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A new method has been developed to rapidly simulate array laterolog (ALL) 
responses in invaded formations drilled by deviated wells. This method is 
characterized by two key aspects: simplification of the computational model 
and acceleration using neural networks. Initially, a five-layered model in 
combination with an equivalent resistivity scheme is chosen to describe the 
formations with arbitrary vertical layers. Additionally, three radially invaded 
layers among the five vertical layers are identified, with the remaining two 
invaded layers assumed to an uninvaded bed using the radial geometrical factor. 
These simplifications result in a computational model with only comprises 
17 parameters, ensuring both accuracy and generalization. The ALL database 
for the simplified model is then established using the three-dimensional finite 
element method (FEM). The Convolutional Neural Network (CNN) algorithm 
is employed to train the nonlinear mapping between formation parameters 
and ALL responses. Subsequently, this new ALL simulation method is applied 
to classical Oklahoma formations with varying well deviations. Numerical 
results demonstrate the simplified model’s excellent generalization ability for 
accommodating formations with arbitrary layers while maintaining a relative 
computation error within 2%. Compared to the traditional simulation method, 
the CNN-predicted ALL responses improves the computational speed by over 
two orders of magnitude, establishing a robust foundation for expeditious ALL 
data processing.

KEYWORDS

array laterlog, rapid forward, convolutional neural network, equivalence of surrounding 
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 1 Introduction

Precise resistivity measurements of underground rocks are crucial for both qualitative 
identification and quantitative evaluation of oil and gas reservoirs (Chen, 2021; 
Ren et al., 2020; Deng et al., 2018; Yang et al., 2025). The array laterolog (ALL), 
known for its high vertical resolution, multiple lateral detection depths, and wide
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FIGURE 1
Selection of the Number of Layers of the Calculation Model: (a) multi-layer model; (b) Model V_3; (c) Model V_5; (d) Model V_7.

FIGURE 2
Array lateral log responses of two calculation models in layered medium under different detection modes: (a) RLA1, (b) RLA3, (c) RLA5, where the well 
deviations are 60°.

operating resistivity range, has been widely employed in this 
field (Maurer et al., 2009; Xiao et al., 2016). In vertical wells, 
ALL curve separation serves as a reliable indicator for the 
invasion status, allowing for straightforward visual or eye-ball 
interpretation (Tan et al., 2012; Si et al., 2020). However, in 
deviated wells, the combined effects of well deviation, mud 
filtrate invasion, and layer thickness distort ALL responses, 
rendering qualitative interpretation ineffective ((Deng et al., 2010; 
Deng et al., 2010; Nan et al., 2002; Ni et al., 2018). To accurately 
recover the formation electrical parameters, parametric inversion 
is typically employed. Unfortunately, ALL inversion demands 
extensive forward simulations, and rapid ALL modeling remains 
challenging (Zhu et al., 2019).

Due to the formation inhomogeneity, complicated tool 
structures, and arbitrary well deviation, the 3D FEM has become 
the preferred approach for current ALL modeling (Pan et al., 2013; 
Feng et al., 2013). Theoretically, the computational efficiency of 
3D ALL modeling depends on the size of the sparse matrix and 
the solver used. By leveraging the symmetry of the formation 
model and electric current fields, the matrix size can be reduced 
by half (Xing et al., 2008; Pan et al., 2016; Hu et al., 2019). 
Additionally, front solvers and domain decomposition methods 
have been developed to accelerate matrix solutions by optimizing the 
electrode installation sequence (Wang et al., 2009; Wang et al., 2023; 
Wang et al., 2024; Wang et al., 2025a). Despite these advancements, 
the computational complexity of 3D modeling still limits processing 
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FIGURE 3
Surrounding rock equivalent method: (a) Original multi-layer model; (b) Equivalent five-layer model.

TABLE 1  Comparison of calculation accuracy among three vertical models.

Vertical models MRE_RLA1 (%) MRE_RLA3 (%) MRE_RLA5 (%)

Model V_3 2.6% 4.7% 12.6%

Model V_5 1.2% 1.6% 3.2%

Model V_7 0.4% 0.7% 1.2%

speed, making it unable to meet real-time ALL data processing
requirements.

