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Spatial consistency assessment
and landslide susceptibility
prediction optimization

Xiaohong Zhou'! and Yin Xing?*

!Nanjing Changtian Surveying and Mapping Technology Co., Ltd., Nanjing, China, >School of
Geography Science and Geomatics Engineering, Suzhou University of Science and Technology,
Suzhou, China

Currently, although various landslide susceptibility models can achieve high
prediction accuracy, their results have significant differences in spatial
distribution, resulting in high prediction uncertainty, which poses a challenge
to optimizing assessment methods applicable to such complex geological
hazards. In order to reduce uncertainty, this study proposes a machine learning
ensemble modeling method that combines spatial consistency analysis. Taking
Ruijin City in Jiangxi Province as the research area, based on the selection
of 12 influencing factors and hyperparameter optimization, three algorithms
including XGBOOST, Random Forest (RF), and Support Vector Machine (SVM)
were used to generate landslide susceptibility maps. All models performed well,
with AUC values ranging from 0.84 to 0.93. However, spatial consistency analysis
shows that the spatial correlation between maps between models is only 0.78
to 0.84, indicating that although the prediction accuracy is high, there is still
significant spatial heterogeneity and uncertainty. Therefore, a logistic regression
(LR) fusion model based on historical landslides was constructed. Use the
compilation results as the dependent variable and the results of the three models
as the independent variables. The results indicate that XGBOOST contributes
the most, followed by RF and SVM. By integrating the three prediction results, a
comprehensive vulnerability map was finally obtained, which was superior to the
single model in terms of spatial consistency (correlation coefficient 0.87-0.91)
and prediction accuracy (AUC = 0.95). This research framework effectively
reduces the uncertainty of landslide prediction and improves the reliability and
accuracy of evaluation results.

KEYWORDS
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1 Introduction

Landslides are highly destructive natural disasters that threaten human safety,
socioeconomic stability, and ecological sustainability (Alcdntara-Ayala, 2025; Wang X. et al.,
2021; Ahmed, 2021). Their abruptness and uncertainty make timely landslide information
crucial for risk management (Bao et al, 2022). Consequently, landslide susceptibility
assessment has become a key tool for identifying potential hazards and supporting
disaster prevention planning (Alam and Ray-Bennett, 2021; Dahmani et al, 2024;
Li and Samsudin, 2024). Advances in remote sensing have significantly improved
the availability of high spatio-temporal resolution Earth observation data, enhancing
landslide susceptibility mapping. High-resolution satellite imagery enables the extraction
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of key environmental parameters—including

topography,
vegetation cover, geological structure, and hydrology—which are
vital for landslide indication. Additionally, remote sensing plays
a pivotal role in identifying and compiling historical landslide
inventories, providing reliable data for disaster records (Sousa et al.,
2021). As data quality continues to improve, methodological choices
increasingly determine assessment reliability (Lu et al, 2024).
Researchers have developed various models using GIS and remote
sensing, such as weight of evidence, logistic regression, analytic
hierarchy process, and evidential belief function. Recently, machine
learning applications have grown substantially (Liu et al., 2022).
Early introduced methods like K-nearest neighbor (KNN) have
been followed by widely adopted algorithms including Logistic
Regression (LR) and Support Vector Machine (SVM), valued for
their adaptability (Shu and Ye, 2023). Advanced techniques like
extreme gradient boosting (e.g., XGBoost) and ensemble learners
such as Random Forests (RF) have demonstrated superior predictive
performance (Kavzoglu and Teke, 2022a). However, differences in
model selection, data sources, and human judgment often introduce
substantial uncertainties in landslide susceptibility assessments
(Wang and Nanehkaran, 2024). Since high-prediction landslide
maps are critical for disaster decision-making, they must undergo
rigorous validation before use (Guo et al.,, 2022). Currently, two
main challenges remain: how to accurately evaluate susceptibility
maps, and how to identify the optimal method combination to
enhance efficiency. Conventional verification involves susceptibility
simulation and result-field comparison, demanding reliability,
robustness, and predictive capability from the method (Zhai et al.,
2024; Ahmad et al., 2025a). Notably, even when models perform
similarly on test datasets, their spatial predictions may still vary
significantly (Ahmad et al., 2025b).

