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Investigation into Etna’s summit 
effusive activity by correlating 
satellite-derived erupted 
volumes and strain response

A. Bonaccorso, L. Carleo*, A. Cappello, M. Aloisi, G. Bilotta, 
F. Cannavò, G. Currenti, A. Sicali and G. Ganci

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy

Over the past 20 years, Etna’s South-East Crater (SEC) has been the most active 
of the summit craters, producing more than 100 lava fountains and several 
effusive eruptions. The latter, lasting from days (effusive pulses) to tens of days 
(more prolonged effusive phases), occur frequently and thus require accurate 
volume estimation. Such eruptions usually produce small deformations (≤1 
microstrain) that can be detected by the high-precision borehole dilatometers 
installed at Etna. Recently, a linear correlation has been found between strain 
changes and eruption volumes derived from satellite imagery for lava fountains. 
This study extends the previous findings by incorporating data from the SEVIRI 
satellite sensor, showing a proportionality between strain and volume also for 
the effusive pulses. Our study confirms that combining satellite and ground-
based data enables real-time volcanic monitoring and volume estimation. This 
enhances the understanding of eruption dynamics and mass balance efficiency, 
therefore also contributing to the correct and effective communication of 
volcanic hazards.
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 1 Introduction

Mount Etna is a notably active basaltic volcano formed in the area of convergence 
between the African and the European plates. It is located in the eastern coast of Sicily 
(Central Mediterranean Sea, Figure 1) at the front of the Appennine Maghrebian fold in 
a complex geodynamic setting (Branca et al., 2011; Doglioni et al., 2001). The Etna volcano 
exhibits different eruptive styles, encompassing both explosive and effusive phenomena. 
Explosive activity ranges from moderate Strombolian eruptions to powerful lava fountains. 
Effusive activity is primarily manifested as lava flows. Flank eruptions, producing extensive 
lava fields, pose the most significant hazard, threatening the densely populated areas and 
infrastructure surrounding the volcano. Historically, prolonged flank eruptions, driven by 
feeder dike emplacement and propagation, have caused substantial damage (Branca and 
Del Carlo, 2004). However, recent decades have also seen numerous summit effusive events, 
with smaller lava flows originating from the main craters, occasionally resulting in damage 
and elevated volcanic risk. A compelling example is the first stage of the 1971 eruption, 
where initial summit flows from fissures at 3.000 m a.s.l., destroyed the upper cableway and 
the historic volcanological observatory, both iconic landmarks, and threatened the southern
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tourist center (Branca et al., 2021). In general, Etna, in addition 
to being densely urbanized around its flanks, is also crowded with 
tourism that reaches the summit areas, and therefore effective and 
rapid communication of volcanic hazards is fundamental for both 
explosive and effusive phenomena for the correct management of 
the associated risk.

Since 2011, the eruptive activity has been dominated by 
lava fountains, particularly from the South-East Crater (SEC), 
which are characterized by intense explosions lasting several hours 
(Calvari et al., 2018; Cappello et al., 2019; Calvari and Nunnari, 
2022). These events typically exhibit minor deformations (≤1 
microstrain), often eluding detection by conventional geodetic 
methods like GNSS or satellite interferometry, that are detectable by 
high-precision borehole dilatometers (Bonaccorso et al., 2016; 2020; 
2021; Carleo et al., 2023; 2025). A recent research has also established 
a linear relationship between volumetric strain changes and erupted 
volumes derived from optical satellite imagery (Bonaccorso et al., 
2023), allowing us to estimate the erupted volumes both over time 
and in real-time. Therefore, from this result it appears clear that 
the joint monitoring of the thermal effects associated with the 
eruptive phases and the strain response of the edifice during magma 
emission represent a strategic combination to contribute to the 
characterization of the typology of the eruption in progress.