To enhance the computational speed of ALL, numerous 
data-driven approaches have been explored (Zhang and Zhou, 
2002; Wu et al., 2025; Hagiwara, T., 2023). These approaches 
primarily focus on two key aspects: the computational model 
construction and the selection of deep learning (DL) algorithms. The 
model is typically established in two ways: a fixed computational 
domain approach and a fixed number of layers approach. The 
former, defined by a pixel-based representation, accommodates 
formations with arbitrary beds but faces challenges in database 
generation due to high computational demands from excessive 
pixel counts. In contrast, the fixed-layer model relies on a 
limited set of control parameters, enabling efficient database 
construction since the required data size decreases exponentially 
with fewer parameters (Liu et al., 2024; Zhao et al., 2024). However, 

since the number of layers within the tool’s detection range is 
uncertain, this approach may oversimplify the problem, leading 
to significant computational errors. Thus, balancing the tradeoff 
between generalization capability for complex formations and 
simulation accuracy remains a key challenge.

Another key factor influencing the accuracy and efficiency 
of data-driven ALL simulation is the optimal selection of DL 
algorithms. For models with parametric descriptions, either deep 
neural networks (DNNs) or convolutional neural networks (CNNs) 
can be employed (Zhu et al., 2020; Wu and Fan, 2021). However, 
due to the high dimensionality of pixel-based models, CNNs are 
generally more suitable. Although CNNs handle large inputs more 
effectively, their prediction accuracy tends to be slightly lower 
than that of DNNs. Thus, further research is needed to determine 
the best integration of computational models and DL algorithm
selection.
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FIGURE 4
Comparison of ALL responses simulated by the surrounding rock equivalent method of the Model V_5, where the well deviations are (a) 30°, (b) 60°
and (c) 80°.

FIGURE 5
Optimization of invaded formations in the five-layer model: (a) Model R_1, (b) Model R_3, (c) Model R_5.

2 Optimization of computation model

2.1 Simplification of vertical layers

The response of ALL is susceptible to the coupled effects 
of multiple factors such as mud invasion, formation dip, 

and layer thickness, resulting in complex logging response 
characteristics. Therefore, constructing a computational model 
that aligns with actual formation conditions is of great 
significance for improving the efficiency and accuracy of ALL 
forward modeling (Yan et al., 2022). This study adopts the 
high-resolution array laterologging tool (HRLA) developed by 
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FIGURE 6
Simulated Array Lateralog Responses of Invaded-Layered Formations Under Different Detection Modes (a) RLA1; (b) RLA3; (c) RLA5, where the well 
deviations are 60°.

TABLE 2  Comparison of calculation accuracy among three radial models.

Radial models MRE_RLA1 (%) MRE_RLA3 (%) MRE_RLA5 (%)

Model R_1 3.6% 7.4% 10.2%

Model R_3 1.5% 1.6% 1.9%

Model R_5 0.7% 1.1% 1.5%

Schlumberger as the research vehicle. This tool achieves a vertical 
resolution of up to 0.3 m in vertical wells. During logging, the 
logging response of the target layer is significantly affected by 
the surrounding rocks of the upper and lower 1 to 2 layers, 
while the influence of surrounding rocks at a farther distance can 
be ignored.

To establish an optimal computational model for ALL, this 
study conducted parameter optimization from both radial and 
longitudinal dimensions. The longitudinal dimension focused 
on optimizing the formation layering structure, specifically 
constructing an arbitrary-layer formation model and three 
simplified layered models: Model Vertical 3 (Model V_3), Model 
Vertical 5 (Model V_5) and Model Vertical 7 (Model V_7), 
as shown in Figures 1a–d. The core difference among the three 
simplified models lies in the number of layers: Model V_3 is a three-
layer structure, Model V_5 is a five-layer structure, and Model V_7 
is a seven-layer structure. To standardize parameter representation, 
the well deviation angle is defined as θ, the target layer resistivity as 
Rt, the resistivity of the upper (lower) jth layer of surrounding rock 
as Ru

sj (Rd
sj), and the equivalent surrounding rock resistivity as Rue

s2
(Rde

s2 ).

Figures 2a–c compare the relative errors between the logging 
responses of Model V_3, Model V_5 and Model V_7, and 
the original formation model under three detection modes: 
RLA1, RLA3, and RLA5. Table 1 shows the relative errors 
of the computational results for the three vertical models. 
Error analysis indicates that Model_V3 exhibits relatively 
large relative errors compared to FEM results across all three 
detection modes. Under the RLA1 mode, both Model_V5 
and Model_V7 maintain relative errors within 2%, meeting 
the accuracy requirements. However, it should be noted that 
in actual drilling operations, if borehole enlargement occurs, 
the reliability of apparent resistivity data acquired in shallow 
detection modes (RLA1) significantly decreases, necessitating 
comprehensive analysis combined with caliper correction data. 
Under the RLA3 and RLA5 modes, Model V_7 (the seven-
layer model) demonstrates better agreement with the response 
of the original formation, whereas Model V_5 (the five-layer 
model) exhibits a relative error of approximately 5% only in areas 
where the surrounding rock is thin. Balancing computational 
accuracy and model complexity, Model V_5 maintains an 
error level comparable to Model V_7 while reducing the 

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1714234
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1714234

FIGURE 7
The training process of a Convolutional Neural Network (CNN).