While different machine learning algorithms have been
employed for landslide susceptibility mapping, the pixel-level
consistency among these methods is not well studied. The spatial
heterogeneity they produce further elevates assessment uncertainty
(Tehrani et al.,, 2022; Ahmad et al., 2025¢c; Ahmad et al., 2021).
Hence, this study introduces an integrated modeling approach to
minimize prediction uncertainty. This is achieved by evaluating the
consistency among three machine learning results and fusing them
into a comprehensive susceptibility map. Our case study is Ruijin
City, Jiangxi Province, where complex geological conditions, high
rainfall, and documented landslide events make it a representative
area. The method’s effectiveness and applicability will be further
verified through field data and historical landslide records.

2 Materials and methods

This study consisted of three main phases. In the first stage,
three machine learning algorithms, including XGBOOST, Random
Forest (RF) and Support Vector Machine (SVM), were used to
generate landslide susceptibility maps in the study area. In the
second stage, the consistency of the spatial prediction patterns
of landslide probability maps obtained by different methods was
evaluated based on pixel-by-pixel correlation analysis. In the third
stage, the output results of the three models are fused to synthesize
a comprehensive landslide susceptibility regionalization map.
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2.1 Study area

This study focuses on Ruijin City, Jiangxi Province
(25°30"-26°20'N, 115°42'-116°22’E), a hilly and mountainous
region prone to landslides. The area experiences high annual rainfall
(>1,600 mm) and frequent human activities, which collectively
contribute to slope instability (Figure 1). Historical landslides,
triggered by heavy rainfall and construction, have repeatedly
damaged infrastructure and threatened public safety. Therefore,
landslide susceptibility assessment is crucial for disaster prevention
and spatial planning in Ruijin.

2.2 Landslide cataloging and mapping

Landslide inventory mapping is a fundamental step in landslide
susceptibility assessment (Sharma et al., 2024). This study utilized
the official landslide inventory map of Ruijin City, produced by
the Jiangxi Provincial Geological Bureau. This map integrates
historical landslide records from various sources, verified through
GPS and field surveys. Additionally, our field investigations provided
detailed reports on landslide movement types, distribution patterns,
damages, displacement, materials, and triggers. The study is based
on 370 identified landslide sites. Since landslide susceptibility
mapping is a binary classification task, non-landslide samples are
equally critical. Following (Liu et al., 2023; Batar and Watanabe,
2021), who outlined three methods for selecting non-landslide
samples, this study adopted the second approach: randomly
selecting points from areas with no landslide history. Using ArcGIS,
we generated 10 sets of non-landslide data, each containing 370
points. The entire dataset (landslide and non-landslide) was then
divided, with 70% allocated for model training and 30% for testing.

2.3 Landslide influencing factors

The effectiveness of landslide susceptibility mapping largely
depends on the selection of influencing factors (Ullah et al., 2022;
Sajid et al., 2022; Ahmad et al., 2024). In this study, the following
principles were followed in selecting these factors (Zeng et al.,
2021; Cui et al., 2022; Pacheco Quevedo et al., 2023): (1) the
factor must have a known mechanical or statistical association
with landslide occurrence; (2) the factor must be quantifiable
and spatially mappable; (3) redundancy among factors should be
minimized to reduce multicollinearity issues in the model; and (4)
the factor must align with the geomorphological and geological
characteristics of the study area (Table 1).

Based on the aforementioned principles, existing literature, and
professional understanding of the study area, an initial set of factors
encompassing topography, geology, hydrology, vegetation cover,
and human activities was selected. It should be specifically noted
that although rainfall is a key dynamic trigger for landslides, it
was not directly incorporated into the model due to its limited
spatial variability at the regional scale and the study’s focus on
assessing long-term static susceptibility. Similarly, high-resolution
soil moisture data and detailed construction activity data were
excluded because they were difficult to systematically obtain and
standardize across the study area. As an alternative, remotely sensed
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FIGURE 1
Regional geological location and landslide distribution in Ruijin city.

indices (e.g., NDBI) and distance-based factors (e.g., proximity to
roads) were used to indirectly yet effectively represent the intensity
and distribution of human activities. Ultimately, 12 influencing
factors were identified for modeling (Table 1). All factors were
derived from 30-m spatial resolution ALOS DEM and Landsat
satellite imagery, processed via the Google Earth Engine platform.
The following (Figure 2) provides a detailed description of each
factor category:

Topographic Factors: These include elevation, slope, aspect, plan
curvature, profile curvature, and topographic relief. Collectively,
they govern slope morphology, stress distribution, and surface
drainage conditions, forming the intrinsic basis for landslide
occurrence (Selamat et al., 2025; Kab et al., 2023; Saha et al., 2021).
For instance, slope directly influences gravity-driven shear stress,
while curvature relates to the convergence or divergence of surface
materials.

