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In response to the bottleneck problems of weak landslide crack morphology, 
hidden features, and limited extraction accuracy in complex terrain masking 
and dense vegetation coverage environments, as well as the shortcomings 
of existing methods in cross scale and multi-source heterogeneous data 
fusion, this study proposes an automatic landslide crack extraction algorithm 
based on InSAR and UAV LiDAR point cloud collaboration. This algorithm 
relies on SBAS InSAR technology to achieve large-scale, long-term surface 
deformation monitoring, and identifies landslide deformation active areas 
through deformation rate threshold division and spatial clustering. In terms of 
fusion mechanism, a combination of control point matching and ICP (Iterative 
Closest Point) algorithm is adopted to accurately register the deformation 
zone data obtained by InSAR monitoring with the point cloud data obtained 
by UAV LiDAR, achieving effective fusion of cross scale and multi-source 
heterogeneous data. On this basis, guide the UAV LiDAR to conduct targeted 
fine scanning and obtain high-resolution 3D point cloud data. Based on 
point cloud, a three-dimensional model of landslide crack development area 
is constructed, and multidimensional morphological features such as width, 
direction, slope, and curvature are extracted. Discriminant feature vectors are 
constructed, and a probabilistic neural network (PNN) model is introduced 
to achieve probability classification of crack pixels through Gaussian kernel 
density estimation and Bayesian decision mechanism. Finally, edge extraction 
is optimized by Canny operator to achieve automated and high-precision 
recognition of crack contours. Fifty independent test cases were selected for the 
experiment, covering various types of landslides such as shallow soil landslides 
and rock landslides. The results showed that the proposed method performed 
well in multi vegetation covered environments, with IoU stability above 0.94, 
significantly better than existing mainstream methods, and had good robustness 
and engineering applicability.

KEYWORDS

InSAR, UAV lidar, deformation rate, landslide cracks, automatic extraction, probabilistic 
neural network 

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1715960
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1715960&domain=pdf&date_stamp=2025-11-28
mailto:yangbiao50031@163.com
mailto:yangbiao50031@163.com
https://doi.org/10.3389/feart.2025.1715960
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1715960/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1715960/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1715960/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1715960/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Deng et al. 10.3389/feart.2025.1715960

 

1 Introduction

Landslides are among the most common and highly destructive 
geological hazards worldwide, with their destabilization processes 
often accompanied by the initiation, propagation, and breakthrough 
of surface cracks (Yunus et al., 2025). These cracks serve as 
critical early indicators of slope instability (Sari et al., 2024), 
reflecting not only internal stress adjustments and deformation 
concentration within the slope body but also providing vital 
evidence for delineating potential landslide areas and predicting 
disaster trends (Yamaguchi and Kasai, 2022). Therefore, achieving 
early, precise identification and dynamic monitoring of landslide 
cracks is of paramount importance for establishing a geological 
disaster prevention and mitigation system (Ozturk, 2022).

However, traditional landslide crack monitoring methods (such 
as manual field inspections and ground surveys) suffer from low 
efficiency, limited spatial coverage, and high subjectivity, making 
them ill-suited to meet the demand for high-precision, real-
time acquisition of crack information in complex terrain and 
vegetation-covered conditions (Mahesh et al., 2023). Particularly 
in areas with significant topographic undulations and dense 
vegetation, where fracture morphology is subtle and spatial 
characteristics are concealed, the applicability and reliability of 
traditional methods are significantly reduced (Tebbouche et al., 
2022). In recent years, with the advancement of remote sensing 
technology, numerous scholars have attempted to incorporate 
machine learning and remote sensing image analysis methods 
to achieve automated identification of landslide fractures. For 
instance, Khadka et al. (2025) combined multi-source geographic 
features with a random forest model to identify landslide areas, but 
this method has limited capability to capture complex nonlinear 
relationships among features. Lekshmanan and George (2023) 
proposed a crack identification method based on Generative 
Adversarial Networks (GANs), yet it is prone to pattern collapse, 
resulting in insufficient diversity of generated samples. Yang et al. 
(2025) employed short-time Fourier transform for frequency-
domain feature analysis, yet exhibited weak responsiveness to 
slow-creeping landslides and tended to overlook deep-seated 
fracture information (Shameem et al., 2022) utilized SVM models 
for susceptibility zoning, but their cross-regional generalization 
capability was poor, struggling to address challenges posed by 
geological environmental variations. Overall, existing methods 
predominantly rely on single data sources or isolated models, 
failing to effectively integrate multi-scale, multi-temporal remote 
sensing information. Particularly in complex environments with 
terrain occlusion and vegetation interference, extraction accuracy 
and robustness remain unsatisfactory.

InSAR technology possesses the capability for large-scale, high-
precision, long-term surface deformation monitoring, becoming 
a crucial tool for early landslide detection (Tiwari et al., 2024). 
However, its effectiveness is constrained by side-view geometry, 
atmospheric delay, and vegetation penetration, often resulting in 
monitoring blind spots and signal decoherence in steep terrain 
or areas with high vegetation coverage (Diels et al., 2022). UAV 
LiDAR technology can actively acquire high-precision 3D point 
clouds, clearly revealing micro-topography, but lacks temporal 
monitoring capabilities, making it difficult to directly reflect the 
dynamic deformation process of landslides (Devaraj et al., 2022). 

Consequently, no single technology can comprehensively meet the 
demands of landslide crack extraction. To address these challenges, 
this paper proposes an automated landslide crack extraction 
algorithm integrating InSAR and UAV LiDAR point clouds. By 
effectively coupling multi-source remote sensing data, it aims to 
resolve issues such as weak crack features, low extraction accuracy, 
and insufficient generalization capabilities of existing methods 
in complex environments. This approach fully leverages InSAR’s 
macro-deformation monitoring capabilities and LiDAR’s high-
resolution 3D morphology capture. It incorporates a Probabilistic 
Neural Network (PNN) for feature fusion and fracture probability 
classification, achieving an integrated workflow from deformation-
guided to detailed fracture extraction. This provides a novel 
technical pathway for early identification and monitoring/early 
warning of landslide hazards. 