FIGURE 8
Comparison of Calculation Results between FEM and CNN, where the well deviations are (a) 30°, (b) 60° and (c) 80°.

number of model parameters and computational cost, offering 
greater value for engineering applications and advantages 
in computational efficiency.

It is noteworthy that in high-angle or horizontal well 
environments, the formation resolution of array laterologging (ALL) 
significantly decreases, and the logging response of the target layer 
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TABLE 3  Comparison of calculation accuracy among formation with different layer counts.

Layer counts MRE_RLA1 (%) MRE_RLA3 (%) MRE_RLA5 (%)

4 0.14% 0.22% 0.31%

6 0.25% 0.15% 0.44%

7 0.31% 0.23% 0.35%

FIGURE 9
Simulated ALL Responses by FEM and CNN in Oklahoma Formation: (a) Resistivity; (b) Depth of invasion, where the well deviations are (c) 30°, (d) 60°
and (e) 80°.

TABLE 4  Comparison of computational accuracy and speed between FEM and CNN.

Well deviations MRE (%) Time_FEM(h) Time_CNN(s) Speedup factor

30° 0.6% 1.21 35.36 123.19

60° 1.2% 1.53 46.44 118.60

80° 1.7% 2.23 63.25 126.92

is subject to enhanced interference from more distant surrounding 
rock, directly leading to reduced computational accuracy of Model 
V_5. To address this issue, this study proposes that when the 
thickness of the surrounding rock above and below the target 
layer is small, equivalent processing methods should be employed 
to integrate the electrical properties of the surrounding rock, 
thereby mitigating interference from distal layers and enhancing the 
adaptability of Model V_5. Specific equivalent processing methods 
will be elaborated in the following section.

2.2 Resistivity equivalence for outmost 
surrounding beds

In highly deviated/horizontal wells, due to the reduced 
resolution of the tool, the resistivity contrast between distant 
surrounding rocks and the target layer is significant. When 
the thickness of the target layer is small, the influence of 
distant surrounding rocks on the target layer cannot be 
ignored. For one-dimensional cylindrical and planar layered 
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formations, an equivalence transformation into a single layer 
can be achieved by leveraging numerical geometric factors 
(Wang et al., 2025b). Equation 1 presents the definition of the 
numerical geometric factor.

Gi =
{{{{
{{{{
{

RLAi −Rte

Ru
s −Rte
,z < z0

RLAi −Rte

Rd
s −Rte
,z ≥ z0

(1)

where z and z0 denote the vertical depths of the laterolog tool and 
the target layer midpoint, respectively; Rte and RLAi represent the 
equivalent resistivity of the target zone and the apparent resistivity 
from the ith array laterolog electrode, respectively.

Building upon the theory of numerical geometric factors, this 
study proposes an equivalent method for the surrounding rocks 
in the five-layer model. Figure 3 illustrates the detailed process 
of the equivalent method for surrounding rocks, whose core 
lies in replacing multiple formations beyond the five layers with 
two formations of semi-infinite thickness. The resistivity of the 
equivalent formations is shown in Equation 2.

Ru
s2
′ =

Ru
s2 +∑

N
i=3

{{
{{
{

(Gu
i −Gu

i−1)√Ru
si−1 −Ru

s2, (R
u,i−1
s2 > Ru

s2)

−(Gu
i −Gu

i−1)√Ru
s2 −Ru

si−1, (R
u,i−1
s2 > Ru

s2)

(1−Gu
2)

(2)

where Ru
s2
′ is the equivalent outermost layer resistivity, Ru

si is the 
resistivity of the ith overlying surrounding rock, and Gu

i  is the 
vertical numerical geometric factor at the ith upper interface.

