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Currently, although various landslide susceptibility models can achieve high 
prediction accuracy, their results have significant differences in spatial 
distribution, resulting in high prediction uncertainty, which poses a challenge 
to optimizing assessment methods applicable to such complex geological 
hazards. In order to reduce uncertainty, this study proposes a machine learning 
ensemble modeling method that combines spatial consistency analysis. Taking 
Ruijin City in Jiangxi Province as the research area, based on the selection 
of 12 influencing factors and hyperparameter optimization, three algorithms 
including XGBOOST, Random Forest (RF), and Support Vector Machine (SVM) 
were used to generate landslide susceptibility maps. All models performed well, 
with AUC values ranging from 0.84 to 0.93. However, spatial consistency analysis 
shows that the spatial correlation between maps between models is only 0.78 
to 0.84, indicating that although the prediction accuracy is high, there is still 
significant spatial heterogeneity and uncertainty. Therefore, a logistic regression 
(LR) fusion model based on historical landslides was constructed. Use the 
compilation results as the dependent variable and the results of the three models 
as the independent variables. The results indicate that XGBOOST contributes 
the most, followed by RF and SVM. By integrating the three prediction results, a 
comprehensive vulnerability map was finally obtained, which was superior to the 
single model in terms of spatial consistency (correlation coefficient 0.87–0.91) 
and prediction accuracy (AUC = 0.95). This research framework effectively 
reduces the uncertainty of landslide prediction and improves the reliability and 
accuracy of evaluation results.
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 1 Introduction

Landslides are highly destructive natural disasters that threaten human safety, 
socioeconomic stability, and ecological sustainability (Alcántara-Ayala, 2025; Wang X. et al., 
2021; Ahmed, 2021). Their abruptness and uncertainty make timely landslide information 
crucial for risk management (Bao et al., 2022). Consequently, landslide susceptibility 
assessment has become a key tool for identifying potential hazards and supporting 
disaster prevention planning (Alam and Ray-Bennett, 2021; Dahmani et al., 2024; 
Li and Samsudin, 2024). Advances in remote sensing have significantly improved 
the availability of high spatio-temporal resolution Earth observation data, enhancing 
landslide susceptibility mapping. High-resolution satellite imagery enables the extraction
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of key environmental parameters—including topography, 
vegetation cover, geological structure, and hydrology—which are 
vital for landslide indication. Additionally, remote sensing plays 
a pivotal role in identifying and compiling historical landslide 
inventories, providing reliable data for disaster records (Sousa et al., 
2021). As data quality continues to improve, methodological choices 
increasingly determine assessment reliability (Lu et al., 2024). 
Researchers have developed various models using GIS and remote 
sensing, such as weight of evidence, logistic regression, analytic 
hierarchy process, and evidential belief function. Recently, machine 
learning applications have grown substantially (Liu et al., 2022). 
Early introduced methods like K-nearest neighbor (KNN) have 
been followed by widely adopted algorithms including Logistic 
Regression (LR) and Support Vector Machine (SVM), valued for 
their adaptability (Shu and Ye, 2023). Advanced techniques like 
extreme gradient boosting (e.g., XGBoost) and ensemble learners 
such as Random Forests (RF) have demonstrated superior predictive 
performance (Kavzoglu and Teke, 2022a). However, differences in 
model selection, data sources, and human judgment often introduce 
substantial uncertainties in landslide susceptibility assessments 
(Wang and Nanehkaran, 2024). Since high-prediction landslide 
maps are critical for disaster decision-making, they must undergo 
rigorous validation before use (Guo et al., 2022). Currently, two 
main challenges remain: how to accurately evaluate susceptibility 
maps, and how to identify the optimal method combination to 
enhance efficiency. Conventional verification involves susceptibility 
simulation and result-field comparison, demanding reliability, 
robustness, and predictive capability from the method (Zhai et al., 
2024; Ahmad et al., 2025a). Notably, even when models perform 
similarly on test datasets, their spatial predictions may still vary 
significantly (Ahmad et al., 2025b).

While different machine learning algorithms have been 
employed for landslide susceptibility mapping, the pixel-level 
consistency among these methods is not well studied. The spatial 
heterogeneity they produce further elevates assessment uncertainty 
(Tehrani et al., 2022; Ahmad et al., 2025c; Ahmad et al., 2021). 
Hence, this study introduces an integrated modeling approach to 
minimize prediction uncertainty. This is achieved by evaluating the 
consistency among three machine learning results and fusing them 
into a comprehensive susceptibility map. Our case study is Ruijin 
City, Jiangxi Province, where complex geological conditions, high 
rainfall, and documented landslide events make it a representative 
area. The method’s effectiveness and applicability will be further 
verified through field data and historical landslide records. 

