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A new method has been developed to rapidly simulate array laterolog (ALL)
responses in invaded formations drilled by deviated wells. This method is
characterized by two key aspects: simplification of the computational model
and acceleration using neural networks. Initially, a five-layered model in
combination with an equivalent resistivity scheme is chosen to describe the
formations with arbitrary vertical layers. Additionally, three radially invaded
layers among the five vertical layers are identified, with the remaining two
invaded layers assumed to an uninvaded bed using the radial geometrical factor.
These simplifications result in a computational model with only comprises
17 parameters, ensuring both accuracy and generalization. The ALL database
for the simplified model is then established using the three-dimensional finite
element method (FEM). The Convolutional Neural Network (CNN) algorithm
is employed to train the nonlinear mapping between formation parameters
and ALL responses. Subsequently, this new ALL simulation method is applied
to classical Oklahoma formations with varying well deviations. Numerical
results demonstrate the simplified model's excellent generalization ability for
accommodating formations with arbitrary layers while maintaining a relative
computation error within 2%. Compared to the traditional simulation method,
the CNN-predicted ALL responses improves the computational speed by over
two orders of magnitude, establishing a robust foundation for expeditious ALL
data processing.

KEYWORDS

array laterlog, rapid forward, convolutional neural network, equivalence of surrounding
rocks, simplification of the computational mode

1 Introduction

Precise resistivity measurements of underground rocks are crucial for both qualitative
identification and quantitative evaluation of oil and gas reservoirs (Chen, 2021;
Ren et al., 2020; Deng et al, 2018; Yang et al, 2025). The array laterolog (ALL),
known for its high vertical resolution, multiple lateral detection depths, and wide
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FIGURE 1
Selection of the Number of Layers of the Calculation Model: (a) multi-layer model; (b) Model V_3; (c) Model V_5; (d) Model V_7.
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FIGURE 2
Array lateral log responses of two calculation models in layered medium under different detection modes: (a) RLAL, (b) RLA3, (c) RLA5, where the well
deviations are 60°.

operating resistivity range, has been widely employed in this Due to the formation inhomogeneity, complicated tool
field (Maurer et al, 2009; Xiao et al,, 2016). In vertical wells, structures, and arbitrary well deviation, the 3D FEM has become
ALL curve separation serves as a reliable indicator for the  the preferred approach for current ALL modeling (Pan et al., 2013;
invasion status, allowing for straightforward visual or eye-ball  Feng et al, 2013). Theoretically, the computational efficiency of
interpretation (Tan et al, 2012; Si et al, 2020). However, in 3D ALL modeling depends on the size of the sparse matrix and
deviated wells, the combined effects of well deviation, mud  the solver used. By leveraging the symmetry of the formation
filtrate invasion, and layer thickness distort ALL responses, model and electric current fields, the matrix size can be reduced
rendering qualitative interpretation ineffective ((Deng et al., 2010; by half (Xing et al., 2008; Pan et al, 2016; Hu et al, 2019).
Deng et al.,, 2010; Nan et al., 2002; Ni et al., 2018). To accurately ~ Additionally, front solvers and domain decomposition methods
recover the formation electrical parameters, parametric inversion  have been developed to accelerate matrix solutions by optimizing the
is typically employed. Unfortunately, ALL inversion demands  electrode installation sequence (Wang et al., 2009; Wang et al., 2023;
extensive forward simulations, and rapid ALL modeling remains Wang et al., 2024; Wang et al., 2025a). Despite these advancements,
challenging (Zhu et al., 2019). the computational complexity of 3D modeling still limits processing
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FIGURE 3

Surrounding rock equivalent method: (a) Original multi-layer model; (b) Equivalent five-layer model.

TABLE 1 Comparison of calculation accuracy among three vertical models.

Vertical models MRE_RLA1 (%)

MRE_RLA3 (%) MRE_RLAS (%)

Model V_3 2.6% 4.7% 12.6%
Model V_5 1.2% 1.6% 3.2%
Model V_7 0.4% 0.7% 1.2%

speed, making it unable to meet real-time ALL data processing
requirements.

