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Total Organic Carbon (TOC) is a fundamental parameter for evaluating source
rock quality, yet the strong heterogeneity of the Qiongzhusi Formation shale
reservoir in the Sichuan Basin severely limits the applicability of conventional
TOC prediction models. To address this challenge, this study proposes a novel
TOC prediction algorithm (INN-BIC) that integrates an Interpretable Neural
Network (INN) with the Bayesian Information Criterion (BIC). By employing
feature decoupling and a dynamic polynomial degree selection mechanism,
the method enhances both prediction accuracy and model interpretability in
complex geological settings. The model successfully quantifies the contribution
of well-log parameters such as uranium content, natural gamma ray, and
deep/shallow resistivity to TOC, and accurately captures TOC variations in
stratigraphic transition zones. Experimental results demonstrate that the INN-
BIC model significantly outperforms traditional methods, improving the R?
score by 79% and 25% compared to Backpropagation Neural Network (BPNN)
and Support Vector Machine (SVM) models, respectively, and achieving a
65% enhancement over the original INN model. This verifies the model's
effectiveness and reliability in strongly heterogeneous environments, supporting
its practical application in shale gas sweet spot evaluation and efficient
development.

Qiongzhusi Formation, shale, total organic carbon, interpretable neural network,
heterogeneity

1 Introduction

Total Organic Carbon (TOC) is a fundamental parameter for assessing the quality
and hydrocarbon generation potential of source rocks, and its accurate prediction
is crucial for the identification of shale gas sweet spots. The Early Cambrian
Qiongzhusi Formation in the Sichuan Basin represents a significant target for shale

01 frontiersin.org


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1696607
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1696607&domain=pdf&date_stamp=
2025-11-03
mailto:2023216749@st.cupk.edu.cn
mailto:2023216749@st.cupk.edu.cn
https://doi.org/10.3389/feart.2025.1696607
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1696607/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1696607/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1696607/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1696607/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1696607/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1696607/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Zhang et al.

gas exploration in China. However, its strong reservoir heterogeneity
poses significant challenges for the accurate prediction of TOC
content. Although core analysis offers high accuracy, its high cost
and discontinuous nature make it inadequate for comprehensive
exploration needs. Consequently, developing a high-precision
and interpretable TOC prediction method adapted to strong
heterogeneity is of paramount theoretical and practical value for
shale gas sweet spot prediction and efficient development.

Currently, the prediction methods for shale reservoir TOC
developed by scholars at home and abroad can be classified into
three main research systems: traditional prediction methods based
on empirical formulas, regression methods based on multivariate
statistics, and intelligent algorithms based on neural networks
(Table 1) (Aziz et al, 2020). Firstly, the traditional prediction
methods based on empirical formulas primarily establish empirical
relationships between conventional logging parameters and TOC
using formation physical properties. The pioneering work began
with the Schmoker method proposed by Schmoker (1979), which
used regression analysis of density logs to estimate organic matter
content and was subsequently refined (Schmoker, 1981; Schmoker
and Hester, 1983). Subsequently, Passey et al. (1990) introduced
the ALogR method utilizing resistivity and porosity logs, which
has become a classic technique for TOC prediction due to its
operational simplicity and strong applicability. In recent years,
numerous scholars have optimized and improved the ALogR
method for its application in various basins worldwide, primarily
involving the use of variable slopes, baseline adjustments, and
replacing the maturity parameter LOM with thermal indicators
such as Tmax or Ro (Li et al., 2020; Wood, 2020; Zheng et al.,
2021; Mulashani et al., 2021; Zhang et al., 2022). Secondly, the
multiple linear regression methods employ trial-and-error to select
logging parameters significantly correlated with TOC and simulate
the mathematical relationship between multiple logging parameters
and TOC through linear regression. By considering the influence
of more factors, their prediction accuracy is significantly improved
compared to empirical formula methods (ZhangF et al., 2023;
Hui et al., 2023; Feng et al., 2023; Zhang H et al., 2023; Zhang et al.,
2025). For instance, Zhang et al. (2025) demonstrated that a
multiple linear regression prediction model could effectively predict
TOC content in marine-continental transitional shales, achieving
accuracy comparable to the BP model, through comparative studies
with other models. The third category includes artificial intelligence
methods, such as neural network algorithms, which build complex
nonlinear models that better capture the underlying relationships
in the data and improve prediction accuracy. These methods have
demonstrated superior performance, especially in handling large-
scale and high-dimensional data, effectively enhancing prediction
precision (Nyakilla et al., 2022; Gordon et al., 2022; Liu et al., 2023;
Lai et al., 2024; Ehsan et al., 2025a). For example, Lai et al. (2024)
used principal component analysis to preprocess well log and TOC
data, establishing a TOC prediction model based on BP Artificial
Neural Network (BPANN) and Gradient Boosting Decision Trees
(XGBoost). Their research showed that the XGBoost model offers
higher calculation accuracy.

