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Flash flood hazards on the Qinghai–Tibet Plateau are surging under rapid 
warming and humidification, driving glacier retreat, lake outbursts, and extreme 
precipitation that imperil water security across Asia. To address the limitations 
of studies relying primarily on historical observations and lacking quantitative 
insights into disaster mechanisms and dynamic prediction, this study integrates 
a logistic regression model with the geographical detector approach. Using 
multi-source flash flood records from 1950 to 2023 and 12 environmental 
variables (elevation, slope, precipitation, river network density, land use, etc.), 
the analysis quantifies the interactive effects of key drivers and uncovers the 
nonlinear mechanisms governing flash flood sensitivity. The results indicate 
that: (1) the model demonstrates strong predictive capability, achieving 78% 
accuracy and an AUC of 0.87; (2) mean annual precipitation is the dominant 
factor, while its interaction with river proximity enhances the explanatory 
power of flash flood disasters by 37%, indicating a nonlinear reinforcing 
effect; and (3) high-resolution sensitivity mapping for 2023 reveals that areas 
of high and very high flash flood sensitivity are concentrated in the South 
Tibet Valley and Hengduan Mountains, aligning with regions of glacial lake 
expansion and frequent extreme precipitation. In contrast, medium- and low-
sensitivity areas are widely distributed across the North Tibet Plateau, where 
arid geomorphology and sparse river networks exert dominant control. This 
spatial pattern corresponds closely with regional topographic, climatic, and 
hydrological processes. The study offers a transferable approach for dynamic 
flash flood risk early warning, precise disaster zoning, and improved resilience 
of transboundary basins on the Qinghai–Tibet Plateau.

KEYWORDS

flash flood sensitivity, impact factor, logistic regression, geographical detector, Tibetan 
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 1 Introduction

Flash floods are among the most destructive natural disasters worldwide and 
have become a primary triggering factor in flood disaster chains. Their frequency 
and contribution to overall disaster losses have continued to increase in recent
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years, drawing growing attention to risk assessment research. 
Typically, induced by extreme rainfall in complex mountainous 
terrain, flash floods are characterized by sudden onset, rapid 
propagation, severe destructive force, and extremely short early-
warning windows. Under climate change, the frequency and 
intensity of extreme weather events have risen sharply—particularly 
in ecologically sensitive regions such as the Qinghai–Tibet Plateau, 
where accelerated glacial melt, permafrost degradation, and 
intensified monsoon activity act synergistically. This convergence 
increasingly gives rise to compound flash flood events, including 
rainstorm-induced floods compounded by glacial lake outbursts 
and water–sediment mixed flow hazards. For example, a chain of 
glacial collapse events triggered by heavy rainfall in the Himalayan 
region in 2025 resulted in over 70 fatalities. As a critical tool 
for identifying potential risks and guiding disaster prevention 
and mitigation, flash flood risk assessment has developed into a 
theoretical framework centered on “hazard-exposure-vulnerability” 
paradigm. Nevertheless, substantial disparities in research focus 
and development remain across different regions (Zhang et al., 
2019; Thouret et al., 2013; Wang et al., 2010).

In recent years, significant progress has been achieved in 
international flash flood risk assessment, largely driven by the 
integration of geospatial technologies and numerical modeling. 
By leveraging high-resolution datasets, such as Sentinel satellites 
and LiDAR, and hybrid modeling approaches, developed regions 
in Europe, North America, and the Asia-Pacific have made notable 
breakthroughs in fine-scale risk assessment of urban watersheds 
(Fang et al., 2017; Yang et al., 2025). In terms of model development, 
hybrid architectures have become mainstream. For instance, 
coupling the HEC-RAS hydrodynamic model with machine 
learning algorithms has significantly improved the accuracy and 
efficiency of flood inundation simulations (Burton et al., 1993; 
Rubio et al., 2020). Rubio et al. (Ward et al., 2011) integrated 
meteorological, hydrological, and other indicators to construct a 
susceptibility classification system for Metro Manila, achieving 
model accuracy above 90%. At the regional scale, research has 
increasingly focused on coastal and mountainous watersheds in 
Asia.,Ward et al. (Chinh and Jason, 2018) realized dynamic flood 
risk visualization in Jakarta by combining multi-scale hydrological 
models with GIS-based spatial overlay techniques, while Chinh et al. 
(Hassan et al., 2021) systematically assessed flash flood sensitivity 
in Vietnam’s Quang Nam Province by integrating hazard and 
vulnerability indicators. Similarly, Hassan et al. (Zeng et al., 2020) 
developed a multi-criteria flash flood risk assessment framework, 
incorporating elevation, slope, distance to rivers, and drainage 
density, based on digital elevation models and multi-source satellite 
data. Machine learning and ensemble methods have also shown 
considerable promise. For instance, the integration of MARS, 
RF, and ANN algorithms has enabled accurate susceptibility 
assessments at the vector-based small-watershed scale. Nevertheless, 
current research still faces challenges due to insufficient hydrological 
data, including limitations in the temporal length, sampling 
frequency, and spatial coverage of streamflow observations. Future 
research should emphasize multi-source heterogeneous data fusion, 
rigorous uncertainty analysis, and dynamic risk assessment under 
climate change scenarios to improve both the precision and 
predictive capacity of flash flood risk management.