2 Automatic extraction of landslide 
cracks

2.1 Establishing an automatic extraction 
framework for landslide cracks

Landslide cracks are key precursor indicators of landslide 
instability. Due to their complexity, diversity, and limitations 
in monitoring environments (such as terrain obstruction and 
vegetation cover), a single technique struggles to comprehensively 
and accurately capture and extract all characteristic information 
of landslide cracks (Qiu et al., 2025). Therefore, this study couples 
InSAR and UAV LiDAR technologies. Specifically, InSAR’s macro-
deformation monitoring capability compensates for UAV LiDAR’s 
limited monitoring range and difficulty in acquiring long-term 
deformation time series data. Conversely, UAV LiDAR’s high-
resolution 3D detection advantage addresses InSAR’s shortcomings 
in “insufficient micro-morphological characterization.” Specifically: 
The deformation field provided by InSAR serves as prior knowledge 
to locate the active deformation zones (i.e., crack development areas) 
of the landslide, thereby guiding UAV LiDAR for detailed scanning 
and data processing in key regions. Subsequently, based on LiDAR 
point cloud information, the three-dimensional morphological 
features of cracks are extracted, enabling the automatic identification 
of landslide cracks. The coupling of these two technologies achieves 
complementary “deformation information + 3D morphological 
information,” enabling precise, automated extraction of landslide 
cracks from ‘surface’ to “point” scale. This establishes an InSAR-UAV 
LiDAR point cloud coupled automatic landslide crack extraction 
framework, as shown in Figure 1.

Within the framework depicted in Figure 1, InSAR technology 
(SBAS–InSAR, Small Baseline Set Interferometric Synthetic 
Aperture Radar—an optimized InSAR method) is employed for 
macro-level positioning. Specifically, SBAS–InSAR monitors surface 
deformation rates across extensive areas for rapid identification 
of active deformation zones (landslide crack development areas). 
This provides clearly defined target regions for subsequent detailed 
detection, avoiding blind exploration and enhancing detection 
efficiency. After identifying landslide fracture zones, UAV LiDAR 
technology is employed for detailed extraction. This involves 
(1) acquiring high-precision laser point cloud data of the area 
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FIGURE 1
Automatic extraction framework for landslide cracks under InSAR-Unmanned Aerial Vehicle LiDAR point cloud coupling.

using UAV LiDAR, (2) performing 3D modeling to obtain three-
dimensional morphological characteristics of landslide fractures, 
and (3) analyzing this information with intelligent learning 
algorithms to achieve landslide fracture extraction. 

2.2 Identification of active landslide 
deformation zones using SBAS-InSAR 
technology

SBAS-InSAR technology is a synthetic aperture radar (SAR) data 
processing method based on the principle of short spatiotemporal 
baseline interferometry. It achieves high-precision monitoring 
of ground deformation through multi-reference image time-
series analysis (Qadami et al., 2023). The fundamental approach 
to locating landslide deformation hotspots using SBAS-InSAR 
technology involves three key steps: constructing a small 
baseline set through multi-reference image time-series analysis; 
extracting high-precision surface deformation phase information 
via phase unwrapping and error correction techniques; and 
subsequently deriving surface deformation rates. Based on the 
spatial heterogeneity characteristics of deformation rates and 
combined with predefined thresholds, pixel-level screening and 
spatial clustering are employed to identify regions with anomalous 
deformation rates, enabling precise localization of landslide 
deformation hotspots (areas with developed landslide fractures).

The primary process for locating landslide deformation hotspots 
using SBAS-InSAR technology can be described as follows: 

1. Data Preparation. Multi-scene terrain SAR images covering 
the target monitoring area over a specific time frame 
are collected via satellite active microwave remote sensing. 
These images must possess sufficient overlap and span the 
potential landslide activity period. Simultaneously, to ensure 
continuity in the terrain SAR image time series, eliminate 
geometric distortion and radiometric differences between 
images, and guarantee that interferometric results accurately 
reflect actual ground deformation, the SAR images are 
arranged chronologically. Radiometric calibration and multi-
view processing are performed on each image.

In the preparation stage of SBAS InSAR data in this study, multi 
view processing adopts 5-view processing to improve image signal-
to-noise ratio while also considering spatial resolution; The absolute 
calibration method is used for radiometric calibration. Based on 
the known radiometric characteristics of the calibration body, 
the grayscale values of SAR images are accurately converted into 
backscattering coefficients to ensure the uniformity and accuracy 
of radiometric levels between different images and ensure the 
reproducibility of research. 

2. Reference Image Selection and Image Registration. To provide 
a stable baseline for subsequent interferometric processing 
and reduce cumulative registration errors across multi-period 
terrain SAR images, one scene is selected from all images 
as the “reference Image.” This reference image must exhibit 
stable imaging conditions—such as minimal precipitation 
during acquisition, minimal vegetation cover changes, and a 
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moderate central viewpoint—positioned near the middle of 
the time series to ensure more uniform distribution of spatio-
temporal baselines formed with other secondary images. After 
determining the reference image, all other images (secondary 
images) are registered to it, ensuring that the same geographic 
targets occupy identical pixel locations across all images. 
Registration is achieved through a geometric transformation 
model expressed as follows Equation 1:

(xmaster,ymaster) = ϒ(xslave,yslave;ζ) (1)

In the formula, (xmaster,ymaster) and (xslave,yslave) represent the 
pixel coordinates of the reference and secondary images for the same 
target point, respectively. ϒ denotes the transformation function, 
while ζ represents the transformation parameters (translation, 
rotation, and scaling coefficients). 

3. Construction of the small baseline set (SBAS). Based on 
the registered images, combined with preset spatial baseline 
thresholds and temporal baseline thresholds, short-baseline 
interferometric pairs are filtered from all image pairs to form 
the small baseline set. The filtering criteria for interferometric 
pairs are as follows Equation 2:

|J⊥| < J′and|ΔT| < T′ (2)

where, J⊥ represents the vertical spatial baseline with a 
corresponding threshold of J′, and ΔT represents the temporal 
baseline with a corresponding threshold of T′ . 

4. Generation of the interferogram. For each scene in the 
small baseline set, perform conjugate multiplication on 
the registered reference and secondary images to generate 
M differential interferograms I. The phase values in 
these interferograms contain information about terrain, 
deformation, atmospheric conditions, and noise in the target 
area, exhibiting entanglement (entanglement interval: [−π,π]). 
This is described by the formula as follows Equation 3:

I = Smaster · S∗slave = βejϕwrapped (3)

Where, Smaster and Sslave represent the complex pixel values of 
the reference and secondary images, respectively; ∗ denotes the 
complex conjugate; β represents the interferometric amplitude; 
ϕwrapped denotes the wrapped interferometric phase. ϕwrapped is 
expressed as follows Equation 4:

ϕwrapped = Γ(ϕdef +ϕtopo +ϕatm +ϕnoise) (4)

where, Γ denotes the wrapping operator, ϕdef represents the 
deformation phase, ϕtopo denotes the terrain phase, ϕatm denotes the 
atmospheric phase, ϕnoise denotes the noise phase.

Through the above operations, series of reference-secondary 
image interferometric pairs are formed. The number of 
interferometric pairs M must satisfy the condition shown in 
Equation 5:

(N+ 1)/2 ≤M ≤ N(N+ 1)/2 (5)

where, N denotes the total number of terrain SAR images. 