2 Materials and methods

This study consisted of three main phases. In the first stage, 
three machine learning algorithms, including XGBOOST, Random 
Forest (RF) and Support Vector Machine (SVM), were used to 
generate landslide susceptibility maps in the study area. In the 
second stage, the consistency of the spatial prediction patterns 
of landslide probability maps obtained by different methods was 
evaluated based on pixel-by-pixel correlation analysis. In the third 
stage, the output results of the three models are fused to synthesize 
a comprehensive landslide susceptibility regionalization map. 

2.1 Study area

This study focuses on Ruijin City, Jiangxi Province 
(25°30′–26°20′N, 115°42′–116°22′E), a hilly and mountainous 
region prone to landslides. The area experiences high annual rainfall 
(>1,600 mm) and frequent human activities, which collectively 
contribute to slope instability (Figure 1). Historical landslides, 
triggered by heavy rainfall and construction, have repeatedly 
damaged infrastructure and threatened public safety. Therefore, 
landslide susceptibility assessment is crucial for disaster prevention 
and spatial planning in Ruijin.

2.2 Landslide cataloging and mapping

Landslide inventory mapping is a fundamental step in landslide 
susceptibility assessment (Sharma et al., 2024). This study utilized 
the official landslide inventory map of Ruijin City, produced by 
the Jiangxi Provincial Geological Bureau. This map integrates 
historical landslide records from various sources, verified through 
GPS and field surveys. Additionally, our field investigations provided 
detailed reports on landslide movement types, distribution patterns, 
damages, displacement, materials, and triggers. The study is based 
on 370 identified landslide sites. Since landslide susceptibility 
mapping is a binary classification task, non-landslide samples are 
equally critical. Following (Liu et al., 2023; Batar and Watanabe, 
2021), who outlined three methods for selecting non-landslide 
samples, this study adopted the second approach: randomly 
selecting points from areas with no landslide history. Using ArcGIS, 
we generated 10 sets of non-landslide data, each containing 370 
points. The entire dataset (landslide and non-landslide) was then 
divided, with 70% allocated for model training and 30% for testing. 

2.3 Landslide influencing factors

The effectiveness of landslide susceptibility mapping largely 
depends on the selection of influencing factors (Ullah et al., 2022; 
Sajid et al., 2022; Ahmad et al., 2024). In this study, the following 
principles were followed in selecting these factors (Zeng et al., 
2021; Cui et al., 2022; Pacheco Quevedo et al., 2023): (1) the 
factor must have a known mechanical or statistical association 
with landslide occurrence; (2) the factor must be quantifiable 
and spatially mappable; (3) redundancy among factors should be 
minimized to reduce multicollinearity issues in the model; and (4) 
the factor must align with the geomorphological and geological 
characteristics of the study area (Table 1).

Based on the aforementioned principles, existing literature, and 
professional understanding of the study area, an initial set of factors 
encompassing topography, geology, hydrology, vegetation cover, 
and human activities was selected. It should be specifically noted 
that although rainfall is a key dynamic trigger for landslides, it 
was not directly incorporated into the model due to its limited 
spatial variability at the regional scale and the study’s focus on 
assessing long-term static susceptibility. Similarly, high-resolution 
soil moisture data and detailed construction activity data were 
excluded because they were difficult to systematically obtain and 
standardize across the study area. As an alternative, remotely sensed 
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FIGURE 1
Regional geological location and landslide distribution in Ruijin city.

indices (e.g., NDBI) and distance-based factors (e.g., proximity to 
roads) were used to indirectly yet effectively represent the intensity 
and distribution of human activities. Ultimately, 12 influencing 
factors were identified for modeling (Table 1). All factors were 
derived from 30-m spatial resolution ALOS DEM and Landsat 
satellite imagery, processed via the Google Earth Engine platform. 
The following (Figure 2) provides a detailed description of each 
factor category:

Topographic Factors: These include elevation, slope, aspect, plan 
curvature, profile curvature, and topographic relief. Collectively, 
they govern slope morphology, stress distribution, and surface 
drainage conditions, forming the intrinsic basis for landslide 
occurrence (Selamat et al., 2025; Kab et al., 2023; Saha et al., 2021). 
For instance, slope directly influences gravity-driven shear stress, 
while curvature relates to the convergence or divergence of surface 
materials.

