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Rainfall infiltration is a key cause of slope instability, especially in complex
soil-rock mixture slopes with preferential flow paths. The classic Green-Ampt
model, widely used in infiltration studies, has limitations in handling air pressure
variations near the surface of such slopes, causing errors. This study proposes an
improved Green-Ampt model that incorporates atmospheric pressure boundary
conditions and adjusts the permeability parameter for soil-rock mixtures. The
refined model can analyze wetting front depth under various conditions,
including constant pressure with/without ponding and atmospheric pressure
effects. Finite element simulations of slopes with different stone contents show
that block content significantly controls preferential flow and saturation patterns
in heterogeneous media, influencing slope stability. Comparisons between
theoretical predictions and numerical results confirm the model's effectiveness
in calculating wetting front variations. This study provides a theoretical method
for calculating wetting front depth during infiltration in soil-rock mixture slopes,
considering atmospheric pressure variations.

KEYWORDS

green-ampt model, soil-rock mixture slopes, atmospheric pressure boundary, FEM
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1 Introduction

Slope stability stands as a critically important research topic in geological engineering,
directly relating to the safety of infrastructure, the protection of the natural environment,
and the sustainable development of the social economy (Al-Homoud and Masanat, 1998;
He et al, 2025; Hong, 2005; Ries, 2011; Wu et al, 2023). Globally, slope instability
events induced by rainfall occur frequently, not only resulting in significant casualties but
also causing severe property losses and environmental damage. Particularly in regions
with variable climates and concentrated rainfall, the impact of rainfall infiltration on
slope stability is especially pronounced, becoming one of the primary factors triggering
geological hazards such as landslides and debris flows (Ahuja, Sharpley, and Lehman,
1982; Fang et al., 2008; Friedel, Thielen, and Springman, 2006; Rahardjo et al., 2005).
Therefore, delving deeply into the slope stability mechanisms under rainfall infiltration
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conditions and developing scientific and rational analytical models
and predictive methods are of great significance for effectively
preventing and mitigating the risks of geological hazards.

The stability of slopes is jointly influenced by multiple
factors, including geological structures, the mechanical properties
of soil and rock masses, hydrogeological conditions, climate
change, and human engineering activities (Biscontin and Pestana,
2006; Gonzalez, Schaefer, and Rollins, 2021; Shafer, Ajmera, and
Upadhaya, 2024; Technology and Beijing 2006; Wang, Saha, and
Hawlader, 2015; Xiao-Li and Feng, 2006; Zhang et al, 2024).
During rainfall, water infiltrates into the interior of slopes through
channels such as surface cracks and pores, altering the physical
and mechanical properties of rock and soil masses. For instance, it
increases pore water pressure, reduces effective stress, and softens
the rock and soil, thereby weakening the anti-sliding capacity of
slopes and increasing the risk of instability. Especially in soil-
rock mixture slopes, due to their characteristics of high porosity
and permeability heterogeneity, the rainfall infiltration process is
more complex, and its impact on slope stability is more significant
(Huang et al., 2017; Junhua, 2017; Shao and Ji, 2014). Soil-rock
mixture slopes are widely distributed in mountainous and hilly
regions, as well as along infrastructure such as highways and
railways. Their stability directly relates to the safe operation of
transportation routes and the life and property safety of surrounding
residents. However, due to the complexity and uncertainty of the
internal structure of soil-rock mixture slopes, traditional slope
stability analysis methods often struggle to accurately describe the
rainfall infiltration process and the changing patterns of slope
stability (Chongshi et al., 2009; Dongmei et al., 2015; Huang, Xiong,
and Liu, 2010; Liu et al., 2015; Zhou et al., 2025).