Geological Factor: Lithology. Variations in the strength and
permeability of different rock and soil types directly control slope
stability and failure mechanisms.

Hydrological Factor: Distance to rivers. Riverbank erosion is a
significant external force triggering landslides. A distance-to-river
map was generated using the Euclidean distance algorithm.

Vegetation and Surface Cover Factors: This study incorporated
three complementary remote sensing indices to comprehensively
characterize the surface environment:

Frontiers in Earth Science

Normalized Difference Vegetation Index (NDVI): Quantifies
vegetation density. Dense vegetation enhances soil shear strength
through root reinforcement, while sparse vegetation areas are more
prone to shallow landslides.

Modified Normalized Difference Water Index (MNDWI):
Accurately extracts water bodies. Areas near water are not only
threatened by lateral erosion but are also affected by dynamic
groundwater levels that influence slope stability.

Normalized Difference Built-up Index (NDBI): Identifies built-
up areas. This index effectively reflects the alteration and disturbance
of natural slopes by human activities (e.g., land excavation,
engineering loads). The combined use of NDBI, NDVI, and
MNDWTI holistically captures the spatial pattern of “vegetation-
water-built-up” areas, providing a more integrated perspective on
how human-environment interactions influence landslide risk.

Human Activity Factor: Distance to roads. Road construction
often involves large-scale cutting and filling, significantly disrupting
the natural equilibrium of slopes. A distance-to-roads map was
generated using the Euclidean distance algorithm.

Prior to modeling, the variance inflation factor (VIF)
for all 12 factors was calculated using the R platform to
assess multicollinearity. As shown in Table 2, all factors had
VIF values below 2.8, indicating no severe multicollinearity
thus their suitability ~for
modeling analysis.

issues, confirming subsequent
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TABLE 1 Frequency ratio and related description of each influencing factor.

Environmental Values Number of Grid scale/% Landslide grid Landslide grid
factors grids in the scale/%
whole area
139.7-250.9 836,745 30.419 173 46.757 1.152
250.9-335.3 796,482 28.956 121 32.703 1.175
335.3-423.5 578,691 21.038 49 13.243 0.796
Elevation(m)
423.5-538.6 332,056 12.072 20 5.405 0.650
538.6-695.9 147,930 5.378 4 1.081 0.159
695.9-1,117.8 58,787 2.137 3 0.811 0.376
0-4.4 685,218 24911 41 11.081 0.260
44-88 643,535 23.395 125 33.784 0.986
8.8-13.2 608,755 22.131 113 30.541 1.276
Slope(°)
13.2-17.9 446,520 16.233 56 15.135 1.945
17.9-28.7 344,703 12.532 34 9.189 0.632
28.7-51.2 21,960 0.798 1 0.270 0.398
-1 155,940 5.669 27 7.297 0
0-22.5 297,924 10.831 31 8.378 0.994
22.5-67.5 354,479 12.887 62 15.757 0.954
67.5-112.5 359,791 13.080 48 12,973 1.301
Aspect 112.5-157.5 332,830 12.099 54 14.595 1.198
157.5-202.5 332,143 12.075 42 11.351 1.160
202.5-247.5 378,011 13.742 48 12,973 1.086
247.5-292.5 370,195 13.458 38 10.270 0.792
292.5-337.5 169,378 6.158 20 5.405 0716
0-2.029 884,499 32.156 98 26.486 0.596
2.029-4.057 773,416 28.117 125 33.784 1.072
4.057-6.324 561,551 20415 69 18.649 1.126
Profile curvature
6.324-8.949 324,376 11.793 54 14.595 1213
8.949-14.529 187,647 6.822 23 6.216 0.823
14.529-30.428 19,202 0.698 1 0.270 1.829
0-13.422 651,677 23.691 111 30.000 1.246
13.422-24.927 625,675 22.746 99 26.757 1.417
Plan curvature
24.927-37.710 471,544 17.143 58 15.676 1.434
37.710-52.091 354,666 12.894 42 11.351 0.932

(Continued on the following page)
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TABLE 1 (Continued) Frequency ratio and related description of each influencing factor.

