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In response to the bottleneck problems of weak landslide crack morphology,
hidden features, and limited extraction accuracy in complex terrain masking
and dense vegetation coverage environments, as well as the shortcomings
of existing methods in cross scale and multi-source heterogeneous data
fusion, this study proposes an automatic landslide crack extraction algorithm
based on InSAR and UAV LiDAR point cloud collaboration. This algorithm
relies on SBAS InSAR technology to achieve large-scale, long-term surface
deformation monitoring, and identifies landslide deformation active areas
through deformation rate threshold division and spatial clustering. In terms of
fusion mechanism, a combination of control point matching and ICP (lterative
Closest Point) algorithm is adopted to accurately register the deformation
zone data obtained by InSAR monitoring with the point cloud data obtained
by UAV LIiDAR, achieving effective fusion of cross scale and multi-source
heterogeneous data. On this basis, guide the UAV LIiDAR to conduct targeted
fine scanning and obtain high-resolution 3D point cloud data. Based on
point cloud, a three-dimensional model of landslide crack development area
is constructed, and multidimensional morphological features such as width,
direction, slope, and curvature are extracted. Discriminant feature vectors are
constructed, and a probabilistic neural network (PNN) model is introduced
to achieve probability classification of crack pixels through Gaussian kernel
density estimation and Bayesian decision mechanism. Finally, edge extraction
is optimized by Canny operator to achieve automated and high-precision
recognition of crack contours. Fifty independent test cases were selected for the
experiment, covering various types of landslides such as shallow soil landslides
and rock landslides. The results showed that the proposed method performed
well in multi vegetation covered environments, with loU stability above 0.94,
significantly better than existing mainstream methods, and had good robustness
and engineering applicability.
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1 Introduction

Landslides are among the most common and highly destructive
geological hazards worldwide, with their destabilization processes
often accompanied by the initiation, propagation, and breakthrough
of surface cracks (Yunus et al., 2025). These cracks serve as
critical early indicators of slope instability (Sari et al., 2024),
reflecting not only internal stress adjustments and deformation
concentration within the slope body but also providing vital
evidence for delineating potential landslide areas and predicting
disaster trends (Yamaguchi and Kasai, 2022). Therefore, achieving
early, precise identification and dynamic monitoring of landslide
cracks is of paramount importance for establishing a geological
disaster prevention and mitigation system (Ozturk, 2022).

However, traditional landslide crack monitoring methods (such
as manual field inspections and ground surveys) suffer from low
efficiency, limited spatial coverage, and high subjectivity, making
them ill-suited to meet the demand for high-precision, real-
time acquisition of crack information in complex terrain and
vegetation-covered conditions (Mahesh et al.,, 2023). Particularly
in areas with significant topographic undulations and dense
vegetation, where fracture morphology is subtle and spatial
characteristics are concealed, the applicability and reliability of
traditional methods are significantly reduced (Tebbouche et al.,
2022). In recent years, with the advancement of remote sensing
technology, numerous scholars have attempted to incorporate
machine learning and remote sensing image analysis methods
to achieve automated identification of landslide fractures. For
instance, Khadka et al. (2025) combined multi-source geographic
features with a random forest model to identify landslide areas, but
this method has limited capability to capture complex nonlinear
relationships among features. Lekshmanan and George (2023)
proposed a crack identification method based on Generative
Adversarial Networks (GANSs), yet it is prone to pattern collapse,
resulting in insufficient diversity of generated samples. Yang et al.
(2025) employed short-time Fourier transform for frequency-
domain feature analysis, yet exhibited weak responsiveness to
slow-creeping landslides and tended to overlook deep-seated
fracture information (Shameem et al., 2022) utilized SVM models
for susceptibility zoning, but their cross-regional generalization
capability was poor, struggling to address challenges posed by
geological environmental variations. Overall, existing methods
predominantly rely on single data sources or isolated models,
failing to effectively integrate multi-scale, multi-temporal remote
sensing information. Particularly in complex environments with
terrain occlusion and vegetation interference, extraction accuracy
and robustness remain unsatisfactory.

InSAR technology possesses the capability for large-scale, high-
precision, long-term surface deformation monitoring, becoming
a crucial tool for early landslide detection (Tiwari et al., 2024).
However, its effectiveness is constrained by side-view geometry,
atmospheric delay, and vegetation penetration, often resulting in
monitoring blind spots and signal decoherence in steep terrain
or areas with high vegetation coverage (Diels et al., 2022). UAV
LiDAR technology can actively acquire high-precision 3D point
clouds, clearly revealing micro-topography, but lacks temporal
monitoring capabilities, making it difficult to directly reflect the
dynamic deformation process of landslides (Devaraj et al., 2022).
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Consequently, no single technology can comprehensively meet the
demands of landslide crack extraction. To address these challenges,
this paper proposes an automated landslide crack extraction
algorithm integrating InSAR and UAV LiDAR point clouds. By
effectively coupling multi-source remote sensing data, it aims to
resolve issues such as weak crack features, low extraction accuracy,
and insufficient generalization capabilities of existing methods
in complex environments. This approach fully leverages InSAR’s
macro-deformation monitoring capabilities and LiDAR’s high-
resolution 3D morphology capture. It incorporates a Probabilistic
Neural Network (PNN) for feature fusion and fracture probability
classification, achieving an integrated workflow from deformation-
guided to detailed fracture extraction. This provides a novel
technical pathway for early identification and monitoring/early
warning of landslide hazards.

2 Automatic extraction of landslide
cracks

2.1 Establishing an automatic extraction
framework for landslide cracks

Landslide cracks are key precursor indicators of landslide
instability. Due to their complexity, diversity, and limitations
in monitoring environments (such as terrain obstruction and
vegetation cover), a single technique struggles to comprehensively
and accurately capture and extract all characteristic information
of landslide cracks (Qiu et al., 2025). Therefore, this study couples
InSAR and UAV LiDAR technologies. Specifically, InSAR’s macro-
deformation monitoring capability compensates for UAV LiDAR’s
limited monitoring range and difficulty in acquiring long-term
deformation time series data. Conversely, UAV LiDAR's high-
resolution 3D detection advantage addresses InNSAR’s shortcomings
in “insufficient micro-morphological characterization” Specifically:
The deformation field provided by InSAR serves as prior knowledge
to locate the active deformation zones (i.e., crack development areas)
of the landslide, thereby guiding UAV LiDAR for detailed scanning
and data processing in key regions. Subsequently, based on LiDAR
point cloud information, the three-dimensional morphological
features of cracks are extracted, enabling the automatic identification
of landslide cracks. The coupling of these two technologies achieves
complementary “deformation information + 3D morphological
information,” enabling precise, automated extraction of landslide
cracks from ‘surface’ to “point” scale. This establishes an InNSAR-UAV
LiDAR point cloud coupled automatic landslide crack extraction
framework, as shown in Figure 1.