In the analysis of rainfall infiltration and slope stability, the
Green-Ampt model, as a classic unsteady - state infiltration model,
has been widely applied due to its clear physical significance and
simple calculation. Based on a series of assumptions, such as
a uniform initial soil moisture content, a distinct wetting front
during the infiltration process, and an infiltration flux driven by
both gravitational potential and matric suction, this model can
effectively describe the infiltration process of homogeneous soil
under ponded conditions (Chu, Onstad, and Rawls, 1986; Davidson,
1984; Liu, Zhang, and Feng, 2008; Ma et al., 2010; Quanjiu, Jianbing,
and Yi, 2002; Swartzendruber, 2000). In practical applications,
the Green-Ampt model has also revealed some limitations. It is
mainly suitable for infiltration analysis under ponded conditions
and provides an inaccurate description of the infiltration process
with air pressure variations under non - ponded conditions. During
actual rainfall events, it is difficult to form a distinct ponded
layer on the slope surface, and the air pressure in the surface soil
of the slope differs from the standard atmospheric pressure. The
surface ponding depth parameter H in the model cannot accurately
reflect the real - world situation (Langhans et al., 2014; Li et al,
2024; Shukla et al., 2006; Tsihrintzis and Hamid, 2015). At the
initial stage of rainfall, the surface soil of the slope may experience
rapid infiltration, compressing the pore air and forming a positive
pressure zone, which hinders further water infiltration. During
rainfall breaks or dry seasons, the surface soil of the slope may
develop a negative pressure zone due to evaporation, promoting
water uptake (Kirchhoft et al., 1996; Nadal-Romero et al., 2008).
The Green-Ampt model fails to account for these air pressure
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effects, leading to its limitations in practical applications. Moreover,
for soil-rock mixture slopes, given the complexity and uncertainty
of their internal structure, the assumption of homogeneous soil
in the Green-Ampt model is clearly not applicable. Factors such
as the block stone content, particle size distribution, and spatial
arrangement in soil-rock mixture slopes significantly affect their
permeability and infiltration process, making it difficult for the
traditional Green-Ampt model to accurately describe their rainfall
infiltration characteristics.

This study aims to enhance the applicability of the Green-
Ampt model for describing the rainfall infiltration process in soil-
rock mixture slopes considering atmospheric pressure variations
through methods such as model improvement and numerical
simulation. By introducing atmospheric pressure boundary
conditions, the infiltration processes under three scenarios:
non - ponded and atmospheric pressure conditions, ponded
conditions, and conditions influenced by atmospheric pressure are
comprehensively considered. This approach expands the application
scope of the Green-Ampt model and improves its descriptive
accuracy under actual rainfall conditions. A permeability coefficient
calculation formula suitable for soil-rock mixtures is established
based on their physical characteristics. Through the constructed
finite element model of slopes, the applicability and accuracy
of the improved Green-Ampt model in real slope problems are
verified. This contributes to a deeper understanding of the seepage
mechanism in soil-rock mixture slopes under rainfall infiltration
conditions.

2 Theoretical model

The classical Green-Ampt model is employed to describe the
unsteady state infiltration process. Its primary assumptions are as
follows: 1) The initial soil moisture content is uniform; 2) During the
infiltration process, the wetting front is distinct, and the soil ahead
of it still maintains the initial moisture content; 3) The infiltration
flux is jointly driven by gravitational potential and matric suction. Its
fundamental form is presented in Equation 1. This model assumes
that the ground is horizontal. However, the slope surface is an
inclined plane, and the soil above the wetting front is not fully
saturated. According to survey data, the initial soil moisture content
does not distribute uniformly with depth. Under natural conditions,
the basic pattern of soil moisture content in slope soil exhibits a
gradual increase from the slope surface to the groundwater table.

Sp+H

=K1 1

f® 5<+F(t)> 1

Where f(t) is the instantaneous infiltration rate, Kj

is the saturated permeability, S; is the suction head at

the wetting front, H is the depth of ponding water

on the surface, F (t) is the depth of the wetting
front.

When rainfall does not result in significant ponding, but the air
pressure at the soil surface differs from the standard atmospheric
pressure, an air-pressure head Ah, = Ap,/y, (where the air -
pressure difference is converted into an equivalent water head), can
be introduced. Its expression is given by Equation 2. In this way,
three scenarios can be comprehensively considered: non-ponding
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under normal atmospheric pressure; ponding; and the influence of

)

Where Ap, is the difference between the current air pressure and

atmospheric pressure.
S £ + Ahu +H

0 )

f(t):Ks<1+

the standard atmospheric pressure, y,, is the unit weight of water.