Geological Factor: Lithology. Variations in the strength and 
permeability of different rock and soil types directly control slope 
stability and failure mechanisms.

Hydrological Factor: Distance to rivers. Riverbank erosion is a 
significant external force triggering landslides. A distance-to-river 
map was generated using the Euclidean distance algorithm.

Vegetation and Surface Cover Factors: This study incorporated 
three complementary remote sensing indices to comprehensively 
characterize the surface environment:

Normalized Difference Vegetation Index (NDVI): Quantifies 
vegetation density. Dense vegetation enhances soil shear strength 
through root reinforcement, while sparse vegetation areas are more 
prone to shallow landslides.

Modified Normalized Difference Water Index (MNDWI): 
Accurately extracts water bodies. Areas near water are not only 
threatened by lateral erosion but are also affected by dynamic 
groundwater levels that influence slope stability.

Normalized Difference Built-up Index (NDBI): Identifies built-
up areas. This index effectively reflects the alteration and disturbance 
of natural slopes by human activities (e.g., land excavation, 
engineering loads). The combined use of NDBI, NDVI, and 
MNDWI holistically captures the spatial pattern of “vegetation-
water-built-up” areas, providing a more integrated perspective on 
how human-environment interactions influence landslide risk.

Human Activity Factor: Distance to roads. Road construction 
often involves large-scale cutting and filling, significantly disrupting 
the natural equilibrium of slopes. A distance-to-roads map was 
generated using the Euclidean distance algorithm.

Prior to modeling, the variance inflation factor (VIF) 
for all 12 factors was calculated using the R platform to 
assess multicollinearity. As shown in Table 2, all factors had 
VIF values below 2.8, indicating no severe multicollinearity 
issues, thus confirming their suitability for subsequent
modeling analysis.
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TABLE 1  Frequency ratio and related description of each influencing factor.

Environmental 
factors

Values Number of 
grids in the 
whole area

Grid scale/% Landslide grid Landslide grid 
scale/%

FR

Elevation(m)

139.7–250.9 836,745 30.419 173 46.757 1.152

250.9–335.3 796,482 28.956 121 32.703 1.175

335.3–423.5 578,691 21.038 49 13.243 0.796

423.5–538.6 332,056 12.072 20 5.405 0.650

538.6–695.9 147,930 5.378 4 1.081 0.159

695.9–1,117.8 58,787 2.137 3 0.811 0.376

Slope(°)

0–4.4 685,218 24.911 41 11.081 0.260

4.4–8.8 643,535 23.395 125 33.784 0.986

8.8–13.2 608,755 22.131 113 30.541 1.276

13.2–17.9 446,520 16.233 56 15.135 1.945

17.9–28.7 344,703 12.532 34 9.189 0.632

28.7–51.2 21,960 0.798 1 0.270 0.398

Aspect

−1 155,940 5.669 27 7.297 0

0–22.5 297,924 10.831 31 8.378 0.994

22.5–67.5 354,479 12.887 62 15.757 0.954

67.5–112.5 359,791 13.080 48 12.973 1.301

112.5–157.5 332,830 12.099 54 14.595 1.198

157.5–202.5 332,143 12.075 42 11.351 1.160

202.5–247.5 378,011 13.742 48 12.973 1.086

247.5–292.5 370,195 13.458 38 10.270 0.792

292.5–337.5 169,378 6.158 20 5.405 0.716

Profile curvature

0–2.029 884,499 32.156 98 26.486 0.596

2.029–4.057 773,416 28.117 125 33.784 1.072

4.057–6.324 561,551 20.415 69 18.649 1.126

6.324–8.949 324,376 11.793 54 14.595 1.213

8.949–14.529 187,647 6.822 23 6.216 0.823

14.529–30.428 19,202 0.698 1 0.270 1.829

Plan curvature

0–13.422 651,677 23.691 111 30.000 1.246

13.422–24.927 625,675 22.746 99 26.757 1.417

24.927–37.710 471,544 17.143 58 15.676 1.434

37.710–52.091 354,666 12.894 42 11.351 0.932

(Continued on the following page)
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TABLE 1  (Continued) Frequency ratio and related description of each influencing factor.