Environmental Values Number of Grid scale/% Landslide grid Landslide grid FR
factors grids in the scale/%
whole area
52.091-67.749 301,696 10.968 24 6.486 0.657
67.749-81.491 345,433 12.558 36 9.729 0.852
0-6.022 651,450 23.683 35 9.459 0.476
6.022-12.420 721,236 26.220 148 40.000 0.566
12.420-18.819 641,938 23.337 104 28.108 1.163
Topographic relief

18.819-22.969 293,597 10.674 43 11.622 2.575
22.969-35.379 385,799 14.026 38 10.270 0.431
35.379-95.975 72,855 2.649 3 0.811 0.367
Metamorphic rock 1218584 44.301 108 29.189 1.301
Magmatic rock 503,748 18.314 27 7.297 1.611

Lithology
Clastic rock 899,363 32.696 19 5.135 0.209
Carbonatite 128,996 4.689 216 58.378 0.659
~0.054-0.006 68,098 2476 5 1.351 0.192
0.006-0.018 299,115 10.874 34 9.189 0.803
0.018-0.025 580,373 21.099 56 15.135 1.009

NDVI
0.025-0.033 848,420 30.843 146 39.459 0.955
0.033-0.042 635,132 23.089 87 23.514 1.075
0.042-0.098 315,488 11.469 42 11351 1.141
~0.650~-0.389 74,963 2.725 13 3.513 1.101
~0.389~-0.318 234,632 8.529 28 7.568 0.928
~0.318~-0.267 428,674 15.584 58 15.676 1.418
NDBI

~0.267~-0.219 699,581 25.433 92 24.865 1.233
~0.219~-0.173 803,445 29.209 110 29.729 0.901
~0.173~-0.050 505,331 18.371 69 18.649 0.729
~0.035-0.110 365,882 13.301 48 12,973 1.374
0.110-0.164 773,621 28.125 118 31.892 1.221
0.164-0.217 772,212 28.073 94 25.405 0.952

MNDWI
0.217-0.276 492,158 17.892 67 18.108 1.174
0.276-0.352 256,718 9.333 29 7.838 1.082
0.352-0.643 86,035 3.128 13 3.514 0.708

(Continued on the following page)
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TABLE 1 (Continued) Frequency ratio and related description of each influencing factor.

Environmental Values Number of Grid scale/% Landslide grid Landslide grid
factors grids in the scale/%
whole area
<150 155,212 5.642 47 12.703 2.586
150-300 55,808 2.029 7 1.891 1.689
Distance to river(m)
300-450 279,114 10.147 118 31.892 0.672
>450 2274116 82.674 198 53.514 0.497
<150 265,206 31.431 112 30270 0.963
150-300 366,479 28.134 90 24324 3.139
300-450 337,201 21.789 82 22.162 1.663
Distance to roads(m)
450-600 599,351 12.259 45 12.162 0.558
600-800 773,872 6.052 34 9.189 0327
>800 408,582 0.335 7 1.891 0.127

2.4 Multicollinearity analysis

Before modeling landslide susceptibility, it is necessary to
test the correlation between various potential hazard factors to
identify possible multicollinearity problems (Wang et al.,, 2023).
To this end, with the help of the R language platform, this
study calculated the variance inflation factor (VIF) for each of
the selected 12 landslide impact factors, which is often used to
evaluate the degree of collinearity between independent variables.
A VIF value of more than 5 for a variable is generally considered
to indicate significant multicollinearity. As shown in Table 2,
the VIF values of all the factors in this study were below
2.8, which indicated that there was no significant collinearity
problem between these variables and could be used for subsequent
modeling analyses.

3 Modeling landslide susceptibility
3.1 Data preprocessing

In the GIS platform, the corresponding values of 12 influencing
factors were extracted according to the spatial distribution of
landslide sites and non-landslide sites. These factors included 8
continuous variables and 4 discrete variables. Discrete categorical
variables were converted to composite binary feature forms,
generating dummy variables that were consistent with the number
of categories (Morales-Herndndez et al., 2023). Specifically, one-hot
encoding method is used for processing. For example, geological
types contain 11 categories, and if a location belongs to one of
these categories, this category is coded as 1, and the other categories
are marked as 0. Other discrete variables are also coded in the
same way. To further improve modeling efficiency, all continuous
variables were standardized: the mean and standard deviation of
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each variable were calculated, and each observation was divided by
the standard deviation after subtracting the mean. This process not
only unifies the dimensions, but also helps to narrow the parameter
search range of the optimization algorithm, thus speeding up the
model training process.