To enhance the computational speed of ALL, numerous
data-driven approaches have been explored (Zhang and Zhou,
2002; Wu et al., 2025; Hagiwara, T., 2023). These approaches
primarily focus on two key aspects: the computational model
construction and the selection of deep learning (DL) algorithms. The
model is typically established in two ways: a fixed computational
domain approach and a fixed number of layers approach. The
former, defined by a pixel-based representation, accommodates
formations with arbitrary beds but faces challenges in database
generation due to high computational demands from excessive
pixel counts. In contrast, the fixed-layer model relies on a
limited set of control parameters, enabling efficient database
construction since the required data size decreases exponentially
with fewer parameters (Liu et al., 2024; Zhao et al., 2024). However,

Frontiers in Earth Science

since the number of layers within the tool’s detection range is
uncertain, this approach may oversimplify the problem, leading
to significant computational errors. Thus, balancing the tradeoff
between generalization capability for complex formations and
simulation accuracy remains a key challenge.

Another key factor influencing the accuracy and efficiency
of data-driven ALL simulation is the optimal selection of DL
algorithms. For models with parametric descriptions, either deep
neural networks (DNNs) or convolutional neural networks (CNNs)
can be employed (Zhu et al., 2020; Wu and Fan, 2021). However,
due to the high dimensionality of pixel-based models, CNNs are
generally more suitable. Although CNNs handle large inputs more
effectively, their prediction accuracy tends to be slightly lower
than that of DNNs. Thus, further research is needed to determine
the best integration of computational models and DL algorithm
selection.
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FIGURE 4
Comparison of ALL responses simulated by the surrounding rock equivalent method of the Model V_5, where the well deviations are (a) 30°, (b) 60°

and (c) 80°.
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FIGURE 5
Optimization of invaded formations in the five-layer model: (a) Model R_1, (b) Model R_3, (c) Model R_5.

2 Optlmlzatlon of Computation model and layer thickness, resulting in complex logging response
characteristics. Therefore, constructing a computational model

2.1 Simpliﬁcation of vertical layers that aligns with actual formation conditions is of great
significance for improving the efficiency and accuracy of ALL

The response of ALL is susceptible to the coupled effects  forward modeling (Yan et al, 2022). This study adopts the

of multiple factors such as mud invasion, formation dip,  high-resolution array laterologging tool (HRLA) developed by
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FIGURE 6
Simulated Array Lateralog Responses of Invaded-Layered Formations Under Different Detection Modes (a) RLAL; (b) RLA3; (c) RLAS5, where the well
deviations are 60°.

TABLE 2 Comparison of calculation accuracy among three radial models.

Radial models

MRE_RLA1 (%)

MRE_RLA3 (%)

MRE_RLAS (%)

Model R_1 3.6% 7.4% 10.2%
Model R_3 1.5% 1.6% 1.9%
Model R_5 0.7% 1.1% 1.5%

Schlumberger as the research vehicle. This tool achieves a vertical
resolution of up to 0.3 m in vertical wells. During logging, the
logging response of the target layer is significantly affected by
the surrounding rocks of the upper and lower 1 to 2 layers,
while the influence of surrounding rocks at a farther distance can
be ignored.

To establish an optimal computational model for ALL, this
study conducted parameter optimization from both radial and
longitudinal dimensions. The longitudinal dimension focused
on optimizing the formation layering structure, specifically
constructing an arbitrary-layer formation model and three
simplified layered models: Model Vertical 3 (Model V_3), Model
Vertical 5 (Model V_5) and Model Vertical 7 (Model V_7),
as shown in Figures la-d. The core difference among the three
simplified models lies in the number of layers: Model V_3 is a three-
layer structure, Model V_5 is a five-layer structure, and Model V_7
is a seven-layer structure. To standardize parameter representation,
the well deviation angle is defined as 0, the target layer resistivity as
R,, the resistivity of the upper (lower) jth layer of surrounding rock
as ng (Rfj), and the equivalent surrounding rock resistivity as RYy
(R3).