Environmental 
factors

Values Number of 
grids in the 
whole area

Grid scale/% Landslide grid Landslide grid 
scale/%

FR

52.091–67.749 301,696 10.968 24 6.486 0.657

67.749–81.491 345,433 12.558 36 9.729 0.852

Topographic relief

0–6.022 651,450 23.683 35 9.459 0.476

6.022–12.420 721,236 26.220 148 40.000 0.566

12.420–18.819 641,938 23.337 104 28.108 1.163

18.819–22.969 293,597 10.674 43 11.622 2.575

22.969–35.379 385,799 14.026 38 10.270 0.431

35.379–95.975 72,855 2.649 3 0.811 0.367

Lithology

Metamorphic rock 1218584 44.301 108 29.189 1.301

Magmatic rock 503,748 18.314 27 7.297 1.611

Clastic rock 899,363 32.696 19 5.135 0.209

Carbonatite 128,996 4.689 216 58.378 0.659

NDVI

−0.054–0.006 68,098 2.476 5 1.351 0.192

0.006–0.018 299,115 10.874 34 9.189 0.803

0.018–0.025 580,373 21.099 56 15.135 1.009

0.025–0.033 848,420 30.843 146 39.459 0.955

0.033–0.042 635,132 23.089 87 23.514 1.075

0.042–0.098 315,488 11.469 42 11.351 1.141

NDBI

−0.650∼-0.389 74,963 2.725 13 3.513 1.101

−0.389∼-0.318 234,632 8.529 28 7.568 0.928

−0.318∼-0.267 428,674 15.584 58 15.676 1.418

−0.267∼-0.219 699,581 25.433 92 24.865 1.233

−0.219∼-0.173 803,445 29.209 110 29.729 0.901

−0.173∼-0.050 505,331 18.371 69 18.649 0.729

MNDWI

−0.035–0.110 365,882 13.301 48 12.973 1.374

0.110–0.164 773,621 28.125 118 31.892 1.221

0.164–0.217 772,212 28.073 94 25.405 0.952

0.217–0.276 492,158 17.892 67 18.108 1.174

0.276–0.352 256,718 9.333 29 7.838 1.082

0.352–0.643 86,035 3.128 13 3.514 0.708

(Continued on the following page)
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TABLE 1  (Continued) Frequency ratio and related description of each influencing factor.

Environmental 
factors

Values Number of 
grids in the 
whole area

Grid scale/% Landslide grid Landslide grid 
scale/%

FR

Distance to river(m)

<150 155,212 5.642 47 12.703 2.586

150–300 55,808 2.029 7 1.891 1.689

300–450 279,114 10.147 118 31.892 0.672

>450 2274116 82.674 198 53.514 0.497

Distance to roads(m)

<150 265,206 31.431 112 30.270 0.963

150–300 366,479 28.134 90 24.324 3.139

300–450 337,201 21.789 82 22.162 1.663

450–600 599,351 12.259 45 12.162 0.558

600–800 773,872 6.052 34 9.189 0.327

>800 408,582 0.335 7 1.891 0.127

2.4 Multicollinearity analysis

Before modeling landslide susceptibility, it is necessary to 
test the correlation between various potential hazard factors to 
identify possible multicollinearity problems (Wang et al., 2023). 
To this end, with the help of the R language platform, this 
study calculated the variance inflation factor (VIF) for each of 
the selected 12 landslide impact factors, which is often used to 
evaluate the degree of collinearity between independent variables. 
A VIF value of more than 5 for a variable is generally considered 
to indicate significant multicollinearity. As shown in Table 2, 
the VIF values of all the factors in this study were below 
2.8, which indicated that there was no significant collinearity 
problem between these variables and could be used for subsequent
modeling analyses. 

3 Modeling landslide susceptibility

3.1 Data preprocessing

In the GIS platform, the corresponding values of 12 influencing 
factors were extracted according to the spatial distribution of 
landslide sites and non-landslide sites. These factors included 8 
continuous variables and 4 discrete variables. Discrete categorical 
variables were converted to composite binary feature forms, 
generating dummy variables that were consistent with the number 
of categories (Morales-Hernández et al., 2023). Specifically, one-hot 
encoding method is used for processing. For example, geological 
types contain 11 categories, and if a location belongs to one of 
these categories, this category is coded as 1, and the other categories 
are marked as 0. Other discrete variables are also coded in the 
same way. To further improve modeling efficiency, all continuous 
variables were standardized: the mean and standard deviation of 

each variable were calculated, and each observation was divided by 
the standard deviation after subtracting the mean. This process not 
only unifies the dimensions, but also helps to narrow the parameter 
search range of the optimization algorithm, thus speeding up the 
model training process. 

