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Total Organic Carbon (TOC) is a fundamental parameter for evaluating source 
rock quality, yet the strong heterogeneity of the Qiongzhusi Formation shale 
reservoir in the Sichuan Basin severely limits the applicability of conventional 
TOC prediction models. To address this challenge, this study proposes a novel 
TOC prediction algorithm (INN-BIC) that integrates an Interpretable Neural 
Network (INN) with the Bayesian Information Criterion (BIC). By employing 
feature decoupling and a dynamic polynomial degree selection mechanism, 
the method enhances both prediction accuracy and model interpretability in 
complex geological settings. The model successfully quantifies the contribution 
of well-log parameters such as uranium content, natural gamma ray, and 
deep/shallow resistivity to TOC, and accurately captures TOC variations in 
stratigraphic transition zones. Experimental results demonstrate that the INN-
BIC model significantly outperforms traditional methods, improving the R2

score by 79% and 25% compared to Backpropagation Neural Network (BPNN) 
and Support Vector Machine (SVM) models, respectively, and achieving a 
65% enhancement over the original INN model. This verifies the model's 
effectiveness and reliability in strongly heterogeneous environments, supporting 
its practical application in shale gas sweet spot evaluation and efficient 
development.
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 1 Introduction

Total Organic Carbon (TOC) is a fundamental parameter for assessing the quality 
and hydrocarbon generation potential of source rocks, and its accurate prediction 
is crucial for the identification of shale gas sweet spots. The Early Cambrian 
Qiongzhusi Formation in the Sichuan Basin represents a significant target for shale
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gas exploration in China. However, its strong reservoir heterogeneity 
poses significant challenges for the accurate prediction of TOC 
content. Although core analysis offers high accuracy, its high cost 
and discontinuous nature make it inadequate for comprehensive 
exploration needs. Consequently, developing a high-precision 
and interpretable TOC prediction method adapted to strong 
heterogeneity is of paramount theoretical and practical value for 
shale gas sweet spot prediction and efficient development.

Currently, the prediction methods for shale reservoir TOC 
developed by scholars at home and abroad can be classified into 
three main research systems: traditional prediction methods based 
on empirical formulas, regression methods based on multivariate 
statistics, and intelligent algorithms based on neural networks 
(Table 1) (Aziz et al., 2020). Firstly, the traditional prediction 
methods based on empirical formulas primarily establish empirical 
relationships between conventional logging parameters and TOC 
using formation physical properties. The pioneering work began 
with the Schmoker method proposed by Schmoker (1979), which 
used regression analysis of density logs to estimate organic matter 
content and was subsequently refined (Schmoker, 1981; Schmoker 
and Hester, 1983). Subsequently, Passey et al. (1990) introduced 
the ΔLogR method utilizing resistivity and porosity logs, which 
has become a classic technique for TOC prediction due to its 
operational simplicity and strong applicability. In recent years, 
numerous scholars have optimized and improved the ΔLogR 
method for its application in various basins worldwide, primarily 
involving the use of variable slopes, baseline adjustments, and 
replacing the maturity parameter LOM with thermal indicators 
such as Tmax or Ro (Li et al., 2020; Wood, 2020; Zheng et al., 
2021; Mulashani et al., 2021; Zhang et al., 2022). Secondly, the 
multiple linear regression methods employ trial-and-error to select 
logging parameters significantly correlated with TOC and simulate 
the mathematical relationship between multiple logging parameters 
and TOC through linear regression. By considering the influence 
of more factors, their prediction accuracy is significantly improved 
compared to empirical formula methods (Zhang F et al., 2023; 
Hui et al., 2023; Feng et al., 2023; Zhang H et al., 2023; Zhang et al., 
2025). For instance, Zhang et al. (2025) demonstrated that a 
multiple linear regression prediction model could effectively predict 
TOC content in marine-continental transitional shales, achieving 
accuracy comparable to the BP model, through comparative studies 
with other models. The third category includes artificial intelligence 
methods, such as neural network algorithms, which build complex 
nonlinear models that better capture the underlying relationships 
in the data and improve prediction accuracy. These methods have 
demonstrated superior performance, especially in handling large-
scale and high-dimensional data, effectively enhancing prediction 
precision (Nyakilla et al., 2022; Gordon et al., 2022; Liu et al., 2023; 
Lai et al., 2024; Ehsan et al., 2025a). For example, Lai et al. (2024) 
used principal component analysis to preprocess well log and TOC 
data, establishing a TOC prediction model based on BP Artificial 
Neural Network (BPANN) and Gradient Boosting Decision Trees 
(XGBoost). Their research showed that the XGBoost model offers 
higher calculation accuracy.