In addition to lava fountains, Etna has also experienced 
numerous summit effusive phases, primarily from the SEC, 
characterized by lava flows of different durations: effusive pulses 
lasting days, and more prolonged effusive phases lasting tens of 
days. From December 2013 to February 2025, 22 such events 
produced over 60 million cubic meters of lava, comparable to the 
average volume of a flank eruption, highlighting their significant 
role in the volcano’s dynamics. However, these events remain 
less studied and understood, particularly regarding their magma 
sources, volume estimation, and hazard assessment. Our study 
aims to contribute to the understanding of these summit effusive 
eruptions by investigating these episodes for the first time through 
the correlation of satellite-derived erupted volumes with high-
precision strain responses. Specifically, we analyze more than 
10 years of Etna activity, comparing the effusive volumes obtained 
from the SEVIRI multispectral satellite sensor, and high-precision 
strain data recorded by borehole strainmeters, focusing on both 
effusive pulses (EP) and prolonged effusive phases (PEP) from 
the SEC. This correlation is crucial for the real-time estimation 
of emitted volumes, which is essential for a rapid assessment of 
associated hazards.

In Section 1.1, we introduce the summit eruptive events that 
occurred in 2011–2025, in which are included also the effusive ones 
that are the subject of this study. In Section 2, we describe the two 
methodologies used to investigate these events. In Section 3, we 
present the main results obtained for EPs and PEPs in terms of the 
ratio between emitted volumes and recorded strain. In Section 4, 
these results are discussed in comparison with other types of 
eruptive activity at Etna and in relation to sources already 
constrained for other eruptions in previous studies. 

1.1 Effusive summit events in 2011–2025

From 2011 to 2015, the SEC was the source of 53 eruptive events, 
causing important changes in the morphology of the southern 
flank of the volcano (Ganci et al., 2018). After the end of the 
2011–2013 lava fountain sequence (Andronico et al., 2021), the 
eruptive activity tended to be less violent, mainly characterized by 
long-lasting summit effusive events, with durations from weeks to 
months, alternating with effusive pulses with a duration of a few days 
(Currenti and Bonaccorso, 2019). From December 2020 to February 
2022, a new sequence of lava fountains, with more than 60 eruptions, 
started again. This sequence was again followed by long-lasting 
effusive eruptions, in May - June 2022 November 2022 – February 
2023, and February 2025 (Zuccarello et al., 2023; Ganci et al., 2025).

In this work, we focus on the 6 PEP and the 16 EP events 
occurring between 2013 and 2025 (Figure 1a), whose lava flows 
are mapped in Figure 1b. PEP events lasted between ∼20 days and 
2.5 months and produced lava flows with volumes greater than ∼5.5 
millions of cubic meters (Mm3). Conversely, EP events lasted less 
than 4 days and emitted lava volumes below 1.4 Mm3. The only 
exception was May 29, 2019, which lasted ∼10 days and erupted 
2.5 Mm3 of lava. 

2 Methods

2.1 SEVIRI multispectral measurements

The Spinning Enhanced Visible Infra-Red Imager (SEVIRI) 
on Meteosat Second Generation (MSG) satellites, operational 
since August 2002, supports meteorological and environmental 
monitoring. It uses twelve spectral wavebands, with three 
infrared bands—IR3.9 (mid-infrared), IR10.8, and IR12.0 (thermal 
infrared)—crucial for volcanic monitoring. IR3.9 detects high-
temperature anomalies, while IR10.8 and IR12.0 capture lower 
temperatures and compensate for atmospheric interference, 
enhancing thermal detection for lava flow monitoring. SEVIRI 
provides 15-min temporal resolution and a 3 km spatial resolution 
at nadir, making it valuable for real-time volcanic surveillance and 
research (e.g., Spina et al., 2025).

Here, SEVIRI data are processed by CL-HOTSAT (Ganci et al., 
2023) to locate thermal anomalies and quantify them (Figure 2a). 
In particular, we compute the radiant heat flux associated with 
the hot-spot pixels, and convert the flux into time-averaged 
discharge rate (TADR) which is an estimate of the effusion rate. 
Finally, by integrating the TADR over time, the cumulative volume 
is computed (Figure 2b).