Within the framework depicted in Figure 1, InSAR technology
(SBAS-InSAR, Small Baseline Set Interferometric Synthetic
Aperture Radar—an optimized InSAR method) is employed for
macro-level positioning. Specifically, SBAS-InSAR monitors surface
deformation rates across extensive areas for rapid identification
of active deformation zones (landslide crack development areas).
This provides clearly defined target regions for subsequent detailed
detection, avoiding blind exploration and enhancing detection
efficiency. After identifying landslide fracture zones, UAV LiDAR
technology is employed for detailed extraction. This involves
(1) acquiring high-precision laser point cloud data of the area
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Automatic extraction framework for landslide cracks under INSAR-Unmanned Aerial Vehicle LiDAR point cloud coupling

using UAV LiDAR, (2) performing 3D modeling to obtain three-
dimensional morphological characteristics of landslide fractures,
and (3) analyzing this information with intelligent learning
algorithms to achieve landslide fracture extraction.

2.2 |ldentification of active landslide
deformation zones using SBAS-InSAR
technology

SBAS-InSAR technology is a synthetic aperture radar (SAR) data
processing method based on the principle of short spatiotemporal
baseline interferometry. It achieves high-precision monitoring
of ground deformation through multi-reference image time-
series analysis (Qadami et al., 2023). The fundamental approach
to locating landslide deformation hotspots using SBAS-InSAR
technology involves three key steps: constructing a small
baseline set through multi-reference image time-series analysis;
extracting high-precision surface deformation phase information
via phase unwrapping and error correction techniques; and
subsequently deriving surface deformation rates. Based on the
spatial heterogeneity characteristics of deformation rates and
combined with predefined thresholds, pixel-level screening and
spatial clustering are employed to identify regions with anomalous
deformation rates, enabling precise localization of landslide
deformation hotspots (areas with developed landslide fractures).

The primary process for locating landslide deformation hotspots
using SBAS-InSAR technology can be described as follows:
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1. Data Preparation. Multi-scene terrain SAR images covering
the target monitoring area over a specific time frame
are collected via satellite active microwave remote sensing.
These images must possess sufficient overlap and span the
potential landslide activity period. Simultaneously, to ensure
continuity in the terrain SAR image time series, eliminate
geometric distortion and radiometric differences between
images, and guarantee that interferometric results accurately
reflect actual ground deformation, the SAR images are
arranged chronologically. Radiometric calibration and multi-
view processing are performed on each image.

In the preparation stage of SBAS InSAR data in this study, multi
view processing adopts 5-view processing to improve image signal-
to-noise ratio while also considering spatial resolution; The absolute
calibration method is used for radiometric calibration. Based on
the known radiometric characteristics of the calibration body,
the grayscale values of SAR images are accurately converted into
backscattering coefficients to ensure the uniformity and accuracy
of radiometric levels between different images and ensure the
reproducibility of research.

2. Reference Image Selection and Image Registration. To provide
a stable baseline for subsequent interferometric processing
and reduce cumulative registration errors across multi-period
terrain SAR images, one scene is selected from all images
as the “reference Image” This reference image must exhibit
stable imaging conditions—such as minimal precipitation
during acquisition, minimal vegetation cover changes, and a
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moderate central viewpoint—positioned near the middle of
the time series to ensure more uniform distribution of spatio-
temporal baselines formed with other secondary images. After
determining the reference image, all other images (secondary
images) are registered to it, ensuring that the same geographic
targets occupy identical pixel locations across all images.
Registration is achieved through a geometric transformation
model expressed as follows Equation 1:

(xmaster’ymaster) = Y(x-?lt“/@’yslawe;{) (1)

In the formula, (X,aserYmaster) A4 (Xtaves Vsiave) T€Present the
pixel coordinates of the reference and secondary images for the same
target point, respectively. Y denotes the transformation function,
while { represents the transformation parameters (translation,
rotation, and scaling coefficients).

3. Construction of the small baseline set (SBAS). Based on
the registered images, combined with preset spatial baseline
thresholds and temporal baseline thresholds, short-baseline
interferometric pairs are filtered from all image pairs to form
the small baseline set. The filtering criteria for interferometric
pairs are as follows Equation 2:

.| < and|AT| < T' )

where, ],
corresponding threshold of J', and AT represents the temporal
baseline with a corresponding threshold of T" .

represents the vertical spatial baseline with a

4. Generation of the interferogram. For each scene in the
small baseline set, perform conjugate multiplication on
the registered reference and secondary images to generate
M differential interferograms I. The phase values in
these interferograms contain information about terrain,
deformation, atmospheric conditions, and noise in the target
area, exhibiting entanglement (entanglement interval: [-m, 7]).
This is described by the formula as follows Equation 3:

=S = BelPrmarped 3)

*
master * Ssluve

and S

Where, S ave Tepresent the complex pixel values of

the reference and secondary images, respectively; * denotes the

master

complex conjugate; f3 represents the interferometric amplitude;

denotes the wrapped interferometric phase. ¢

¢wmpped wrapped is

expressed as follows Equation 4:

¢wmpped = r(¢def+ ¢t0p0 + ¢atm + ¢noise) (4)

where, T' denotes the wrapping operator, ¢, represents the

deformation phase, denotes the terrain phase, ¢ . denotes the

atm

¢topa

atmospheric phase, ¢, .  denotes the noise phase.

noise
Through the above operations, series of reference-secondary
interferometric pairs of

interferometric pairs M must satisfy the condition shown in

image are formed. The number
Equation 5:
(N+1)/2<M<NN+1)/2 (5)

where, N denotes the total number of terrain SAR images.
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5. Phase unwrapping. Given that the interference phase of
the interferogram exhibits periodic blurring 27 (with a
wrapping interval of [-m,7]), it cannot directly reflect true
surface deformation. Therefore, to obtain the true phase
difference for accurate deformation rate calculation and
subsequent deformation inversion, the wrapped interference
phase ¢, is restored to the true absolute phase ¢

unwrapped’

described by the formula as follows Equation 6:

¢unwmpped(i’j) = ¢wrapped(i’j) + 27T£(i,j) (6)

In the &(i,f) the

disentanglement order, which is the core unknown quantity to

equation, represents integer-solved
be solved for phase disentanglement. It must satisfy the continuity
constraint of phase difference between adjacent pixels as follows
Equations 7, 8:

|¢unwmpped(i’j) - ¢unwrupped(i - 1’j) - A¢x(i’j)| <7 (7)

|¢unwmpped(i’j) - ¢unwmpped(i’j - 1) - A¢y(1’J)| <7 (8)

Where, A¢, (i, ) and A¢ (i, j) represent the phase difference between
adjacent pixels.