However, existing TOC prediction methods perform poorly 
in the strongly heterogeneous shale of the Qiongzhusi Formation, 
primarily due to the following reasons: (1) Traditional TOC 
prediction methods, while practical for evaluating homogeneous 

lithologies and their explicit expressions that visually reflect the 
relationship between well log parameters and TOC, fail to predict 
TOC values accurately in layers with abrupt lithological changes, 
resulting in lower prediction accuracy (Maroufi and Zahmatkesh, 
2023). (2) While neural network algorithms offer better prediction 
performance and adaptability, they require a large amount of 
measured data as support and suffer from the “black-box effect,” 
making it difficult to identify the specific mathematical relationships 
between well log parameters and TOC.

To address the above challenges, this study focuses on 
the shelf shale of the Qiongzhusi Formation in the Jingyan-
Qianwei area of the Sichuan Basin. This study systematically 
analyzed the geological characteristics, geochemical properties, 
and heterogeneity distribution of the reservoir. Based on 361 
core measurement datasets and well-logging data from five key 
wells, key logging parameters sensitive to TOC were selected 
via Pearson correlation analysis. To tackle the dual issues of 
insufficient accuracy in strongly heterogeneous intervals and 
the “black-box” nature of neural networks, an Interpretable 
Neural Network algorithm based on the Bayesian Information 
Criterion was proposed. The model first decomposes the complex 
mapping relationship into transparent sub-networks through feature 
decoupling. Then, a dynamic polynomial order selection mechanism 
is introduced, which leverages the BIC to automatically determine 
the optimal polynomial order for each logging parameter, thereby 
adaptively characterizing their differentiated nonlinear responses 
within the highly heterogeneous context. This design not only 
enhances the prediction accuracy for TOC but also ensures 
model interpretability by generating mathematical expressions 
that are directly interpretable by geologists. Consequently, the 
model effectively reveals the contribution mechanisms of well-
log parameters and accurately captures TOC variations across 
stratigraphic transition zones in the shale reservoir.

The remainder of this paper is structured as follows. Section 2 
details the geological setting and heterogeneous characteristics of 
the Qiongzhusi Formation in the study area. Section 3 elaborates 
on the fundamental principles of the INN-BIC model and its 
implementation workflow. Section 4 presents the application 
of the model to key wells and compares its performance 
against established methods. Section 5 discusses the advantages 
of the proposed algorithm and suggests directions for future 
research. Finally, Section 6 summarizes the principal conclusions 
of this study. 

2 The regional overview

2.1 Geological features of the research 
block

The Jingyan-Qianwei region is located at the southwestern 
edge of the Sichuan Basin, at the junction of Leshan and 
Zigong. Structurally, it belongs to the northwest part of the 
southwestern Sichuan depression and the southwestern wing of 
the Weiyuan structure, situated in the gentle slope structural 
zone to the west of the Mianyang-Changning rifting basin. 
The Qiongzhusi Formation in the research block is buried at 
depths ranging from 3,400 to 4,000 m. Its evolution is primarily 
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TABLE 1  Summary of the TOC prediction methods.

Categories Methods Explanations Advantage Disadvantage

The traditional prediction 
methods

Core analysis Direct measurements from the 
core samples

Accurate (1) Expensive and 
time-consuming
(2) Sparse data distribution

Single well log methods Linear fitting of TOC using a 
single well-log variable

Computationally efficient Relies on linear relationships

ΔlogR Method It combines the nuclear 
magnetic resonance (NMR) 
porosity log with resistivity 
log data

(1) User-friendly
(2) Concise

(1) Requires thermal maturity 
information
(2) Not valid for the pyrite rich 
formation

The regression methods Multivariate Fitting Fitting TOC using multiple 
well-log parameters

(1) Accurate
(2) Capable of capturing 
nonlinear relationships

(1) Lacks generalizability
(2) Inability to characterize 
higher-order dependencies

Intelligent algorithms Artificial Intelligence
Technique

Prediction employing 
AI-driven algorithms

(1) Accurate
(2) Strong generalization 
capability

(1) Requires large datasets
(2) Black-box nature

controlled by the combined effects of the Tongwan and Xingkai 
movements, forming during the peak period of the early Cambrian 
rifting basin development. The sedimentary thickness exhibits 
significant spatial variation, with a “thin-thick-thin” trend from 
west to east. The stratigraphic contact relationship shows that the 
Qiongzhusi Formation is in parallel unconformable contact with 
the underlying Maidiping Formation. The overall structural form is 
gentle, with weak folding deformation and poorly developed fault 
structures (Wang et al., 2020; Zhao et al., 2022; Bian et al., 2022;
Wang et al., 2023; Guo et al., 2023).