Significant progress has been achieved in regional flood 
sensitivity assessment in China, with commonly used approaches 
including the entropy weight method, analytic hierarchy process, 
statistical analysis, and fuzzy comprehensive evaluation (Wang et al., 
2018; Wu and Zhang, 2023; Liu et al., 2024; Chen et al., 
2018). For example, Chen et al. (Peng and Zhang, 2022) applied 
principal component analysis to extract disaster-inducing factors 
and developed a flash flood sensitivity indicator system for small 
watersheds, determining weights through the analytic hierarchy 
process. Peng et al. (Wang et al., 2021) selected six indicators 
from hazard and vulnerability dimensions in Zhengzhou City, 
employed a game theory-based combined weighting approach to 
assess urban flood risk, and generated hierarchical risk maps 
using ArcGIS. Wang et al. (Wang, 2018) integrated flash flood 
hazard, exposure, and vulnerability into a comprehensive index 
model for risk classification in Jiangxi Province. Wang et al. 
(Wu et al., 2018) adopted an integrated weighting method and 
ArcGIS spatial interpolation to evaluate flash flood risk across the 
Loess Plateau in Gansu Province. Similarly, Wu et al. (Liu et al., 2019) 
selected nine indicators based on disaster-driving mechanisms in 
Jiangxi Province and used historical disaster points combined with 
randomly generated negative samples to train a random forest 
model for risk prediction. Despite these advances, current studies 
face notable limitations, including the absence of systematic and 
standardized criteria for indicator selection, inadequate validation 
of methodological applicability, and constraints related to data 
precision and spatial coverage. These issues substantially reduce 
the reliability and generalizability of evaluation results, highlighting 
the urgent need for more comprehensive and robust approaches 
(Luo et al., 2018; Yuan et al., 2023; Chang et al., 2021; Zhu et al., 
2024).

With the rapid development of artificial intelligence (AI), 
machine learning (ML) has been increasingly applied to flash 
flood risk assessment, significantly improving the capacity to 
address high-dimensional and nonlinear problems. Flash flood 
susceptibility assessment quantifies the interactions between 
disaster-inducing factors and environmental conditions, providing 
critical scientific support for identifying high-risk areas and enabling 
tiered early warnings. Recent research has shifted from traditional 
hydrological and hydrodynamic models to hybrid approaches 
that combine mechanism-based models (e.g., HEC-HMS/HEC-
RAS) with data-driven algorithms (e.g., Random Forest, Deep 
Neural Networks). This integration leverages the strengths of both 
paradigms, effectively mitigating issues related to data scarcity 
and heterogeneity in mountainous regions, thereby improving 
prediction accuracy and generalization in complex environments. 
For example, Random Forest has been widely employed to quantify 
the contributions of topographic, meteorological, and surface 
factors, while physics-informed LSTM surrogate models developed 
for ungauged basins achieve high-precision predictions with 
enhanced computational efficiency. Furthermore, advances in 
explainable AI (XAI) and cross-source deep learning have improved 
model transparency and strengthened the credibility of risk-
informed decision-making. Despite these advances, key challenges 
persist, including limited model interpretability, low adaptability to 
small-sample scenarios, and high uncertainty in extreme-event 
prediction. Future research should focus on developing meta-
learning frameworks suited to small-sample conditions, enhancing 

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1695343
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2025.1695343

the fusion of multi-source heterogeneous data, and strengthening 
uncertainty quantification to advance AI-driven approaches for 
refined flash flood risk assessment.

Although flood hazard susceptibility has been widely 
investigated in various regions, the Qinghai–Tibet Plateau (QTP), as 
the core area of the “Water Tower of Asia,” still faces challenges such 
as limited assessment accuracy and insufficient understanding of 
flash flood mechanisms (Qiu et al., 2025). Flash floods in this region 
occur within a highly coupled environment involving cryospheric, 
climatic, hydrological, and anthropogenic processes, resulting in 
complex disaster-inducing mechanisms. However, the quantitative 
relationships between environmental factors and flash flood 
occurrences remain poorly understood, constraining the reliability 
of current risk assessments. To address these challenges, this 
study develops a high-precision flash flood sensitivity assessment 
framework for the QTP by integrating a logistic regression 
model with multi-source environmental data. The framework 
quantitatively investigates the disaster-inducing mechanisms driven 
by the synergistic effects of climate, cryosphere, and human 
activities, providing a scientific basis and decision-support tool 
for targeted prevention and control of regional flash flood hazards.

The subsequent content of this article will be structured as 
follows: Section 2 provides a detailed description of the study 
area overview, sources and preprocessing methods of multi-source 
data, as well as core research methods such as logistic regression 
and the geographical detector; Section 3 conducts flood disaster 
susceptibility assessment through model parameter optimization 
and validation, analyzes the mechanism of action of key disaster-
causing factors, and generates a spatial distribution map of flood 
susceptibility in the study area; Section 4 summarizes the core 
conclusions of the research, points out the limitations of the 
current study, and proposes future research directions for further 
development, forming a complete research chain of “Data-Methods-
Results-Conclusions”. 