2.2 High-precision borehole strain 
recording

Sacks-Evertson strainmeters (Sacks et al., 1971) are borehole 
sensors which record the volumetric deformation of the 
surrounding rock in a wide frequency band (10–7 to more than 
20 Hz) and with the highest resolution (10–12) achievable among the 
geodetic techniques (Roeloffs and Linde, 2007). These instruments 
are usually installed in deep holes (>100 m) and coupled to rock 
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FIGURE 1
(a) Details on the period, duration, lava volumes, and recorded strain changes for the SEC’s Effusive Pulses (EP, in green) and Prolonged Effusive Phases 
(PEP, in orange) from 2013 to 2025. (b) Mapping of the related lava flows extracted from high-resolution satellite imagery. The map also reports the 
position of the summit SE crater (SEC) and of the borehole strainmeter used in this study (DRUV).
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FIGURE 2
(a) SEVIRI image over Sicily, South Italy, during an eruption of Etna. The bright pixels in the inset represent the hot spots associated with the eruptive 
activity of SEC. (b) Example of the SEVIRI-derived effusion rates and cumulative lava volume from 24 to 29 August 2018. (c) Sketch of the DRUV 
installation. (d) Examples of filtered signal from the DRUV strainmeter showing strain changes during summit effusive EP and PEP events in 2017.

with expansive cement. The final in situ response of the sensor 
depends both on the quality of the rock-sensor coupling and on 
the capacity of the surrounding rock to transfer deformation. In 
the last decade, four borehole strainmeters were installed at Etna, 
each characterized by a different response (Bonaccorso et al., 2016; 
2020). In this work, we focus on the DRUV strainmeter (Figure 2c), 
located ∼11 km away from the summit craters (Figure 1b), which 
is the device with the best rock-sensor coupling among the other 
strainmeters (Currenti et al., 2017). The DRUV signal is affected by 
disturbing strain sources mainly due to the curing of the cement 
and the relaxing of the hole (long-term drift), the Earth tides and 
the barometric pressure variations. To improve the sensitivity of 
the strainmeter signal to volcano-induced strain variations, the 
long-term drift is filtered out by considering exponential and linear 
functions (Hsu et al., 2015). The effects of the Earth tides and the 
barometric pressure are reduced using the procedure of Carleo et al. 
(2022) which allows detecting volcano-related strain variations in 
the order of 10–10 and 10–9 at time scales of a few hours to months, 
respectively. An example of DRUV filtered signal during PEP and EP 
events is presented in Figure 2d. Typically, the DRUV strainmeter 

records dilatation of the rock surrounding the sensor concurrently 
with the eruptions, according to a decompression of a shallow 
magmatic source (Bonaccorso et al., 2013). In this work, we use 
the terms dilatation/contraction and decompression/compression 
to indicate deformation at the DRUV and stress action of the source, 
respectively. 

3 Results

3.1 Effusive pulses (EP)

From thermal satellite data, we found an average duration of the 
events of 2.6 days with the shortest event recorded on 19 April 2017 
and the longest on 29 May 2019. The inferred volumes are around 
one million cubic meters, with the maximum value of 2.5 Mm3 for 
the 29 May 2019 event and the minimum of 0.1 Mm3 for the 27 
August 2018 event.

All the EPs produce positive strain variations indicating dilation 
at the DRUV station. Such variations are in the order of 10–8 to 
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10–7 (Figure 1a), with the maximum value of 215.7 nanostrain for 
the 29 May 2019 event and the minimum of 29.1 nanostrain for the 
10 April 2017 event.

Typically, both the beginning and end of the strain variation 
can be identified concurrently or slightly before the beginning 
and end of the effusive activity, respectively, as detected by 
satellite. In particular, after the end of the strain variations, the 
satellite measurements may record a decrease in the effusive rate 
representing the gradual waning of the activity.