3.2 Hyperparameter optimization

Hyperparameter — optimization  systematically  evaluates
different parameter combinations to identify the optimal
configuration, thereby improving the prediction accuracy of
machine learning models (Stuke et al., 2021). In this study, we
implemented hyperparameter tuning using grid search with five-
fold cross-validation on the training set. The resulting optimal
hyperparameters were used for final model training and testing.
For instance, the Random Forest model achieved best performance
with 500 decision trees (Table 3). This sufficient number of trees
helps integrate diverse predictions, mitigate the impact of individual
tree randomness on susceptibility mapping, and enhance overall
robustness. All hyperparameter settings, search ranges, and final
values are documented in Table 2.

3.3 Machine learning models

3.3.1 RF

As an ensemble learning algorithm, Random Forest (RF) has
shown good performance in landslide susceptibility prediction
in recent years (Wei et al., 2022; Kumar et al., 2023; Kavzoglu
and Teke, 2022b). By constructing multiple decision trees and
performing ensemble voting, the model can effectively deal with
high-dimensional nonlinear data, and has excellent generalization
ability and anti-overfitting characteristics. In the application of
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FIGURE 2
Basic environmental factors of landslide in Ruijin County: (a) Elevation; (b) Slope; (c) Aspect; (d) plan curvature; (e) profile curvature; (f) Lithology; (g)

Distance to river; (h) Topographic relief; (i) NDVI; (j) NDBI; (k) MNDWI; (1) Distance to roads.

landslide prediction, RF model can comprehensively deal with a  results show that RF can not only evaluate the importance of
variety of environmental factors (such as elevation, slope, lithology,  each influencing factor, but also stably generate high-precision
rainfall, etc.), generate diversified decision trees by Bootstrap  prediction results in complex geographic environments, which
sampling and random feature selection, and finally output the  provides a reliable basis for regional landslide risk management and
landslide potential of each region in the form of probability. The  land planning.
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TABLE 2 Estimated variance inflation factors of landslide impact
condition factors.

Impact factors VIF
Elevation 1.418736
Slope 1.422683
Aspect 1.135443
Curvature of the plane 1.574954
Profile curvature 1.574954
Formation lithology 2.37445
Relief of topography 1.695373
NDVI 2.351282
NDBI 2.625348
MNDWI 1.979472
Distance from road 1.658247
Distance from river 1.711446
3.3.2 XGBOOST
XGBoost  (Extreme Gradient Boosting) is a kind
of efficient Gradient to promote integration algorithm,

susceptibility in landslide prediction shows good performance
(Lin et al, 2023; WangS. et al,, 2021). In this model, multiple
decision trees are built iteratively, and each tree is dedicated to
correcting the prediction error of the previous round, so as to
gradually improve the overall prediction accuracy. XGBOOST
can automatically deal with the complex interaction between
features, and has good compatibility for continuous and categorical
variables. It is suitable for integrating multi-source environmental
factors (such as elevation, slope, lithology, rainfall, land cover,
etc.) to assess landslide sensitivity. Its key advantages include
regularization to prevent overfitting, built-in cross-validation,
and parallel computing to accelerate the training process. In
landslide prediction applications, XGBOOST can not only output
the probability of landslide occurrence for each spatial unit, but
also provide feature importance ranking to help identify key impact
factors and enhance the interpretability of the model. Studies show
that XGBoost is usually superior to traditional machine learning
models (such as logistic regression or single decision tree) in dealing
with high-dimensional geospatial data, which can more accurately
depict the nonlinear relationship between landslides and driving
factors, and provide high-precision prediction basis for regional
landslide risk management and land planning.