3.2 Hyperparameter optimization

Hyperparameter optimization systematically evaluates 
different parameter combinations to identify the optimal 
configuration, thereby improving the prediction accuracy of 
machine learning models (Stuke et al., 2021). In this study, we 
implemented hyperparameter tuning using grid search with five-
fold cross-validation on the training set. The resulting optimal 
hyperparameters were used for final model training and testing. 
For instance, the Random Forest model achieved best performance 
with 500 decision trees (Table 3). This sufficient number of trees 
helps integrate diverse predictions, mitigate the impact of individual 
tree randomness on susceptibility mapping, and enhance overall 
robustness. All hyperparameter settings, search ranges, and final 
values are documented in Table 2.

3.3 Machine learning models

3.3.1 RF
As an ensemble learning algorithm, Random Forest (RF) has 

shown good performance in landslide susceptibility prediction 
in recent years (Wei et al., 2022; Kumar et al., 2023; Kavzoglu 
and Teke, 2022b). By constructing multiple decision trees and 
performing ensemble voting, the model can effectively deal with 
high-dimensional nonlinear data, and has excellent generalization 
ability and anti-overfitting characteristics. In the application of 
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FIGURE 2
Basic environmental factors of landslide in Ruijin County: (a) Elevation; (b) Slope; (c) Aspect; (d) plan curvature; (e) profile curvature; (f) Lithology; (g)
Distance to river; (h) Topographic relief; (i) NDVI; (j) NDBI; (k) MNDWI; (l) Distance to roads.

landslide prediction, RF model can comprehensively deal with a 
variety of environmental factors (such as elevation, slope, lithology, 
rainfall, etc.), generate diversified decision trees by Bootstrap 
sampling and random feature selection, and finally output the 
landslide potential of each region in the form of probability. The 

results show that RF can not only evaluate the importance of 
each influencing factor, but also stably generate high-precision 
prediction results in complex geographic environments, which 
provides a reliable basis for regional landslide risk management and
land planning.
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TABLE 2  Estimated variance inflation factors of landslide impact 
condition factors.

Impact factors VIF

Elevation 1.418736

Slope 1.422683

Aspect 1.135443

Curvature of the plane 1.574954

Profile curvature 1.574954

Formation lithology 2.37445

Relief of topography 1.695373

NDVI 2.351282

NDBI 2.625348

MNDWI 1.979472

Distance from road 1.658247

Distance from river 1.711446

3.3.2 XGBOOST
XGBoost (Extreme Gradient Boosting) is a kind 

of efficient Gradient to promote integration algorithm, 
susceptibility in landslide prediction shows good performance 
(Lin et al., 2023; Wang S. et al., 2021). In this model, multiple 
decision trees are built iteratively, and each tree is dedicated to 
correcting the prediction error of the previous round, so as to 
gradually improve the overall prediction accuracy. XGBOOST 
can automatically deal with the complex interaction between 
features, and has good compatibility for continuous and categorical 
variables. It is suitable for integrating multi-source environmental 
factors (such as elevation, slope, lithology, rainfall, land cover, 
etc.) to assess landslide sensitivity. Its key advantages include 
regularization to prevent overfitting, built-in cross-validation, 
and parallel computing to accelerate the training process. In 
landslide prediction applications, XGBOOST can not only output 
the probability of landslide occurrence for each spatial unit, but 
also provide feature importance ranking to help identify key impact 
factors and enhance the interpretability of the model. Studies show 
that XGBoost is usually superior to traditional machine learning 
models (such as logistic regression or single decision tree) in dealing 
with high-dimensional geospatial data, which can more accurately 
depict the nonlinear relationship between landslides and driving 
factors, and provide high-precision prediction basis for regional 
landslide risk management and land planning. 

3.3.3 SVM
SVM (Support Vector Machine, SVM) in landslide prone 

forecasts are widely used in dealing with high-dimensional 
nonlinear classification (Teng et al., 2024; Xu et al., 2024; Jaafari, 
2024). The model by looking for the optimal hyperplane and 
maximizing in the feature space between the positive and negative 

samples (with the landslide) the classification of the interval, which 
have good generalization ability. When dealing with landslide 
prediction tasks, SVM can comprehensively utilize multiple 
environmental factors such as topography, geology, hydrologic and 
human activities, and map nonlinear relationships through kernel 
functions (such as RBF kernel) to effectively depict the complex 
interactions between landslide occurrence and influencing factors. 
The results show that SVM can maintain high classification accuracy 
in the case of limited sample size, and its robustness to noise data 
and clear mathematical derivation mechanism make it a reliable and 
interpretable modeling tool in landslide hazard assessment. 