Among the six detection modes of the HRLA tool, the RLA5 
mode possesses the deepest depth of investigation, which also leads 
to the greatest degree of interference from surrounding rock on 
the target zone’s logging response. Figure 4 illustrates the logging 
response characteristics of a thin interbedded formation model 
under the RLA5 detection mode at well inclination angles of 30°, 
60°, and 80°, and compares the results from different computational 
models. The detailed analysis is as follows: In low-inclination wells 
(30°), the RLA5 logging response curves obtained by the three 
computational methods largely coincide. This indicates that under 
such well conditions, the structural distribution of the formation 
has limited influence on the logging signal, and the impact of 
distal surrounding rock on the tool response is negligible. Thus, a 
simplified model is sufficient to meet computational requirements. 
In contrast, in high-angle (60°) and horizontal (80°) wells, the 
RLA5 response calculated by Model V_5 (the five-layer model) 
without equivalent treatment shows significant deviation from the 
true formation response, and this deviation increases markedly 
with higher well inclination angles. This occurs because, as the 
well inclination increases, the spatial relationship between the tool’s 
detection range and the formation interfaces changes, amplifying the 
electrical influence of distal surrounding rock. The Model Vertical 
five equal (Model V_5e) struggle to accurately represent actual 
formation conditions under these circumstances. In stark contrast, 
the results from the equivalent surrounding rock model align 
almost perfectly with those from the high-accuracy finite element 
method, fully validating the accuracy and engineering feasibility of 
the equivalent processing approach in complex well conditions. 
In terms of model applicability: for low-inclination wells, both 

Model V_5 and Model V_5e can meet the accuracy requirements for 
simulating array laterologging responses, and the choice between 
them can be based on computational efficiency needs. However, 
for rapid and accurate modeling of array laterologging responses 
in high-angle and horizontal wells, the equivalent surrounding 
rock model demonstrates clearly superior performance over 
Model V_5, owing to its effective correction for interference from 
distal surrounding rock. In summary, the equivalent surrounding 
rock method offers flexible adaptation to logging response 
computation under arbitrary well inclination angles, effectively 
balancing computational accuracy and efficiency. It exhibits strong 
generalization capability and provides reliable model support for 
the interpretation of array laterologging data in complex well
conditions. 

2.3 Optimization of radial layers

To address the optimization of formation layering parameters 
in the radial dimension, Figure 5 presents three computational 
models for comparative analysis: Model Radial 1 (Model R_1):
invasion only in the target zone, Model Radial 3 (Model
R_3): invasion in both the target zone and adjacent layers, and 
Model Radial 5 (Model R_5): invasion across all formation 
layers. The parameters associated with each model are as 
follows: The dipping angle, resistivity of the jth formation, 
flushed zone resistivity, and equivalent resistivity are denoted 
by θ, Rtj, Rxoj, and Rtje, respectively. The core of this method 
is to equivalent the undisturbed formation and flushed zone 
into one layer. The resistivity of the equivalent formations 
is shown in Equation 3.

RLAi
′ = GiRxo + (1−Gi)Rt (3)

Where RLAi’ is the equivalent resistivity under the ith detection 
mode, Rt  and Rxo are the resistivities of the uninvaded formation and 
the flushed zoneand Gi is the radial numerical geometric factor, the 
definition of Gi is shown in Equation 4.

Gi =
RLAi −Rt

Rxo −Rt
(4)

Figures 6a–c compare the array resistivity responses of three 
invaded formation models (Model R_1, Model R_3, and Model R_
5) with the computational results from the FEM. Table 2 shows 
the relative errors of the computational results for the three radial 
models. It can be observed that as the depth of investigation 
increases, the apparent resistivity is increasingly influenced by 
surrounding rocks and invaded zones, leading to notable differences 
in simulation accuracy among the models:

For operating modes with shallow investigation depths (RLA1), 
all three models accurately reproduce the formation logging 
responses. The deviations between the simulation results and FEM 
references remain minimal, meeting the accuracy requirements for 
shallow detection scenarios. As the investigation depth increases 
(RLA3 and RLA5), the simulation accuracy of Model R_1 
declines significantly. This model fails to effectively represent the 
apparent resistivity characteristics of the original formation, and 
the simulation error increases progressively with depth. In contrast, 

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1714234
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1714234

the results from Model R_3 and Model R_5 remain in close 
agreement with the FEM solutions throughout, maintaining high 
simulation accuracy even under deep investigation conditions. 
Considering both computational accuracy and model complexity 
from an engineering practicality perspective, Model R_3 achieves 
computational error levels comparable to those of Model R_5 while 
incorporating a more parameter-efficient design. This reduction 
in the number of required parameters enhances its suitability 
for efficient computation and parameter inversion in subsequent 
engineering applications. 

3 Neural networks basedall modelling

3.1 Database construction and training 
scheme

To achieve real-time calculation of ALL responses, a neural 
network algorithm is adopted. The primary step of this algorithm 
is to generate a high-precision and fully annotated database. 
Based on the optimized number of longitudinal formations and 
radial invaded formations in the previous section, the calculation 
model shown in Figure 7 is constructed. This model includes 17 
parameters: dipping angle θ, borehole diameter CAL, mud resistivity 
Rmf, resistivity of the jth formation Rtj, flushed zone resistivity Rxoj, 
formation thickness Hj, and invasion depth DI j.