2 Study area and data

2.1 The study area

The Qinghai–Tibet Plateau (QTP), situated in the core of 
south-central Eurasia, spans 26°00′–39°47′N and 73°19′–104°47′E, 
extending south to the Himalayas, north to the Kunlun–Qilian 
tectonic belt, west to the Pamir Plateau, and east to the Hengduan 
Mountains. Covering approximately 2.5 × 106 km2, about 26.8% of 
China’s land area—the QTP includes the entire Tibet Autonomous 
Region and Qinghai Province, as well as parts of western Sichuan, 
northwestern Yunnan, and southern Gansu. Formed by the 
ongoing collision and uplift of the Indian and Eurasian plates, the 
plateau averages over 4,000 m in elevation and features ultra-high 
mountains, deeply incised valleys, and layered plateaus, earning it 
the title “Water Tower of Asia.” Hosting about 4.9 × 104 km2 of 
modern glaciers, it serves as the headwater region of ten major Asian 
rivers and contributes nearly 25% of China’s total river runoff. The 
plateau also contains over 1,500 lakes, forming a complex drainage 
system of both endorheic and exorheic basins. This distinctive 
geo-hydrological setting makes the QTP highly prone to flash 
flood hazards, primarily driven by intense rainfall and glacial lake 

outburst floods (GLOFs) (Wang et al., 2025). These events are 
characterized by sudden onset, strong regionality, and cascading 
impacts, causing severe socioeconomic and environmental losses. 
Consequently, systematic flash flood risk assessment across the 
QTP is crucial for understanding disaster-inducing mechanisms and 
enabling precise regional disaster prevention and mitigation. The 
study area is shown in Figure 1.

2.2 Research data

This study systematically evaluated flood sensitivity in high-
mountain regions using multi-source datasets. Historical flood 
inventory data (1950–2023) were obtained from the Institute of 
Tibetan Plateau Research, Chinese Academy of Sciences (CAS), 
while precipitation and temperature data were sourced from the 
National Tibetan Plateau Data Center. Topographic variables, the 
Topographic Wetness Index (TWI), and runoff data were derived 
from the National Aeronautics and Space Administration (NASA). 
Land use information was provided by the Institute of Remote 
Sensing and Information Processing, Wuhan University, whereas 
river network and road distance data were obtained from China’s 
Fifth-Level River Vector Dataset and the OpenStreetMap Global 
Primary Roads dataset, respectively. Lithological data were extracted 
from the Global Lithological Map. Based on flood events recorded 
on the Qinghai–Tibet Plateau from 1950 to 2023, key attributes such 
as occurrence time, location, disaster type, triggering cause, and 
rainfall amount were compiled. Twelve flood-regulating factors were 
selected as independent variables to assess the spatial susceptibility 
of flood disasters, with detailed data sources summarized in Table 1.

To ensure data reliability, targeted quality control measures were 
implemented for different types of data:For meteorological data, 
this study adopted the “neighboring station interpolation + time 
series smoothing” method to handle missing values. For single-day 
missing data at individual stations, the distance-weighted average 
method was used to supplement the data using observations from 
3 surrounding stations with no missing data in the same period; 
for continuous missing periods of more than 3 days, linear trend 
analysis combined with historical mean correction was applied to 
ensure the continuity of the time series. For LUCC (Land Use 
and Land Cover Change) data, ambiguous classification boundaries 
(e.g., forest-grass transition zones) were manually corrected using 
high-resolution Google Earth images to ensure the accuracy of 
land cover boundaries. For river network and road vector data, 
“topological inspection + field location verification” was used to 
remove erroneous data—specifically, river network vector segments 
with self-intersections or dangling nodes were deleted, and road data 
inconsistent with actual terrain were corrected to meet the accuracy 
requirements of spatial analysis.

Consistency matching of all factor data was completed on 
the ArcGIS platform. High-resolution data such as LUCC and 
topographic data were resampled to a 500 m resolution using 
the “nearest neighbor method”; continuous variables including 
annual precipitation and elevation were classified using the “natural 
breaks method” to lay the foundation for the geographical detector 
model analysis. Finally, a multi-factor raster database covering the 
entire study area was constructed to ensure the consistency and 
comparability of data used in subsequent modeling. 

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1695343
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2025.1695343

FIGURE 1
Study area.

2.2.1 Flood impact factors
Flood sensitivity arises from complex, nonlinear interactions 

among multiple factors. This study established an assessment 
framework by integrating 12 variables across four categories: 
geographic, meteorological, hydrological, and environmental. 
Geographic factors include elevation (Elev), slope gradient (Slope), 
plan curvature (PC), profile curvature (PrC), distance to river 
networks (DRN), and distance to roads (DR), which jointly regulate 
precipitation patterns, runoff velocity, flow convergence, and 
surface hardening effects near roadways. Meteorological factors 
comprise mean annual precipitation (MAP) and mean annual 
temperature (MAT), representing direct water supply and indirect 
control over snowmelt and precipitation forms. Hydrological 
factors, including the Topographic Wetness Index (TWI) and 
runoff (Flow), characterize potential waterlogging zones and 
upstream inflow contributions to flood peaks. Environmental 
factors consist of land use/land cover (LUCC) and lithology (Lith), 
reflecting their influence on infiltration, runoff generation, and 
terrain permeability. All variables were processed consistently 
in ArcGIS, including uniform resampling to 500 m resolution, 
natural breaks classification, image mosaicking, study area masking, 
spatial interpolation, and Euclidean distance calculations. The 
resulting multi-factor raster database provides a standardized, 
comparable foundation for flood sensitivity modeling, with the 
spatial distribution of each factor illustrated in Figure 2.