It is crucial to note that the pore structure of soil-rock mixtures
is relatively complex. Although the permeability coefficients of their
soil masses or test blocks can be readily measured in the laboratory,
obtaining an accurate value for the overall permeability coeflicient
is challenging due to factors such as experimental conditions and
the distribution of rock block content. Zhou et al. (2016) explored
the calculation methods for the permeability of soil-rock mixtures.
The permeability in his modified model is derived from three
models: the ordered - arrangement model (assuming that soil and
crushed rock particles are arranged in series along the seepage
path, as shown in Equation 3), the parallel - arrangement model
(assuming that soil and crushed rock particles are arranged in
parallel along the seepage path, as shown in Equation 4), and the
composite model (which incorporates the characteristics of both
the ordered and parallel models by introducing a seepage structure
factor, as shown in Equation 5).

K 3 KKy 3)
SRE ™ CKy + CrK
KS—R(P) = CSKS + CRKR (4)
KSKR
KS*R(SP) =0.5 m + CSKS + CRKR (5)

Where Kg (s, is permeability coefficient of the soil and rocks,
K rp) is the permeability coefficient of the soil and broken rocks
formed in parallel, K p(sp) is the permeability coefficient of the soil
and broken rocks mixtures in series and in parallel.

Taking into account the impacts of porosity and particle
diameter on permeability within the Kozeny-Carman model, the
porosities of soil (ng) and crushed rock (ny) prior to mixing
were measured, while also considering the influence of soil
particle filling in the pores of crushed rock. A modified formula
for calculating the permeability coefficient of soil-rock mixtures
was derived by revising the composite series - parallel model,
as shown in Equation 6.

”;RM(I - ”S—R)z
—)ZKS—R(SP)

(6)

K. =
S-RM(SP) w2 (1 s o
Wher K is the soil permeability, K is the permeability of
crushed rock, Cg and Cy are the volume percentages of soil and
crushed rock, ngp is the weighted - average porosity of soil and
crushed rock before mixing, which can be calculated using the
formula ng = Cyng + Cyonig
Soil-rock mixture slopes are characterized by high porosity,
elevated permeability coefficients, and rapid infiltration processes.
Rainfall can readily penetrate into deep layers due to the
excellent connectivity of macropores, which makes it difficult for
pore gases to become trapped. However, localized air pressure
blockages may still form. The interaction between infiltration
and air pressure exerts a significant influence on slope stability.
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Rapid infiltration leads to an increase in pore water pressure,
subsequently reducing effective stress and potentially causing
instability. Van Genuchten (1980) proposed an expression for
the soil-water characteristic curve that describes the relationship
between matric suction and water content, as shown in Equation 7.
Furthermore, expressions for the suction head at the wetting
front can be derived using the Brooks-Corey model (Brooks et al.,
1964), the Van Genuchten and Neuman method (Neuman, 1976)
(Equations 8-11), as presented in Equation 12.

6,-6,

0= 0 T @y

+ (7)

Where 6 is the volumetric water content, & is the positive value
of the soil suction head, 6, and 6, are the saturated water content and
residual water content, & m. n are model parameters (where, m =

1-1/n)

k. = k(h)/k, (8)
=324 2 )
u
9-6,
i _d(lnm) o
b= dinh)
5= szk,dh (11)

Where h; is the initial soil suction head (cm), k, is the relative
permeability, k(h) is the unsaturated permeability, y is the pore-size
distribution index, A is a related parameter concerning the pore-size
distribution index y

04-6,

Gz ™ o

=]
1

(1+|ach|")y ™ dh (12)

Substituting Equations 6, 12 into Equation 2 allows for the
determination of the wetting front position during the infiltration
process. Through the aforementioned improvements, the infiltration
characteristics of soil-rock mixtures can be more accurately
described, particularly in terms of their dynamic responses when
accounting for pore heterogeneity, air pore pressure, and ponding
effects. These modifications contribute to enhancing the accuracy
of the model and hold practical significance, especially for slope
seepage and stability analysis.

3 Materials and model

A certain soil-rock mixture slope in the Jiangxi region was
selected as the research object. Soil and stone samples were collected
from the area where the slope is located. The natural moisture
content of the soil is 12.5%, the particle size range of the block
stones is between 5 and 20 cm, with a stone content of 36.2%.
Based on the results of particle analysis and stone particle size
analysis, it is determined that the undisturbed soil-rock mixture
in this area belongs to a gravel (stone)-bearing clayey mixture.
Through laboratory infiltration tests, the infiltration coefficients of
soil and gravel were measured, the soil permeability K¢ is 1.23 X
10~° m/s, and the block stone permeability K is 1.46 x 107> m/s.
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TABLE 1 Mechanical parameter indicators of model materials.