In terms of lithology, the Qiongzhusi Formation can be 
subdivided into three sections and 11 lithological layers, showing 
rhythmic interlayers of deep-water shelf-type black shale and 
shallow-water shelf-type silty shale (Figure 1) (Lan and Shen, 
2022; Wang et al., 2023). The lower section develops organic-rich 
black shale with horizontal fine lamination, commonly containing 
pyrite nodules and dispersed pyrite. The middle to upper part 
gradually transitions into silty shale interbedded with calcareous 
lenses. The upper section is dominated by silty shale interspersed 
with black organic-rich shale. Overall, the formation exhibits 
a coarsening-upward cyclical feature, reflecting the sedimentary 
evolution process under a regressive environment (Wang et al., 2020;
Zhao et al., 2022).

2.2 Geochemical characteristics of shale

Organic matter abundance, kerogen type, and thermal maturity 
are the three fundamental geochemical indicators for evaluating 
the properties of source rocks (Lai et al., 2022; Yan et al., 2025). 
The organic geochemical analysis of the Qiongzhusi Formation 
shale reveals its excellent hydrocarbon generation potential. The 
abundance of organic matter in the rock is typically characterized 
by TOC, which effectively reflects the hydrocarbon generation 
potential (Lai et al., 2024; Guo et al., 2023). The TOC content in 
the research block varies widely (0.01%–3.55%), with an average of 

0.49%. The shale in the research block reaches the level of a medium-
abundance source rock, with a certain hydrocarbon generation 
potential (Wang et al., 2024).

Kerogen type analysis (Table 2) shows that the dominant 
microcomponent of kerogen is the humic group, accounting for an 
average of 76.11%, followed by the vitrinite group (23.89%), while 
the exinite and inertinite groups were not detected. Combining 
the type index (average 58.19) with rock pyrolysis parameters, 
the kerogen type in the research block is primarily Type II1, 
indicating that the organic matter mainly comes from the highly 
degraded products of low-grade aquatic organisms, with excellent 
hydrocarbon generation potential. The maturity parameters show 
that the vitrinite reflectance (Ro) ranges from 2.66% to 2.79%, 
with an average value of 2.72%, indicating that the shale in 
the Qiongzhusi Formation has entered the overmature stage (Ro 
> 2.0%). This result suggests that the shale is currently in the 
dry gas generation window, with its hydrocarbon generation 
capacity largely depleted, mainly producing dry gas. In this stage 
of evolution, the gas content in the shale reservoir is mainly 
controlled by TOC content: on one hand, TOC determines the 
amount of residual kerogen and methane adsorption capacity; on 
the other hand, the nanopores formed by the thermal evolution 
of organic matter provide important storage space for free gas. 
Therefore, precise TOC prediction is significant for identifying
sweet spots.

2.3 Heterogeneity characteristics of the 
shale

The shale in the research block exhibits a complex and 
rapidly changing mineral composition, with significant vertical 
heterogeneity. X-ray diffraction (XRD) analysis of the whole-
rock mineral composition (Figure 2) indicates that the shale in 
the study section is primarily composed of feldspathoid minerals 
(average content of 64%), followed by clay minerals (21%), with 
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FIGURE 1
Sedimentary model diagram of Qiongzhusi Formation in Sichuan Basin (Guo et al., 2023).

TABLE 2  Identification of kerogen types in the research block samples.

Number Sapropel 
group (%)

Exinite 
group (%)

Vitrinite 
group (%)

Inertinite 
group (%)

Vitrinite 
reflectance 

(%)

Index type Type

1 85 0 15 0 2.79 73.75 II1

2 79 0 21 0 2.79 63.25 II1

3 77 0 23 0 2.74 59.75 II1

4 78 0 22 0 2.72 61.50 II1

5 82 0 18 0 2.72 68.50 II1

6 72 0 28 0 2.71 51.00 II1

7 75 0 25 0 2.69 56.25 II1

8 71 0 29 0 2.67 49.25 II1

9 66 0 34 0 2.66 40.50 II1

the lowest content of carbonate minerals (15%). The mineral 
composition shows distinct vertical differentiation, with higher clay 
mineral content in the upper section (up to 35%), while the lower 
section contains a significantly higher proportion of brittle minerals 
(feldspathoid + carbonate minerals), exceeding 80%. This significant 
variation in mineral composition leads to a complex and diverse 
distribution of organic matter, posing a severe challenge to accurate 
TOC prediction.