Figure 3 includes the filtered strain and effusive volumes time 
series for the two EP events of 19 April 2017 (Figure 3a) and 18 
July 2019 (Figure 3b), and the effusive volumes plotted against the 
strain variations related to all the EP events (Figure 3e). A linear 
relationship among these two quantities can be observed with a slope 
coefficient of 0.0074 Mm3/nanostrain. This coefficient is slightly 
lower than 0.014 Mm3/nanostrain (Bonaccorso et al., 2025) found 
for the Etna lava fountain events, obtained by comparing cumulated 
DRUV variations and cumulated erupted volumes estimated 
through topographic differencing (Bonaccorso et al., 2023).

3.2 Prolonged effusive phases (PEP)

From SEVIRI data, we obtained an average duration of the events 
of ∼44 days with the shortest event recorded on 8 February 2025 
(∼21 days) and the longest occurring on November 2022 - February 
2023 (∼77 days). The computed volumes have a mean of 7.42 Mm3

with the maximum value of 13.5 Mm3 for the January - April 2014 
event and the minimum of 5.37 Mm3 estimated for the February 
2025 event.

The DRUV strainmeter records dilatation of the surrounding 
rock concurrently with all the events, with strain changes in the 
order of 10–7, ranging from 142 to 294 nanostrain. The beginning 
of the strain variation is usually detected concurrently with the 
beginning of the effusive activity.

The strain and the effusive volumes time series for the 
two events of July-August 2014 and May 2022 are reported in 
Figures 3c,d. Figure 3e also includes the effusive volumes plotted 
against the strain variations related to all the PEP events. For these 
events, it is not possible to estimate a law as for the EPs. In fact, they 
are distributed according to a point cloud, with a centroid having an 
effusive volume of 7.42 Mm3 and a strain change of 215.5 nanostrain. 
However, even in the absence of a precise law, for PEPs the values of 
the estimated volumes and of the recorded strain certainly indicate 
a greater emptying of the source with a higher average ratio between 
erupted volume and DRUV strain response.

For the January - April 2014 event, the strain signal recorded 
by DRUV shows a particular pattern (Figure 4a). At the beginning 
of 2014, after a few weeks of discontinuous Strombolian activity, 
a more sustained activity began on 21 January, with the opening 
of two effusive vents, increasing in intensity the following days 
(Andronico et al., 2018). Despite the presence of effusive activity, 
during the month of January the strain did not show dilatation, as 
in the other EP and PEP events, which can be associated to the 
depressuring of a shallow reservoir, but, on the contrary, a clear 
contraction (phase 1F1 in Figure 4a). Similarly, the GNSS network 
(phase F1 in Figure 4b and displacement vectors in Figure 4c), in 
accordance with a pressurization od the volcano edifice, indicated 

a positive areal expansion, in agreement with the opposite trend 
observed on the DRUV measurements. After this pressurization 
phase, DRUV and GNSS time series recorded a trend inversion 
(phase F2 in Figures 4a,b, displacement vectors in Figure 4d), 
associated with a depressurization of the volcano edifice. On 11 
February, the lower eastern flank of the SEC collapsed producing 
a pyroclastic density current (Andronico et al., 2018). After this 
sudden event, the effusive flow continued in the following weeks 
until early April and DRUV (phase F2 in Figure 4a) and GNSS 
(phase F2 in Figure 4b and displacement vectors in Figure 4d) time 
series continued to show a reversed trend with a gradual dilatation 
of the rock surrounding the DRUV station and a slight negative 
expansion of the volcano edifice, respectively.

4 Discussion

Mount Etna exhibits a dual nature in its eruptive behavior, 
characterized by both effusive and explosive activity. Effusive 
eruptions, typically of longer duration and marked by bigger 
emitted volumes, pose the most significant territorial risk when 
originating from the volcano’s flanks. Explosive events, generally 
erupted from the summit craters, have shorter durations and range 
in intensity from Strombolian activity to brief episodes of violent 
lava fountaining.

Since the 1980s, geodetic measurements on Etna have 
documented phases of inflation preceding major flank eruptions 
lasting from months to years, during which deflationary periods 
have occurred and associated with the effusion of large volumes of 
lava (Bonaccorso and Aloisi, 2021 and references therein). Analysis 
of these measurements has indicated the presence of an intermediate 
magma storage zone situated at a depth of 4–6 km below sea level 
(e.g., Bonforte et al., 2008; Bonaccorso and Aloisi, 2021).

