIS) to merge

herder traditional knowledge with spatial data could significantly

enhance the practical applicability of predictions.
5 Conclusions

This study successfully constructed five species distribution

models, including XGBoost, RF, SVM, LogBoost, and MaxEnt, by

considering factors such as climate, soil, topography, geomorphology,

hydrology, and vegetation. These individual models were used to

analyze the potential suitable habitat of Marmota baibacina under

current and future climate change scenarios. The results show that

key environmental factors influencing the geographic distribution of

Marmota baibacina include Bio18, Bio11, Bio15, Grass symbol,

Geomor, Soil pH, Soil symbol, and Vegetation. The study also

predicted the potential geographic distribution of Marmota

baibacina under the three shared socio-economic pathways
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(SSP126, SSP370, and SSP585) for the future. The results show that

climate change will continue to impact the potential distribution of

Marmota baibacina during the periods of 2041–2070 and 2071–2100.

Currently, Marmota baibacina is mainly distributed across the

northern and southern of the Tianshan Mountains in Xinjiang.

Under future climate scenarios, the extent of low, moderate, and

high suitability habitats for Marmota baibacina will change to

varying degrees across different models, with high-suitability areas

continually shrinking. Although the predicted suitable habitat for

Marmota baibacina may decrease, its ecological adaptability and

reproductive capacity may still pose a threat to steppe ecosystem

security. The multi-model framework employed here not only

quantifies climate-driven risks but also provides a decision matrix

for balancing biodiversity conservation and public health priorities in

Xinjiang’s ethnic pastoral communities. Therefore, this study

provides scientific evidence for the monitoring of the potential

distribution of Marmota baibacina and plague prevention.
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