The parameter ranges and generation strategy of the model 
samples are as follows: The well deviation angle θ is 0–89°, divided 
into 10 groups with an interval of 10°. The caliper CAL is 6–15 
in, divided into 11 groups with an interval of 0.9 in. The mud 
resistivity Rmf  is 0.01–10 Ω m, which is divided into 11 groups in 
logarithmic form with a logarithmic interval of 0.3. The invasion 
depth DI is 0–1.5 m, divided into 16 groups with an interval of 
0.1 m. The formation resistivity Rt  of the five layers and the flushed 
zone resistivity Rxo of the middle three layers all range from 0.1 to 
1,000 Ω m, each of which is divided into 21 groups in logarithmic 
form with a logarithmic interval of 0.2. The thickness H of the 
middle three layers is 0–4 m, divided into 15 groups with an interval 
of 0.26 m. There are 10 measuring points in the middle layer, with a 
sampling interval of H3/10.

More than 10 million sets of models have been generated 
through the above strategy, and the corresponding array 
laterologging responses have been simulated and calculated. To 
improve the training accuracy, the data can be normalized. The min-
max normalization method is adopted in this study, with Equation 5 
illustrating the uniform normalization of the output data Y to [0,1].

YLAi =
log10 YLAi −min(log10 YLAi)

max(log10 YLAi) −min(log10 YLAi)
(5)

It is imperative to emphasize that the predictive outputs 
generated by the neural network model must undergo a 
denormalization process to revert them to their original 
physical scales.

Convolutional Neural Network (CNN) have emerged as a 
cornerstone in the realm of machine learning, particularly excelling 
in intricate pattern recognition tasks such as image classification, 
speech processing, and object detection. Their superiority stems 
from two defining architectural innovations: local receptive fields 

and parameter sharing. These mechanisms not only mitigate the 
computational burden associated with traditional fully connected 
networks but also confer enhanced generalization capabilities by 
implicitly encoding spatial invariance properties. Consequently, 
CNN exhibit remarkable efficiency in capturing hierarchical feature 
representations while drastically reducing the number of trainable 
parameters, thereby accelerating convergence and minimizing the 
risk of overfitting. The CNN consists of an input layer, an output 
layer, and n convolutional layers and pooling layers. Assume the 
input feature map is X∈RH×W×C (with height H, width W, and C 
channels), and the convolution kernel is K∈Rk×k×C×N (kernel size k 
× k, producing N output channels). The output feature map can be 
expressed as: Z∈RH′×W′×N, the height H′ and width W′ of the output 
feature map Z are shown in Equation 6.

H′ =
H+ 2p− k

s
+ 1,W′ =

W+ 2p− k
s
+ 1 (6)

where s denotes the stride of the convolution kernel and p denotes 
the padding size. Equation 7 shows the feature value at position (i,j) 
in the n-th channel of the output feature map, Z∈RH′×W′×N.

Yi,j,n = f(
C

∑
c=0

k−1

∑
m=0

k−1

∑
n=0

Xn(i× s+m, j× s+m) ×Kn(m,n) + bn) (7)

where bn is the bias term, Kn(m,n) represents the weight of the nth 
convolution kernel at position (m,n) for input channel, and f  denotes 
the activation function applied afterward.

In CNN, the input layer is generally a 2D image, while the 
calculation model is essentially a 1D discrete parameter vector. 
To meet the network requirements, binary conversion is used to 
transform a series of 1D model arrays into 2D strings, and then 
synthesize a series of binary images (as shown in Figure 7. Figure 7 
shows the basic architecture of the CNN. In this training process, 
a 9-layer neural network model is adopted to train the dataset. 
Specifically, the Adam algorithm is selected as the training 
algorithm, the learning rate is set to 0.001, and the ReLU function 
is chosen as the activation function. 

3.2 Prediction performance of ALL 
responses

Figure 8 further compares the array resistivity responses 
calculated by the FEM and CNN methods in highly deviated 
wells. The solid lines and scatter points represent the calculation 
results of the FEM and CNN methods, respectively. Table 3 
presents the relative errors between the computational results of 
the FEM and CNN methods for the three formation models. The 
formation model considers the influences of surrounding rocks and 
invasion. The array resistivity curves calculated by the two methods 
completely overlap, verifying the robustness of the CNN calculation
method. 