10.3389/feart.2025.1714128

Material type = Gravity Compression Poisson'’s Cohesion (kPa) Friction angle = Constitutive
(kN/m?) modulus ratiov ) model
(kN/m?)
Soil 17.6 4.0e3 0.22 25.6 15.8 Mohr-coulomb
Rock 26.2 5.7¢7 0.15 352 45.5 Linear elasticity

The volume percentages of soil and crushed rock, Cg and Cy, are
0.8 and 0.2, respectively. The porosity of the soil is 36.5%, and the
porosity of the block stones is 2.3%. To conduct an in-depth study
of the characteristics of this soil-rock mixture slope using a finite
element model and to validate relevant theoretical methods, targeted
simulation settings were implemented. The mechanical parameters
of the model are presented in Table 1. The cohesion and internal
friction are determined through triaxial shear tests. Three repeated
tests are conducted and the average value is taken as the result.

In the construction of the finite element model, the length of
the slope model was set at 65.0 m, with a 20.0 m reservation at the
slope crest and a 10.0 m reservation at the slope toe. The slope height
was defined as 20 m, and the slope angle as 33.5° to accurately
simulate the geometric configuration of the actual slope. In this
study, the boundary and initial conditions are precisely defined: the
bottom boundary is set as an impermeable boundary, the lateral
boundaries are designated as zero-flux boundaries to represent no
lateral water flow exchange, at the surface boundary, an infiltration
rate of 250 mm/24 h (In China’s standard for rainfall classification,
“Classification of Precipitation Amount” (GB/T 28,592-2012), a
“super heavy rain” is defined as a rainfall amount 2250 mm/24 h),
along with an atmospheric pressure difference of 1.2 atm (With a
difference of Ap = +0.2 atm from the standard atmospheric pressure
(1 atm, 101.3 kPa) was considered to simulate the non-standard
atmospheric pressure conditions on the slope under extreme
weather conditions. This difference was based on meteorological
observation data and reflects the abnormal atmospheric pressure
that may occur under specific climatic conditions). For mechanical
boundary conditions, the bottom is constrained vertically and the
lateral boundaries are constrained horizontally to reflect a stable
lateral environment, and the initial stress field is assumed to be
self-weight stresses. To simulate the soil-rock mixture structure
within the slope in the finite element model, the characteristics of
the soil-rock mixture were represented by randomly distributing
stones of different particle sizes in the model, as Figure 1. Based on
the previously determined proportion of block stones, stones were
randomly arranged in the model to mimic the state of mixing stones
with soil, aiming to closely approximate the actual situation and
provide more realistic conditions for simulating the slope’s response
under rainfall, thereby enhancing the understanding of its seepage
characteristics.

The Richards model is employed to describe the rainfall
infiltration process. The soil-water characteristic curve and
unsaturated permeability coeflicient involved in the model
are fitted using the Van Genuchten formula. To depict the
deformation characteristics of the slope, the elastic deformation
is determined by the generalized Hookes law, while the plastic
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deformation is matched with the Mohr-Coulomb criterion using
the DP (Drucker-Prager) criterion. The equation expressions
are shown in Equation 13. By adjusting the grid density and the
time step size, using the preset regular grid size in the software, and
when the time step is less than 0.1 days, the simulation results tend
to stabilize.

0Q

[der =120
aS
F(0,0,,) <0,AF =0
] Fcone= \/j2+0dl_k (13)
B tan ¢ B 3¢
\/9+12tan2(p \/9+12tan2(p

4 Results and discussion
4.1 Comparison of infiltration behaviors

Under rainfall conditions, the moisture infiltration process in
soil-rock mixture slopes exhibits complex and dynamic spatio-
temporal evolution characteristics. As shown in Figure 2, from the
saturation distribution across a series of time series (ranging from
0.0 days to 40.0 days), it can be observed that in the initial stage
(0.0 days), the saturation at the slope surface is extremely low,
with moisture only sporadically distributed. As rainfall continues,
during the period from 0.5 days to 1.0 days, moisture starts to
significantly infiltrate into the surface soil. The slope surface and
shallow soil are the first to be affected by moisture penetration,
showing a noticeable downward movement of the wetting front.
Moisture gradually migrates towards the interior of the slope, and
the saturated area gradually expands. This process is influenced by
the spatial distribution of stones in the soil-rock mixture, as the
voids around the stones serve as preferential channels for moisture
infiltration. By the time period of 5.0 days-10.0 days, the saturated
area further extends into the deep and interior parts of the slope. The
guiding effect of stones on the moisture infiltration path becomes
increasingly evident, forming localized areas of high saturation.
Over the relatively long period from 20.0 days to 40.0 days, the
saturated area continues to move downward and approaches the
bottom of the slope, demonstrating the continuous infiltration
characteristics of moisture under the combined action of multiple
factors such as gravity and capillary forces.