3.3.3 SVM

SVM (Support Vector Machine, SVM) in landslide prone
forecasts are widely used in dealing with high-dimensional
nonlinear classification (Teng et al., 2024; Xu et al., 2024; Jaafari,
2024). The model by looking for the optimal hyperplane and
maximizing in the feature space between the positive and negative
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samples (with the landslide) the classification of the interval, which
have good generalization ability. When dealing with landslide
prediction tasks, SVM can comprehensively utilize multiple
environmental factors such as topography, geology, hydrologic and
human activities, and map nonlinear relationships through kernel
functions (such as RBF kernel) to effectively depict the complex
interactions between landslide occurrence and influencing factors.
The results show that SVM can maintain high classification accuracy
in the case of limited sample size, and its robustness to noise data
and clear mathematical derivation mechanism make it a reliable and
interpretable modeling tool in landslide hazard assessment.

3.3.4 Performance evaluation methods

Model performance was evaluated using the receiver operating
characteristic (ROC) curve and its area under the curve (AUC) as
the primary criteria. The ROC curve was plotted using 30% of the
test data, with the false positive rate (1 - specificity) on the x-axis
and sensitivity (recall) on the y-axis. Sensitivity measures the model’s
ability to correctly identify landslides, calculated as the proportion of
true positives among all actual landslides. Specificity, the proportion
of true negatives among all non-landslide samples, indicates how
well the model excludes non-landslide areas. AUC values were
interpreted as: 0.5-0.6 (poor), 0.6-0.7 (fair), 0.7-0.8 (good), 0.8-0.9
(excellent), and 0.9-1.0 (outstanding). Additional metrics derived
from the confusion matrix—including accuracy, precision, recall,
and F1-score—provided further validation of model performance.

3.3.5 Spatial consistency analysis and
multi-model ensemble optimization for landslide
susceptibility prediction

In order to analyze the consistency of the prediction results of
different models, this study evaluated the consistency of landslide
susceptibility maps generated by multiple machine learning
algorithms in spatial distribution by pixel-by-pixel comparison.
For four kinds of models of six possible combination of two, the
Pearson correlation coefficient are calculated respectively. The
coefficient is defined as the ratio of the covariance between the
predictions of the two models and the product of their respective
standard deviations, with values ranging from —1 to +1:0 for no
correlation, less than +0.29 for low agreement, +0.30 to +0.49
for moderate agreement, +0.50 to +1 (excluding +1) for high
agreement, and *1 for perfect agreement. After complete the spatial
consistency analysis, the further integration of the four machine
learning model output, to generate an optimized integrated landslide
prone figure. Integrated methods using logistic regression (LR)
model, with dual landslide logging data (that is, the point with
the landslide points) as the dependent variable, in four different
forecast results as the independent variable of the model. The
regression coefficients of each model output were obtained by
fitting, and the landslide occurrence probability (P) of each pixel was
calculated based on the Equation 1 in the Geographic Information
System (GIS) platform, so as to obtain the comprehensive landslide
probability distribution map of the study area.

)

z
2

p=l+lmnh( 1)
2 2
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TABLE 3 Hyperparameters, search ranges, and optimal values of landslide susceptibility models based on machine learning.

Classier Hyperparameter

Search range

Optimal value

Number of estimators 200, 300, 400, 500 500
Maximum features Auto, square root, logarithm (base = 2) Auto
RF
Maximum depth 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 10
Criterion Gini, entropy Entropy
C value 107,107,107, 1, 10, 10%, 10° 10°
SVM Kernel Polynomial, radial basis function, sigmoid Radial basis function
Gamma 107,107, 107,107 107
n_estimators 100, 200, 300, 400, 500 400
max_depth 3,4,5,6,7,8,9, 10 6
learning_rate 0.01, 0.05,0.1,0.2,0.3 0.1
subsample 0.6,0.7,0.8,0.9, 1.0 0.8
XGBoost
colsample_bytree 0.6,0.7,0.8,0.9, 1.0 0.8
gamma 0,0.1,0.2,0.3,0.4, 0.5 0.2
reg_alpha 0,0.1,0.5, 1.0, 2.0 05
reg_lambda 0.5,1.0,1.5,2.0,2.5 1.0

Where, z is a linear combination of independent variables, and
its calculation formula is as follows:

z=wlx+b 2)

Where b is the model intercept; w is the regression coefficient of
the independent variable; x Represents n independent variables. The
ROC curve was drawn using 30% of the test data to verify the final
obtained comprehensive model.