5. Phase unwrapping. Given that the interference phase of 
the interferogram exhibits periodic blurring 2π (with a 
wrapping interval of [−π,π]), it cannot directly reflect true 
surface deformation. Therefore, to obtain the true phase 
difference for accurate deformation rate calculation and 
subsequent deformation inversion, the wrapped interference 
phase ϕwrapped is restored to the true absolute phase ϕunwrapped, 
described by the formula as follows Equation 6:

ϕunwrapped(i, j) = ϕwrapped(i, j) + 2πε(i, j) (6)

In the equation, ε(i, j) represents the integer-solved 
disentanglement order, which is the core unknown quantity to 
be solved for phase disentanglement. It must satisfy the continuity 
constraint of phase difference between adjacent pixels as follows 
Equations 7, 8:

|ϕunwrapped(i, j) −ϕunwrapped(i− 1, j) −Δϕx(i, j)| ≤ π (7)

|ϕunwrapped(i, j) −ϕunwrapped(i, j− 1) −Δϕy(i, j)| ≤ π (8)

Where, Δϕx(i, j) and Δϕy(i, j) represent the phase difference between 
adjacent pixels.

In the process of phase unwrapping, to alleviate errors caused 
by atmospheric noise and other factors, the method of removing 
the atmospheric phase screen can be used. Firstly, estimate the 
atmospheric phase contribution based on external atmospheric data 
or by utilizing the characteristics of interferograms themselves. 
For example, by analyzing the phase change patterns at different 
time or spatial scales to separate atmospheric phase components, 
they can be subtracted from the unwrapped phase; Multiple image 
overlay averaging method can also be used to average the data using 
multiple sets of interferometers to reduce the influence of random 
atmospheric noise, thereby reducing the interference of phase 
unwrapping error on deformation rate calculation and improving 
the accuracy of deformation rate inversion. 

6. Elimination of systematic errors. From the absolute phase 
after disentanglement, estimate and remove systematic error 
phases, primarily referring to terrain residual phases caused 
by elevation errors. The terrain residual phase model can be 
described as:

ϕtr =
4π
λ
·

J⊥
R sin θ
· Δh (9)

where, ϕtr represents the terrain residual phase, λ denotes the radar 
wavelength, R signifies the slant range from the satellite to the 
ground target (i.e., the propagation distance of the radar signal), θ
represents the radar wave incidence angle, Δh indicates the elevation 
error, which is the unknown quantity to be solved for in the model.

Solving Δh by least squares yields as follows Equation 10:

Δh = argminΔh∑|ϕunwrapped −
4π
λ
·

J⊥
R sin θ
· Δ ̃h|

2
(10)

where, Δ ̃h represents the parameter variable serving as the target 
during the solution process.

Substituting the obtained Δh into Equation 9 yields the terrain 
residual phase ϕtr. Subtracting this from ϕunwrapped produces the 
cleaned interferogram phase. 
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7. Deformation Inversion: Solve for the local deformation rate 
of the monitored area using. By establishing a mathematical 
relationship between deformation phase and deformation 
rate and solving it, deformation inversion is achieved from 
the purified interferogram phase information. This derives 
the linear deformation rate field of the monitored area’s 
surface, enabling quantitative understanding of deformation 
velocity at different surface locations. This provides critical 
deformation data for subsequent identification of landslide 
deformation hotspots. Let the surface deformation rate be 
denoted as ρ and the time interval as Δt. The relationship 
between the deformation phase ϕdef and ρ can be expressed 
as follows Equation 11:

ϕdef = (4π/λ)ρ · Δt (11)

For a small baseline set, with M interferometric pairs 
defined, a system of equations is constructed based on the 
phase data from multiple pairs—the core computational step in 
deformation inversion. Combining the deformation phase and 
deformation rate relationships for all interferometric pairs yields 
as follows Equation 12:

{{{{{{{
{{{{{{{
{

ϕdef ,1 = (4π/λ)ρ · Δt1

ϕdef ,2 = (4π/λ)ρ · Δt2

...

ϕdef ,M = (4π/λ)ρ · ΔtM

(12)

The above system of equations is solved using the least squares 
method to obtain the deformation rate ρ. The essence of the solution 
is to find a ρ that minimizes the sum of squared errors Z between the 
observed deformation phase and the theoretical deformation phase 
for all interferometric pairs. Define Z = ∑M

i=1(ϕdef ,i − (4π/λ)ρ · Δti)
2. 

Setting the derivative of Z with respect to ρ to zero, i.e., (dZ)/(dρ) =
0 leads to as follows Equation 13:

∑M
i=1

2(ϕdef ,i − (4π/λ) · ρΔti)(−(4π/λ)Δti) = 0 (13)

After derivation, we obtain as follows Equation 14:

ρi = (λ∑
M
i=1

ϕdef ,iΔti)/(4π∑M
i=1
Δt2

i ) (14)

Through this computational process, the inversion from phase 
data to deformation rate is completed, yielding the deformation rate 
for each pixel in the monitored region. 

8. Formative Mapping. Based on the deformation rate values of 
each pixel in the deformation rate field, different deformation 
rate values are mapped to different colors according to specific 
color mapping rules, generating a deformation rate map for 
the study area. Specifically, the deformation rate range is set to 
[ρmin,ρmax], divided into several intervals, with each interval 
corresponding to a specific color. Each pixel is assigned the 
color corresponding to the interval containing its deformation 
rate value, resulting in a color image depicting the deformation 
rate distribution.

Through the mapping relationship between pixel coordinates 
and geographic coordinates, precise geospatial location information 
is assigned to each pixel point in the deformation rate map. 

9. Identification of Active Landslide Deformation Zones. Based 
on the deformation rate map, a reasonable deformation rate 
threshold is established and active landslide deformation zones 
are identified by comparing values against this threshold. 
Specifically: 
i. Threshold Determination: The deformation rate threshold 
̂ρ is set by integrating the geological background of the 

study area, historical landslide deformation data, and 
monitoring accuracy requirements.

ii. Pixel-level screening: Iterate through all pixels in the 
deformation rate map and evaluate the deformation rate 
ρi for each pixel. If |ρi| > ̂ρ holds, mark that pixel as a 
“potential active point.”

iii. Spatial Clustering Analysis: Perform spatial clustering 
on marked potential active points (using the DBSCAN 
algorithm for density-based clustering with). Aggregate 
spatially contiguous or adjacent active points into regional 
units while removing isolated noise points.

iv. Identification of Active Deformation Zones: Combining 
topographic data with the clustered zones, boundaries 
are refined to exclude anomalies caused by non-landslide 
factors (e.g., deformation from man-made structures), 
thereby defining the spatial extent of active landslide 
deformation zones (landslide fracture development zones).