2.3 Research methods

2.3.1 Logistic regression
Logistic regression is widely applied to binary classification tasks 

and effectively models the nonlinear relationship between flood 
occurrence probability (P) and multiple explanatory factors. In 
this study, P is defined by Equations 1, 2, with model parameters 
estimated via the maximum likelihood method to quantify the 
contribution of each factor.

p = 1
1+ e‐z

(1)

z = b0 + b1x1 + b2x2 +⋯+ bnxn (2)

Where: b0 is the intercept of the model; bi (i = 1,2, …n)are the 
slope coefficients of the logistic regression model; and xi (=0,1,2, 
…n) are the independent variables. Using the logistic regression 
model, we can quantify the specific impact of each explanatory factor 
on flood occurrence, thereby providing a scientific basis for flood 
control measures. 

2.3.2 Geographical Detector
The Geographical Detector is employed to assess the spatial 

heterogeneity of individual factors and their interaction effects, with 
the q-value (Equation 3) serving as the core metric. A higher q-value 
indicates greater explanatory power for the spatial distribution of 
floods. All continuous independent variables were discretized using 
the natural breaks method prior to calculation.

q = 1‐
∑L

h=1
Nhσ2

h

Nσ2 (3)

Where: L is the number of factor classes;Nh andσ2
h are the sample 

size and variance of the hth class, respectively; N and σ2 are the total 
sample size and total variance, respectively, q ∈ [0,1]. A larger q-
value indicates a stronger explanatory power of the factor on the 
spatial differentiation of flood disasters. 

2.3.3 Verification method
In evaluating LR models, accuracy, precision, recall, F1-score, 

ROC curve, and AUC are commonly used to assess classification 
performance. Accuracy measures the proportion of correctly 
classified samples, providing an intuitive evaluation of model 
effectiveness. In Equation 4, True Positives (TP) represent correctly 
identified positive samples, True Negatives (TN) denote correctly 
identified negative samples, False Positives (FP) are negative samples 
misclassified as positive, and False Negatives (FN) are positive 
samples misclassified as negative.

Accuracy = TP+TN
TP+ FP+TN+ FN

× 100% (4)
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TABLE 1  Basic data.

Impact factors Name Data Time Resolution Source

Meteorological elements”

Mean Areal Precipitation 
(MAP)

1-km monthly precipitation 
dataset for China (1901–2023)

1950–2023 1 km

https://data.tpdc.ac.cn/
zh-hans/data/faae7605-a0f2-

4d18-b28f-5cee413766a2

Mean Areal Temperature 
(MAT)

1-km monthly mean 
temperature dataset for china

https://data.tpdc.ac.cn/
zh-hans/data/71ab4677-b66c-

4fd1-a004-b2a541c4d5bf

Topographic elements

Elevation

NASA SRTM Digital Elevation 
90m

— 90 m

https://developers.google.com/
earth-engine/datasets/catalog/
CGIAR_SRTM90_V4?hl=zh-

cn#description

Slope https://zenodo.org/records/
12779975

Plan Curvature (PC) https://open.geovisearth.com/

Profile Curvature (PrC) https://
www.openstreetmap.org/

#map=5/38.01/-95.84

Hydrological elements

Topographic Wetness Index 
(TWI)

NASA SRTM Digital Elevation 
90m

— 90 m

https://
www.geo.uni-hamburg.de/en/

geologie/forschung/
aquatische-geochemie/

glim.html

Flow https://data.tpdc.ac.cn/
zh-hans/data/faae7605-a0f2-

4d18-b28f-5cee413766a2

Environmental elements

Land Use and Land Cover 
Change (LUCC)

China Land Cover Dataset

1990–2023

30 m

https://data.tpdc.ac.cn/
zh-hans/data/71ab4677-b66c-

4fd1-a004-b2a541c4d5bf

Distance to River Networks 
(DRN)

China’s Fifth - Level River 
Vector Dataset

https://developers.google.com/
earth-engine/datasets/catalog/
CGIAR_SRTM90_V4?hl=zh-

cn#description

Distance to Roads (DR) Open Street Map Global 
Primary Roads

— https://zenodo.org/records/
12779975

Lithological factor Lith Global Lithological Map — 1:375,000 https://open.geovisearth.com/

Geographical elements

1:1,000,000 Scale 
Administrative Boundary Data

Administrative boundaries 
data at 1:1,000,000 scale over 

the Tibetan Plateau

2017 1:1,000,000 https://www.tpdc.ac.cn/
zh-hans/data/848ac234-f69b-

438f-9310-4830fb153374/

Historical Floods in the 
Qinghai-Tibet Plateau and Its 

Surrounding Areas

Floods inventory in High 
Mountain Asia

1950–2023
100 m - 1 km

https://data.tpdc.ac.cn/
zh-hans/data/1a718611-44a8-

4faf-a9f1-928e368d534c

The Qinghai-Tibet Plateau and 
Its Railway Corridors

Compilation of major flash 
flood along the Sichuan Tibet 

line and surrounding areas

1840–2019
10m–100m

https://data.tpdc.ac.cn/
zh-hans/data/62908d95-cf43-

4932-8127-080be3e9b463

Precision measures the proportion of correctly identified 
positive samples among all predicted positives (Equation 5), 
reflecting the model’s accuracy in positive classification. Recall 
quantifies the proportion of actual positives correctly detected 

(Equation 6), indicating the model’s ability to identify positive 
instances. The F1-score, the harmonic mean of precision 
and recall (Equation 7), provides a balanced assessment, 
particularly under class imbalance. The ROC curve visualizes 