Frontiers in Earth Science
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Figures 2a—c compare the relative errors between the logging
responses of Model V_3, Model V_5 and Model V_7, and
the original formation model under three detection modes:
RLAIL, RLA3, and RLA5. Table1 shows the relative errors
of the computational results for the three vertical models.
Error analysis indicates that Model V3 exhibits relatively
large relative errors compared to FEM results across all three
detection modes. Under the RLA1 mode, both Model V5
and Model V7 maintain relative errors within 2%, meeting
the accuracy requirements. However, it should be noted that
in actual drilling operations, if borehole enlargement occurs,
the reliability of apparent resistivity data acquired in shallow
detection modes (RLA1) significantly decreases, necessitating
comprehensive analysis combined with caliper correction data.
Under the RLA3 and RLA5 modes, Model V_7 (the seven-
layer model) demonstrates better agreement with the response
of the original formation, whereas Model V_5 (the five-layer
model) exhibits a relative error of approximately 5% only in areas
where the surrounding rock is thin. Balancing computational
accuracy and model complexity, Model V_5 maintains an
error level comparable to Model V_7 while reducing the
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FIGURE 7
The training process of a Convolutional Neural Network (CNN).
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Comparison of Calculation Results between FEM and CNN, where the well deviations are (a) 30°, (b) 60° and (c) 80°.
number of model parameters and computational cost, offering It is noteworthy that in high-angle or horizontal well
greater value for engineering applications and advantages  environments, the formation resolution of array laterologging (ALL)
in computational efficiency. significantly decreases, and the logging response of the target layer
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TABLE 3 Comparison of calculation accuracy among formation with different layer counts.

Layer counts

MRE_RLA1 (%)

MRE_RLA3 (%)

10.3389/feart.2025.1714234

MRE_RLAS (%)

4 0.14% 0.22% 0.31%
6 0.25% 0.15% 0.44%
7 0.31% 0.23% 0.35%
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FIGURE 9
Simulated ALL Responses by FEM and CNN in Oklahoma Formation: (a) Resistivity; (b) Depth of invasion, where the well deviations are (c) 30°, (d) 60°
and (e) 80°.

TABLE 4 Comparison of computational accuracy and speed between FEM and CNN.

Well deviations MRE (%) Time_FEM(h) Time_CNN(s) ‘ Speedup factor
30° 0.6% 121 3536 123.19
60° 1.2% 153 46.44 118.60
80° 1.7% 223 6325 126.92

is subject to enhanced interference from more distant surrounding
rock, directly leading to reduced computational accuracy of Model
V_5. To address this issue, this study proposes that when the
thickness of the surrounding rock above and below the target
layer is small, equivalent processing methods should be employed
to integrate the electrical properties of the surrounding rock,
thereby mitigating interference from distal layers and enhancing the
adaptability of Model V_5. Specific equivalent processing methods
will be elaborated in the following section.

Frontiers in Earth Science
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2.2 Resistivity equivalence for outmost
surrounding beds

In highly deviated/horizontal wells, due to the reduced
resolution of the tool, the resistivity contrast between distant
surrounding rocks and the target layer is significant. When
the thickness of the target layer is small, the influence of
distant surrounding rocks on the target layer cannot be
ignored. For one-dimensional cylindrical and planar layered
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formations, an equivalence transformation into a single layer
can be achieved by leveraging numerical geometric factors
(Wang et al., 2025b). Equation 1 presents the definition of the
numerical geometric factor.

R;4;i—R

LA 1

%,Z<ZO
Rs_Rte

G Rpai=R

= (1)

te

] zZ22z
Rs_Rte

222

where z and z; denote the vertical depths of the laterolog tool and
the target layer midpoint, respectively; R, and R;4; represent the
equivalent resistivity of the target zone and the apparent resistivity
from the ith array laterolog electrode, respectively.