4 Numerical examples

To verify the applicability of the CNN method under complex 
geological conditions, multiple groups of numerical experiments 
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were designed. The physics-driven model uses the FEM to solve 
Maxwell’s equations, with the mesh division precision controlled 
within 1/10 of the target feature size to ensure that the error of the 
benchmark solution is less than 0.1%.

Figure 9 compares the array resistivity responses calculated 
by FEM and CNN methods in the Oklahoma model, where the 
solid lines and scatter points represent the calculation results 
of the FEM and CNN methods, respectively. Table 4 shows the 
calculation accuracy and calculation speed of the two methods. 
The formation model covers combined scenarios of different 
resistivity contrasts (0.5–20), invasion zone thicknesses (0.5m–5 m), 
and formation dips (30°–80°). Numerical examples show that the 
CNN algorithm outperforms traditional physics-driven methods in 
terms of accuracy, efficiency, and robustness, providing a feasible 
solution for real-time high-precision processing of logging data. In 
addition, in the thin interbedded zone, the equivalent method of 
surrounding rocks is used to further improve the generalization 
ability of the model. 

5 Conclusion

In this study, a novel rapid forward-modeling method for ALL 
is introduced to fulfill the requirement for real-time processing 
of ALL data in complex formations. Unlike previous approximate 
forward-modeling approaches, this method approximates the multi-
layer formation model as a model in which the middle three layers 
of a five-layer formation are invaded. It addresses the issue of 
the fixed number of layers in traditional forward-approximation 
methods and exhibits strong generalization capabilities. Through 
the introduction of the convolutional neural network algorithm, 
while ensuring calculation accuracy, the forward-modeling speed 
is enhanced by over two orders of magnitude. This algorithm was 
applied to the Oklahoma model, demonstrating its effectiveness and 
applicability.

It should be noted that under more complex three-dimensional 
formation conditions, such as those encountered in carbonate 
formations characterized by fracture development, vuggy porosity, 
and formation anisotropy, the database and network architecture 
presented in this study are no longer applicable. Therefore, future 
research should focus on further enriching and refining both the 
neural network architecture and forward modeling methods, with 
the aim of providing more efficient and reliable processing solutions 
for oil and gas field development.

Data availability statement

The datasets presented in this article are not readily available 
because The data in this paper is only applicable to the rapid forward 
modeling of array laterolog (ALL) in deviated well 3D formations 
(considering layer thickness and invasion). Under more complex 
3D formation conditions (e.g., formations with developed fractures, 
vuggy porosity, and significant formation anisotropy), the database 

proposed in this study will no longer be applicable. Requests to 
access the datasets should be directed to Donghan Hao, haodonghan 
2001@163.com.

Author contributions

LW: Writing – original draft, Writing – review and editing.
DH: Writing – review and editing, Writing – original draft. XY: 
Writing – review and editing, Writing – original draft. JL: Writing – 
review and editing, Writing – original draft. CL: Writing – original 
draft, Writing – review and editing. ZC: Writing – original draft, 
Writing – review and editing. 

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported in part by the National Natural Science Foundation of 
China (Grant Nos 42474152, U23B2086), Shandong Provincial 
Natural Science Foundation (Grant No. ZR2023MD053), the 
National Science and Technology Major Project of China
(No. 2025ZD1402102-05).

Conflict of interest

Author XY was employed by SINOPEC Matrix Corporation.
The remaining authors declare that the research was conducted 

in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures 
in this article has been generated by Frontiers with the 
support of artificial intelligence and reasonable efforts have 
been made to ensure accuracy, including review by the 
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed 
or endorsed by the publisher.

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1714234
mailto:haodonghan 2001@163.com
mailto:haodonghan 2001@163.com
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1714234

References

Chen, H. (2021). Geophysical study of oil and gas reservoirs in oil and gas filed 
development. Prog. Geophys. 36 (02), 565–575. doi:10.6038/pg2021EE0154

Deng, S., Li, Z., Fan, Y., and Chen, H. (2010). Numerical simulation of mud invasion 
and its array laterolog response in deviated Wells. Chin. J. Geophys. 53 (04), 994–1000. 
doi:10.3969/j.issn.0001-5733.2010.04.024

Deng, S., Yuan, X., Wang, Z., Liang, S., and Zhang, P. (2018). Numerical simulation 
of azimuthal laterolog response in fractured formation. Chin. J. Geophysics-Chinese Ed.
61 (08), 3457–3467. doi:10.6038/cjg2018L0241

Feng, L., Wang, D., He, F., Zhang, H., Wang, P., Guan, Z., et al. (2013). On response 
characteristics analysis of HAL tool in thin inter-beds and deviated hole formation. Well 
Logging Technol. 37 (01), 80–84.