In this study, the parameter selection of DBSCAN algorithm was 
combined with the spatial distribution characteristics of landslide 
deformation in the research area and simulation testing. Through 
multiple experiments, it was determined that the neighborhood 
radius was set to 50 m to cover the reasonable spatial correlation 
range between adjacent pixel points in the active area of landslide 
deformation; The minimum number of points is set to 8 to ensure 
that the clustering area has sufficient deformation point density 
to distinguish between real active areas and noise. This parameter 
combination can effectively balance clustering integrity and noise 
removal effect. 

2.3 Acquisition of morphological features 
of landslides and cracks based on 
UAV-based lidar point clouds

The spatial scope of active landslide deformation zones 
identified in Section 2.2 serves as prior constraint information for 
UAV LiDAR precision scanning. This approach aims to prevent 
indiscriminate detection across large areas, instead focusing on 
critical regions with developed fractures. By leveraging high-
resolution 3D point cloud data from these zones, we capture 
morphological features such as crack width, depth, slope, and 
curvature, thereby establishing a foundation for subsequent 
extraction of landslide fracture edges. The specific procedure is 
described as follows: 

1. UAV LiDAR point cloud data acquisition. The UAV-mounted 
LiDAR system emits laser pulses toward the target area (the 
active deformation zone identified in Section 2.2, i.e., the 
landslide fracture development zone). These pulses reflect 
off surface objects (landslide fractures) and return. By 
recording the round-trip time t of the laser pulses and 
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combining it with the speed of light v, the straight-line 
distance L = (v× t)/2L from the laser footprint to the UAV is 
calculated. Simultaneously, using the drone’s POS (Position 
and Orientation System) data, obtain the precise position 
and orientation of the laser emission point. This determines 
the three-dimensional coordinates of the laser footprint in 
the global coordinate system, generating a high-density point 
cloud.

In the process of collecting LiDAR point cloud data from 
unmanned aerial vehicles, after calibration by professional 
measuring equipment and multiple repeated measurements, the 
horizontal accuracy root mean square error of the obtained point 
cloud was controlled within 0.05 m, and the vertical accuracy root 
mean square error was controlled within 0.03 m. This level of 
accuracy can effectively ensure the reliability and accuracy of the 
extracted landslide crack width, slope and other morphological 
features from the point cloud data. 

2. 3D Modeling. Based on the point cloud data obtained 
in step (1), a 3D model of the landslide fracture zone 
is constructed. The specific process is as follows: First, 
preprocessing operations such as denoising, filtering, and 
simplification are performed on the acquired point cloud data 
to eliminate outliers and redundant data; Subsequently, the 
preprocessed high-density point cloud data is converted into 
a Triangulated Irregular Network (TIN) using the Delaunay 
triangulation algorithm. An interpolation algorithm then 
transforms the TIN into a high-resolution Digital Elevation 
Model (DEM). Finally, orthophotos are textured onto the 3D 
surface using texture mapping techniques based on the DEM. 
Lighting rendering technology is applied to enhance the visual 
impact of terrain undulations, ultimately generating a 3D 
model of the landslide fracture development zone.

3. Landslide fracture characteristic acquisition. Based on 
the generated three-dimensional model of the landslide 
fracture development zone, acquisition of landslide fracture 
characteristics are extracted. Given that landslide fractures 
exhibit characteristics such as narrow width, relatively 
continuous strike, varying depth, steep slope, and negative 
curvature, this study selected fracture width, strike, slope, 
and curvature index as landslide fracture features to describe 
fracture morphology using the 3D model. Specifically 
as follows Equation 15:

W = √(XB −XA)2 + (YB −YA)2 (15)

a. Landslide Fracture Width: The vertical distance between rock 
and soil on both sides of the fracture in the horizontal 
direction, reflecting the tensile deformation of the landslide. 
Trends in width variation (e.g., wider in the middle, narrower 
at both ends) can indicate fracture propagation and stress 
concentration points (Sandric et al., 2024). In the 3D model 
of the landslide fracture zone, let O denote a point on the 
fracture centerline. Draw a horizontal line perpendicular to the 
fracture strike direction through this point. The intersection 

points with the fracture boundaries on both sides are denoted 
as A(XA,YA) and B(XB,YB), respectively. The formula for the 
fracture width W at point O is:

For extracting the centerline of irregularly shaped cracks, a 
morphological skeleton based algorithm is adopted: firstly, the crack 
area in the 3D model is binary segmented, and the crack boundary 
pixels are gradually peeled off through continuous morphological 
erosion operations until only the central skeleton with a single pixel 
width is retained; For branching cracks, the distance transformation 
method is used to identify the local farthest point of each branch 
as the skeleton connection point, and the minimum spanning tree 
algorithm is used to optimize the skeleton topology structure; 
Finally, burrs and redundant branches are removed through skeleton 
trimming to generate a continuous centerline that conforms to the 
actual direction of the crack, ensuring the geometric accuracy of the 
direction calculation as follows Equation 16.

α =

{{{{{{{{{{
{{{{{{{{{{
{

arctan(
Y2 −Y1

X2 −X1
)× 180

π
(X2 > X1)

arctan(
Y2 −Y1

X2 −X1
)× 180

π
+ 180° (X2 < X1)

90° (X2 = X1 and Y2 > Y1)

270° (X2 = X1 and Y2 < Y1)
(16)

b. Slope Fracture Strike: The horizontal direction of fracture 
propagation, which is typically expressed as an angle relative 
to true north (ranging from 0° to 360°) and reflects the spatial 
distribution trend of fractures (Dias and Grohmann, 2024), 
aids in determining the movement direction and stress state of 
slope fractures. In the 3D model space of the landslide fracture 
zone, select two points along the fracture centerline: G1(X1,Y1)
and G2(X2,Y2). The angle between the horizontal projection of 
the line connecting these two points and true north represents 
the fracture strike α. The formula is:

For landslide fractures with bends, segmented calculations of 
strike direction must be performed based on the spatial distribution 
of different fracture segments within the three-dimensional 
model space of the fracture development zone, with variation 
characteristics annotated accordingly as follows Equation 17.

p = arctan(√(∂H
∂X
)

2
+(∂H

∂Y
)

2
)× 180

π
(17)

Where, H represents the elevation of point (X,Y), ∂H
∂X

 and ∂H
∂Y

 denote 
the slope rates of this point in the X and Y directions, respectively. 

c. Landslide Fracture Slope: The inclination of fracture walls 
reflects the steepness of rock and soil on both sides of 
the fracture (Behley et al., 2021). Slope is determined by 
calculating the gradient change in elevation. For landslide 
fractures, their slope is often steeper than the surrounding 
terrain, serving as a key feature to distinguish fractured zones 
from normal topography. The formula for the slope of a 
fracture p at a point along the fracture edge line in the 3D 
model of the landslide fracture zone (X,Y) can be expressed 
as:
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For the entire crack, the slope of all points along the edge 
line can be calculated and averaged to represent the overall slope 
characteristic of the crack as follows Equation 18.