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1695343
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://zenodo.org/records/12779975
https://zenodo.org/records/12779975
https://open.geovisearth.com/
https://www.openstreetmap.org/#map=5/38.01/-95.84
https://www.openstreetmap.org/#map=5/38.01/-95.84
https://www.openstreetmap.org/#map=5/38.01/-95.84
https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html
https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html
https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html
https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html
https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4?hl=zh-cn#description
https://zenodo.org/records/12779975
https://zenodo.org/records/12779975
https://open.geovisearth.com/
https://www.tpdc.ac.cn/zh-hans/data/848ac234-f69b-438f-9310-4830fb153374/
https://www.tpdc.ac.cn/zh-hans/data/848ac234-f69b-438f-9310-4830fb153374/
https://www.tpdc.ac.cn/zh-hans/data/848ac234-f69b-438f-9310-4830fb153374/
https://data.tpdc.ac.cn/zh-hans/data/1a718611-44a8-4faf-a9f1-928e368d534c
https://data.tpdc.ac.cn/zh-hans/data/1a718611-44a8-4faf-a9f1-928e368d534c
https://data.tpdc.ac.cn/zh-hans/data/1a718611-44a8-4faf-a9f1-928e368d534c
https://data.tpdc.ac.cn/zh-hans/data/62908d95-cf43-4932-8127-080be3e9b463
https://data.tpdc.ac.cn/zh-hans/data/62908d95-cf43-4932-8127-080be3e9b463
https://data.tpdc.ac.cn/zh-hans/data/62908d95-cf43-4932-8127-080be3e9b463
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2025.1695343

FIGURE 2
Disaster-inducing factors map (a) Elevation. (b) Slope. (c) Plan curvature. (d) Profile curvature. (e) Mean areal precipitation. (f) Mean areal temperature.
(g) Topographic wetness index. (h) Flow. (i) LUCC. (j) Distance to river network. (k) Distance to roads. (l) Lith..

classification performance by plotting the True Positive Rate 
(TPR) against the False Positive Rate (FPR) across varying 
thresholds, while the Area Under the Curve (AUC) quantifies 
discriminative capability. An AUC closer to 1 indicates stronger 
predictive power, with values above 0.9 generally considered
excellent.

Precision = TP
TP+ FP

(5)

Recall = TP
TP+ FN

× 100% (6)

F1 = 2× Preision×Recall
Precision+Recall

(7)

2.4 Research framework

This study investigates flash flood hazards on the Qinghai–Tibet 
Plateau by integrating historical disaster records with multi-
source environmental data. Flash flood events from 1950 to 
2023 were systematically compiled, and a comprehensive set of 
disaster-inducing factors—including geographical, hydrological, 
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FIGURE 3
Technical roadmap.

and meteorological variables—was selected based on domestic 
and international literature. These factors were standardized and 
resampled to a uniform spatial resolution of 500 m to construct 
an explanatory variable database. A LR model was employed 
to quantitatively analyze the relationship between each factor 
and the probability of flash flood occurrence. Using the ArcGIS 
platform, disaster and non-disaster points were randomly generated 
in a 1:2 ratio and divided into training and validation sets (80% 
and 20%, respectively). Specifically, these points were generated 
by random sampling within the study area mask but outside 
a 5-km buffer zone surrounding all known flood events. This 
constraint effectively mitigates potential label leakage and spatial 
autocorrelation, thereby strengthening the methodological rigor 
of our analysis. Model performance was rigorously evaluated 
using multiple metrics, including accuracy, precision, recall, 
F1-score, and ROC curves. Based on the results, a 500 m-
resolution sensitivity classification map of flash flood disasters 
was produced, and potential high-risk areas were identified. 
These findings provide a scientific basis for flash flood risk 
assessment, disaster prevention, and mitigation strategies on 
the Qinghai–Tibet Plateau. The overall technical framework is 
illustrated in Figure 3. 

3 Flood sensitivity assessment and 
validation

3.1 Model parameter selection and 
accuracy verification

In model construction and parameter optimization, a LR 
with L2 regularization (penalty = 'l2′) was employed to control 
model complexity, effectively reducing overfitting and enhancing 
generalization. The regularization strength parameter C was 
set to 1, balancing model stability and goodness of fit. The 
LBFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) 
solver was chosen for optimization due to its suitability for 
small-to-medium-sized datasets, offering efficient convergence 
and numerical stability under limited memory conditions. The 
maximum number of iterations was set to 1000 (max_iter = 
1000) to ensure stable convergence in the high-dimensional
feature space.

Model performance, summarized in Figure 3, demonstrates 
strong predictive capability. The test set accuracy reached 78%, 
indicating robust overall classification. Precision was 77%, reflecting 
reliable identification of flash flood-prone areas, while recall 
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FIGURE 4
Roc curve and confusion matrix.

was 79%, indicating effective capture of positive events with 
minimal false negatives. The F1-score of 78% highlights a balanced 
performance between precision and recall. Additionally, the 
AUC was 0.87, confirming excellent discriminative ability across 
different thresholds. This indicates the model can effectively 
distinguish between flash flood and non-flash flood scenarios, 
meeting the requirements for disaster susceptibility assessment 
in the complex alpine environment of the Qinghai-Tibet 
Plateau. The ROC curve and confusion matrix are presented in
Figure 4.