4 Results
4.1 Landslide prediction

Figure 3 shows the landslide susceptibility distribution maps
generated based on three different machine learning methods in
Ruijin City. In the GIS platform, all the output probability maps
were divided into five susceptibility levels by using the natural
breakpoint method: (1) very low susceptibility (0-0.1), (2) low
susceptibility (0.11-0.3), (3) medium susceptibility (0.31-0.5), (4)
high susceptibility (0.51-0.85), and (5) very high susceptibility
(0.86-1). It can be seen from Figure 3 that there is a significant
difference in the proportion of areas predicted by each model for
high susceptibility regions. The total area of “high” and “extremely
high” areas identified by XGBoost model accounted for the largest
proportion, reaching 38.2%. However, the proportion of these three
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types of areas in the results obtained by the SVM model was the
lowest, only 20.2%.

4.2 Model performance evaluation

To assess the performance of different landslide susceptibility
model, this study randomly selected 30% of the data as a test
set, and on the basis of constructing the performance comparison
matrix (see Table 3). All the evaluation indicators showed that
all the models showed high prediction accuracy. In terms of
the overall classification accuracy, XGBOOST method performed
the best, reaching 90.16%. This was followed by RF (88.39%)
and SVM (84.28%). However, as a comprehensive performance
index, the overall accuracy is difficult to identify the classification
bias in specific categories. Therefore, in order to further test
the consistency of the model in the discrimination of landslide
points and non-landslide points, this paper additionally calculated
the precision, recall and F1 score (Table4). From the results,
XGBOOST keeps leading in all indicators, and RF also performs
stably and closely behind. Meanwhile, in terms of the area under
the receiver operating characteristic curve (AUC), XGBOOST also
ranked first with 0.930, while RF and SVM were 0.885 and 0.845,
respectively (Figure 4). The excellent performance of RF and SVM
models can be attributed to their ability to effectively capture
the complex nonlinear relationship between regional geographical
characteristics and landslide occurrence.
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FIGURE 3

Landslide susceptibility maps drawn by three machine learning algorithms: (a) XGBOOST, (b) SVM, and (c) RF.

TABLE 4 Performance evaluation indicators of landslide susceptibility models.

Model Accuracy

Non-landslide

Precision F1

’ Recall

Landslide Non-landslide Landslide Non-landslide Landslide

SVM 0.8428 0.8359 0.8359 0.8238 0.8238 0.8117 0.8117
RF 0.8839 0.8763 0.8763 0.8658 0.8658 0.8542 0.8542
XGBoost 0.9016 0.8912 0.8912 0.8883 0.8883 0.8756 0.8756

4.3 Spatial consistency of different
methods

In this study, a correlation matrix (Figure 5) was constructed
by comparing the landslide occurrence probabilities obtained by
different methods pixel by pixel to analyze the level of agreement
between various landslide susceptibility models. The results showed
that although the AUC values of different models were similar,
the spatial consistency of landslide susceptibility distribution maps
(LSM) generated by them was still significantly different. In general,
the correlation coefficients between the models ranged from 0.78 to
0.84. Among them, the combination of XGBOOST and RF shows the
highest consistency, while the combination of SVM and RF shows
the lowest consistency. An integrated landslide susceptibility map
(LSM) was generated by substituting the logistic regression (LR)
coeflicients and intercepts of the three models into Equation 2. The
resulting LSM was divided into five vulnerability levels following
the natural breakpoint classification method. Compared with the
prediction results of a single model, the area under the ROC
curve (AUC) reached the highest 0.9537 (Figure 4). In the study
area, the total area classified as “high” and “extremely high” risk
level accounted for about 27.3%. From the perspective of spatial
consistency, the comprehensive landslide susceptibility map showed
high correlation with the results of each single model, and the
correlation coefficients ranged from 0.87 to 0.91 (Figure 5).
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4.4 Comprehensive landslide susceptibility
mapping

Different machine learning methods often show significant
spatial heterogeneity in landslide prediction. In order to reduce
the uncertainty caused by a single model, this study generates a
comprehensive landslide susceptibility map by integrating the output
results of multiple algorithms. A regression-based fusion strategy was
used to construct a multiple Logistic regression (LR) model with the
binary landslide cataloging data as the dependent variable and the
prediction results of the three models as the independent variables.
The results of the regression model showed that the regression
coefficients of SVM, Random Forest (RF) and XGBOOST methods
were statistically significant (P < 0.05). The overall goodness-of-fit of
the model was high, and the coefficient of determination (R?) reached
0.80. Theregression coefficients showed that the XGBOOST model had
the strongest consistency with the real landslide distribution, followed
by RF and SVM. This ranking is consistent with the performance of
eachmodelasreflected by the AUC value when predicting the landslide
separately (Figure 4), indicating that the regression weight effectively
reflects the contribution of different models in the ensemble.