3.3.4 Performance evaluation methods
Model performance was evaluated using the receiver operating 

characteristic (ROC) curve and its area under the curve (AUC) as 
the primary criteria. The ROC curve was plotted using 30% of the 
test data, with the false positive rate (1 - specificity) on the x-axis 
and sensitivity (recall) on the y-axis. Sensitivity measures the model’s 
ability to correctly identify landslides, calculated as the proportion of 
true positives among all actual landslides. Specificity, the proportion 
of true negatives among all non-landslide samples, indicates how 
well the model excludes non-landslide areas. AUC values were 
interpreted as: 0.5–0.6 (poor), 0.6–0.7 (fair), 0.7–0.8 (good), 0.8–0.9 
(excellent), and 0.9–1.0 (outstanding). Additional metrics derived 
from the confusion matrix—including accuracy, precision, recall, 
and F1-score—provided further validation of model performance. 

3.3.5 Spatial consistency analysis and 
multi-model ensemble optimization for landslide 
susceptibility prediction

In order to analyze the consistency of the prediction results of 
different models, this study evaluated the consistency of landslide 
susceptibility maps generated by multiple machine learning 
algorithms in spatial distribution by pixel-by-pixel comparison. 
For four kinds of models of six possible combination of two, the 
Pearson correlation coefficient are calculated respectively. The 
coefficient is defined as the ratio of the covariance between the 
predictions of the two models and the product of their respective 
standard deviations, with values ranging from −1 to +1:0 for no 
correlation, less than ±0.29 for low agreement, ±0.30 to ±0.49 
for moderate agreement, ±0.50 to ±1 (excluding ±1) for high 
agreement, and ±1 for perfect agreement. After complete the spatial 
consistency analysis, the further integration of the four machine 
learning model output, to generate an optimized integrated landslide 
prone figure. Integrated methods using logistic regression (LR) 
model, with dual landslide logging data (that is, the point with 
the landslide points) as the dependent variable, in four different 
forecast results as the independent variable of the model. The 
regression coefficients of each model output were obtained by 
fitting, and the landslide occurrence probability (P) of each pixel was 
calculated based on the Equation 1 in the Geographic Information 
System (GIS) platform, so as to obtain the comprehensive landslide 
probability distribution map of the study area.

P = 1
2
+ 1

2
tanh( z

2
) (1)
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TABLE 3  Hyperparameters, search ranges, and optimal values of landslide susceptibility models based on machine learning.

Classier Hyperparameter Search range Optimal value

RF

Number of estimators 200, 300, 400, 500 500

Maximum features Auto, square root, logarithm (base = 2) Auto

Maximum depth 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 10

Criterion Gini, entropy Entropy

SVM

C value 10–3, 10–2, 10–1, 1, 10, 102, 103 103

Kernel Polynomial, radial basis function, sigmoid Radial basis function

Gamma 10–4,10–3, 10–2,10–1 10–4

XGBoost

n_estimators 100, 200, 300, 400, 500 400

max_depth 3, 4, 5, 6, 7, 8, 9, 10 6

learning_rate 0.01, 0.05, 0.1, 0.2, 0.3 0.1

subsample 0.6, 0.7, 0.8, 0.9, 1.0 0.8

colsample_bytree 0.6, 0.7, 0.8, 0.9, 1.0 0.8

gamma 0, 0.1, 0.2, 0.3, 0.4, 0.5 0.2

reg_alpha 0, 0.1, 0.5, 1.0, 2.0 0.5

reg_lambda 0.5, 1.0, 1.5, 2.0, 2.5 1.0

Where, z is a linear combination of independent variables, and 
its calculation formula is as follows:

z = wTx+ b (2)

Where b is the model intercept; w is the regression coefficient of 
the independent variable; x Represents n independent variables. The 
ROC curve was drawn using 30% of the test data to verify the final 
obtained comprehensive model. 

4 Results

4.1 Landslide prediction

Figure 3 shows the landslide susceptibility distribution maps 
generated based on three different machine learning methods in 
Ruijin City. In the GIS platform, all the output probability maps 
were divided into five susceptibility levels by using the natural 
breakpoint method: (1) very low susceptibility (0-0.1), (2) low 
susceptibility (0.11-0.3), (3) medium susceptibility (0.31-0.5), (4) 
high susceptibility (0.51-0.85), and (5) very high susceptibility 
(0.86-1). It can be seen from Figure 3 that there is a significant 
difference in the proportion of areas predicted by each model for 
high susceptibility regions. The total area of “high” and “extremely 
high” areas identified by XGBoost model accounted for the largest 
proportion, reaching 38.2%. However, the proportion of these three 

types of areas in the results obtained by the SVM model was the 
lowest, only 20.2%.