3.2 Flash flood sensitivity assessment

Using the logistic regression model combined with GIS spatial 
analysis, twelve flood-inducing factors were systematically evaluated 
to assess flood sensitivity across the Qinghai-Tibet Plateau, 
resulting in a 500 m resolution flood sensitivity map. Model output 
probabilities were reclassified into five susceptibility levels at 0.2 
intervals: very low (P ≤ 0.2), low (0.2 < P ≤ 0.4), moderate (0.4 < P 
≤ 0.6), high (0.6 < P ≤ 0.8), and very high (0.8 < P ≤ 1), enabling 
quantitative and hierarchical characterization of flood sensitivity 
in the study area. As shown in Figure 5, most of the plateau 
exhibits low flood sensitivity. Specifically, very low, low, moderate, 
high, and very high susceptibility levels account for 64.4%, 
20.78%, 9.74%, 3.53%, and 1.55% of the total mountainous area,
respectively.

Spatially, regions such as the Kunlun Mountains, Tanggula 
Mountains, and northern Tibetan Plateau display very low 
flash flood probability, largely due to high-elevation topography, 
hydrological characteristics of river source areas, and limited 
surface runoff convergence. In contrast, southern and eastern 
regions—including the Southern Tibetan Valleys, Hengduan 
Mountains, Huangshui River Valley, and Datong River 
Basin—exhibit higher flood sensitivity. These areas lie within the 

transitional zone between China’s first and second topographic 
steps, characterized by significant topographic relief. They are also 
strongly influenced by the Indian Ocean southwest monsoon during 
summer, leading to concentrated and intense precipitation, which 
rapidly generates surface runoff and increases flash flood risk. The 
Hengduan Mountains, with steep river valleys and rapid water 
flow, are particularly prone to flash floods following heavy rainfall. 
The Huangshui River Valley and Datong River Basin experience 
intensive human activity and land use changes, which alter surface 
cover and further amplify runoff and flood susceptibility. Overall, 
the interaction of natural topography, climatic factors, hydrology, 
and anthropogenic influences collectively intensifies the suddenness 
and severity of flash flood events in these high-risk regions of the 
Qinghai-Tibet Plateau.

The classification standard in this study was determined 
based on two comprehensive considerations:First, it refers to 
existing research results on flood disasters on the Qinghai-Tibet 
Plateau. Specifically, it draws on the “probability-based susceptibility 
classification method” in the Technical Guidelines for Flash Flood 
Disaster Risk Assessment on the Qinghai-Tibet Plateau (Northwest 
Institute of Eco-Environment and Resources, Chinese Academy of 
Sciences, 2022). This guideline, developed considering the alpine 
climate and sparse data characteristics of the Qinghai-Tibet Plateau, 
recommends a 5-level classification system with 0.2 intervals, 
which has been verified for applicability in sub-regional studies 
such as southeastern Tibet and the Hengduan Mountains. Second, 
it is based on the adaptability verification of the data in this 
study. By analyzing the correspondence between 1,276 historical 
flood points (1950–2023) on the Qinghai-Tibet Plateau and the 
probability values output by the model, it was found that 82.3% 
of the historical flood points were concentrated in areas with 
probability values ≥0.4, and 59.7% of major flood events were 
distributed in areas with probability values ≥ 0.6. This indicates that 
the classification can effectively distinguish “low-risk - moderate-
risk - high-risk” areas, avoiding the omission of high-risk areas or 
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FIGURE 5
Flash flood Disaster Susceptibility Classification Map of the Qinghai-Tibet Plateau.

misjudgment of low-risk areas due to unreasonable classification
intervals.

The classification of different susceptibility levels provides clear 
decision-making guidance for the precise prevention and control 
of regional flood disasters:Very low susceptibility areas have a 
flood occurrence probability of less than 20% and no historical 
records of major floods. Only basic meteorological monitoring 
stations need to be retained to reduce redundant disaster prevention 
investment. Low susceptibility areas require the establishment of 
a seasonal monitoring mechanism to strengthen the observation 
of precipitation and river water levels during the rainy season. 
Moderate susceptibility areas need to be equipped with regular 
early warning equipment and supporting simple flood control 
projects. High susceptibility areas should establish a closed-loop 
“monitoring - early warning - response” system, set up multi-factor 
automatic monitoring stations, and formulate targeted evacuation 
plans. Very high susceptibility areas, as core flood control zones, 
require increased density of monitoring stations, promotion of 
high-standard flood control projects, and inclusion in the national 
key flood risk management list to enhance regional disaster
resilience. 

3.3 Interpretability analysis using 
geographical detector

3.3.1 Single-factor q-value analysis
Geographical Detector analysis was conducted on the 12 

selected disaster-inducing factors to obtain the q-values representing 
each factor’s explanatory power for the spatial variability of flood 
disasters (Figure 6). The results indicate that annual precipitation, 
with the highest q-value, is the most critical single factor influencing 

flood disasters on the Qinghai-Tibet Plateau. This highlights the 
dominant role of regional climatic characteristics in the flood 
formation process by directly providing the water source foundation, 
and profoundly reflects the core mechanism of climate-driven 
hydrological disasters. Distance to rivers and Topographic Wetness 
Index (TWI) also exhibited high explanatory power, further 
demonstrating the importance of hydrological factors in flood 
disaster formation: distance to rivers affects confluence paths and 
efficiency, while TWI characterizes surface saturation status and 
runoff retention capacity. Together, these two factors regulate 
the convergence process of surface runoff, thereby significantly 
constraining the spatial distribution pattern of flood disasters. In 
addition, topographic factors such as elevation and plan curvature 
also had relatively high q-values, providing quantitative evidence 
that topography influences flood risk by regulating confluence 
velocity and direction, and revealing the fundamental regulatory 
role of geomorphic conditions in flood formation. In contrast, 
factors such as lithology, temperature, and land use had relatively low 
q-values, indicating their limited direct contribution to the spatial 
variability of flood disasters. These factors may play a role in more 
indirect or complex interactive processes.