η = 1
r
= 4s

abc
(18)

Where, a, b and c represent the side lengths of the triangle formed 
by the point u(X,Y) and its two adjacent points on the fracture edge 
line, s represents the area of the triangle, r represents the radius of 
the triangle’s circumcircle. 

d. Slope Fracture Curvature: Indicates that the fracture edge 
exhibits a concave curvature toward the interior of the 
fracture, reflecting the bending characteristics of the fracture 
in its spatial distribution (Liu et al., 2025). This can assist 
in determining the stress state of the fracture. Within the 
three-dimensional model framework of the slope fracture 
development zone, for discrete point sequences, the curvature 
η of a point u(X,Y) can be expressed as:

Before constructing the Irregular Triangular Network (TIN), in 
order to filter overlapping point cloud data (data from vegetation 
and ground), a height threshold based method is used to set a 
reasonable height range according to the terrain characteristics 
of the landslide area. Point cloud data that exceeds this range 
(vegetation point cloud) and is below the reasonable lower limit 
(noise point cloud) are removed. At the same time, combined with 
point cloud intensity information, due to the difference in laser 
reflection intensity between vegetation and ground, the overlapping 
point cloud data from vegetation and ground are further screened by 
setting an intensity threshold to effectively filter out, avoid distortion 
of TIN construction, and ensure the accuracy of subsequent feature 
extraction.

The sign of curvature can be determined by the order of the three 
points: when the points are arranged clockwise along the crack’s 
extension direction, the curvature is negative (concave toward the 
crack interior); when arranged counterclockwise, the curvature is 
positive (convex toward the crack exterior). For landslide cracks, 
the focus is typically on regions of negative curvature and their 
distribution characteristics.

By extracting features such as landslide fracture width, 
strike, slope, and curvature from, we obtain the morphological 
characteristics of landslide fractures. These are then used to 
construct the fracture feature vector Q[W,α,p,η].

For cracks with significant vertical undulations (stepped 
cracks), in order to avoid width calculation deviation caused by 
terrain undulations passing through non crack areas, the elevation 
normalization horizontal projection method is adopted: first, the 
elevation data of the crack centerline and boundary points on both 
sides are extracted, and the elevation of each point is normalized to 
the local reference plane (lowest point elevation) of the crack. Then, 
a horizontal projection line is generated on the normalized vertical 
profile to ensure that the measurement line always follows the 
actual extension direction of the crack and is not affected by terrain 
undulations, thus accurately calculating the true width of the crack. 

2.4 Implementation of landslide extraction 
and fracture extraction

Based on the acquired landslide fracture feature vector Q, the 
probabilistic neural network (PNN) model is employed to extract 
landslide fractures, thereby obtaining their edge contours. The 
PNN model, a feedforward neural network, learns the probability 
density of data through training to calculate the probability of input 
samples belonging to different categories. It features fast training 
speed, high classification accuracy, and strong robustness against 
noisy data (Gui and Ma, 2025; L et al., 2024). When applied 
to landslide crack identification, it effectively handles complex 
nonlinear relationships in crack features, accurately distinguishing 
cracks from terrain undulations, vegetation cover, and other 
interfering features, enabling precise classification of landslide 
cracks pixels. The crack extraction process is as follows: 

1. PNN network model creation. Construct a four-layer PNN 
network model comprising input, pattern, accumulation, and 
output layers. The input layer receives feature vectors of target 
objects (landslide cracks); The pattern layer stores feature 
patterns of training samples (characteristics of landslide cracks 
versus non-cracked areas). It calculates similarity between 
input feature vectors and training sample patterns using radial 
basis functions, converting similarity into probability density 
values. The accumulation layer integrates outputs from the 
pattern layer. The output layer generates final classification 
results (crack/non-crack).

In PNN model training, the ratio of crack pixels to non crack 
pixels in the collected samples is about 1:5, with non crack samples 
dominating. To balance data distribution and avoid model bias 
towards non crack classification, oversampling techniques were 
adopted for crack samples. Specifically, SMOTE (Synthetic Minority 
oversampling Technique) algorithm was used to generate synthetic 
crack samples, and the ratio of crack and non crack samples was 
adjusted to 1:2, effectively improving the model’s ability to recognize 
crack features. 

2. Similarity Calculation and Probability Density Estimation. 
When a landslide fracture feature vector Q (originating from 
a specific location within the 3D model of the landslide 
fracture development zone) is input for classification, each 
neuron in the pattern layer calculates its similarity to the 
stored sample E using a Gaussian kernel function. It then 
outputs the probability density estimate 𝓁i(Q) indicating 
the likelihood of the input vector belonging to a particular 
category (fracture/non-fracture), expressed by the formula 
as follows Equation 19:

𝓁i(Q) = exp[−
‖Q−E‖2

2δ2 ] (19)

Where, δ represents the smoothing parameter, which controls the 
smoothness of the decision boundary.

In the construction of the 3D model in this study, after multiple 
experimental comparisons and actual requirement analysis, the grid 
cell size was determined to be 0.2 m. The optimization basis mainly 
lies in the fact that this size can retain key details of landslide cracks, 
such as subtle changes in crack direction and width differences, 
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to ensure the accuracy of crack extraction; It can also control the 
computational workload to a certain extent, avoiding a significant 
increase in computation time due to small unit sizes, which affects 
algorithm efficiency, and achieves a good balance between detail 
preservation and computational efficiency. 

3. Category probability summation and decision. The 
accumulation layer sums the pattern layer’s outputs by 
category, calculating the total probability density ϖg(Q) for 
the input feature vector Q belonging to the crack category g =
1 and the non-crack category g = 0as follows Equation 20:

ϖg(Q) = ∑
i∈g
𝓁i(Q) (20)

The output layer assigns the input vector Q to the category with 
the maximum probability value based on Bayesian decision rules. 
Specifically, when ϖg=1(Q) > ϖg=0(Q), the input Q is classified as 
belonging to the crack category (g = 1); when ϖg=1(Q) < ϖg=0(Q), it 
is classified as belonging to the non-crack category (g = 0). This is 
expressed as follows Equation 21:

Ŷ = argmaxϖg(Q) (21)

The classification result from the output layer (Ŷ, taking values 
of 1 or 0) determines whether the location is a landslide fracture. 

4. Full-image scanning and probability map generation. The 
feature vectors of each grid cell in the 3D model of the landslide 
fracture development area in the study region are sequentially 
input into the trained PNN model to obtain the probability 
that each position belongs to a fracture, and a landslide 
fracture probability distribution map U(x,y) is generated. This 
probability map clearly reflects the possibility of a landslide 
fracture existing at each position in the study region.