4.2 Model performance evaluation

To assess the performance of different landslide susceptibility 
model, this study randomly selected 30% of the data as a test 
set, and on the basis of constructing the performance comparison 
matrix (see Table 3). All the evaluation indicators showed that 
all the models showed high prediction accuracy. In terms of 
the overall classification accuracy, XGBOOST method performed 
the best, reaching 90.16%. This was followed by RF (88.39%) 
and SVM (84.28%). However, as a comprehensive performance 
index, the overall accuracy is difficult to identify the classification 
bias in specific categories. Therefore, in order to further test 
the consistency of the model in the discrimination of landslide 
points and non-landslide points, this paper additionally calculated 
the precision, recall and F1 score (Table 4). From the results, 
XGBOOST keeps leading in all indicators, and RF also performs 
stably and closely behind. Meanwhile, in terms of the area under 
the receiver operating characteristic curve (AUC), XGBOOST also 
ranked first with 0.930, while RF and SVM were 0.885 and 0.845, 
respectively (Figure 4). The excellent performance of RF and SVM 
models can be attributed to their ability to effectively capture 
the complex nonlinear relationship between regional geographical 
characteristics and landslide occurrence.
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FIGURE 3
Landslide susceptibility maps drawn by three machine learning algorithms: (a) XGBOOST, (b) SVM, and (c) RF.

TABLE 4  Performance evaluation indicators of landslide susceptibility models.

Model Accuracy Precision F1 Recall

Non-landslide Landslide Non-landslide Landslide Non-landslide Landslide

SVM 0.8428 0.8359 0.8359 0.8238 0.8238 0.8117 0.8117

RF 0.8839 0.8763 0.8763 0.8658 0.8658 0.8542 0.8542

XGBoost 0.9016 0.8912 0.8912 0.8883 0.8883 0.8756 0.8756

4.3 Spatial consistency of different 
methods

In this study, a correlation matrix (Figure 5) was constructed 
by comparing the landslide occurrence probabilities obtained by 
different methods pixel by pixel to analyze the level of agreement 
between various landslide susceptibility models. The results showed 
that although the AUC values of different models were similar, 
the spatial consistency of landslide susceptibility distribution maps 
(LSM) generated by them was still significantly different. In general, 
the correlation coefficients between the models ranged from 0.78 to 
0.84. Among them, the combination of XGBOOST and RF shows the 
highest consistency, while the combination of SVM and RF shows 
the lowest consistency. An integrated landslide susceptibility map 
(LSM) was generated by substituting the logistic regression (LR) 
coefficients and intercepts of the three models into Equation 2. The 
resulting LSM was divided into five vulnerability levels following 
the natural breakpoint classification method. Compared with the 
prediction results of a single model, the area under the ROC 
curve (AUC) reached the highest 0.9537 (Figure 4). In the study 
area, the total area classified as “high” and “extremely high” risk 
level accounted for about 27.3%. From the perspective of spatial 
consistency, the comprehensive landslide susceptibility map showed 
high correlation with the results of each single model, and the 
correlation coefficients ranged from 0.87 to 0.91 (Figure 5).

4.4 Comprehensive landslide susceptibility 
mapping

Different machine learning methods often show significant 
spatial heterogeneity in landslide prediction. In order to reduce 
the uncertainty caused by a single model, this study generates a 
comprehensive landslide susceptibility map by integrating the output 
results of multiple algorithms. A regression-based fusion strategy was 
used to construct a multiple Logistic regression (LR) model with the 
binary landslide cataloging data as the dependent variable and the 
prediction results of the three models as the independent variables. 
The results of the regression model showed that the regression 
coefficients of SVM, Random Forest (RF) and XGBOOST methods 
were statistically significant (P < 0.05). The overall goodness-of-fit of 
the model was high, and the coefficient of determination (R2) reached 
0.80. The regression coefficients showed that the XGBOOST model had 
the strongest consistency with the real landslide distribution, followed 
by RF and SVM. This ranking is consistent with the performance of 
each model as reflected by the AUC value when predicting the landslide 
separately (Figure 4), indicating that the regression weight effectively 
reflects the contribution of different models in the ensemble. 