From Figures 2-4, by comparing soil-rock mixture slopes with
different stone contents, significant differences are observed in their
infiltration processes. There are variations in both the infiltration
rate and the advancement of the wetting front. Under the condition

frontiersin.org


https://doi.org/10.3389/feart.2025.1714128
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Xiong et al. 10.3389/feart.2025.1714128

(a) (b) (©)

FIGURE 1
Schematic diagram of the finite element model. (a) Stone content: 20%, (b) Stone content: 40%, (c) Stone content: 60%.

FIGURE 2
Rainfall infiltration process of the slope (with a stone content of 20%).

FIGURE 3
Rainfall Infiltration Process on Slope (with 40% stone content).

of a low stone content (20%), the overall porosity of the soil mass  the slope toe and in the shallow layer, and the moisture migration
is relatively small. The infiltration process is controlled by matric  is manifested as a gradual and uniform infiltration. In comparison,
suction, and the advancement of the wetting front is relatively  for slopes with a stone content of 40%, a large - scale continuous
slow. In contrast, under the condition of a high stone content  wetting zone has already formed at the same stage, and the deep
(40%), the crushed stones form numerous connected macropores soil mass is affected by moisture earlier. This indicates that when the
or preferential pathways. This accelerates the radial infiltration  crushed stone content is high, moisture is more likely to form non -
of rainfall, and the advancement speed of the wetting front is  uniform seepage channels within the slope, resulting in the wetting
significantly increased. zone showing striped and irregular distribution characteristics. The

There are also differences in the spatial distribution  wetting expansion process of slopes with a low stone content is
characteristics of the wetting zone. For slopes with a stone content  relatively uniform, and the instability mode may be manifested as
of 10%, after 20.0 days, the wetting zone is mainly concentrated at ~ progressive softening and overall strength degradation. On the other
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FIGURE 4
Rainfall Infiltration Process on Slope (with 60% stone content).

hand, due to the preferential pathway effect, slopes with a high stone
content are prone to forming local high - water - content zones and
concentrated infiltration areas, which can induce local failure and
accelerate the development of shear zones.

4.2 Seepage process at the soil - Rock
interface

An analysis of the local seepage process reveals that in soil-rock
mixture slopes, the presence of stones significantly alters the internal
seepage characteristics of the slope, giving rise to the phenomenon
of seepage around stones and the distribution pattern of saturated
zones. As shown in Figure 5, the simulation results indicate that
when water flow encounters stones, it bypasses the stones to
form preferential seepage paths. This phenomenon stems from the
stones’ alteration of the water flow direction, causing moisture to
be more inclined to infiltrate through the soil surrounding the
stones rather than directly passing through them. The formation
of these preferential seepage paths not only accelerates moisture
migration in local areas but also leads to an uneven distribution
of moisture within the slope. Particularly behind the stones, due
to the bypassing of water flow, local saturated zones are prone to
form. The saturation levels in these zones are significantly higher
than those in the surrounding soil. Further analysis shows that the
local saturated zones resulting from seepage around stones have a
significant impact on slope stability. As rainfall continues, the extent
of these local saturated zones gradually expands, and the saturation
levels continuously rise, thereby reducing the soil’s shear strength. In
the lower part of the slope, because of the lower terrain and the dense
distribution of stones, moisture tends to accumulate here, forming
large - scale continuous saturated zones. The expansion of these
saturated zones further weakens the slope stability and increases
the risk of slope instability. It is noteworthy that the stone content
and arrangement pattern have a significant influence on seepage
around stones and the distribution of saturated zones. In slopes
with a high stone content, the connected macro-pores or preferential
channels formed by crushed stones accelerate moisture infiltration,
speeding up the advancement of the wetting front and the more
rapid expansion of saturated zones. In contrast, in slopes with a
low stone content, due to the relatively small overall porosity of
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the soil, the infiltration process is controlled by matric suction. The
advancement of the wetting front is slow, and the distribution of
saturated zones is relatively uniform.