5. Landslide fracture contour extraction. The Canny operator 
is used to extract the landslide fracture edge contour from 
the landslide fracture probability distribution map, which is 
described by the formula as follows Equation 22:

Dedge(x,y) = U(x,y) ∗V(σ) (22)

In the formula, Dedge(x,y) represents the image containing the 
fracture edge contour, V(σ) represents a Gaussian filter with a 
standard deviation of σ.

To determine the high and low thresholds in Canny edge 
detection, the Otsu method is first used to perform preliminary 
threshold segmentation on the probability distribution map of 
landslide cracks, and obtain the basic threshold reference; Next, 
multiple sets of high and low threshold combinations are set 
near the basic threshold for testing. By comparing the integrity, 
continuity, and matching degree of the extracted crack edges 
with the actual cracks under different combinations, the optimal 
threshold combination that can maximize edge integrity and 
effectively suppress noise is finally selected.

In the constructed PNN network model, the number of input 
layer neurons is consistent with the dimension of the landslide crack 
feature vector; The number of neurons in the pattern layer is equal to 
the total number of training samples, and each neuron corresponds 
to a feature pattern of a training sample; The number of neurons in 

TABLE 1  Main parameters of the experiment.

Name Numerical value

The degree of overlap of adjacent SAR images >20%

The central viewing angle of the main SAR image 35°–45°

Vertical space baseline threshold 200 m

Time baseline threshold 50days

The incident Angle of radar waves 20°–50°

Deformation rate threshold 10 mm/day

Flight altitude of unmanned aerial vehicles 120 m

The flight speed of unmanned aerial vehicles 8 m/s

Radar scanning mode Repeat scanning

Smooth parameter 0.5

Standard deviation of Gaussian filter 1.5

the accumulation layer is the same as the number of classification 
categories, namely, crack and non crack categories; The output layer 
is a single neuron used to output the final classification result. This 
structure ensures the matching between model parameters and data 
size, avoiding overfitting or underfitting issues.

Through the above operations, the landslide fracture edge 
contour is obtained, and the landslide fracture extraction is realized. 

3 Experimental analysis

To analyze the effectiveness of the landslide crack automatic 
extraction algorithm under InSAR UAV LiDAR point cloud 
coupling in this study, a typical landslide prone area in a county 
in Sichuan Province was selected as the experimental object. This 
area belongs to the southern section of the Longmenshan Fault 
Zone, with complex geological structures and mainly composed of 
weathered layers of Jurassic sandstone and mudstone. The surface is 
covered with a mixture of loose slope soil and strongly weathered 
rocks with a thickness of 2–8 m. According to the geological hazard 
survey data after the 2013 Lushan 7.0-magnitude earthquake, the 
historical landslide activity frequency in the study area reached 
1.2 times per year. There are 17 existing landslide bodies with 
23 tension, shear, and composite cracks developed, mainly in 
the NW-SE direction, with a width range of 0.3–2.1 m and a 
depth of 0.5–3.8 m. The rich landslide activity records and typical 
geological environmental characteristics in this area provide an ideal 
experimental field for verifying the adaptability of the algorithm 
under different geological conditions.

The primary experimental parameters for this study are listed in 
Table 1. The experimental platform constructed for practical needs 
is shown in Figure 2.

The deformation rate threshold is initially set based on the actual 
deformation rate of landslides in the historical landslide data of the 
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FIGURE 2
Building the experimental platform.

study area, combined with factors such as geological structure and 
soil characteristics of the area, and referring to previous landslide 
monitoring research experience under similar geological conditions. 
It is then adjusted through a small amount of preliminary testing. In 
this experiment, the drone’s flight altitude was set to 120 m, based on 
a comprehensive balance between point cloud density and detection 
efficiency. After preliminary testing, the point cloud density at this 
altitude can reach 50–80 points per square meter, which can meet 
the recognition requirements of cracks at the 0.3 m level (with a 
spatial resolution of 0.15 m after Gaussian filtering), and can cover 
a research area of 8 square kilometers in a single flight. Although 
reducing the flight altitude can improve the point cloud density, 
it will significantly reduce the single operation range and increase 
the number of flights. After considering the scale characteristics of 
cracks and research efficiency, this parameter is determined.

Figure 2 Experimental platform utilizing BeiDou satellites, 
SBAS-InSAR detection technology monitors deformation in the 
study landslide area. Data is transmitted to BeiDou base stations 
and then to the data management center. Simultaneously, airborne 
radar scanned the same area, with data transmitted to the radar 
base station and then to the data management center. The center 

integrated and analyzed the received data, combining macro-
deformation information from InSAR with high-resolution 3D data 
from UAV LiDAR to precisely extract landslide cracks. Alarms were 
promptly issued based on the extraction results.

The experiment utilizes a constructed experimental platform 
to collect multi-scene terrain SAR imagery covering the target 
monitoring area over nearly 30 days using SBAS-InSAR technology. 
In the data collection process of this experiment, in order to ensure 
the consistency and correlation of the surface information reflected 
by InSAR and LiDAR data, they were basically synchronously 
collected. In the specific operation, InSAR data acquisition (using 
SBAS InSAR technology to collect multi scene terrain SAR images) 
and unmanned aerial vehicle LiDAR data acquisition are carried 
out within 24 h, minimizing the problem of data mismatch caused 
by changes in surface conditions due to time intervals, and 
ensuring the accuracy and reliability of landslide crack extraction 
results based on the fusion of the two types of data in the 
future. The imagery is arranged chronologically and undergoes 
radiometric calibration and multi-view processing. Following image 
registration, interferogram generation, phase unwrapping, error 
correction, and deformation inversion, the surface deformation rate 
for the area is obtained, generating a deformation rate map for 
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FIGURE 3
Shows the determination results of the landslide crack 
development area.

the region. Simultaneously, a reasonable deformation rate threshold 
was set. By comparing values against this threshold and integrating 
the DBSCAN clustering algorithm, active landslide deformation 
zones (landslide crack development areas) were identified. The 
experimental results are shown in Figure 3.

Figure 3 displays the deformation rate map of the target area, 
clearly distinguishing variations in deformation rates through 
distinct color coding. Among these, two areas predominantly 
colored purple were identified as landslide crack development 
zones, forming a stark contrast with the surrounding relatively 
stable areas appearing in green tones. This vivid color contrast 
clearly reflects that the surface deformation rates within the 
landslide crack development zones are higher than in the 
surrounding areas, indicating that these zones exhibit a significant 
landslide deformation trend and are key areas for landslide crack 
development. From a technical perspective, the SBAS-InSAR 
technology employed in this study precisely captures subtle surface 
deformation information through the processing and analysis of 
multi-scene SAR imagery. The spatial distribution of development 
zones and color gradients in Figure 3 not only demonstrate 
the technology’s high sensitivity to landslide deformation but 
also provide reliable and critical deformation rate data for 
delineating active landslide deformation zones. Furthermore, this 
technology effectively identifies potential hotspots for landslide 
crack development. It establishes a clear prior constraint range 
for subsequent detailed UAV LiDAR point cloud scanning and 
automated landslide crack extraction, significantly enhancing the 
precision and efficiency of landslide crack monitoring.