Building upon the theory of numerical geometric factors, this
study proposes an equivalent method for the surrounding rocks
in the five-layer model. Figure 3 illustrates the detailed process
of the equivalent method for surrounding rocks, whose core
lies in replacing multiple formations beyond the five layers with
two formations of semi-infinite thickness. The resistivity of the
equivalent formations is shown in Equation 2.

RY 4+ ZN (G? - G?—l) R?i—l - Rsuz’ (R?z’i_l > R?z)
s2 i=3 i1
RU — _(Gzy - G?—l) \/Rgz - R?i—l’(R?Zl > Rsuz) 2
v (1-65)

where R’ is the equivalent outermost layer resistivity, RY; is the
resistivity of the ith overlying surrounding rock, and G is the
vertical numerical geometric factor at the ith upper interface.
Among the six detection modes of the HRLA tool, the RLA5
mode possesses the deepest depth of investigation, which also leads
to the greatest degree of interference from surrounding rock on
the target zone’s logging response. Figure 4 illustrates the logging
response characteristics of a thin interbedded formation model
under the RLAS5 detection mode at well inclination angles of 30°,
60°, and 80°, and compares the results from different computational
models. The detailed analysis is as follows: In low-inclination wells
(30°), the RLA5 logging response curves obtained by the three
computational methods largely coincide. This indicates that under
such well conditions, the structural distribution of the formation
has limited influence on the logging signal, and the impact of
distal surrounding rock on the tool response is negligible. Thus, a
simplified model is sufficient to meet computational requirements.
In contrast, in high-angle (60°) and horizontal (80°) wells, the
RLAS5 response calculated by Model V_5 (the five-layer model)
without equivalent treatment shows significant deviation from the
true formation response, and this deviation increases markedly
with higher well inclination angles. This occurs because, as the
well inclination increases, the spatial relationship between the tool’s
detection range and the formation interfaces changes, amplifying the
electrical influence of distal surrounding rock. The Model Vertical
five equal (Model V_5e) struggle to accurately represent actual
formation conditions under these circumstances. In stark contrast,
the results from the equivalent surrounding rock model align
almost perfectly with those from the high-accuracy finite element
method, fully validating the accuracy and engineering feasibility of
the equivalent processing approach in complex well conditions.
In terms of model applicability: for low-inclination wells, both
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Model V_5 and Model V_5e can meet the accuracy requirements for
simulating array laterologging responses, and the choice between
them can be based on computational efficiency needs. However,
for rapid and accurate modeling of array laterologging responses
in high-angle and horizontal wells, the equivalent surrounding
rock model demonstrates clearly superior performance over
Model V_5, owing to its effective correction for interference from
distal surrounding rock. In summary, the equivalent surrounding
rock method offers flexible adaptation to logging response
computation under arbitrary well inclination angles, effectively
balancing computational accuracy and efficiency. It exhibits strong
generalization capability and provides reliable model support for
the interpretation of array laterologging data in complex well
conditions.

2.3 Optimization of radial layers

To address the optimization of formation layering parameters
in the radial dimension, Figure 5 presents three computational
models for comparative analysis: Model Radial 1 (Model R_1):
invasion only in the target zone, Model Radial 3 (Model
R_3): invasion in both the target zone and adjacent layers, and
Model Radial 5 (Model R_5): invasion across all formation
layers. The parameters associated with each model are as
follows: The dipping angle, resistivity of the jth formation,
flushed zone resistivity, and equivalent resistivity are denoted
by 0, Ry,
is to equivalent the undisturbed formation and flushed zone

Ry, and Ry, respectively. The core of this method

into one layer. The resistivity of the equivalent formations
is shown in Equation 3.
RLA;/ =GR, +(1-G;)R, (3)
Where R; 4;’ is the equivalent resistivity under the ith detection
mode, R, and R, are the resistivities of the uninvaded formation and
the flushed zoneand G,; is the radial numerical geometric factor, the
definition of Gi is shown in Equation 4.