However, existing TOC prediction methods perform poorly
in the strongly heterogeneous shale of the Qiongzhusi Formation,
primarily due to the following reasons: (1) Traditional TOC
prediction methods, while practical for evaluating homogeneous
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lithologies and their explicit expressions that visually reflect the
relationship between well log parameters and TOC, fail to predict
TOC values accurately in layers with abrupt lithological changes,
resulting in lower prediction accuracy (Maroufi and Zahmatkesh,
2023). (2) While neural network algorithms offer better prediction
performance and adaptability, they require a large amount of
measured data as support and suffer from the “black-box effect,”
making it difficult to identify the specific mathematical relationships
between well log parameters and TOC.

To address the above challenges, this study focuses on
the shelf shale of the Qiongzhusi Formation in the Jingyan-
Qianwei area of the Sichuan Basin. This study systematically
analyzed the geological characteristics, geochemical properties,
and heterogeneity distribution of the reservoir. Based on 361
core measurement datasets and well-logging data from five key
wells, key logging parameters sensitive to TOC were selected
via Pearson correlation analysis. To tackle the dual issues of
insufficient accuracy in strongly heterogeneous intervals and
the “black-box” nature of neural networks, an Interpretable
Neural Network algorithm based on the Bayesian Information
Criterion was proposed. The model first decomposes the complex
mapping relationship into transparent sub-networks through feature
decoupling. Then, a dynamic polynomial order selection mechanism
is introduced, which leverages the BIC to automatically determine
the optimal polynomial order for each logging parameter, thereby
adaptively characterizing their differentiated nonlinear responses
within the highly heterogeneous context. This design not only
enhances the prediction accuracy for TOC but also ensures
model interpretability by generating mathematical expressions
that are directly interpretable by geologists. Consequently, the
model effectively reveals the contribution mechanisms of well-
log parameters and accurately captures TOC variations across
stratigraphic transition zones in the shale reservoir.

The remainder of this paper is structured as follows. Section 2
details the geological setting and heterogeneous characteristics of
the Qiongzhusi Formation in the study area. Section 3 elaborates
on the fundamental principles of the INN-BIC model and its
implementation workflow. Section4 presents the application
of the model to key wells and compares its performance
against established methods. Section 5 discusses the advantages
of the proposed algorithm and suggests directions for future
research. Finally, Section 6 summarizes the principal conclusions
of this study.

2 The regional overview

2.1 Geological features of the research
block

The Jingyan-Qianwei region is located at the southwestern
edge of the Sichuan Basin, at the junction of Leshan and
Zigong. Structurally, it belongs to the northwest part of the
southwestern Sichuan depression and the southwestern wing of
the Weiyuan structure, situated in the gentle slope structural
zone to the west of the Mianyang-Changning rifting basin.
The Qiongzhusi Formation in the research block is buried at
depths ranging from 3,400 to 4,000 m. Its evolution is primarily
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TABLE1 Summary of the TOC prediction methods.

Categories

The traditional prediction

Methods

Core analysis

Explanations

Direct measurements from the
core samples

Advantage

Accurate

10.3389/feart.2025.1696607

Disadvantage

(1) Expensive and
time-consuming
(2) Sparse data distribution

Single well log methods

Linear fitting of TOC using a
single well-log variable

Computationally efficient

Relies on linear relationships

methods
AlogR Method It combines the nuclear (1) User-friendly (1) Requires thermal maturity
magnetic resonance (NMR) (2) Concise information
porosity log with resistivity (2) Not valid for the pyrite rich
log data formation
The regression methods Multivariate Fitting Fitting TOC using multiple (1) Accurate (1) Lacks generalizability