In the process of phase unwrapping, to alleviate errors caused
by atmospheric noise and other factors, the method of removing
the atmospheric phase screen can be used. Firstly, estimate the
atmospheric phase contribution based on external atmospheric data
or by utilizing the characteristics of interferograms themselves.
For example, by analyzing the phase change patterns at different
time or spatial scales to separate atmospheric phase components,
they can be subtracted from the unwrapped phase; Multiple image
overlay averaging method can also be used to average the data using
multiple sets of interferometers to reduce the influence of random
atmospheric noise, thereby reducing the interference of phase
unwrapping error on deformation rate calculation and improving
the accuracy of deformation rate inversion.

6. Elimination of systematic errors. From the absolute phase
after disentanglement, estimate and remove systematic error
phases, primarily referring to terrain residual phases caused
by elevation errors. The terrain residual phase model can be
described as:

i
A Rsin6

¢tr (9)

where, ¢, represents the terrain residual phase, A denotes the radar
wavelength, R signifies the slant range from the satellite to the
ground target (i.e., the propagation distance of the radar signal), 6
represents the radar wave incidence angle, Ah indicates the elevation
error, which is the unknown quantity to be solved for in the model.
Solving Ah by least squares yields as follows Equation 10:

2
L, Ah

A Rsin6 (10)

Ah = argminAh Z ¢unwmpped
where, Al represents the parameter variable serving as the target
during the solution process.

Substituting the obtained A/ into Equation 9 yields the terrain
residual phase ¢,,. Subtracting this from ¢,,,,.,,..; produces the
cleaned interferogram phase.
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7. Deformation Inversion: Solve for the local deformation rate
of the monitored area using. By establishing a mathematical
relationship between deformation phase and deformation
rate and solving it, deformation inversion is achieved from
the purified interferogram phase information. This derives
the linear deformation rate field of the monitored area’s
surface, enabling quantitative understanding of deformation
velocity at different surface locations. This provides critical
deformation data for subsequent identification of landslide
deformation hotspots. Let the surface deformation rate be
denoted as p and the time interval as At. The relationship
between the deformation phase Paer and p can be expressed
as follows Equation 11:

Gaep = (471/A)p- At (11)

For a small baseline set, with M interferometric pairs
defined, a system of equations is constructed based on the
phase data from multiple pairs—the core computational step in
deformation inversion. Combining the deformation phase and
deformation rate relationships for all interferometric pairs yields
as follows Equation 12:

¢def,1 = (4n/Mp- Aty

Paer2 = (47/M)p- Aty (12)

Paer,r = 4/ N)p - Aty

The above system of equations is solved using the least squares
method to obtain the deformation rate p. The essence of the solution
is to find a p that minimizes the sum of squared errors Z between the
observed deformation phase and the theoretical deformation phase
for all interferometric pairs. Define Z = Zﬁl(gb der,i — (4mT/M)p- Ati)Z.
Setting the derivative of Z with respect to p to zero, i.e., (dZ)/(dp) =
0 leads to as follows Equation 13:

Y 2 @i~ (Am/N) - pAL ) (—(47/1)AL) = 0 (13)
After derivation, we obtain as follows Equation 14:
pi= (AY Y by it (4my " AE) (14)

Through this computational process, the inversion from phase
data to deformation rate is completed, yielding the deformation rate
for each pixel in the monitored region.

8. Formative Mapping. Based on the deformation rate values of
each pixel in the deformation rate field, different deformation
rate values are mapped to different colors according to specific
color mapping rules, generating a deformation rate map for
the study area. Specifically, the deformation rate range is set to
[pmm, P ax], divided into several intervals, with each interval
corresponding to a specific color. Each pixel is assigned the
color corresponding to the interval containing its deformation
rate value, resulting in a color image depicting the deformation
rate distribution.

Through the mapping relationship between pixel coordinates
and geographic coordinates, precise geospatial location information
is assigned to each pixel point in the deformation rate map.
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9. Identification of Active Landslide Deformation Zones. Based
on the deformation rate map, a reasonable deformation rate
threshold is established and active landslide deformation zones
are identified by comparing values against this threshold.
Specifically:

i. Threshold Determination: The deformation rate threshold

p is set by integrating the geological background of the
study area, historical landslide deformation data, and
monitoring accuracy requirements.

ii. Pixel-level screening: Iterate through all pixels in the
deformation rate map and evaluate the deformation rate
p, for each pixel. If |p,| > p holds, mark that pixel as a
“potential active point.”

iii. Spatial Clustering Analysis: Perform spatial clustering

on marked potential active points (using the DBSCAN

algorithm for density-based clustering with). Aggregate
spatially contiguous or adjacent active points into regional
units while removing isolated noise points.

iv. Identification of Active Deformation Zones: Combining

topographic data with the clustered zones, boundaries

are refined to exclude anomalies caused by non-landslide
factors (e.g., deformation from man-made structures),
thereby defining the spatial extent of active landslide
deformation zones (landslide fracture development zones).

In this study, the parameter selection of DBSCAN algorithm was
combined with the spatial distribution characteristics of landslide
deformation in the research area and simulation testing. Through
multiple experiments, it was determined that the neighborhood
radius was set to 50 m to cover the reasonable spatial correlation
range between adjacent pixel points in the active area of landslide
deformation; The minimum number of points is set to 8 to ensure
that the clustering area has sufficient deformation point density
to distinguish between real active areas and noise. This parameter
combination can effectively balance clustering integrity and noise
removal effect.