Since 2011, numerous explosive eruptions, featuring over 100 
lava fountains from the South-East Crater, have been observed. 
The recorded strain variations have enabled constraining a 
smaller and shallower source, located approximately at sea level 
(Bonaccorso et al., 2013; 2021). This position agrees with recent 
seismic tomography findings (De Gori et al., 2021), which reveal 
a small magma reservoir centered at 0–1 km b.s.l. This shallower 
reservoir represents a smaller storage where gas-rich magma 
accumulates, subsequently undergoing forceful eruption as lava 
fountains. Therefore, there are two levels of accumulation and 
stationing of magma between 10 and 0 km b.s.l.: an intermediate 
one capable of then releasing larger quantities of magma and a 
shallower one in which the source that feeds the SEC lava fountains 
is located. A summary of Etna’s plumbing system inferred by the 
deformation sources is provided in Aloisi et al. (2018).

Since 1971, Etna has exhibited steady-state eruptive behavior, 
i.e., a constant eruptive rate of 0.8 m3/s (Bonaccorso and Calvari, 
2013). These allow us to consider curves of expected cumulative 
erupted volumes which, by comparing them to the real erupted 
volumes, are able to quantify the expected maximum volume to be 
erupted (Bonaccorso and Calvari, 2013; Calvari and Nunnari, 2022), 
therefore providing a useful tool to control the state of the volcano.

In addition to the lava fountain episodes and the major flank 
eruptions, several short-lasting summit effusive eruptions have 
also occurred. Despite their ephemeral nature, these events have 
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FIGURE 3
Erupted volumes from SEVIRI (red points) and strain signal at DRUV (black line) during the two EP events of (a) 19 July 2017 and (b) 18 July 2019, and 
the two PEP events of (c) July-August 2014 and (d) May 2022. (e) Linear relation between the SEVIRI-derived erupted volumes and the strain variations 
measured by DRUV station for all the EP events (blue line). The light blue stripes are the 95% confidence bands. The regression slope is 
0.0074 Mm3/nanostrain, while the R2 is ∼0.75. In green the point cloud of all the PEP events.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1709184
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Bonaccorso et al. 10.3389/feart.2025.1709184

FIGURE 4
(a) Cumulative volume from SEVIRI (red) and strain signal at DRUV (black). The yellow box indicates the time period (01–21 January 2014, phase F1) 
during which contraction at DRUV (strain) and areal expansion (GNSS) were recorded, despite the effusive activity in progress. The following period (20 
January – 01 April 2014), during which dilatation at DRUV (strain) and areal deflation (GNSS) were recorded, is indicated as phase F2. (b) Areal dilatation 
of the GNSS triangle EMCN-EMEG-ESLN during January-April 2014 (green). The raw data from the GNSS permanent stations were processed on a daily 
basis in PPP mode using the Gipsy-X 1.5 software with JPL final products (Bertiger et al., 2020). From the daily solutions of 3-dimensional positions, we 
 (Continued)
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FIGURE 4 (Continued)

calculated the areal strain for the considered triangle. The associated uncertainties are calculated by using the error propagation formula. (c)
Horizontal displacements (red arrows) recorded at the GNSS benchmarks during phase F1 (raw data processed using Gipsy-X 1.5). (d) Horizontal 
displacements recorded at the GNSS benchmarks (blue arrows) recorded for phase F2 (for the processing, see Aloisi et al., 2018). The bar charts 
report the recorded vertical dislocations for each phase. The vertical variations are sorted by the GNSS station elevations. The location of 
strainmeter DRUV (red circle) and the GNSS triangle EMCN-EMEG-ESLN (green dotted line) are also indicated.

cumulatively erupted over 60 Mm3 of lava in slightly more than 
10 years. Consequently, alongside the more dramatic lava fountain 
episodes, these short-lived effusive phases play a significant role 
in the system’s re-equilibration. In this context, the role of EPs 
and PEPs becomes fundamental, given that their correct volume 
quantification also allows us to have an updated picture of the 
balance between erupted volumes and volumes to be erupted. By 
contrast to flank eruptions and lava fountain activity, which are 
extensively documented, this category of eruptive phenomena has 
received considerably less attention.