well-log parameters

(2) Capable of capturing
nonlinear relationships

(2) Inability to characterize
higher-order dependencies

Intelligent algorithms Artificial Intelligence

Technique

Prediction employing
Al-driven algorithms

(1) Accurate
(2) Strong generalization
capability

(1) Requires large datasets
(2) Black-box nature

controlled by the combined effects of the Tongwan and Xingkai
movements, forming during the peak period of the early Cambrian
rifting basin development. The sedimentary thickness exhibits
significant spatial variation, with a “thin-thick-thin” trend from
west to east. The stratigraphic contact relationship shows that the
Qiongzhusi Formation is in parallel unconformable contact with
the underlying Maidiping Formation. The overall structural form is
gentle, with weak folding deformation and poorly developed fault
structures (Wang et al., 2020; Zhao et al., 2022; Bian et al., 2022;
Wang et al., 2023; Guo et al., 2023).

In terms of lithology, the Qiongzhusi Formation can be
subdivided into three sections and 11 lithological layers, showing
rhythmic interlayers of deep-water shelf-type black shale and
shallow-water shelf-type silty shale (Figure 1) (Lan and Shen,
2022; Wang et al,, 2023). The lower section develops organic-rich
black shale with horizontal fine lamination, commonly containing
pyrite nodules and dispersed pyrite. The middle to upper part
gradually transitions into silty shale interbedded with calcareous
lenses. The upper section is dominated by silty shale interspersed
with black organic-rich shale. Overall, the formation exhibits
a coarsening-upward cyclical feature, reflecting the sedimentary
evolution process under a regressive environment (Wang et al., 2020;
Zhao et al., 2022).

2.2 Geochemical characteristics of shale

Organic matter abundance, kerogen type, and thermal maturity
are the three fundamental geochemical indicators for evaluating
the properties of source rocks (Lai et al., 2022; Yan et al., 2025).
The organic geochemical analysis of the Qiongzhusi Formation
shale reveals its excellent hydrocarbon generation potential. The
abundance of organic matter in the rock is typically characterized
by TOC, which effectively reflects the hydrocarbon generation
potential (Lai et al., 2024; Guo et al., 2023). The TOC content in
the research block varies widely (0.01%-3.55%), with an average of
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0.49%. The shale in the research block reaches the level of a medium-
abundance source rock, with a certain hydrocarbon generation
potential (Wang et al., 2024).

Kerogen type analysis (Table 2) shows that the dominant
microcomponent of kerogen is the humic group, accounting for an
average of 76.11%, followed by the vitrinite group (23.89%), while
the exinite and inertinite groups were not detected. Combining
the type index (average 58.19) with rock pyrolysis parameters,
the kerogen type in the research block is primarily Type III,
indicating that the organic matter mainly comes from the highly
degraded products of low-grade aquatic organisms, with excellent
hydrocarbon generation potential. The maturity parameters show
that the vitrinite reflectance (Ro) ranges from 2.66% to 2.79%,
with an average value of 2.72%, indicating that the shale in
the Qiongzhusi Formation has entered the overmature stage (Ro
> 2.0%). This result suggests that the shale is currently in the
dry gas generation window, with its hydrocarbon generation
capacity largely depleted, mainly producing dry gas. In this stage
of evolution, the gas content in the shale reservoir is mainly
controlled by TOC content: on one hand, TOC determines the
amount of residual kerogen and methane adsorption capacity; on
the other hand, the nanopores formed by the thermal evolution
of organic matter provide important storage space for free gas.
Therefore, precise TOC prediction is significant for identifying
sweet spots.

2.3 Heterogeneity characteristics of the
shale

The shale in the research block exhibits a complex and
rapidly changing mineral composition, with significant vertical
heterogeneity. X-ray diffraction (XRD) analysis of the whole-
rock mineral composition (Figure 2) indicates that the shale in
the study section is primarily composed of feldspathoid minerals
(average content of 64%), followed by clay minerals (21%), with
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Sedimentary model diagram of Qiongzhusi Formation in Sichuan Basin (Guo et al.,, 2023).

TABLE 2 Identification of kerogen types in the research block samples.