The rapid changes in mineral composition affect TOC prediction 
in three main ways: First, different minerals exhibit significant 
differences in well log responses. For example, clay minerals 
usually show high gamma-ray (GR) values, while brittle minerals 
show low GR values. This interference reduces the correlation 
between conventional well logs and TOC, making TOC prediction 
using a single well log parameter more difficult (Lu et al., 2013). 
Second, organic matter enrichment has clear lithology dependence. 
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FIGURE 2
Mineral composition diagram of the Qiongzhusi formation shale in the research block.

In layers with high clay content, organic matter is mainly 
concentrated by adsorption, whereas in layers with high brittle 
mineral content, the distribution of organic matter is controlled 
by the development of microfractures. This difference makes TOC 
prediction models based on a single well log parameter unable 
to accurately represent the spatial distribution of organic matter. 
Lastly, abrupt changes in mineral composition near lithological 
interfaces further increase the uncertainty in TOC prediction, as 
seen in the JS103 well section (3,350m–3390m, Figure 8). Rapid 
changes in mineral composition not only interfere with well 
log interpretation but also cause significant deviations in predictions 
across lithological transition zones, adding to the complexity of
model development. 

3 TOC prediction model 
establishment

3.1 Basic principles of the interpretable 
neural network

The Interpretable Neural Network (INN) uses a structured 
network architecture design (Figure 3) to decouple the 

complex input-output mapping relationships into nonlinear 
mathematical expressions between variables, thereby enabling 
qualitative analysis of the contribution of individual features 
(Castillo, 1998; Zhang L et al., 2023). In traditional neural networks, 
when adjusting the connection weights of the hidden layers, all input 
data are typically processed together to achieve optimal prediction 
performance, but the correlations between inputs and outputs 
based on hidden information cannot be evaluated. In contrast, the 
INN can visualize the interaction relationships between each input 
feature and the target variable, thus achieving a transition from a 
“black-box” to a “white-box” model.

IINN assigns each input feature an independent, simple 
sub-network module hj(xj). The model’s final prediction 
output Y(x) is the linear weighted sum of the outputs from 
all sub-networks (Equation 1). This design ensures that the 
contribution of each feature xj can be tracked and explained 
individually. The sub-networks are not traditional multilayer 
perceptrons but are constrained to predefined functions 
with clear mathematical meanings; in this study, polynomial 
functions are used (Equation 2). This design not only ensures 
that each feature’s contribution can be individually tracked and 
explained but also guarantees that the sub-network structure 
is transparent and, after training, can be directly used to 
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FIGURE 3
INN framework diagram.

FIGURE 4
INN-BIC structure flowchart.

analyze both the linear and nonlinear impact directions of the
feature.

Y(x) =
m

∑
i=1

d

∑
j=1

ωihj(xj) (1)

hi(xi) = βj0 + βj1xj + βj2x2
j +…+ βjix

i
j + ε (2)

In the formula, ωi: the weight coefficient corresponding to the 
output of the sub-network. i: the highest order of the polynomial 
corresponding to the feature xj; βji: the coefficient to be learned 
within the sub-network; ε: Global error.

During end-to-end interpretable training, INN standardizes 
the input data so that all features are on comparable scales, 
ensuring the stability of training and the fairness of parameter 
interpretation. Standard loss functions, such as Mean Squared 
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FIGURE 5
Correlation analysis between logging parameters and TOC. (a) U and TOC. (b) GR and TOC. (c) TH and TOC. (d) DEN and TOC. (e) CNL and TOC. (f) AC 
and TOC. (g) RD and TOC. (h) RS and TOC.
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FIGURE 6
Analysis of INN model prediction results and measured results. (a) The 
prediction results of training set. (b) The prediction results of INN 
testing set. (c) The prediction results of INN sample set.

FIGURE 7
The prediction results of three key wells in Jingyan-Qianwei area. (a)
The prediction results of INN-BIC algorithm in JY1. (b) The prediction 
results of INN-BIC algorithm in JY2. (c) The prediction results of 
INN-BIC algorithm in JS103.
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TABLE 3  Comparative analysis of TOC error between prediction method and measured TOC in Qiongzhusi Formation in the research block.

Well name Coefficient of 
determination

/R2

Mean absolute error
/MAE

Root mean square 
error

/RMSE

The sample size
/n

JY1 0.93 0.119 0.198 81

JY2 0.90 0.184 0.227 52

JS103 0.86 0.0467 0.0647 184

Error (MSE) (Equation 3), are used, and all sub-network internal 
parameters and the output layer’s weight coefficients are optimized 
simultaneously through the backpropagation algorithm and 
gradient descent optimization method.