There were obvious spatial differences in the landslide 
susceptibility distribution of different township units in Ruijin 
city. The landslide susceptibility level was relatively high in Xifang 
Town and Yeping town, and the area of “high” and “extremely high” 
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FIGURE 4
Receiver Operating Characteristic (ROC) curve of the model.

FIGURE 5
Correlation plots of the consistency between three landslide susceptibility models: XGBOOST, RF, and SVM.
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susceptibility grade in these two towns accounted for more than 7% 
of the total area of the corresponding grade in the study area. Town 
and cortex phellodendri conventions in addition, as 6.5% of the area 
were classified as high rock landslide. It is worth noting that the built-
up areas and infrastructure coverage of some villages and towns 
located in hilly areas significantly overlap with the areas with high 
susceptibility to landslides. Surveys in recent years have shown that 
with the intensification of urban and rural construction activities, 
local slope excavation, vegetation damage, and hydrological changes 
have further increased the risk of landslide hazards in these areas, 
posing potential threats to residents’ safety and engineering facilities.

This study further integration the prediction results of three 
kinds of machine learning algorithm, and generate a map on 
integrated landslide susceptibility (LSM). The results showed that 
the combined results were superior to any single model in terms 
of prediction accuracy. Despite research also tries to a variety 
of machine learning methods applied to landslide susceptibility 
cartography, and mainly depends on the comparison of the 
quantitative indicators evaluation, although these measures have 
certain reference significance, however, is difficult to fully reflect the 
effectiveness and reliability of the model. In contrast, the integrated 
mapping method proposed in this study effectively reduces the 
uncertainty caused by relying on a single model by combining the 
advantages of different models. 

5 Discussion

Different modeling methods often produce inconsistent spatial 
distribution results in landslide susceptibility prediction, which makes 
it difficult to optimize the prediction map in disaster risk management. 
In order to alleviate this problem, this study proposes a method to 
integrate effective information by quantifying the spatial consistency 
between models and fusing multiple prediction results to improve the 
reliability of landslide prone zoning. Taking Ruijin City, a high landslide 
incidence area in Jiangxi Province, as a case study, three machine 
learning methods including SVM, XGBOOST and Random Forest 
(RF) were used to generate the landslide susceptibility distribution map 
based on hyperparameter tuning. Compared with previous studies on 
this area, this study used the updated impact factor data, and excluded 
low-lying areas (including water bodies and areas below 5 m above sea 
level) in the mapping process to avoid overestimation of the landslide 
prone range as in some recent studies. The performance evaluation 
showed that all the models showed excellent predictive ability, with 
AUC values ranging from 0.84 to 0.93, which was consistent with 
the conclusions of multiple current studies on the high accuracy of 
machine learning in landslide prediction. This study suggests that, 
even based on the same set of cataloged landslide data, different 
modeling methods may still generate spatially diverse prediction 
results. Based on the analysis of the spatial consistency of the model 
outputs, it was found that there was obvious regional heterogeneity 
in landslide prediction, and the pixel-by-pixel correlation coefficients 
between the models ranged from 0.78 to 0.84. In addition, there are 
some differences between the prone zone map drawn in this study 
and another recent study on Ruijin city. These differences indicate 
that although each model shows high AUC values and excellent 
classification performance, there are still uncertainties in the prediction 
results that cannot be ignored. Most of the current researches on 

landslide susceptibility based on machine learning focus on the optimal 
prediction method, but pay less attention to the uncertainty caused by 
the spatial inconsistency between different models. Based on an actual 
case, this study is the first to systematically investigate this issue, and 
fills the gap of existing research in related fields. 

By integrating the prediction results of multiple machine 
learning landslide susceptibility models, this study aims to reduce 
the uncertainty in the prediction and improve the accuracy of 
landslide spatial probability assessment. The proposed modeling 
framework is transferable and can be applied to other landslide 
prone areas. Landslide susceptibility maps (LSM) can provide a 
scientific basis for urban planners to identify suitable areas for 
construction. Taking Ruijin City as an example, the comprehensive 
susceptibility map generated in this study can assist policy makers 
and engineers to determine the implementation focus and timing of 
landslide risk management measures. The model is an improvement 
of the existing landslide prediction methods, which is helpful 
to achieve more accurate spatial prediction of landslide hazard. 
The output of the model can be used to optimize the landslide 
warning system, thereby enhancing the effectiveness of disaster risk 
mitigation strategies and supporting local communities to build a 
more disaster resilient development environment.
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