Then, UAV LiDAR technology was employed to scan identified 
landslide fracture development zones, collecting point cloud data 
for three-dimensional modeling. From this, morphological features 
such as fracture width, strike, dip, and curvature were extracted to 
construct a landslide fracture feature vector. The feature vector was 
input into a pre-built four-layer PNN model. This model outputs the 
probability that a point belongs to a landslide crack, generating a 
crack probability distribution map. Subsequently, the Canny edge 
detector was applied to extract crack edge contours, achieving 
automated landslide crack extraction. Selected extraction results 
are shown in Figure 4.

As shown in Figure 4, the red lines clearly delineate the 
crack edge contours extracted by the proposed algorithm. In 

FIGURE 4
Extraction results of landslide cracks.

terms of distribution, the cracks exhibit irregular morphology with 
distinct extensions and turns across different regions, reflecting 
the complexity and diversity of landslide cracks in actual terrain. 
Simultaneously, features such as crack width, strike, slope, and 
curvature extracted from the 3D model constructed from point 
cloud data are indirectly reflected in the crack morphology 
within the figure. For instance, wider sections may correspond 
to areas with more intense landslide activity. Furthermore, the 
results in Figure 4 obtained using this algorithm fully validate the 
effectiveness and advantages of UAV LiDAR technology in landslide 
crack extraction. High-precision point cloud data acquisition and 
3D modeling accurately capture subtle morphological features 
of cracks, providing a reliable data foundation for constructing 
landslide crack feature vectors. The application of a four-layer 
PNN model effectively handles the complex nonlinear relationships 
of crack features, accurately outputting the probability of each 
point belonging to a landslide crack. Subsequently, the Canny 
edge detection algorithm successfully extracts crack edge contours, 
achieving automated landslide crack extraction. These results 
not only visually depict the distribution patterns of landslide 
fractures and precisely locate their spatial positions but also provide 
intuitive and critical information for in-depth analysis of fracture 
development patterns and assessment of landslide stability. This 
holds significant importance for establishing a comprehensive real-
time monitoring and early warning system for landslide disasters.

For the method presented in this paper, the extraction of 
morphological features of landslide fractures is crucial, as it directly 
impacts the reliability of fracture edge extraction. To address this, 
the experiment employs the information gain rate metric to evaluate 
the contribution value of four selected features-slope crack width, 
strike, dip, and curvature-to the target task of slope crack extraction. 
The information gain rate measures the informational contribution 
of features to classification tasks, with values ranging from [0,1]. For 
automated landslide crack extraction, higher values indicate greater 
value for the task. Test results are shown in Figure 5.

As illustrated in Figure 5, the trend of different feature 
information gain rates with signal-to-noise ratio (SNR) reveals 
that crack width consistently maintains the highest information 
gain rate across all SNR ranges, peaking at 0.98. It also performs 
exceptionally well at lower SNRs (10–30 dB), demonstrating strong 

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1715960
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Deng et al. 10.3389/feart.2025.1715960

FIGURE 5
Shows the gain rates of different feature information.

robustness against noise. This feature effectively distinguishes 
landslide cracks from normal terrain, providing the model with 
the most stable and discriminative morphological basis. Crack 
orientation and slope information yield the next highest gain 
rates. In contrast, the information gain rate for crack curvature 
consistently lagged behind the other three features, showing a 
smaller increase. This indicates its limited discriminatory capability 
for landslide crack extraction and relatively minor contribution. 
This is attributed to curvature features being susceptible to local 
noise interference and their insufficient discriminative significance 
in morphological representation. Nevertheless, it maintains a high 
overall level, with an information gain rate exceeding 0.89. This 
feature selection did not include crack depth mainly because the use 
of unmanned aerial vehicle LiDAR to measure crack depth is limited 
by equipment accuracy and complex terrain conditions, resulting 
in large measurement errors and difficulty in accurately obtaining 
depth information. Therefore, it was not included as a feature. 
Overall, the information gain rates of all four morphological features 
increased with improved signal-to-noise ratio (SNR). This indicates 
that enhanced data quality strengthens each feature’s informational 
contribution to landslide crack extraction, enabling more thorough 
exploitation of their discriminative value. From a feature selection 
perspective, all four features make significant contributions to 
landslide crack extraction. Specifically, crack width and orientation 
should be prioritized as key features in extraction models, while 
slope and curvature serve as effective supplements. Together, they 
form a robust, comprehensive feature set that enhances the model’s 
overall extraction performance across varying signal-to-noise ratio 
conditions.

Intersection over Union (IoU) refers to the ratio of the 
intersection area between the landslide crack area extracted by the 
algorithm and the actual crack area (true value) to the union area, 
which can reflect the accuracy of the landslide crack extraction 
results and the degree of regional matching. When the IoU value 
approaches 1, it indicates that the extracted crack area coincides with 
the actual area in height, and the extraction algorithm is effective and 

FIGURE 6
Shows the IoU conditions under different vegetation coverage.

accurate; On the contrary, when the IoU value is low, it indicates that 
there is a significant deviation between the extracted results and the 
actual situation. Fifty independent test cases were selected for the 
experiment, covering various types of landslides such as shallow soil 
landslides and rock landslides. The performance of our algorithm 
was evaluated using this indicator, and compared and analyzed with 
Khadka et al.'s landslide recognition method based on Google Earth 
Engine in 2025 and Lekshmana and George’s landslide recognition 
method based on deep generative adversarial networks in 2023. The 
results are shown in Figure 6.

As shown in the IoU performance comparison in Figure 6, 
it is clearly observable that the proposed algorithm consistently 
maintains the highest IoU values across the entire range of 
vegetation coverage variations. Its curve exhibits the greatest 
stability with the smallest fluctuation amplitude, with an overall 
level exceeding 0.94. This demonstrates the proposed algorithm’s 
strong robustness against vegetation occlusion interference, 
effectively overcoming challenges such as complex textures and 
blurred features caused by vegetation coverage. It accurately 
matches actual fracture areas, achieving superior and stable 
extraction accuracy. In contrast, the IoU values of the Landslide 
recognition method based on Google Earth Engine and the 
Landslide recognition method based on deep generative adversarial 
network both show a significant downward trend with increasing 
vegetation coverage, especially under moderate to high vegetation 
coverage conditions where performance degradation is significant. 
This indicates that these two methods are more sensitive to 
vegetation environments, and their feature extraction and spatial 
analysis capabilities are limited in complex scenarios, making it 
difficult to effectively distinguish vegetation noise from real crack 
features. Overall, the proposed algorithm demonstrates higher 
accuracy and regional matching capability across diverse vegetation 
coverage environments, validating its effectiveness and advanced 
performance in complex natural settings.