Number Sapropel Exinite Vitrinite Inertinite Vitrinite Index type Type
group (%) group (%) group (%) group (%) reflectance
1 85 0 15 0 2.79 73.75 11,
2 79 0 21 0 2.79 63.25 1,
3 77 0 23 0 274 59.75 1,
4 78 0 22 0 272 61.50 1,
5 82 0 18 0 272 68.50 I,
6 72 0 28 0 271 51.00 1,
7 75 0 25 0 2.69 56.25 I,
8 71 0 29 0 2.67 49.25 1,
9 66 0 34 0 2.66 40.50 I,

the lowest content of carbonate minerals (15%). The mineral
composition shows distinct vertical differentiation, with higher clay
mineral content in the upper section (up to 35%), while the lower
section contains a significantly higher proportion of brittle minerals
(feldspathoid + carbonate minerals), exceeding 80%. This significant
variation in mineral composition leads to a complex and diverse
distribution of organic matter, posing a severe challenge to accurate
TOC prediction.
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The rapid changes in mineral composition affect TOC prediction
in three main ways: First, different minerals exhibit significant
differences in well logresponses. For example, clay minerals
usually show high gamma-ray (GR) values, while brittle minerals
show low GR values. This interference reduces the correlation
between conventional well logs and TOC, making TOC prediction
using a single well log parameter more difficult (Lu et al., 2013).
Second, organic matter enrichment has clear lithology dependence.
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FIGURE 2

Mineral composition diagram of the Qiongzhusi formation shale in the research block.

In layers with high clay content, organic matter is mainly
concentrated by adsorption, whereas in layers with high brittle
mineral content, the distribution of organic matter is controlled
by the development of microfractures. This difference makes TOC
prediction models based on a single well log parameter unable
to accurately represent the spatial distribution of organic matter.
Lastly, abrupt changes in mineral composition near lithological
interfaces further increase the uncertainty in TOC prediction, as
seen in the JS103 well section (3,350m-3390m, Figure 8). Rapid
changes in mineral composition not only interfere with well
log interpretation but also cause significant deviations in predictions
across lithological transition zones, adding to the complexity of
model development.

3 TOC prediction model
establishment

3.1 Basic principles of the interpretable
neural network

The Interpretable Neural Network (INN) uses a structured
network architecture design (Figure3) to decouple the
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complex input-output mapping relationships into nonlinear
mathematical expressions between variables, thereby enabling
qualitative analysis of the contribution of individual features
(Castillo, 1998; Zhang L et al., 2023). In traditional neural networks,
when adjusting the connection weights of the hidden layers, all input
data are typically processed together to achieve optimal prediction
performance, but the correlations between inputs and outputs
based on hidden information cannot be evaluated. In contrast, the
INN can visualize the interaction relationships between each input
feature and the target variable, thus achieving a transition from a
“black-box” to a “white-box” model.

IINN assigns each input feature an independent, simple
sub-network module hj(x]-). The model's final prediction
output Y(x) is the linear weighted sum of the outputs from
all sub-networks (Equation 1). This design ensures that the
contribution of each feature x; can be tracked and explained
individually. The sub-networks are not traditional multilayer

perceptrons but are constrained to predefined functions
with clear mathematical meanings; in this study, polynomial
functions are used (Equation 2). This design not only ensures
that each feature’s contribution can be individually tracked and
explained but also guarantees that the sub-network structure

is transparent and, after training, can be directly used to
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In the formula, w;: the weight coeflicient corresponding to the
output of the sub-network. i: the highest order of the polynomial
corresponding to the feature x;; §;;: the coefficient to be learned
within the sub-network; &: Global error.

During end-to-end interpretable training, INN standardizes
the input data so that all features are on comparable scales,
ensuring the stability of training and the fairness of parameter
interpretation. Standard loss functions, such as Mean Squared
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TABLE 3 Comparative analysis of TOC error between prediction method and measured TOC in Qiongzhusi Formation in the research block.

Well name Coefficient of Mean absolute error Root mean square The sample size
determination /MAE error /n
/R? /RMSE
Y1 0.93 0.119 0.198 81
JY2 0.90 0.184 0.227 52
J$103 0.86 0.0467 0.0647 184

Error (MSE) (Equation 3), are used, and all sub-network internal
parameters and the output layer’s weight coeflicients are optimized
simultaneously through the backpropagation algorithm and
gradient descent optimization method.