2.3 Acquisition of morphological features
of landslides and cracks based on
UAV-based lidar point clouds

The spatial scope of active landslide deformation zones
identified in Section 2.2 serves as prior constraint information for
UAV LiDAR precision scanning. This approach aims to prevent
indiscriminate detection across large areas, instead focusing on
critical regions with developed fractures. By leveraging high-
resolution 3D point cloud data from these zones, we capture
morphological features such as crack width, depth, slope, and
curvature, thereby establishing a foundation for subsequent
extraction of landslide fracture edges. The specific procedure is
described as follows:

1. UAV LiDAR point cloud data acquisition. The UAV-mounted
LiDAR system emits laser pulses toward the target area (the
active deformation zone identified in Section 2.2, i.e., the
landslide fracture development zone). These pulses reflect
off surface objects (landslide fractures) and return. By
recording the round-trip time ¢ of the laser pulses and
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combining it with the speed of light v, the straight-line
distance L = (v x t)/2L from the laser footprint to the UAV is
calculated. Simultaneously, using the drone’s POS (Position
and Orientation System) data, obtain the precise position
and orientation of the laser emission point. This determines
the three-dimensional coordinates of the laser footprint in
the global coordinate system, generating a high-density point
cloud.

In the process of collecting LiDAR point cloud data from
unmanned aerial vehicles, after calibration by professional
measuring equipment and multiple repeated measurements, the
horizontal accuracy root mean square error of the obtained point
cloud was controlled within 0.05 m, and the vertical accuracy root
mean square error was controlled within 0.03 m. This level of
accuracy can effectively ensure the reliability and accuracy of the
extracted landslide crack width, slope and other morphological
features from the point cloud data.

2. 3D Modeling. Based on the point cloud data obtained
in step (1), a 3D model of the landslide fracture zone
is constructed. The specific process is as follows: First,
preprocessing operations such as denoising, filtering, and
simplification are performed on the acquired point cloud data
to eliminate outliers and redundant data; Subsequently, the
preprocessed high-density point cloud data is converted into
a Triangulated Irregular Network (TIN) using the Delaunay
triangulation algorithm. An interpolation algorithm then
transforms the TIN into a high-resolution Digital Elevation
Model (DEM). Finally, orthophotos are textured onto the 3D
surface using texture mapping techniques based on the DEM.
Lighting rendering technology is applied to enhance the visual
impact of terrain undulations, ultimately generating a 3D
model of the landslide fracture development zone.

Landslide fracture characteristic acquisition. Based on
the generated three-dimensional model of the landslide
fracture development zone, acquisition of landslide fracture
characteristics are extracted. Given that landslide fractures
exhibit characteristics such as narrow width, relatively
continuous strike, varying depth, steep slope, and negative
curvature, this study selected fracture width, strike, slope,
and curvature index as landslide fracture features to describe
fracture morphology using the 3D model. Specifically
as follows Equation 15:

W= (X5 - X,)% + (Yp— Y, 2 (15)

Landslide Fracture Width: The vertical distance between rock
and soil on both sides of the fracture in the horizontal
direction, reflecting the tensile deformation of the landslide.
Trends in width variation (e.g., wider in the middle, narrower
at both ends) can indicate fracture propagation and stress
concentration points (Sandric et al., 2024). In the 3D model
of the landslide fracture zone, let O denote a point on the
fracture centerline. Draw a horizontal line perpendicular to the
fracture strike direction through this point. The intersection
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points with the fracture boundaries on both sides are denoted
as A(X,,Y,) and B(Xp, Yp), respectively. The formula for the
fracture width W at point O is:

For extracting the centerline of irregularly shaped cracks, a
morphological skeleton based algorithm is adopted: firstly, the crack
area in the 3D model is binary segmented, and the crack boundary
pixels are gradually peeled off through continuous morphological
erosion operations until only the central skeleton with a single pixel
width is retained; For branching cracks, the distance transformation
method is used to identify the local farthest point of each branch
as the skeleton connection point, and the minimum spanning tree
algorithm is used to optimize the skeleton topology structure;
Finally, burrs and redundant branches are removed through skeleton
trimming to generate a continuous centerline that conforms to the
actual direction of the crack, ensuring the geometric accuracy of the
direction calculation as follows Equation 16.

Y,-Y
arctan< S ) X 180 (X, > X))
X, -X 71
Y,-Y
_ arctan<#> X 180 +180° (X, < X))
a= X, -X; U
90° (X,=X,and Y, > Y))
270° (X,=X,and Y, <Y))

(16)

b. Slope Fracture Strike: The horizontal direction of fracture
propagation, which is typically expressed as an angle relative
to true north (ranging from 0° to 360°) and reflects the spatial
distribution trend of fractures (Dias and Grohmann, 2024),
aids in determining the movement direction and stress state of
slope fractures. In the 3D model space of the landslide fracture
zone, select two points along the fracture centerline: G, (X,,Y;)
and G,(X,, Y,). The angle between the horizontal projection of
the line connecting these two points and true north represents
the fracture strike a. The formula is:

For landslide fractures with bends, segmented calculations of
strike direction must be performed based on the spatial distribution
of different fracture segments within the three-dimensional
model space of the fracture development zone, with variation
characteristics annotated accordingly as follows Equation 17.

pesnn (22 () ) 20

Where, H represents the elevation of point (X, Y), 3—1; and Z—PYI denote
the slope rates of this point in the X and Y directions, respectively.

9H
ox

oH

Iy (17)

c. Landslide Fracture Slope: The inclination of fracture walls
reflects the steepness of rock and soil on both sides of
the fracture (Behley et al, 2021). Slope is determined by
calculating the gradient change in elevation. For landslide
fractures, their slope is often steeper than the surrounding
terrain, serving as a key feature to distinguish fractured zones
from normal topography. The formula for the slope of a
fracture p at a point along the fracture edge line in the 3D
model of the landslide fracture zone (X,Y) can be expressed
as:
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For the entire crack, the slope of all points along the edge
line can be calculated and averaged to represent the overall slope
characteristic of the crack as follows Equation 18.