— RLAi_Rt
" R,-R,

X0

(4)

Figures 6a—c compare the array resistivity responses of three
invaded formation models (Model R_1, Model R_3, and Model R_
5) with the computational results from the FEM. Table 2 shows
the relative errors of the computational results for the three radial
models. It can be observed that as the depth of investigation
increases, the apparent resistivity is increasingly influenced by
surrounding rocks and invaded zones, leading to notable differences
in simulation accuracy among the models:

For operating modes with shallow investigation depths (RLA1),
all three models accurately reproduce the formation logging
responses. The deviations between the simulation results and FEM
references remain minimal, meeting the accuracy requirements for
shallow detection scenarios. As the investigation depth increases
(RLA3 and RLA5), the simulation accuracy of Model R_1
declines significantly. This model fails to effectively represent the
apparent resistivity characteristics of the original formation, and
the simulation error increases progressively with depth. In contrast,
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the results from Model R_3 and Model R_5 remain in close
agreement with the FEM solutions throughout, maintaining high
simulation accuracy even under deep investigation conditions.
Considering both computational accuracy and model complexity
from an engineering practicality perspective, Model R_3 achieves
computational error levels comparable to those of Model R_5 while
incorporating a more parameter-efficient design. This reduction
in the number of required parameters enhances its suitability
for efficient computation and parameter inversion in subsequent
engineering applications.

3 Neural networks basedall modelling

3.1 Database construction and training
scheme

To achieve real-time calculation of ALL responses, a neural
network algorithm is adopted. The primary step of this algorithm
is to generate a high-precision and fully annotated database.
Based on the optimized number of longitudinal formations and
radial invaded formations in the previous section, the calculation
model shown in Figure 7 is constructed. This model includes 17
parameters: dipping angle 6, borehole diameter CAL, mud resistivity
Rmf, resistivity of the jth formation Rt;, flushed zone resistivity Rxo;,
formation thickness Hj, and invasion depth DI s

The parameter ranges and generation strategy of the model
samples are as follows: The well deviation angle 6 is 0-89°, divided
into 10 groups with an interval of 10°. The caliper CAL is 6-15
in, divided into 11 groups with an interval of 0.9 in. The mud
resistivity R, is 0.01-10 Q m, which is divided into 11 groups in
logarithmic form with a logarithmic interval of 0.3. The invasion
depth DI is 0-1.5m, divided into 16 groups with an interval of
0.1 m. The formation resistivity R, of the five layers and the flushed
zone resistivity R,, of the middle three layers all range from 0.1 to
1,000 © m, each of which is divided into 21 groups in logarithmic
form with a logarithmic interval of 0.2. The thickness H of the
middle three layers is 0-4 m, divided into 15 groups with an interval
of 0.26 m. There are 10 measuring points in the middle layer, with a
sampling interval of H 3/10.

More than 10 million sets of models have been generated
through the above strategy, and the corresponding array
laterologging responses have been simulated and calculated. To
improve the training accuracy, the data can be normalized. The min-
max normalization method is adopted in this study, with Equation 5
illustrating the uniform normalization of the output data Y to [0,1].

log o Ypai— min(loglo YLAi)

m“x(l"glo Yiai) -~ mi”(laglo Yiai)

LAi —

(5)

It is imperative to emphasize that the predictive outputs
generated by the neural network model must undergo a
denormalization process to revert them to their original
physical scales.

Convolutional Neural Network (CNN) have emerged as a
cornerstone in the realm of machine learning, particularly excelling
in intricate pattern recognition tasks such as image classification,
speech processing, and object detection. Their superiority stems
from two defining architectural innovations: local receptive fields
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and parameter sharing. These mechanisms not only mitigate the
computational burden associated with traditional fully connected
networks but also confer enhanced generalization capabilities by
implicitly encoding spatial invariance properties. Consequently,
CNN exhibit remarkable efficiency in capturing hierarchical feature
representations while drastically reducing the number of trainable
parameters, thereby accelerating convergence and minimizing the
risk of overfitting. The CNN consists of an input layer, an output
layer, and n convolutional layers and pooling layers. Assume the
input feature map is XeR™*W*C (with height H, width W, and C
channels), and the convolution kernel is KeRF**CN (kernel size k
x k, producing N output channels). The output feature map can be
expressed as: ZeR?*WN the height H' and width W' of the output
feature map Z are shown in Equation 6.