3.3.2 Interaction factor analysis
Results from the interaction analysis using Geographical

Detector (Figure 7) indicate that the formation of flood disasters 
on the Qinghai-Tibet Plateau is significantly influenced by the 
synergistic enhancement effect of multiple factors. The explanatory 
power (q-value) of all interaction combinations is higher than 
that of individual factors, confirming that the flood occurrence 
mechanism in this region is highly complex and coupled, resulting 
from the combined action of topographic, climatic, and hydrological 
elements. Among all interaction combinations, the interaction 
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FIGURE 6
Single-Factor q-Value Results of Geographical Detector.

between precipitation (X5) and distance to rivers (X10) is the most 
prominent. Both factors already exhibited strong explanatory power 
in the single-factor analysis, and their q-value increased significantly 
after interaction. Their synergistic mechanism can be explained 
as follows: intense precipitation provides sufficient water input for 
flood occurrence, while areas adjacent to rivers—characterized by 
large hydraulic gradients, short confluence paths, and high erosion 
susceptibility—are more prone to rapid runoff convergence and 
sharp water level rises after extreme rainfall, thereby significantly 
increasing flood risk. This mechanism is particularly typical in high-
risk areas such as the Southern Tibetan Valleys and Hengduan 
Mountains. These regions have dense river networks and are 
controlled by the southwest monsoon in summer, leading to high-
intensity and concentrated precipitation—factors that collectively 
result in frequent flood events.

Furthermore, the interaction between elevation and 
precipitation further reveals the critical regulatory mechanism 
of topography on precipitation phase and runoff generation-
confluence processes. In the mountain-plateau transition zone at 
elevations of 2000–4,000 m, precipitation is dominated by rainfall. 
Combined with significant topographic relief, this leads to rapid 
runoff generation, short confluence time, and high flood risk. In 
contrast, in high-elevation areas above 4,000 m, snow accumulates 
in winter, and the superposition of summer snowmelt and intense 
rainfall events significantly increases the complexity of runoff 
formation and the probability of flood occurrence. This mechanism 
reasonably explains the spatial distribution characteristic where 
areas with moderate or higher susceptibility levels account for 
over 50% of the mid-to-high elevation regions, highlighting the 
controlling effect of elevation differentiation on the Flood sensitivity 
pattern. On the other hand, the interaction effect between slope 
and distance to roads reflects the synergistic impact of human 
activities and natural topographic factors: in steep slope areas with 

a slope greater than 25°, road construction alters local hydrological 
processes, intensifies surface runoff convergence and soil erosion, 
resulting in high susceptibility levels accounting for 20% of this 
interaction area—significantly higher than the contribution of 
either single factor. This also explains why Flood sensitivity is 
significantly enhanced in steep, road-dense regions such as the 
Hengduan Mountains. In summary, the formation of flood disasters 
on the Qinghai-Tibet Plateau is the result of the synergistic action 
of multi-dimensional factors, including precipitation, topography, 
river proximity, and human activities. Interaction effects generally 
exhibit nonlinear enhancement characteristics, which improve the 
explanatory power for the spatial variability of floods. 

3.4 Interpretability analysis of key 
disaster-inducing factors

Flash flood susceptibility on the Qinghai-Tibet Plateau is 
governed by a combination of climatic, topographic, hydrological, 
and anthropogenic factors, which interact nonlinearly to shape 
spatial variability (Figure 8). Annual average precipitation is the 
primary natural driver, with susceptibility increasing sharply above 
800 mm due to soil saturation, reduced shear strength, and runoff 
erosion, while extreme precipitation (>1200 mm) triggers large-
scale cascading disasters (Figure 8a). Human disturbances, proxied 
by proximity to roads, exacerbate risk in steep terrain, with high 
susceptibility concentrated within 5 km of roads and diminishing 
with distance (Figure 8b). Elevation influences susceptibility 
nonlinearly: mid-to-high elevations (2000–6,000 m) exhibit the 
most complex patterns due to climate-topography interactions 
and freeze-thaw effects, whereas ultra-high areas (>6,000 m) 
generally experience lower flood frequency (Figure 8c). Rivers 
strongly modulate flash flood risk through bank erosion and slope 
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FIGURE 7
Interaction factor analysis map.

instability, with susceptibility declining markedly beyond 200 km 
from river channels (Figure 8d).

TWI reflects terrain moisture retention, with high TWI 
zones (≥12) serving as core high-susceptibility areas, particularly 
when coupled with intense precipitation and mid-elevation terrain 
(Figure 8e). Slope further modulates risk: gentle slopes concentrate 
higher susceptibility, moderate slopes benefit from partial vegetation 
stabilization, and steep slopes (>30°) exhibit lower susceptibility 
due to rapid runoff dispersion (Figure 8f). Collectively, these factors 
interact synergistically, producing nonlinear enhancement effects 
that control the distribution and intensity of flash flood hazards 
across the plateau.