_1_ s
nrahc

(18)

Where, a, b and ¢ represent the side lengths of the triangle formed
by the point #(X, Y) and its two adjacent points on the fracture edge
line, s represents the area of the triangle, r represents the radius of
the triangle’s circumcircle.

d. Slope Fracture Curvature: Indicates that the fracture edge
exhibits a concave curvature toward the interior of the
fracture, reflecting the bending characteristics of the fracture
in its spatial distribution (Liu et al, 2025). This can assist
in determining the stress state of the fracture. Within the
three-dimensional model framework of the slope fracture
development zone, for discrete point sequences, the curvature
1 of a point u(X,Y) can be expressed as:

Before constructing the Irregular Triangular Network (TIN), in
order to filter overlapping point cloud data (data from vegetation
and ground), a height threshold based method is used to set a
reasonable height range according to the terrain characteristics
of the landslide area. Point cloud data that exceeds this range
(vegetation point cloud) and is below the reasonable lower limit
(noise point cloud) are removed. At the same time, combined with
point cloud intensity information, due to the difference in laser
reflection intensity between vegetation and ground, the overlapping
point cloud data from vegetation and ground are further screened by
setting an intensity threshold to effectively filter out, avoid distortion
of TIN construction, and ensure the accuracy of subsequent feature
extraction.

The sign of curvature can be determined by the order of the three
points: when the points are arranged clockwise along the cracK’s
extension direction, the curvature is negative (concave toward the
crack interior); when arranged counterclockwise, the curvature is
positive (convex toward the crack exterior). For landslide cracks,
the focus is typically on regions of negative curvature and their
distribution characteristics.

By extracting features such as landslide fracture width,
strike, slope, and curvature from, we obtain the morphological
characteristics of landslide fractures. These are then used to
construct the fracture feature vector Q[ W, a, p,#].

For cracks with significant vertical undulations (stepped
cracks), in order to avoid width calculation deviation caused by
terrain undulations passing through non crack areas, the elevation
normalization horizontal projection method is adopted: first, the
elevation data of the crack centerline and boundary points on both
sides are extracted, and the elevation of each point is normalized to
the local reference plane (lowest point elevation) of the crack. Then,
a horizontal projection line is generated on the normalized vertical
profile to ensure that the measurement line always follows the
actual extension direction of the crack and is not affected by terrain
undulations, thus accurately calculating the true width of the crack.
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2.4 Implementation of landslide extraction
and fracture extraction

Based on the acquired landslide fracture feature vector Q, the
probabilistic neural network (PNN) model is employed to extract
landslide fractures, thereby obtaining their edge contours. The
PNN model, a feedforward neural network, learns the probability
density of data through training to calculate the probability of input
samples belonging to different categories. It features fast training
speed, high classification accuracy, and strong robustness against
noisy data (Gui and Ma, 2025; L et al,, 2024). When applied
to landslide crack identification, it effectively handles complex
nonlinear relationships in crack features, accurately distinguishing
cracks from terrain undulations, vegetation cover, and other
interfering features, enabling precise classification of landslide
cracks pixels. The crack extraction process is as follows:

1. PNN network model creation. Construct a four-layer PNN
network model comprising input, pattern, accumulation, and
output layers. The input layer receives feature vectors of target
objects (landslide cracks); The pattern layer stores feature
patterns of training samples (characteristics of landslide cracks
versus non-cracked areas). It calculates similarity between
input feature vectors and training sample patterns using radial
basis functions, converting similarity into probability density
values. The accumulation layer integrates outputs from the
pattern layer. The output layer generates final classification
results (crack/non-crack).

In PNN model training, the ratio of crack pixels to non crack
pixels in the collected samples is about 1:5, with non crack samples
dominating. To balance data distribution and avoid model bias
towards non crack classification, oversampling techniques were
adopted for crack samples. Specifically, SMOTE (Synthetic Minority
oversampling Technique) algorithm was used to generate synthetic
crack samples, and the ratio of crack and non crack samples was
adjusted to 1:2, effectively improving the model’s ability to recognize
crack features.

2. Similarity Calculation and Probability Density Estimation.
When a landslide fracture feature vector Q (originating from
a specific location within the 3D model of the landslide
fracture development zone) is input for classification, each
neuron in the pattern layer calculates its similarity to the
stored sample E using a Gaussian kernel function. It then
outputs the probability density estimate #;(Q) indicating
the likelihood of the input vector belonging to a particular
category (fracture/non-fracture), expressed by the formula
as follows Equation 19:

(19)

_ 2
f}(Q) = exp[_m]

28%

Where, § represents the smoothing parameter, which controls the
smoothness of the decision boundary.

In the construction of the 3D model in this study, after multiple
experimental comparisons and actual requirement analysis, the grid
cell size was determined to be 0.2 m. The optimization basis mainly
lies in the fact that this size can retain key details of landslide cracks,
such as subtle changes in crack direction and width differences,
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to ensure the accuracy of crack extraction; It can also control the
computational workload to a certain extent, avoiding a significant
increase in computation time due to small unit sizes, which affects
algorithm efficiency, and achieves a good balance between detail
preservation and computational efficiency.

3. Category probability summation and decision. The
accumulation layer sums the pattern layer’s outputs by
category, calculating the total probability density @,(Q) for
the input feature vector Q belonging to the crack category g =

1 and the non-crack category g = 0Oas follows Equation 20:

2,(Q) =) £/(Q

i€g

(20)

The output layer assigns the input vector Q to the category with
the maximum probability value based on Bayesian decision rules.
Specifically, when (DgZI(Q) > (DgZO(Q), the input Q is classified as
belonging to the crack category (g =1); when @,_,(Q) < @,_,(Q), it
is classified as belonging to the non-crack category (g =0). This is
expressed as follows Equation 21:

Y= urgmaxwg(Q) (21)
The classification result from the output layer (¥, taking values
of 1 or 0) determines whether the location is a landslide fracture.

4. Full-image scanning and probability map generation. The
feature vectors of each grid cell in the 3D model of the landslide
fracture development area in the study region are sequentially
input into the trained PNN model to obtain the probability
that each position belongs to a fracture, and a landslide
fracture probability distribution map U(x, y) is generated. This
probability map clearly reflects the possibility of a landslide
fracture existing at each position in the study region.
Landslide fracture contour extraction. The Canny operator
is used to extract the landslide fracture edge contour from
the landslide fracture probability distribution map, which is
described by the formula as follows Equation 22:

D, jee(x,) = Ulx, y) * V(0) (22)

In the formula, D, (x,y) represents the image containing the
fracture edge contour, V(o) represents a Gaussian filter with a
standard deviation of o.