N
Loss = I\%Z()}i_;)z (3)

3.2 Bayesian Information Criterion-based
interpretable neural network

of INN
transparency, there are still some limitations. First, the original INN

Despite the significant advantages in model
forces all input features to be modeled using a uniform polynomial
degree (such as a fixed quadratic polynomial), making it difficult to
adapt to the differences in nonlinear relationships between features
in the actual data. This rigid design can lead to underfitting of high-
degree nonlinear features and overfitting of low-degree nonlinear
features, reducing the model’s generalization ability. Lastly, the
end-to-end random initialization strategy may cause the model
to fall into local optima, converging to weight combinations that are
physically unreasonable and affecting model reliability.

To address these issues in the prediction of shale TOC
content, this study proposes an INN-BIC algorithm based on
the Bayesian Information Criterion (BIC). The model improves
upon the original INN framework by introducing a dynamic
polynomial modeling mechanism, i.e., by introducing the BIC
criterion to automatically select the optimal polynomial degree
for each geological feature, effectively solving the model rigidity
problem caused by manually presetting fixed degrees in the
original INN. Specifically, the algorithm independently calculates
the BIC values for different polynomial degrees for each feature,
autonomously selecting the degree and weight corresponding to the
minimum BIC to quantify the balance between model complexity
and goodness of fit (Equation 4).

BIC(m;) = (m;+ 1)In(n) +n ln< (4)

D1 Ok =5)’
n

The INN-BIC model adopts a two-stage training optimization
strategy (Figure 4). In the pre-training stage, the optimal degree
and initial weights of each feature are determined based on the BIC
criterion. In the fine-tuning stage, the Adam Optimizer is used for
end-to-end fine-tuning, with MSE as the loss function to achieve
global parameter optimization (Equation 5). This strategy ensures
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both the prediction accuracy of the model and the interpretability of
the sub-network structure. By analyzing the weight distribution and
selected degrees of each sub-network, the model can quantify the
contribution of each feature to the output, providing reliable support
for the model’s interpretability.

my

Vv, +e

In the formula, 6,: all the parameters that can be trained; #:
Learning rate, defaultis 0.05; m,, v,: respectively represent first-order

01 =06—1 (5)

and second-order moment.

The robustness of the INN-BIC model is further enhanced,
resulting in an innovative architecture that combines the precision
of black-box models with the interpretability of white-box models.
Practical applications show that this algorithm not only generates
mathematical expressions that can be directly interpreted by
geologists but also accurately quantifies the nonlinear contributions
of each feature, providing new technical support for shale
oil and gas exploration.

3.3 Data source and preprocessing

The model is constructed upon a dataset comprising 361 core
samples collected from five key exploration wells (e.g., Well JY1, Well
JY2, Well JS103) in the Jingyan-Qianwei area of the Sichuan Basin. The
TOC content ofall core samples was accurately measured usinga Rock-
Eval pyrolysis analyzer. Rigorous depth alignment and matching were
performed to ensure that each core TOC measurement was precisely
correlated with its in-situ well-logging responses.

For input parameter selection, based on prior geological
knowledge and Pearson correlation analysis (Figure 5), this study
identified six key well-logging curves mechanistically linked to TOC
enrichment: Uranium (U), Gamma Ray (GR), Compensated Acoustic
Log(AC), Deep Resistivity (RD), and Shallow Resistivity (RS). It
is noteworthy that these parameters generally exhibit low linear
coefficients of determination (R?) with TOC in Figure 5, which serves
as direct evidence of the strong heterogeneity of the shale reservoir
in the study area. The rapid vertical variation in mineral composition
(as shown in Figure 2) causes the response of any single log to be
co-influenced by both lithology and organic matter, preventing the
establishment of a stable, global linear relationship with TOC.

This observation clearly highlights the limitations of traditional
linear prediction models in our study area and, concurrently,
establishes the core motivation for this study: the necessity to employ
an advanced algorithm capable of capturing complex nonlinear
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relationships. Consequently, this study introduce the Interpretable
Neural Network based on the Bayesian Information Criterion (INN-
BIC). This model does not rely on strong linear assumptions. Its

“feature decoupling” and “dynamic order selection” mechanisms
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enable it to adaptively uncover the potential nonlinear associations
between each parameter and TOC, ultimately achieving high
prediction accuracy by integrating the complementary information

from multiple parameters.
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To ensure training stability and fairness, all input logging
parameters were subjected to Z-score standardization to eliminate
unit differences. Finally, the entire set of 361 samples was randomly
split into a training set (80%, 289 samples) and a testing set (20%,
72 samples) for model construction and independent performance
evaluation, respectively.