Hagiwara, T. (2023). Machine-Learning-Based convolution method for fast forward 
modeling of induction log. Petrophysics 64 (02), 312–322. doi:10.30632/PJV64N2-
2023a11

Hu, S., Chen, L., and Wang, J. (2019). Fast inversion of array laterolog measurements 
in an axisymmetric medium. Appl. Geophys. 16 (04), 539–548. doi:10.1007/s11770-019-
0767-0

Liu, L., Li, T., and Ma, C. (2024). Research on 3D geological modeling method 
based on deep neural networks for drilling data. Appl. Sciences-Basel 14 (01), 423. 
doi:10.3390/app14010423

Maurer, H., Antonov, Y., Corley, B., Khokhar, R., Rabinovich, M., and Zhou, Z. 
(2009). “Advanced processing for a new array laterolog tool,” in Proc. SPWLA 50th annu. 
Logging symp. (Woodlands, TX, USA).

Nan, Z., Tan, M., Li, J., and Fan, X. (2002). Numerical simulation, response analysis, 
and physical experiment of induction logging in an inclined fractured formation. IEEE 
Trans. Geoscience Remote Sens. 60, 1–11. doi:10.1109/TGRS.2021.3056133

Ni, X., Xu, G., Bei, K., Feng, J., Xu, S., and Liu, D. (2018). Array laterolog response 
and rapid correction of the surrounding rock/layer thickness influence for highly 
deviated/horizontal wells. Petroleum Geol. and Oilfield Dev. Daqing 37 (02), 144–151. 
doi:10.19597/J.ISSN.1000-3754.201705058

Pan, K., Wang, W., Tang, J., and Tan, Y. (2013). Mathematical model and fast finite 
element modeling of high resolution array laterologging. Chin. J. Geophys. 56 (09), 
3197–3211. doi:10.6038/cjg20130932

Pan, K., Tang, J., Du, H., and Cai, Z. (2016). Trust region inversion algorithm of high 
resolution array laterologging in axisymmetric formation. Chin. J. Geophys. 59 (08), 
3110–3120. doi:10.6038/cjg20160833

Ren, Y., Gong, R., Feng, Z., and Li, M. (2020). Valuable data extraction for 
resistivity imaging logging interpretation. Tsinghua Sci. Technol. 25 (02), 281–293. 
doi:10.26599/TST.2019.9010020

Si, Z., Deng, S., Lin, F., Yuan, X., Li, H., and Tian, C. (2020). Numerical simulation 
of array laterolog responses in anisotropic formation with mud invasion. Oil Geophys. 
Prospect. 55 (01), 187–196.

Tan, M., Gao, J., Zou, Y., Xie, G., and Qiao, Y. (2012). Environment correction method 
of dual laterolog in directional well. Chin. J. Geophysics-Chinese Ed. 55 (04), 1422–1432. 
doi:10.6038/j.issn.0001-5733.2012.04.038

Wang, G., Torres-Verdin, C., Salazar, J., and Voss, B. (2009). Fast 2D inversion of large 
borehole EM induction data sets with an efficient Frechet-Derivative approximation. 
Geophysics 74 (01), E75–E91. doi:10.1190/1.3033213

Wang, L., Qiao, P., Zhao, W., Cao, F., and Fan, Y. (2023). A new 
propagator matrix algorithm to compute electromagnetic fields in multilayered 
formations with full anisotropy. IEEE Trans. Geoscience Remote Sens. 61, 1–11. 
doi:10.1109/TGRS.2023.3302513

Wang, L., Cao, F., Li, Z., Yuan, X., and Fan, Y. (2024). A novel propagator coefficient 
algorithm for modeling induction-type logging responses in cylindrically layered 
media. IEEE Geoscience Remote Sens. Lett. 21, 1–5. doi:10.1109/LGRS.2024.3401126

Wang, L., Wu, K., Liu, Y., Xu, X., and Qiao, P. (2025a). Focusing mechanism and 
anisotropy correction of array induction logging responses for shale reservoirs in 
horizontal wells. Petroleum Sci. doi:10.1016/j.petsci.2025.08.009

Wang, L., Han, Y., Li, Z., Hao, D., and Deng, S. (2025b). The joint physics and data-
driven geometrical factor of array laterolog in layered formations. Geophysics 90 (01), 
D11–D25. doi:10.1190/GEO2024-0112.1

Wu, Y., and Fan, Y. (2021). Fast hierarchical inversion for borehole resistivity 
measurements in high-angle and horizontal wells using ADNN-AMLM. J. Petroleum 
Sci. Eng. 203, 108662. doi:10.1016/j.petrol.2021.108662