To determine the high and low thresholds in Canny edge
detection, the Otsu method is first used to perform preliminary
threshold segmentation on the probability distribution map of
landslide cracks, and obtain the basic threshold reference; Next,
multiple sets of high and low threshold combinations are set
near the basic threshold for testing. By comparing the integrity,
continuity, and matching degree of the extracted crack edges
with the actual cracks under different combinations, the optimal
threshold combination that can maximize edge integrity and
effectively suppress noise is finally selected.

In the constructed PNN network model, the number of input
layer neurons is consistent with the dimension of the landslide crack
feature vector; The number of neurons in the pattern layer is equal to
the total number of training samples, and each neuron corresponds
to a feature pattern of a training sample; The number of neurons in
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TABLE 1 Main parameters of the experiment.

Name Numerical value

The degree of overlap of adjacent SAR images >20%

The central viewing angle of the main SAR image 35°-45°
Vertical space baseline threshold 200 m
Time baseline threshold 50days
The incident Angle of radar waves 20°-50°
Deformation rate threshold 10 mm/day
Flight altitude of unmanned aerial vehicles 120 m
The flight speed of unmanned aerial vehicles 8 m/s

Radar scanning mode Repeat scanning

Smooth parameter 0.5

Standard deviation of Gaussian filter 1.5

the accumulation layer is the same as the number of classification
categories, namely, crack and non crack categories; The output layer
is a single neuron used to output the final classification result. This
structure ensures the matching between model parameters and data
size, avoiding overfitting or underfitting issues.

Through the above operations, the landslide fracture edge
contour is obtained, and the landslide fracture extraction is realized.

3 Experimental analysis

To analyze the effectiveness of the landslide crack automatic
extraction algorithm under InSAR UAV LiDAR point cloud
coupling in this study, a typical landslide prone area in a county
in Sichuan Province was selected as the experimental object. This
area belongs to the southern section of the Longmenshan Fault
Zone, with complex geological structures and mainly composed of
weathered layers of Jurassic sandstone and mudstone. The surface is
covered with a mixture of loose slope soil and strongly weathered
rocks with a thickness of 2-8 m. According to the geological hazard
survey data after the 2013 Lushan 7.0-magnitude earthquake, the
historical landslide activity frequency in the study area reached
1.2 times per year. There are 17 existing landslide bodies with
23 tension, shear, and composite cracks developed, mainly in
the NW-SE direction, with a width range of 0.3-2.1m and a
depth of 0.5-3.8 m. The rich landslide activity records and typical
geological environmental characteristics in this area provide an ideal
experimental field for verifying the adaptability of the algorithm
under different geological conditions.

The primary experimental parameters for this study are listed in
Table 1. The experimental platform constructed for practical needs
is shown in Figure 2.

The deformation rate threshold is initially set based on the actual
deformation rate of landslides in the historical landslide data of the
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FIGURE 2
Building the experimental platform.

study area, combined with factors such as geological structure and
soil characteristics of the area, and referring to previous landslide
monitoring research experience under similar geological conditions.
It is then adjusted through a small amount of preliminary testing. In
this experiment, the drone’s flight altitude was set to 120 m, based on
a comprehensive balance between point cloud density and detection
efficiency. After preliminary testing, the point cloud density at this
altitude can reach 50-80 points per square meter, which can meet
the recognition requirements of cracks at the 0.3 m level (with a
spatial resolution of 0.15 m after Gaussian filtering), and can cover
a research area of 8 square kilometers in a single flight. Although
reducing the flight altitude can improve the point cloud density,
it will significantly reduce the single operation range and increase
the number of flights. After considering the scale characteristics of
cracks and research efficiency, this parameter is determined.

Figure 2 Experimental platform utilizing BeiDou satellites,
SBAS-InSAR detection technology monitors deformation in the
study landslide area. Data is transmitted to BeiDou base stations
and then to the data management center. Simultaneously, airborne
radar scanned the same area, with data transmitted to the radar
base station and then to the data management center. The center
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‘ Real-time alarm ‘

integrated and analyzed the received data, combining macro-
deformation information from InSAR with high-resolution 3D data
from UAV LiDAR to precisely extract landslide cracks. Alarms were
promptly issued based on the extraction results.

The experiment utilizes a constructed experimental platform
to collect multi-scene terrain SAR imagery covering the target
monitoring area over nearly 30 days using SBAS-InSAR technology.
In the data collection process of this experiment, in order to ensure
the consistency and correlation of the surface information reflected
by InSAR and LiDAR data, they were basically synchronously
collected. In the specific operation, InSAR data acquisition (using
SBAS InSAR technology to collect multi scene terrain SAR images)
and unmanned aerial vehicle LIDAR data acquisition are carried
out within 24 h, minimizing the problem of data mismatch caused
by changes in surface conditions due to time intervals, and
ensuring the accuracy and reliability of landslide crack extraction
results based on the fusion of the two types of data in the
future. The imagery is arranged chronologically and undergoes
radiometric calibration and multi-view processing. Following image
registration, interferogram generation, phase unwrapping, error
correction, and deformation inversion, the surface deformation rate
for the area is obtained, generating a deformation rate map for
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FIGURE 3
Shows the determination results of the landslide crack

development area.

the region. Simultaneously, a reasonable deformation rate threshold
was set. By comparing values against this threshold and integrating
the DBSCAN clustering algorithm, active landslide deformation
zones (landslide crack development areas) were identified. The
experimental results are shown in Figure 3.

Figure 3 displays the deformation rate map of the target area,
clearly distinguishing variations in deformation rates through
distinct color coding. Among these, two areas predominantly
colored purple were identified as landslide crack development
zones, forming a stark contrast with the surrounding relatively
stable areas appearing in green tones. This vivid color contrast
clearly reflects that the surface deformation rates within the
landslide crack development zones are higher than in the
surrounding areas, indicating that these zones exhibit a significant
landslide deformation trend and are key areas for landslide crack
development. From a technical perspective, the SBAS-InSAR
technology employed in this study precisely captures subtle surface
deformation information through the processing and analysis of
multi-scene SAR imagery. The spatial distribution of development
zones and color gradients in Figure3 not only demonstrate
the technology’s high sensitivity to landslide deformation but
also provide reliable and critical deformation rate data for
delineating active landslide deformation zones. Furthermore, this
technology effectively identifies potential hotspots for landslide
crack development. It establishes a clear prior constraint range
for subsequent detailed UAV LiDAR point cloud scanning and
automated landslide crack extraction, significantly enhancing the
precision and efficiency of landslide crack monitoring.