3.4 Model validation

Through the feature-decoupling architecture of the INN model,
each well log parameter independently enters its corresponding
interpretable sub-network for polynomial base transformations,
ultimately resulting in a prediction model with explicit mathematical
expressions (Equation 6):

TOC, 1 U, U? 0.10353
TOC, | [ 1 U2 Uz 0'01097
: P\ 000538
TOC, 1 U0, 2
1 LogRD, (LogRD,
1L gRDl (L gRD 12 96069
0. 0.
+ 72 AROsTE 7.38058
5 -1.3578
lLogRD LogRDn)
1 LogRS; (LogRS;)?
1L gRsl EL gRS ;2 10716 (6)
0] 0.
+ 8102 (08T -8.1604
5 1.51568
lLogRS LogRSn)
1 Ac1
~0.4665
+
001061
1 AC
1 GR, GR} GR} -0.306879
1 GR, GR: GR] 0.0086076
+é&
N S 0.0000602
1 GR, GR? GR} 0.0000002

In the formula, n is the number of sample points; TOC,: the
TOC content of the nth data point calculated, %; U, :the uranium
content of the nth data point, ppm; LogRD,: the logarithm of the
deep resistivity corresponding to the nth data point, ohm-m; LogRS,,:
the logarithm of the shallow resistivity corresponding to the nth data
point, ohm-m; AC,: the acoustic interval time corresponding to the
nth data point, ps/ft; GR,: the natural gamma ray corresponding to
the nth data point, API; e: the global error.

In the model expression, the relationship between different well
log parameters and TOC is represented by adaptive polynomial
The research results show that U and GR
follow quadratic and cubic polynomial relationships, respectively.
This feature corresponds to the complexity of the rock and

transformations.

mineral composition in the research block and the differences
in organic matter adsorption capacity due to different clay
minerals, revealing the intrinsic relationship between uranium and
natural gamma responses and organic matter enrichment in the
anoxic environment of the early Cambrian. RD and RS exhibit
significant quadratic polynomial relationships with TOC, reflecting
the electrical response characteristics of the lithological interface
between overlying silty shale and underlying black shale in the
research block. AC, in contrast, maintains a linear relationship
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with TOC, consistent with the brittle mineral content shown
by XRD analysis, indicating the impact of the microfracture
system formed by the thermal evolution of organic matter on
acoustic wave propagation characteristics (Fu et al., 2025). These
features have significant correlations with the rhythmic interlayer
structure of “deep-water-shallow-water alternating shelf deposition”
in the Qiongzhusi Formation of the research block. The INN
model, through its adaptive feature selection mechanism, effectively
identifies the organic matter enrichment patterns in the research
block, providing a new technical approach for evaluating overmature
shale gas reservoirs.

The INN-BIC model’s prediction results are shown in Figure 6.
The coefficient of determination (R?) between the predicted and
measured TOC values for the training, testing, and total sample
sets all exceed 0.89, showing good fitting performance. This result
validates the accuracy and reliability of the INN-BIC model in
predicting TOC for source rocks, providing reliable technical
support for subsequent research.

4 Application

To verify the prediction accuracy of the INN-BIC model,
systematic validation was carried out on three key wells, JY1, JY2,
and JS103 (Figure 7). Specifically, the INN-BIC model demonstrated
excellent fitting performance in the three wells, with coefficients of
determination (R?) reaching 0.93, 0.90, and 0.86, respectively. This
clearly indicates the INN-BIC model’s significant ability to explain
the variability of TOC data. At the same time, the model’s prediction
error metrics were also outstanding, as shown in Table 3. The average
absolute error (MAE) and root mean square error (RMSE) for Well
JY1 were 0.119 and 0.198, respectively, while for Well JY2, the MAE
and RMSE were 0.184 and 0.227, respectively. Among them, the well
with the largest sample size, JS103, showed the highest prediction
accuracy, with an MAE of only 0.0467 and an RMSE of 0.0647. These
results fully validate the INN-BIC model’s robust, high-precision
prediction capability and broad adaptability under different data
scales and geological conditions.