Loss = 1
N

N

∑
i
(yi − y)2 (3)

 

3.2 Bayesian Information Criterion-based 
interpretable neural network

Despite the significant advantages of INN in model 
transparency, there are still some limitations. First, the original INN 
forces all input features to be modeled using a uniform polynomial 
degree (such as a fixed quadratic polynomial), making it difficult to 
adapt to the differences in nonlinear relationships between features 
in the actual data. This rigid design can lead to underfitting of high-
degree nonlinear features and overfitting of low-degree nonlinear 
features, reducing the model’s generalization ability. Lastly, the 
end-to-end random initialization strategy may cause the model 
to fall into local optima, converging to weight combinations that are 
physically unreasonable and affecting model reliability.

To address these issues in the prediction of shale TOC 
content, this study proposes an INN-BIC algorithm based on 
the Bayesian Information Criterion (BIC). The model improves 
upon the original INN framework by introducing a dynamic 
polynomial modeling mechanism, i.e., by introducing the BIC 
criterion to automatically select the optimal polynomial degree 
for each geological feature, effectively solving the model rigidity 
problem caused by manually presetting fixed degrees in the 
original INN. Specifically, the algorithm independently calculates 
the BIC values for different polynomial degrees for each feature, 
autonomously selecting the degree and weight corresponding to the 
minimum BIC to quantify the balance between model complexity 
and goodness of fit (Equation 4).

BIC(mi) = (mi + 1) ln (n) + n ln(
∑n

k−1
(yki − yk)

2

n
) (4)

The INN-BIC model adopts a two-stage training optimization 
strategy (Figure 4). In the pre-training stage, the optimal degree 
and initial weights of each feature are determined based on the BIC 
criterion. In the fine-tuning stage, the Adam Optimizer is used for 
end-to-end fine-tuning, with MSE as the loss function to achieve 
global parameter optimization (Equation 5). This strategy ensures 

both the prediction accuracy of the model and the interpretability of 
the sub-network structure. By analyzing the weight distribution and 
selected degrees of each sub-network, the model can quantify the 
contribution of each feature to the output, providing reliable support 
for the model’s interpretability.

θt+1 = θt − η
mt

√vt + ε
(5)

In the formula, θt: all the parameters that can be trained; η: 
Learning rate, default is 0.05; mt, vt: respectively represent first-order 
and second-order moment.

The robustness of the INN-BIC model is further enhanced, 
resulting in an innovative architecture that combines the precision 
of black-box models with the interpretability of white-box models. 
Practical applications show that this algorithm not only generates 
mathematical expressions that can be directly interpreted by 
geologists but also accurately quantifies the nonlinear contributions 
of each feature, providing new technical support for shale 
oil and gas exploration. 

3.3 Data source and preprocessing

The model is constructed upon a dataset comprising 361 core 
samples collected from five key exploration wells (e.g., Well JY1, Well 
JY2, Well JS103) in the Jingyan-Qianwei area of the Sichuan Basin. The 
TOC content of all core samples was accurately measured using a Rock-
Eval pyrolysis analyzer. Rigorous depth alignment and matching were 
performed to ensure that each core TOC measurement was precisely 
correlated with its in-situ well-logging responses. 

For input parameter selection, based on prior geological 
knowledge and Pearson correlation analysis (Figure 5), this study 
identified six key well-logging curves mechanistically linked to TOC 
enrichment: Uranium (U), Gamma Ray (GR), Compensated Acoustic 
Log(AC), Deep Resistivity (RD), and Shallow Resistivity (RS). It 
is noteworthy that these parameters generally exhibit low linear 
coefficients of determination (R2) with TOC in Figure 5, which serves 
as direct evidence of the strong heterogeneity of the shale reservoir 
in the study area. The rapid vertical variation in mineral composition 
(as shown in Figure 2) causes the response of any single log to be 
co-influenced by both lithology and organic matter, preventing the 
establishment of a stable, global linear relationship with TOC. 

This observation clearly highlights the limitations of traditional 
linear prediction models in our study area and, concurrently, 
establishes the core motivation for this study: the necessity to employ 
an advanced algorithm capable of capturing complex nonlinear 
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FIGURE 8
Comparison of TOC calculation models of JS103 well in the research block. The figure above shows, from left to right, the following columns:1–4: 
Depth (m); Density (DEN: g/cm3)/Neutron Porosity (CNL: %)/Acoustic Time Difference (AC: μs/ft.); Resistivity (RD/RS: ohm·m); Natural Gamma (GR: 
gAPI)/Uranium Content (U: ppm)/Potassium Content (K: ppm).5: Mineral Content (Illite/Quartz/Potassium Feldspar/Sodium 
Feldspar/Calcite/Dolomite/Pyrite/Kerogen: kg/kg).6: Core Measured TOC (TOC-Core: %)/Stepwise Regression Method Calculated TOC (TOC-StepW: 
%).7: Core Measured TOC (TOC-Core: %)/BP Neural Network Calculated TOC (TOC-BP: %).8: Core Measured TOC (TOC-Core: %)/Support Vector 
Machine Algorithm Calculated TOC (TOC-SVM: %).9: Core Measured TOC (TOC-Core: %)/Original INN Model Calculated TOC (TOC-INN: %).10: Core 
Measured TOC (TOC-Core: %)/INN-BIC Model Calculated TOC (TOC-INN-BIC: %).