Then, UAV LiDAR technology was employed to scan identified
landslide fracture development zones, collecting point cloud data
for three-dimensional modeling. From this, morphological features
such as fracture width, strike, dip, and curvature were extracted to
construct a landslide fracture feature vector. The feature vector was
input into a pre-built four-layer PNN model. This model outputs the
probability that a point belongs to a landslide crack, generating a
crack probability distribution map. Subsequently, the Canny edge
detector was applied to extract crack edge contours, achieving
automated landslide crack extraction. Selected extraction results
are shown in Figure 4.

As shown in Figure 4, the red lines clearly delineate the
crack edge contours extracted by the proposed algorithm. In
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FIGURE 4
Extraction results of landslide cracks.

terms of distribution, the cracks exhibit irregular morphology with
distinct extensions and turns across different regions, reflecting
the complexity and diversity of landslide cracks in actual terrain.
Simultaneously, features such as crack width, strike, slope, and
curvature extracted from the 3D model constructed from point
cloud data are indirectly reflected in the crack morphology
within the figure. For instance, wider sections may correspond
to areas with more intense landslide activity. Furthermore, the
results in Figure 4 obtained using this algorithm fully validate the
effectiveness and advantages of UAV LiDAR technology in landslide
crack extraction. High-precision point cloud data acquisition and
3D modeling accurately capture subtle morphological features
of cracks, providing a reliable data foundation for constructing
landslide crack feature vectors. The application of a four-layer
PNN model effectively handles the complex nonlinear relationships
of crack features, accurately outputting the probability of each
point belonging to a landslide crack. Subsequently, the Canny
edge detection algorithm successfully extracts crack edge contours,
achieving automated landslide crack extraction. These results
not only visually depict the distribution patterns of landslide
fractures and precisely locate their spatial positions but also provide
intuitive and critical information for in-depth analysis of fracture
development patterns and assessment of landslide stability. This
holds significant importance for establishing a comprehensive real-
time monitoring and early warning system for landslide disasters.

For the method presented in this paper, the extraction of
morphological features of landslide fractures is crucial, as it directly
impacts the reliability of fracture edge extraction. To address this,
the experiment employs the information gain rate metric to evaluate
the contribution value of four selected features-slope crack width,
strike, dip, and curvature-to the target task of slope crack extraction.
The information gain rate measures the informational contribution
of features to classification tasks, with values ranging from [0,1]. For
automated landslide crack extraction, higher values indicate greater
value for the task. Test results are shown in Figure 5.

As illustrated in Figure 5, the trend of different feature
information gain rates with signal-to-noise ratio (SNR) reveals
that crack width consistently maintains the highest information
gain rate across all SNR ranges, peaking at 0.98. It also performs
exceptionally well at lower SNRs (10-30 dB), demonstrating strong
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Shows the gain rates of different feature information.

robustness against noise. This feature effectively distinguishes
landslide cracks from normal terrain, providing the model with
the most stable and discriminative morphological basis. Crack
orientation and slope information yield the next highest gain
rates. In contrast, the information gain rate for crack curvature
consistently lagged behind the other three features, showing a
smaller increase. This indicates its limited discriminatory capability
for landslide crack extraction and relatively minor contribution.
This is attributed to curvature features being susceptible to local
noise interference and their insufficient discriminative significance
in morphological representation. Nevertheless, it maintains a high
overall level, with an information gain rate exceeding 0.89. This
feature selection did not include crack depth mainly because the use
of unmanned aerial vehicle LIDAR to measure crack depth is limited
by equipment accuracy and complex terrain conditions, resulting
in large measurement errors and difficulty in accurately obtaining
depth information. Therefore, it was not included as a feature.
Opverall, the information gain rates of all four morphological features
increased with improved signal-to-noise ratio (SNR). This indicates
that enhanced data quality strengthens each feature’s informational
contribution to landslide crack extraction, enabling more thorough
exploitation of their discriminative value. From a feature selection
perspective, all four features make significant contributions to
landslide crack extraction. Specifically, crack width and orientation
should be prioritized as key features in extraction models, while
slope and curvature serve as effective supplements. Together, they
form a robust, comprehensive feature set that enhances the model’s
overall extraction performance across varying signal-to-noise ratio
conditions.

Intersection over Union (IoU) refers to the ratio of the
intersection area between the landslide crack area extracted by the
algorithm and the actual crack area (true value) to the union area,
which can reflect the accuracy of the landslide crack extraction
results and the degree of regional matching. When the IoU value
approaches 1, it indicates that the extracted crack area coincides with
the actual area in height, and the extraction algorithm is effective and
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accurate; On the contrary, when the IoU value is low, it indicates that
there is a significant deviation between the extracted results and the
actual situation. Fifty independent test cases were selected for the
experiment, covering various types of landslides such as shallow soil
landslides and rock landslides. The performance of our algorithm
was evaluated using this indicator, and compared and analyzed with
Khadka et al.'s landslide recognition method based on Google Earth
Engine in 2025 and Lekshmana and George’s landslide recognition
method based on deep generative adversarial networks in 2023. The
results are shown in Figure 6.

As shown in the IoU performance comparison in Figure 6,
it is clearly observable that the proposed algorithm consistently
maintains the highest IoU values across the entire range of
vegetation coverage variations. Its curve exhibits the greatest
stability with the smallest fluctuation amplitude, with an overall
level exceeding 0.94. This demonstrates the proposed algorithm’s
strong robustness against vegetation occlusion interference,
effectively overcoming challenges such as complex textures and
blurred features caused by vegetation coverage. It accurately
matches actual fracture areas, achieving superior and stable
extraction accuracy. In contrast, the IoU values of the Landslide
recognition method based on Google Earth Engine and the
Landslide recognition method based on deep generative adversarial
network both show a significant downward trend with increasing
vegetation coverage, especially under moderate to high vegetation
coverage conditions where performance degradation is significant.
This indicates that these two methods are more sensitive to
vegetation environments, and their feature extraction and spatial
analysis capabilities are limited in complex scenarios, making it
difficult to effectively distinguish vegetation noise from real crack
features. Overall, the proposed algorithm demonstrates higher
accuracy and regional matching capability across diverse vegetation
coverage environments, validating its effectiveness and advanced
performance in complex natural settings.