The actual application results for Well JS103, shown in Figure 8,
indicate that the INN-BIC model’s predictions are in good agreement
with the core experimental results, with accuracy significantly
improved over the original INN model. The model effectively
overcame the modeling bottleneck of TOC prediction in highly
heterogeneous shale reservoirs (e.g., the 3,350 m-3,390 m section).
Under small sample conditions, the INN-BIC model exhibited
exceptional prediction accuracy and demonstrated efficient offline
inversion capability based on analytical formulas, providing a technical
tool for shale organic matter abundance evaluation. The research
results show that the INN, optimized using the BIC, is applicable
for TOC prediction in highly heterogeneous reservoirs.

5 Discussion and future work
5.1 Method comparison discussion

To further verify the superiority of the INN-BIC model, a multi-
method comparison analysis was conducted on Well JS103 (Table 4).
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TABLE 4 Comparison of results of different prediction methods.

10.3389/feart.2025.1696607

Prediction Coefficient of Mean absolute Root mean Relative
algorithm determination error square error improvement
/R2 /MAE /RMSE rate/%
Stepwise regression 0.07 0.422 1.355 1239%
BP Neural Network (BP) 0.48 0.113 0.1529 179.2%
Support Vector 0.69 0.085 0.1338 124.6%
JS103 Machines (SVM)
original INN model 0.52 0.091 0.1154 165.4%
(INN)
INN-BIC 0.86 0.047 0.0647 —

The Relative Improvement Rate refers to the improvement rate of the proposed INN-BIC model in this study compared to other models.

In this analysis, the original INN neural network used both quadratic
and cubic polynomial terms for fitting, and the model achieved its
best performance with the following expression (Equation 7):

TOC, 1 U U -0.15705
TOC, | [ 1 U, 13 U3 0.095912
: A -0.01813
TOC, 1 U, VU3 0.001186
1 LogRD; (LogRD;)* (LogRD;)? 58.64217272
1 LogRD, (LogRD,)* (LogRD,)? —85.43489984
o : : 40.04233730
1 LogRD, (LogRD,)* (LogRD,)’ —6.05899064
1 LogRS; (LogRS;)* (LogRS,)? ~59.01392737
| 1 LogRs, (LogRS,)* (LogRS,)? 88.11199249
: : : : —42.06969133
1 LogRS, (LogRS,)* (LogRS,)’ 6.46564597
1 AC, AC} AC} 2.02191607
NI ACE AC -0.02480623
o ~0.00077723
1 AC, AC% AC} 0.00001078
1 GR, GR! GR} 1.58770991
.| 1 GR GR: GR} -0.04150141 ,
S 0.00034800
1 GR, GR? GR’ 0.00000089
7

In the formula, n is the number of sample points; ¢’ for the
global error.

The results show that the coefficient of determination (R?) of
the INN-BIC model is approximately 11 times, 79%, and 25%
higher than the three traditional computational methods: stepwise
regression, BP neural network, and SVM models, respectively.
Compared to the original INN model, the INN-BIC model improved
by 65%. Furthermore, the INN-BIC model achieved the lowest
average absolute error (MAE) and root mean square error (RMSE),
highlighting the model’s advantages in prediction accuracy and
stability.

From the example application of Well JS103 in Figure 7, it
can be seen that, in the depth interval of 3,350 m-3390 m, where
the mineral composition undergoes dramatic changes and strong
heterogeneity is developed, the three traditional prediction models
(stepwise regression, BP neural network, SVM) as well as the
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original INN model show clear limitations. Specifically, the four
algorithms exhibit a delayed response to rapid fluctuations in TOC
content, struggling to accurately identify such complex changes and
showing poor convergence. Additionally, under the limited sample
conditions of core experiments, traditional methods fail to capture
the complex nonlinear relationships between reservoir parameters
and well log responses. In lithological transition zones, significant
deviations in prediction results are observed. In contrast, the INN
model, with its reversible computation architecture, demonstrates
unique advantages. Through the backpropagation mechanism, the
model decodes the implicit mapping relationship between geological
parameters and well log responses, accurately tracking TOC content
changes and effectively reducing fitting errors. The prediction results
show a high degree of agreement with the core experimental data,
confirming the model’s applicability to highly heterogeneous shale
layers. More importantly, this model supports offline high-precision
inversion of TOC content based on analytical formulas, without
relying on artificial intelligence platforms.