For the lava fountain events, the linear relationship between total 
erupted volume estimated from satellite sensors for topographic 
monitoring and cumulated strain variations measured by DRUV 
has a slope of 0.0147 Mm3/nanostrain (Bonaccorso et al., 2023; 
2025). We now find that the regression coefficient for EP events 
is ∼0.008 Mm3/nanostrain is lower than the lava fountains case 
(Figure 3e). We interpret this aspect as due to a less efficient 
emptying of the same shallow source located at ∼0 km b.s.l. 
(Bonaccorso et al., 2013) that feeds the lava fountains. The lower 
efficiency is attributable to lower accumulation/release of the 
gaseous phase that determines a less intense explosive nature, 
causing a lesser emptying of the source, characterized by a less 
violent dynamic and more prolonged in time. The volumes emitted, 
in quantity and proportionally to the concurrently recorded strain 
variation, during the PEP phases are greater than those of the EP 
phases. In general, during the lava emission a gradual deflation of 
the volcano edifice can be cumulatively detected by GNSS. These 
measurements provide valuable information on the centroid of the 
source that causes the deflation recorded during the entire period 
of the PEP phases (Aloisi et al., 2018; Palano et al., 2024). For all 
the PEP events, the common relevant aspect is that the inferred 
position of the deflating source is nearly coincident with the position 
of the intermediate storage modelled during the previous main flank 
eruptions. Therefore, these kinds of events are characterized by a 
partial emptying of the intermediate source without stationing and 
accumulation of gaseous phase in the shallower source. However, 
PEP events produce lava flows lasting several weeks and capable of 
reaching altitudes (i.e., ∼2000 m a.s.l.), where tourist centers and 
numerous high-mountain trails, often crowded with tourists, are 
located. Therefore, the proper assessment of these phenomena and 
the consequent communication of volcanic hazards is necessary 
from their initial stages.

An intriguing additional aspect concerns the signals observed at 
the beginning of the January-April 2014 phase. During this period, 
despite magma emission, the strain, instead of showing dilation, 
recorded a continuous contraction until 11 February (Figure 4), 
when a collapse of the eastern flank of the SEC cone occurred with 
a subsequent release of a pyroclastic flow (Andronico et al., 2018). 
This trend of the strain is consistent with the trend of the GNSS 
signals showing a positive areal dilation instead of the areal deflation 

that is usually observed during the effusive phases and associated 
with the magma outflow. This specific critical aspect, which deserves 
further targeted investigations, takes on the value of a potential 
‘pre-warning' element that could provide useful information on the 
phases preceding the summit collapse and the hot avalanche. 

5 Conclusion

Our research underscores the importance of continuous, high-
resolution monitoring of volcanic strain and effusive output to 
effectively characterize the summit effusive activity differentiating 
between shallow-fed, short-lasting events and deeper-fed, long-
lasting more voluminous eruptions, ultimately leading to improved 
hazard mitigation efforts at Etna and other similar volcanic systems 
worldwide. We have analyzed more than 10 years of the Etna activity 
(2013–2025), revealing two types of summit effusive event with 
distinct volume-to-strain relationships and feeding depths. Short-
lived effusive pulses show a linear volume-to-strain relationship, 
fed from a shallow reservoir (0 km asl) with a less explosive 
style than lava fountains. Prolonged effusive phases exhibit a 
higher volume-to-strain ratio, indicating a deeper intermediate 
reservoir (5–6 km bsl) with a more voluminous magma supply. 
Recognizing these differences early, based on volume-to-strain, is 
crucial for accurate hazard assessment, forecasting eruption style, 
and improving preparedness and response strategies at Etna and 
similar volcanoes.
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