To further validate the performance superiority of the InSAR 
unmanned aerial vehicle LiDAR point cloud coupled landslide 
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TABLE 2  Comparison of algorithm performance under different landslide types and Gaussian filter standard deviation.

Landslide
type

Evaluation
metrics

The method proposed in this paper Landslide 
recognition

method 
based on

google earth 
engine

Landslide 
recognition 

method
based on 

deep 
generative
adversarial 

network

Standard
deviation 1.0

Standard
deviation 1.5

Standard
deviation 2.0

Gentle landslide

Accuracy (%) 95.2 94.8 93.5 88.6 85.3

Recall rate (%) 93.8 94.2 92.7 86.4 83.1

F1 score 94.5 94.5 93.1 87.5 84.2

Edge smoothness 
(pixels)

2.1 2.3 2.5 3.8 4.2

Running time (s) 12.5 13.2 14.0 18.7 20.3

Shallow soil 
landslide

Accuracy (%) 94.7 94.3 93.0 87.9 84.7

Recall rate (%) 93.3 93.7 92.2 85.8 82.6

F1 score 94.0 94.0 92.6 86.8 83.6

Edge smoothness 
(pixels)

2.3 2.4 2.6 3.9 4.3

Running time (s) 13.0 13.7 14.5 19.2 20.8

Rock landslide

Accuracy (%) 95.5 95.0 93.8 89.1 85.8

Recall rate (%) 94.1 94.5 93.0 86.9 83.5

F1 score 94.8 94.7 93.4 88.0 84.6

Edge smoothness 
(pixels)

2.0 2.2 2.4 3.7 4.1

Running time (s) 12.0 12.7 13.5 18.2 19.8

crack automatic extraction algorithm proposed in this paper under 
different landslide types and Gaussian filter standard deviations 
(1.0, 1.5, 2.0), another typical slow-moving landslide area in 
Sichuan Province was selected as the experimental object, and 
compared with the Landslide recognition method based on Google 
Earth Engine and the Landslide recognition method based on 
deep generative adversarial network. And use precision (to avoid 
false positives), recall (to avoid missed detections), F1 score, 
edge smoothness, and running time as evaluation metrics. The 
experimental results are shown in Table 2.

According to Table 2 analysis, it can be seen that the algorithm 
proposed in this paper has significant performance advantages 
under different landslide types and Gaussian filter standard 
deviation conditions. In terms of accuracy, whether it is slow-
moving landslides, shallow soil landslides, or rock landslides, the 
algorithm in this paper far exceeds the Landslide recognition 
method based on Google Earth Engine and the Landslide 
recognition method based on deep generative adversarial network 
at standard deviations of 1.0, 1.5, and 2.0. The highest accuracy 

reaches 95.5%, indicating that the algorithm in this paper can 
effectively avoid false alarms and accurately identify landslide cracks. 
In terms of recall rate, the algorithm presented in this article also 
performs outstandingly, outperforming the compared algorithms in 
various landslide types and standard deviation settings, indicating 
that it can effectively avoid missed detections and ensure that 
more real cracks are identified. As a comprehensive indicator of 
accuracy and recall, the F1 score of this algorithm maintains a high 
level, up to 94.8%, under three types of landslides and different 
standard deviations, further proving its superior comprehensive 
performance. The edge smoothness index shows that the crack 
edges extracted by the algorithm in this article are smoother, with 
significantly lower pixel values than the comparison algorithm, 
indicating higher quality of the extracted results. In terms of running 
time, the algorithm in this article is shorter than the comparative 
algorithm under all conditions, reflecting its efficiency. Overall, the 
algorithm presented in this article demonstrates higher accuracy, 
comprehensiveness, result quality, and operational efficiency under 
different landslide types and Gaussian filter standard deviations, 
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demonstrating significant performance advantages. In addition, 
different standard deviations of Gaussian filters have a certain 
impact on algorithm performance. In terms of edge smoothness, 
as the standard deviation increases from 1.0 to 2.0, the pixel 
values of edge smoothness extracted by our algorithm and the 
comparison algorithm show an upward trend. This indicates that 
as the standard deviation increases, the smoothing effect of the 
filtering process on the point cloud data is enhanced, resulting in a 
change in edge smoothness. However, when the standard deviation 
is set to 1.5, the algorithm proposed in this paper still significantly 
outperforms the Landslide recognition method based on Google 
Earth Engine and deep generative adversarial network in terms of 
edge smoothness index while ensuring high accuracy and recall. 
Moreover, the F1 score of the algorithm is at a high level for the three 
types of landslides, indicating that under this standard deviation, 
the algorithm can effectively smooth the edges while maintaining 
crack features, ensuring the accuracy of extraction and verifying the 
rationality of parameter selection. 

4 Conclusion

In recent years, the integration of multi-source technologies 
has provided novel solutions for landslide monitoring. This 
study proposes an InSAR–UAV LiDAR point cloud coupled 
algorithm for automatic landslide crack extraction. By establishing a 
“macro-localization–fine-extraction” collaborative framework that 
integrates SBAS–InSAR technology with UAV LiDAR technology, 
the algorithm achieves efficient and precise automatic extraction of 
landslide cracks. The algorithm’s core lies not in merely juxtaposing 
results from both technologies, but in an implicit sequential logic: 
using SBAS–InSAR-derived macroscopic deformation zones to 
guide and focus LiDAR’s detailed crack extraction (i.e., pinpointing 
cracks within active zones). This “area-to-point,” “macro-to-micro” 
guidance relationship constitutes the essence of their coupling. 
It avoids the imprecision of using InSAR alone for large-scale 
deformation analysis and the inefficiency of employing LiDAR 
solely for global scanning. Experimental results demonstrate that 
this algorithm significantly enhances crack extraction accuracy, 
enabling precise identification of narrow, fine cracks. It exhibits 
strong robustness, operating stably across landslide areas with 
varying terrain complexity and delivering reliable extraction 
results. However, although this algorithm has shown significant 
effectiveness in extracting landslide cracks, it also has certain 
limitations. For example, in heavy rainfall environments, rapid 
changes in surface conditions may interfere with the deformation 
monitoring of InSAR technology, affecting the accuracy of 
macroscopic positioning; In dense forest areas with poor LiDAR 
penetration, it is difficult to obtain effective point cloud data, which 
limits the fine extraction of cracks. Future work will focus on 
optimizing the algorithm to adapt to complex weather conditions, 
developing special data processing methods for dense vegetation 
areas, and exploring integration with other emerging technologies 
to further enhance the universality and reliability of algorithms.
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