relationships. Consequently, this study introduce the Interpretable 
Neural Network based on the Bayesian Information Criterion (INN-
BIC). This model does not rely on strong linear assumptions. Its 
“feature decoupling” and “dynamic order selection” mechanisms 

enable it to adaptively uncover the potential nonlinear associations 
between each parameter and TOC, ultimately achieving high 
prediction accuracy by integrating the complementary information 
from multiple parameters.
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To ensure training stability and fairness, all input logging 
parameters were subjected to Z-score standardization to eliminate 
unit differences. Finally, the entire set of 361 samples was randomly 
split into a training set (80%, 289 samples) and a testing set (20%, 
72 samples) for model construction and independent performance 
evaluation, respectively. 

3.4 Model validation

Through the feature-decoupling architecture of the INN model, 
each well log parameter independently enters its corresponding 
interpretable sub-network for polynomial base transformations, 
ultimately resulting in a prediction model with explicit mathematical 
expressions (Equation 6):

(

TOC1

TOC2

⋮
TOCn

)=(

1 U1 U2
1

1 U2 U2
2

⋮ ⋮ ⋮
1 Un U2

n

)(
0.10353
0.01097
0.00538

)

+(

1 LogRD1 (LogRD1)
2

1 LogRD2 (LogRD2)
2

⋮ ⋮ ⋮
1 LogRDn (LogRDn)

2

)(
−9.6069
7.38058
−1.3578

)

+(

1 LogRS1 (LogRS1)
2

1 LogRS2 (LogRS2)
2

⋮ ⋮ ⋮
1 LogRSn (LogRSn)

2

)(
10.716
−8.1604
1.51568

)

+(
1 AC1

⋮ ⋮
1 ACn

)(
−0.4665
0.01061

)

+(

1 GR1 GR2
1 GR3

1
1 GR2 GR2

2 GR3
2

⋮ ⋮ ⋮ ⋮
1 GRn GR2

n GR3
n

)(

−0.306879
0.0086076
0.0000602
0.0000002

)+ ε

(6)

In the formula, n is the number of sample points; TOCn: the 
TOC content of the nth data point calculated, %; Un:the uranium 
content of the nth data point, ppm; LogRDn: the logarithm of the 
deep resistivity corresponding to the nth data point, ohm·m; LogRSn: 
the logarithm of the shallow resistivity corresponding to the nth data 
point, ohm·m; ACn: the acoustic interval time corresponding to the 
nth data point, μs/ft; GRn: the natural gamma ray corresponding to 
the nth data point, API; ε: the global error.

In the model expression, the relationship between different well 
log parameters and TOC is represented by adaptive polynomial 
transformations. The research results show that U and GR 
follow quadratic and cubic polynomial relationships, respectively. 
This feature corresponds to the complexity of the rock and 
mineral composition in the research block and the differences 
in organic matter adsorption capacity due to different clay 
minerals, revealing the intrinsic relationship between uranium and 
natural gamma responses and organic matter enrichment in the 
anoxic environment of the early Cambrian. RD and RS exhibit 
significant quadratic polynomial relationships with TOC, reflecting 
the electrical response characteristics of the lithological interface 
between overlying silty shale and underlying black shale in the 
research block. AC, in contrast, maintains a linear relationship 

with TOC, consistent with the brittle mineral content shown 
by XRD analysis, indicating the impact of the microfracture 
system formed by the thermal evolution of organic matter on 
acoustic wave propagation characteristics (Fu et al., 2025). These 
features have significant correlations with the rhythmic interlayer 
structure of “deep-water-shallow-water alternating shelf deposition” 
in the Qiongzhusi Formation of the research block. The INN 
model, through its adaptive feature selection mechanism, effectively 
identifies the organic matter enrichment patterns in the research 
block, providing a new technical approach for evaluating overmature 
shale gas reservoirs.

The INN-BIC model’s prediction results are shown in Figure 6. 
The coefficient of determination (R2) between the predicted and 
measured TOC values for the training, testing, and total sample 
sets all exceed 0.89, showing good fitting performance. This result 
validates the accuracy and reliability of the INN-BIC model in 
predicting TOC for source rocks, providing reliable technical 
support for subsequent research. 