To further validate the performance superiority of the InSAR
unmanned aerial vehicle LiDAR point cloud coupled landslide
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TABLE 2 Comparison of algorithm performance under different landslide types and Gaussian filter standard deviation.

Landslide Evaluation The method proposed in this paper Landslide Landslide
type metrics recognition recognition
method method
based on based on
Standard Standard Standard google earth deep
deviation 1.0 deviation 1.5 deviation 2.0 engine generative
adversarial
network
Accuracy (%) 95.2 94.8 93.5 88.6 85.3
Recall rate (%) 93.8 942 92.7 86.4 83.1
Gentle landslide F1 score 94.5 94.5 93.1 87.5 84.2
Edge smoothness 21 23 25 3.8 4.2
(pixels)
Running time (s) 12.5 13.2 14.0 18.7 20.3
Accuracy (%) 94.7 94.3 93.0 87.9 84.7
Recall rate (%) 93.3 93.7 92.2 85.8 82.6
Shallow soil F1 score 94.0 94.0 92.6 86.8 83.6
landslide
Edge smoothness 23 24 2.6 3.9 43
(pixels)
Running time (s) 13.0 13.7 14.5 19.2 20.8
Accuracy (%) 95.5 95.0 93.8 89.1 85.8
Recall rate (%) 94.1 94.5 93.0 86.9 83.5
F1 Z% 4. 4 X 4.
Rock landslide score 94.8 94.7 93 88.0 84.6
Edge smoothness 2.0 22 24 3.7 4.1
(pixels)
Running time (s) 12.0 12.7 13.5 18.2 19.8

crack automatic extraction algorithm proposed in this paper under
different landslide types and Gaussian filter standard deviations
(1.0, 1.5, 2.0), another typical slow-moving landslide area in
Sichuan Province was selected as the experimental object, and
compared with the Landslide recognition method based on Google
Earth Engine and the Landslide recognition method based on
deep generative adversarial network. And use precision (to avoid
false positives), recall (to avoid missed detections), F1 score,
edge smoothness, and running time as evaluation metrics. The
experimental results are shown in Table 2.

According to Table 2 analysis, it can be seen that the algorithm
proposed in this paper has significant performance advantages
under different landslide types and Gaussian filter standard
deviation conditions. In terms of accuracy, whether it is slow-
moving landslides, shallow soil landslides, or rock landslides, the
algorithm in this paper far exceeds the Landslide recognition
method based on Google Earth Engine and the Landslide
recognition method based on deep generative adversarial network
at standard deviations of 1.0, 1.5, and 2.0. The highest accuracy
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reaches 95.5%, indicating that the algorithm in this paper can
effectively avoid false alarms and accurately identify landslide cracks.
In terms of recall rate, the algorithm presented in this article also
performs outstandingly, outperforming the compared algorithms in
various landslide types and standard deviation settings, indicating
that it can effectively avoid missed detections and ensure that
more real cracks are identified. As a comprehensive indicator of
accuracy and recall, the F1 score of this algorithm maintains a high
level, up to 94.8%, under three types of landslides and different
standard deviations, further proving its superior comprehensive
performance. The edge smoothness index shows that the crack
edges extracted by the algorithm in this article are smoother, with
significantly lower pixel values than the comparison algorithm,
indicating higher quality of the extracted results. In terms of running
time, the algorithm in this article is shorter than the comparative
algorithm under all conditions, reflecting its efficiency. Overall, the
algorithm presented in this article demonstrates higher accuracy,
comprehensiveness, result quality, and operational efficiency under
different landslide types and Gaussian filter standard deviations,
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demonstrating significant performance advantages. In addition,
different standard deviations of Gaussian filters have a certain
impact on algorithm performance. In terms of edge smoothness,
as the standard deviation increases from 1.0 to 2.0, the pixel
values of edge smoothness extracted by our algorithm and the
comparison algorithm show an upward trend. This indicates that
as the standard deviation increases, the smoothing effect of the
filtering process on the point cloud data is enhanced, resulting in a
change in edge smoothness. However, when the standard deviation
is set to 1.5, the algorithm proposed in this paper still significantly
outperforms the Landslide recognition method based on Google
Earth Engine and deep generative adversarial network in terms of
edge smoothness index while ensuring high accuracy and recall.
Moreover, the F1 score of the algorithm is at a high level for the three
types of landslides, indicating that under this standard deviation,
the algorithm can effectively smooth the edges while maintaining
crack features, ensuring the accuracy of extraction and verifying the
rationality of parameter selection.

4 Conclusion

In recent years, the integration of multi-source technologies
has provided novel solutions for landslide monitoring. This
study proposes an InSAR-UAV LiDAR point cloud coupled
algorithm for automatic landslide crack extraction. By establishing a
“macro-localization-fine-extraction” collaborative framework that
integrates SBAS-InSAR technology with UAV LiDAR technology,
the algorithm achieves efficient and precise automatic extraction of
landslide cracks. The algorithm’s core lies not in merely juxtaposing
results from both technologies, but in an implicit sequential logic:
using SBAS-InSAR-derived macroscopic deformation zones to
guide and focus LiDAR’s detailed crack extraction (i.e., pinpointing

»

cracks within active zones). This “area-to-point,” “macro-to-micro”
guidance relationship constitutes the essence of their coupling.
It avoids the imprecision of using InSAR alone for large-scale
deformation analysis and the inefficiency of employing LiDAR
solely for global scanning. Experimental results demonstrate that
this algorithm significantly enhances crack extraction accuracy,
enabling precise identification of narrow, fine cracks. It exhibits
strong robustness, operating stably across landslide areas with
varying terrain complexity and delivering reliable extraction
results. However, although this algorithm has shown significant
effectiveness in extracting landslide cracks, it also has certain
limitations. For example, in heavy rainfall environments, rapid
changes in surface conditions may interfere with the deformation
monitoring of InSAR technology, affecting the accuracy of
macroscopic positioning; In dense forest areas with poor LiDAR
penetration, it is difficult to obtain effective point cloud data, which
limits the fine extraction of cracks. Future work will focus on
optimizing the algorithm to adapt to complex weather conditions,
developing special data processing methods for dense vegetation
areas, and exploring integration with other emerging technologies
to further enhance the universality and reliability of algorithms.
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