5.2 Algorithm advantages discussion

This study innovatively introduces the INN into the field of
shale TOC prediction, overcoming the challenge of low prediction
accuracy of traditional algorithms in highly heterogeneous
geological environments. Various prediction methods were
examined in this study. The stepwise regression method performs
linear transformations for highly correlated parameters, but its
prediction accuracy significantly decreases when there is a complex
nonlinear relationship between well log parameters and TOC.
On the other hand, SVM and BP neural network can perform
nonlinear fitting, which improves prediction accuracy to some
extent; however, their processes are hidden within the network,
making it difficult to interpret the geological significance between
the predicted results and output parameters. The original INN
model can effectively solve this problem, but its network structure is
relatively rigid, with activation functions typically using fixed-degree
polynomials. In such cases, parameter optimization must consider
the contribution of each degree of every feature, which greatly
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increases the training complexity, leading to potential underfitting
and increased prediction bias.

The INN-BIC model proposed in this paper improves upon
this by using the BIC value as an adaptive dynamic parameter to
optimize the input degree of each feature (as shown in Equation 6).
This mechanism automatically discards unnecessary higher-order
terms of features to reduce model fitting dimensions, enabling
the model to quickly converge to a global optimal solution and
accurately characterize TOC variations in lithological transition
zones. Ultimately, by summing the weighted outputs of each sub-
network model, a mathematical expression with clear geological
and physical meaning is obtained, which can explain the geological
significance between well log parameters and TOC. Additionally,
the model can be processed offline without relying on artificial
intelligence platforms. The application examples from three key
wells in the research block demonstrate that the model significantly
improves the prediction accuracy and interpretability of TOC in
highly heterogeneous shale layers, providing effective technical
support for shale gas sweet spot.

5.3 Future work

Although the INN model demonstrates significant advantages in
predicting TOC content in the Qiongzhusi Formation shale, several
directions for further exploration remain.

A. Multi-source Data Fusion Expansion. The current model
primarily relies on well log data to construct the prediction
relationship. Future research can integrate seismic attributes
(such as velocity and acoustic impedance, which are sensitive
to source rocks), geochemical indicators, and other multi-
source information to build a more comprehensive TOC
prediction system. For example, seismic profiles can be used
to represent and characterize the spatial distribution and
variations of organic matter (Ehsan et al., 2025b; Yu et al., 2023;
Wang et al., 2023; Sahoo et al., 2021).

. Co-inversion with Nuclear Magnetic Resonance (NMR)
Technology. Exploring the integration of Nuclear Magnetic
Resonance (NMR) technology into the analytical framework
could allow for the simultaneous quantification of other key
reservoir parameters (such as porosity and water saturation).
Although the nuclear dipole coupling effect in organic matter
may cause specific signal attenuation, new NMR analysis
methods could be developed to utilize signal differences
to quantitatively assess organic matter abundance and
characteristics, providing complementary information for
TOC prediction (Guo et al., 2025; Garro Linck et al., 2024;
Feng et al., 2023; Jia et al., 2018).

6 Conclusion

The INN-BIC model proposed in this study has been shown
to be highly applicable in predicting the Total Organic Carbon
(TOC) content in the heterogeneous shelf-type shale of the
Qiongzhusi Formation in the Sichuan Basin. The following
important conclusions were drawn.
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A. The INN-BIC model, through feature decoupling and adaptive
degree selection, improves prediction accuracy by 11 times
compared to stepwise regression, 79% compared to BP neural
network, 25% compared to SVM, and 65% compared to
the original INN model. The prediction error is reduced by
82%, significantly improving the evaluation accuracy of highly
heterogeneous shale miner reservoirs.

. The INN-BIC model quantitatively characterizes the nonlinear
relationships between well log parameters and TOC through
adaptive feature selection, effectively identifying the organic
matter enrichment patterns in the research block. It also reveals
the “deep-water-shallow-water alternating shelf deposition”
rhythmic interlayer structure of the Qiongzhusi Formation in
the research block, providing a new technical approach for
evaluating overmature shale gas reservoirs.

The INN-BIC model combines the high accuracy of

machine learning with the interpretability of statistical

C.

models. Its formulaic output is suitable for real-time well
log interpretation and provides reliable quantitative data for
shale gas sweet spot evaluation, driving the transition of
shale gas reservoir evaluation from “experience-driven” to
“data-mechanism integration”
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