Figure 6 illustrates the variation of saturation over time at
measurement points within soil-rock mixture slopes with different
stone contents (20%, 40%, and 60%). In the case of a 20% stone
content (Figure 6a), the saturation remains relatively stable during
the initial stage and then rapidly increases and approaches a stable
value near 1 day. This indicates that in slopes with a low stone
content, where soil particles dominate, the infiltration process is
relatively slow and uniform. The increase in saturation is gradual
until it reaches a relatively stable state. When the stone content
is 40% (Figure 6b), the variation of saturation exhibits different
characteristics. During the period from 3.3 days to 3.55 days,
the saturation rises slowly, followed by a distinct rapid increase
phase, and stabilizes around 3.55 days. This suggests that as the
stone content increases, the seepage paths within the slope become
more complex. The presence of stones forms preferential seepage
channels, causing the saturation to increase rapidly within a specific
time period. For slopes with a 60% stone content (Figure 6¢), the
variation of saturation is even more dramatic. Starting from 2.2 days,
the saturation gradually rises and rapidly reaches a stable state
around 2.8 days. A high stone content makes the pore structure
within the slope more heterogeneous. The connected macropores
or preferential channels significantly accelerate moisture infiltration,
enabling the saturation to increase rapidly and reach a stable state
within a relatively short time. Overall, an increase in stone content
clearly accelerates the rate of saturation increase at measurement
points within the slope and shortens the time required to reach a
stable state.

4.3 Model validation

The calculated parameters for the Van Genuchten model are
presented in Table 2. By comparing the calculation results with
an infiltration time of 5 days, as shown in Figure 7, it can be
observed that the calculated results of the improved Green-Ampt
model (the red curve) exhibit a relatively high overall agreement
with the actual values obtained from finite - element simulation
(the blue dots). This indicates that the improved model can
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FIGURE 5
Local seepage process (with 20% stone content).
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TABLE 2 Parameters of the Van Genuchten model for soil-rock mixtures.
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FIGURE 7

Comparison of theoretical values and actual values.
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effectively reflect the infiltration characteristics of soil-rock mixture
slopes under rainfall conditions. It is noteworthy that, in most
stages, the theoretical calculated values are slightly larger than the
numerical simulation values. This discrepancy mainly stems from
the following two aspects: (1) Although the improved Green-Ampt
model incorporates the atmospheric pressure boundary condition
and a modified permeability coefficient formula, it is still based
on the assumptions of a well - defined wetting front and uniform
infiltration paths. Consequently, it fails to fully capture the complex
heterogeneous structure within the soil-rock mixture. In actual
numerical simulations, the irregular distribution of stones can
delay the infiltration process in some areas, thereby relatively
slowing down the overall advancement rate of the wetting front.
(2) The numerical model takes into account the slope geometry,
heterogeneous pore distribution, and soil - rock interface effects.
Under the combined influence of these factors, the retention and
bypass of pore gases lead to alocal reduction in infiltration efficiency,
further widening the gap between the theoretical and simulated
values. Overall, the theoretical prediction results of the improved
model are relatively consistent with the numerical simulation values
in terms of trends. This demonstrates the applicability and reliability
of the improved Green-Ampt model proposed in this paper, which
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can provide effective support for seepage analysis and stability
evaluation of soil-rock mixture slopes.

5 Conclusion

This study investigated the rainfall infiltration of soil-rock
mixture slopes and evaluated the reliability of the improved
infiltration model through theoretical modification and finite -
element verification. The main conclusions are as follows:

1. By introducing the atmospheric pressure boundary condition
and a modified permeability formula for soil-rock mixtures,
the improved Green-Ampt model can effectively account for
the influences of non-ponded infiltration, ponded conditions,
and air pressure. As a result, it significantly enhances the
prediction accuracy.

2. Anincrease in rock block content accelerates the advancement
of the wetting front by forming preferential flow channels and
heterogeneous saturated zones. These characteristics promote
the concentration of local pore pressure and the development
of shear bands, thereby increasing the likelihood of progressive
instability.

3. The presence of rock blocks in soil-rock mixture slopes
significantly alters the internal seepage characteristics of the
slopes, resulting in the local formation of preferential seepage
around rocks and abnormal distribution patterns of saturated
zones.
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