4 Application

To verify the prediction accuracy of the INN-BIC model, 
systematic validation was carried out on three key wells, JY1, JY2, 
and JS103 (Figure 7). Specifically, the INN-BIC model demonstrated 
excellent fitting performance in the three wells, with coefficients of 
determination (R2) reaching 0.93, 0.90, and 0.86, respectively. This 
clearly indicates the INN-BIC model’s significant ability to explain 
the variability of TOC data. At the same time, the model’s prediction 
error metrics were also outstanding, as shown in Table 3. The average 
absolute error (MAE) and root mean square error (RMSE) for Well 
JY1 were 0.119 and 0.198, respectively, while for Well JY2, the MAE 
and RMSE were 0.184 and 0.227, respectively. Among them, the well 
with the largest sample size, JS103, showed the highest prediction 
accuracy, with an MAE of only 0.0467 and an RMSE of 0.0647. These 
results fully validate the INN-BIC model’s robust, high-precision 
prediction capability and broad adaptability under different data 
scales and geological conditions.

The actual application results for Well JS103, shown in Figure 8, 
indicate that the INN-BIC model’s predictions are in good agreement 
with the core experimental results, with accuracy significantly 
improved over the original INN model. The model effectively 
overcame the modeling bottleneck of TOC prediction in highly 
heterogeneous shale reservoirs (e.g., the 3,350 m–3,390 m section). 
Under small sample conditions, the INN-BIC model exhibited 
exceptional prediction accuracy and demonstrated efficient offline 
inversion capability based on analytical formulas, providing a technical 
tool for shale organic matter abundance evaluation. The research 
results show that the INN, optimized using the BIC, is applicable 
for TOC prediction in highly heterogeneous reservoirs. 

5 Discussion and future work

5.1 Method comparison discussion

To further verify the superiority of the INN-BIC model, a multi-
method comparison analysis was conducted on Well JS103 (Table 4). 

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1696607
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1696607

TABLE 4  Comparison of results of different prediction methods.

Well Prediction 
algorithm

Coefficient of 
determination

/R2

Mean absolute 
error
/MAE

Root mean 
square error

/RMSE

Relative 
improvement 

rate/%

JS103

Stepwise regression 0.07 0.422 1.355 1239%

BP Neural Network (BP) 0.48 0.113 0.1529 179.2%

Support Vector 
Machines (SVM)

0.69 0.085 0.1338 124.6%

original INN model 
(INN)

0.52 0.091 0.1154 165.4%

INN-BIC 0.86 0.047 0.0647 —

The Relative Improvement Rate refers to the improvement rate of the proposed INN-BIC model in this study compared to other models.

In this analysis, the original INN neural network used both quadratic 
and cubic polynomial terms for fitting, and the model achieved its 
best performance with the following expression (Equation 7):
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0.00000089

)+ ε′

(7)

In the formula, n is the number of sample points; ε′ for the 
global error.

The results show that the coefficient of determination (R2) of 
the INN-BIC model is approximately 11 times, 79%, and 25% 
higher than the three traditional computational methods: stepwise 
regression, BP neural network, and SVM models, respectively. 
Compared to the original INN model, the INN-BIC model improved 
by 65%. Furthermore, the INN-BIC model achieved the lowest 
average absolute error (MAE) and root mean square error (RMSE), 
highlighting the model’s advantages in prediction accuracy and 
stability.

From the example application of Well JS103 in Figure 7, it 
can be seen that, in the depth interval of 3,350 m–3390 m, where 
the mineral composition undergoes dramatic changes and strong 
heterogeneity is developed, the three traditional prediction models 
(stepwise regression, BP neural network, SVM) as well as the 

original INN model show clear limitations. Specifically, the four 
algorithms exhibit a delayed response to rapid fluctuations in TOC 
content, struggling to accurately identify such complex changes and 
showing poor convergence. Additionally, under the limited sample 
conditions of core experiments, traditional methods fail to capture 
the complex nonlinear relationships between reservoir parameters 
and well log responses. In lithological transition zones, significant 
deviations in prediction results are observed. In contrast, the INN 
model, with its reversible computation architecture, demonstrates 
unique advantages. Through the backpropagation mechanism, the 
model decodes the implicit mapping relationship between geological 
parameters and well log responses, accurately tracking TOC content 
changes and effectively reducing fitting errors. The prediction results 
show a high degree of agreement with the core experimental data, 
confirming the model’s applicability to highly heterogeneous shale 
layers. More importantly, this model supports offline high-precision 
inversion of TOC content based on analytical formulas, without 
relying on artificial intelligence platforms. 