H+2p-k W+2p-k
:—+‘D + :—+p +1

N

H' 1, W

(6)

where s denotes the stride of the convolution kernel and p denotes
the padding size. Equation 7 shows the feature value at position (i,5)

RH’><W’><N.
> (7)

where b,, is the bias term, K ,(m,n) represents the weight of the nth

in the n-th channel of the output feature map, Ze

C k-1k-1
Yijn= Z Z ZXn(ixs+m,j><s+m)><Kn(m,n)+bn

c=0m=0n=0

convolution kernel at position (m,#) for input channel, and f denotes
the activation function applied afterward.

In CNN, the input layer is generally a 2D image, while the
calculation model is essentially a 1D discrete parameter vector.
To meet the network requirements, binary conversion is used to
transform a series of 1D model arrays into 2D strings, and then
synthesize a series of binary images (as shown in Figure 7. Figure 7
shows the basic architecture of the CNN. In this training process,
a 9-layer neural network model is adopted to train the dataset.
Specifically, the Adam algorithm is selected as the training
algorithm, the learning rate is set to 0.001, and the ReLU function
is chosen as the activation function.

3.2 Prediction performance of ALL
responses

Figure 8 further compares the array resistivity responses
calculated by the FEM and CNN methods in highly deviated
wells. The solid lines and scatter points represent the calculation
results of the FEM and CNN methods, respectively. Table 3
presents the relative errors between the computational results of
the FEM and CNN methods for the three formation models. The
formation model considers the influences of surrounding rocks and
invasion. The array resistivity curves calculated by the two methods
completely overlap, verifying the robustness of the CNN calculation
method.

4 Numerical examples

To verify the applicability of the CNN method under complex
geological conditions, multiple groups of numerical experiments
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were designed. The physics-driven model uses the FEM to solve
Maxwell’s equations, with the mesh division precision controlled
within 1/10 of the target feature size to ensure that the error of the
benchmark solution is less than 0.1%.

Figure 9 compares the array resistivity responses calculated
by FEM and CNN methods in the Oklahoma model, where the
solid lines and scatter points represent the calculation results
of the FEM and CNN methods, respectively. Table 4 shows the
calculation accuracy and calculation speed of the two methods.
The formation model covers combined scenarios of different
resistivity contrasts (0.5-20), invasion zone thicknesses (0.5m-5 m),
and formation dips (30°-80°). Numerical examples show that the
CNN algorithm outperforms traditional physics-driven methods in
terms of accuracy, efficiency, and robustness, providing a feasible
solution for real-time high-precision processing of logging data. In
addition, in the thin interbedded zone, the equivalent method of
surrounding rocks is used to further improve the generalization
ability of the model.

5 Conclusion

In this study, a novel rapid forward-modeling method for ALL
is introduced to fulfill the requirement for real-time processing
of ALL data in complex formations. Unlike previous approximate
forward-modeling approaches, this method approximates the multi-
layer formation model as a model in which the middle three layers
of a five-layer formation are invaded. It addresses the issue of
the fixed number of layers in traditional forward-approximation
methods and exhibits strong generalization capabilities. Through
the introduction of the convolutional neural network algorithm,
while ensuring calculation accuracy, the forward-modeling speed
is enhanced by over two orders of magnitude. This algorithm was
applied to the Oklahoma model, demonstrating its effectiveness and
applicability.

It should be noted that under more complex three-dimensional
formation conditions, such as those encountered in carbonate
formations characterized by fracture development, vuggy porosity,
and formation anisotropy, the database and network architecture
presented in this study are no longer applicable. Therefore, future
research should focus on further enriching and refining both the
neural network architecture and forward modeling methods, with
the aim of providing more efficient and reliable processing solutions
for oil and gas field development.
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