Overall, these factors interact synergistically, producing 
nonlinear enhancement effects that determine the spatial 
distribution and intensity of flash flood hazards. Flash flood 
susceptibility is not controlled by a single variable but emerges 
from the combined influence of climate, geomorphology, hydrology, 
and human disturbance. High-risk areas are concentrated in mid-
elevation valleys, river-adjacent zones, and high-TWI terrains, 
where precipitation, topography, and human activities collectively 
amplify flash flood potential. These results provide a mechanistic 
understanding of flash flood hazard patterns across the plateau, 
offering a scientific basis for targeted flash flood risk assessment and 
mitigation strategies. 

4 Conclusion

This study produced a 500 m-resolution flash flood sensitivity 
map of the Qinghai-Tibet Plateau using a logistic regression model 
that integrated multi-source disaster-inducing factors and historical 
flash flood data. The model exhibited robust performance, with 
accuracy, precision, recall, and F1-score above 77% and an AUC 
of 0.87, confirming its reliability for complex plateau environments. 

Geographical Detector analysis identified annual precipitation (q = 
0.2009), elevation (q = 0.1917), distance to rivers (q = 0.1173), and 
Topographic Wetness Index (q = 0.1619) as primary drivers, with the 
interaction between precipitation and river proximity emphasizing 
the role of hydrodynamic forces and runoff convergence. High 
and very high susceptibility areas (∼5.08%) are concentrated in 
the Southern Tibetan Valleys and Hengduan Mountains, whereas 
low and moderate zones dominate the Northern Tibetan Plateau 
and Kunlun Mountains. The spatial correspondence with historical 
disaster points further validates the model’s predictions.

Limitations include potential underestimation in sparsely 
populated areas (Qiu et al., 2025) with limited records. Future 
research should leverage higher-resolution remote sensing, multi-
source data fusion, and physics-informed deep learning models (e.g., 
PINNs), alongside coupled precipitation-runoff-disaster modeling 
and uncertainty quantification, to enhance predictive accuracy and 
support decision-making under extreme climate scenarios. Our 
proposed pathway is threefold: First, to integrate multi-source 
inventories by combining official agency data with media and 
crowdsourced records under a unified framework. Second, to 
leverage satellite remote sensing (e.g., optical/radar flood extents, 
soil moisture, and high-resolution precipitation) for independent 
event verification and bias characterization. Third, to conduct 
region-specific validation via targeted field checks or expert review, 
which will allow for the refinement of model thresholds and 
ultimately enhance the reliability of susceptibility maps. 

5 Disscussion

The results of the flood disaster susceptibility study on the 
Qinghai-Tibet Plateau obtained by coupling the logistic regression 
model with the geographical detector method in this study 
are highly consistent with and complement existing regional 
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FIGURE 8
Impact degree of different factors (a) Mean annual precipitation. (b) Distance to road. (c) Elevation. (d) Distance to river. (e) Topographic Wetness Index 
(TWI). (f) Slope.

research results. In terms of key disaster-inducing factors, annual 
precipitation (q = 0.2009) and elevation (q = 0.1917) were identified 
as the primary driving factors, which is consistent with the 

conclusion in the Technical Guidelines for Flash Flood Disaster 
Risk Assessment on the Qinghai-Tibet Plateau (Northwest Institute 
of Eco-Environment and Resources, Chinese Academy of Sciences,
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2022) that “precipitation concentration and topographic relief are 
the core controlling factors of floods on the plateau”. Relying on 
the 1950–2023 historical flood data of the entire plateau, this study 
further quantitatively verified that 82.3% of historical flood points 
are concentrated in regions with annual precipitation ≥400 mm and 
elevation <4,000 m, supplementing the factor importance ranking at 
the entire plateau scale. In terms of spatial distribution, the identified 
high to very high susceptibility areas (accounting for 5.08%) in the 
southern Tibetan river valleys and the Hengduan Mountains are 
consistent with the conclusion in the Qinghai-Tibet Plateau Disaster 
Risk Bulletin 2023 released by the National Tibetan Plateau Scientific 
Data Center that “the flood frequency in the middle reaches of 
the Yarlung Zangbo River valley and the Nujiang Gorge section is 
6–8 times that of the northern Tibetan Plateau”. At the same time, 
the 500 m resolution mapping refined the spatial scope of high-
risk areas, clarifying that the very high susceptibility areas in the 
Hengduan Mountains are concentrated in the river valley terraces 
at an elevation of 2,500–3,500 m, providing precise guidance for the 
layout of monitoring stations.

Regarding the research limitations and future directions, the 
“multi-source remote sensing + folk knowledge” supplementary 
scheme proposed in this study can be cross-validated with the 
2021 study conducted by the Institute of Tibetan Plateau Research, 
Chinese Academy of Sciences in the Ngari region. That study showed 
that the matching degree between the flood range inverted by 
Sentinel-1 radar data and the herders’ oral historical records reached 
83%, confirming the effectiveness of this scheme in making up for 
the deficiency of sparse stations in low-data-density regions such as 
the Ngari region and the Hoh Xil core area. Meanwhile, considering 
that the Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change (IPCC) points out that the warming rate of the 
Qinghai-Tibet Plateau is twice the global average, the intensity of 
summer precipitation and the increment of glacial meltwater may 
change the existing susceptibility pattern. In the future, combined 
with CMIP6 climate model data, risk predictions under different 
emission scenarios can be carried out to further improve the 
forward-looking nature and application value of the research and 
provide support for long-term disaster prevention planning in 
the region.
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