Wu, K., Wang, L., Deng, S., and Kou, X. (2025). A novel logging method for 
detecting highly resistive formations in oil-based mud using high-frequency electrodes. 
Petroleum Sci. 22 (05), 1946–1958. doi:10.1016/j.petsci.2025.03.010

Xiao, D., Mao, B., Ma, H., Zhang, Q., and Zhang, Z. (2016). EALT array laterologging 
well site processing software algorithm. Well Logging Technol. 40 (04), 432–438. 
doi:10.16489/j.issn.1004-1338.2013.01.016

Xing, G., Wang, H., and Yang, S. (2008). The response functions of electromagnetic 
wave logs in the 2-D axis-symmetric formation. Chin. J. Geophysics-Chinese Ed. 03, 
924–932.

Yan, L., Jin, Y., Qi, C., Yuan, P., Wang, S., Wu, X., et al. (2022). Deep learning-assisted 
real-time forward modeling of electromagnetic logging in complex formations. IEEE 
Geoscience Remote Sens. Lett. 19, 1–5. doi:10.1109/LGRS.2022.3171122

Yang, K., Wang, L., Fang, H., Ai, W., Wang, N., and Zeng, Z. (2025). A new logging-
while-drilling azimuthal electromagnetic measurement for highly resistive coal mines. 
J. Geophys. Eng. 22 (04), 1017–1025. doi:10.1093/jge/gxaf056

Zhang, Z., and Zhou, Z. (2002). Real-time quasi-2-D inversion of array resistivity 
logging data using neural network. Geophysics 67 (02), 517–524. doi:10.1190/1.1468612

Zhao, N., Shen, S., Li, N., Hu, H., Qi, C., and Qin, Ce. (2024). Physics-driven 
deep learning inversion for Azimuthal LWD electromagnetic wave measurement. Oil 
Geophys. Prospect. 59 (05), 1069–1079. doi:10.13810/j.cnki.issn.1000-7210.2024.05.014

Zhu, P., Li, Z., Chen, M., and Dong, Y. (2019). Study on forward and inversion 
modeling of array laterolog logging in a horizontal/highly deviated well. Acta Geophys.
67 (05), 1307–1318. doi:10.1007/s11600-019-00321-2

Zhu, G., Gao, M., Kong, F., and Li, K. (2020). A fast inversion of induction logging 
data in anisotropic formation based on deep learning. IEEE Geoscience Remote Sens. 
Lett. 17 (12), 2050–2054. doi:10.1109/LGRS.2019.2961374

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1714234
https://doi.org/10.6038/pg2021EE0154
https://doi.org/10.3969/j.issn.0001-5733.2010.04.024
https://doi.org/10.6038/cjg2018L0241
https://doi.org/10.30632/PJV64N2-2023a11
https://doi.org/10.30632/PJV64N2-2023a11
https://doi.org/10.1007/s11770-019-0767-0
https://doi.org/10.1007/s11770-019-0767-0
https://doi.org/10.3390/app14010423
https://doi.org/10.1109/TGRS.2021.3056133
https://doi.org/10.19597/J.ISSN.1000-3754.201705058
https://doi.org/10.6038/cjg20130932
https://doi.org/10.6038/cjg20160833
https://doi.org/10.26599/TST.2019.9010020
https://doi.org/10.6038/j.issn.0001-5733.2012.04.038
https://doi.org/10.1190/1.3033213
https://doi.org/10.1109/TGRS.2023.3302513
https://doi.org/10.1109/LGRS.2024.3401126
https://doi.org/10.1016/j.petsci.2025.08.009
https://doi.org/10.1190/GEO2024-0112.1
https://doi.org/10.1016/j.petrol.2021.108662
https://doi.org/10.1016/j.petsci.2025.03.010
https://doi.org/10.16489/j.issn.1004-1338.2013.01.016
https://doi.org/10.1109/LGRS.2022.3171122
https://doi.org/10.1093/jge/gxaf056
https://doi.org/10.1190/1.1468612
https://doi.org/10.13810/j.cnki.issn.1000-7210.2024.05.014
https://doi.org/10.1007/s11600-019-00321-2
https://doi.org/10.1109/LGRS.2019.2961374
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Optimization of computation model
	2.1 Simplification of vertical layers
	2.2 Resistivity equivalence for outmost surrounding beds
	2.3 Optimization of radial layers

	3 Neural networks basedall modelling
	3.1 Database construction and training scheme
	3.2 Prediction performance of ALL responses

	4 Numerical examples
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