There were obvious spatial differences in the landslide
susceptibility distribution of different township units in Ruijin
city. The landslide susceptibility level was relatively high in Xifang
Town and Yeping town, and the area of “high” and “extremely high”
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susceptibility grade in these two towns accounted for more than 7%
of the total area of the corresponding grade in the study area. Town
and cortex phellodendri conventions in addition, as 6.5% of the area
were classified as high rock landslide. It is worth noting that the built-
up areas and infrastructure coverage of some villages and towns
located in hilly areas significantly overlap with the areas with high
susceptibility to landslides. Surveys in recent years have shown that
with the intensification of urban and rural construction activities,
local slope excavation, vegetation damage, and hydrological changes
have further increased the risk of landslide hazards in these areas,
posing potential threats to residents’ safety and engineering facilities.

This study further integration the prediction results of three
kinds of machine learning algorithm, and generate a map on
integrated landslide susceptibility (LSM). The results showed that
the combined results were superior to any single model in terms
of prediction accuracy. Despite research also tries to a variety
of machine learning methods applied to landslide susceptibility
cartography, and mainly depends on the comparison of the
quantitative indicators evaluation, although these measures have
certain reference significance, however, is difficult to fully reflect the
effectiveness and reliability of the model. In contrast, the integrated
mapping method proposed in this study effectively reduces the
uncertainty caused by relying on a single model by combining the
advantages of different models.

5 Discussion

Different modeling methods often produce inconsistent spatial
distribution results in landslide susceptibility prediction, which makes
itdifficult to optimize the prediction map in disaster risk management.
In order to alleviate this problem, this study proposes a method to
integrate effective information by quantifying the spatial consistency
between models and fusing multiple prediction results to improve the
reliability oflandslide prone zoning. Taking Ruijin City, a highlandslide
incidence area in Jiangxi Province, as a case study, three machine
learning methods including SVM, XGBOOST and Random Forest
(RF) were used to generate the landslide susceptibility distribution map
based on hyperparameter tuning. Compared with previous studies on
this area, this study used the updated impact factor data, and excluded
low-lying areas (including water bodies and areas below 5 m above sea
level) in the mapping process to avoid overestimation of the landslide
prone range as in some recent studies. The performance evaluation
showed that all the models showed excellent predictive ability, with
AUC values ranging from 0.84 to 0.93, which was consistent with
the conclusions of multiple current studies on the high accuracy of
machine learning in landslide prediction. This study suggests that,
even based on the same set of cataloged landslide data, different
modeling methods may still generate spatially diverse prediction
results. Based on the analysis of the spatial consistency of the model
outputs, it was found that there was obvious regional heterogeneity
in landslide prediction, and the pixel-by-pixel correlation coefficients
between the models ranged from 0.78 to 0.84. In addition, there are
some differences between the prone zone map drawn in this study
and another recent study on Ruijin city. These differences indicate
that although each model shows high AUC values and excellent
classification performance, thereare stilluncertainties in the prediction
results that cannot be ignored. Most of the current researches on
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landslide susceptibility based on machinelearning focus on the optimal
prediction method, but pay less attention to the uncertainty caused by
the spatial inconsistency between different models. Based on an actual
case, this study is the first to systematically investigate this issue, and
fills the gap of existing research in related fields.

By integrating the prediction results of multiple machine
learning landslide susceptibility models, this study aims to reduce
the uncertainty in the prediction and improve the accuracy of
landslide spatial probability assessment. The proposed modeling
framework is transferable and can be applied to other landslide
prone areas. Landslide susceptibility maps (LSM) can provide a
scientific basis for urban planners to identify suitable areas for
construction. Taking Ruijin City as an example, the comprehensive
susceptibility map generated in this study can assist policy makers
and engineers to determine the implementation focus and timing of
landslide risk management measures. The model is an improvement
of the existing landslide prediction methods, which is helpful
to achieve more accurate spatial prediction of landslide hazard.
The output of the model can be used to optimize the landslide
warning system, thereby enhancing the effectiveness of disaster risk
mitigation strategies and supporting local communities to build a
more disaster resilient development environment.
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