5.2 Algorithm advantages discussion

This study innovatively introduces the INN into the field of 
shale TOC prediction, overcoming the challenge of low prediction 
accuracy of traditional algorithms in highly heterogeneous 
geological environments. Various prediction methods were 
examined in this study. The stepwise regression method performs 
linear transformations for highly correlated parameters, but its 
prediction accuracy significantly decreases when there is a complex 
nonlinear relationship between well log parameters and TOC. 
On the other hand, SVM and BP neural network can perform 
nonlinear fitting, which improves prediction accuracy to some 
extent; however, their processes are hidden within the network, 
making it difficult to interpret the geological significance between 
the predicted results and output parameters. The original INN 
model can effectively solve this problem, but its network structure is 
relatively rigid, with activation functions typically using fixed-degree 
polynomials. In such cases, parameter optimization must consider 
the contribution of each degree of every feature, which greatly 
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increases the training complexity, leading to potential underfitting 
and increased prediction bias.

The INN-BIC model proposed in this paper improves upon 
this by using the BIC value as an adaptive dynamic parameter to 
optimize the input degree of each feature (as shown in Equation 6). 
This mechanism automatically discards unnecessary higher-order 
terms of features to reduce model fitting dimensions, enabling 
the model to quickly converge to a global optimal solution and 
accurately characterize TOC variations in lithological transition 
zones. Ultimately, by summing the weighted outputs of each sub-
network model, a mathematical expression with clear geological 
and physical meaning is obtained, which can explain the geological 
significance between well log parameters and TOC. Additionally, 
the model can be processed offline without relying on artificial 
intelligence platforms. The application examples from three key 
wells in the research block demonstrate that the model significantly 
improves the prediction accuracy and interpretability of TOC in 
highly heterogeneous shale layers, providing effective technical 
support for shale gas sweet spot. 

5.3 Future work

Although the INN model demonstrates significant advantages in 
predicting TOC content in the Qiongzhusi Formation shale, several 
directions for further exploration remain. 

A. Multi-source Data Fusion Expansion. The current model 
primarily relies on well log data to construct the prediction 
relationship. Future research can integrate seismic attributes 
(such as velocity and acoustic impedance, which are sensitive 
to source rocks), geochemical indicators, and other multi-
source information to build a more comprehensive TOC 
prediction system. For example, seismic profiles can be used 
to represent and characterize the spatial distribution and 
variations of organic matter (Ehsan et al., 2025b; Yu et al., 2023; 
Wang et al., 2023; Sahoo et al., 2021).

B. Co-inversion with Nuclear Magnetic Resonance (NMR) 
Technology. Exploring the integration of Nuclear Magnetic 
Resonance (NMR) technology into the analytical framework 
could allow for the simultaneous quantification of other key 
reservoir parameters (such as porosity and water saturation). 
Although the nuclear dipole coupling effect in organic matter 
may cause specific signal attenuation, new NMR analysis 
methods could be developed to utilize signal differences 
to quantitatively assess organic matter abundance and 
characteristics, providing complementary information for 
TOC prediction (Guo et al., 2025; Garro Linck et al., 2024; 
Feng et al., 2023; Jia et al., 2018).

6 Conclusion

The INN-BIC model proposed in this study has been shown 
to be highly applicable in predicting the Total Organic Carbon 
(TOC) content in the heterogeneous shelf-type shale of the 
Qiongzhusi Formation in the Sichuan Basin. The following 
important conclusions were drawn. 

A. The INN-BIC model, through feature decoupling and adaptive 
degree selection, improves prediction accuracy by 11 times 
compared to stepwise regression, 79% compared to BP neural 
network, 25% compared to SVM, and 65% compared to 
the original INN model. The prediction error is reduced by 
82%, significantly improving the evaluation accuracy of highly 
heterogeneous shale miner reservoirs.

B. The INN-BIC model quantitatively characterizes the nonlinear 
relationships between well log parameters and TOC through 
adaptive feature selection, effectively identifying the organic 
matter enrichment patterns in the research block. It also reveals 
the “deep-water-shallow-water alternating shelf deposition” 
rhythmic interlayer structure of the Qiongzhusi Formation in 
the research block, providing a new technical approach for 
evaluating overmature shale gas reservoirs.

C. The INN-BIC model combines the high accuracy of 
machine learning with the interpretability of statistical 
models. Its formulaic output is suitable for real-time well 
log interpretation and provides reliable quantitative data for 
shale gas sweet spot evaluation, driving the transition of 
shale gas reservoir evaluation from “experience-driven” to 
“data-mechanism integration.”
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