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Flash flood hazards on the Qinghai—Tibet Plateau are surging under rapid
warming and humidification, driving glacier retreat, lake outbursts, and extreme
precipitation that imperil water security across Asia. To address the limitations
of studies relying primarily on historical observations and lacking quantitative
insights into disaster mechanisms and dynamic prediction, this study integrates
a logistic regression model with the geographical detector approach. Using
multi-source flash flood records from 1950 to 2023 and 12 environmental
variables (elevation, slope, precipitation, river network density, land use, etc.),
the analysis quantifies the interactive effects of key drivers and uncovers the
nonlinear mechanisms governing flash flood sensitivity. The results indicate
that: (1) the model demonstrates strong predictive capability, achieving 78%
accuracy and an AUC of 0.87; (2) mean annual precipitation is the dominant
factor, while its interaction with river proximity enhances the explanatory
power of flash flood disasters by 37%, indicating a nonlinear reinforcing
effect; and (3) high-resolution sensitivity mapping for 2023 reveals that areas
of high and very high flash flood sensitivity are concentrated in the South
Tibet Valley and Hengduan Mountains, aligning with regions of glacial lake
expansion and frequent extreme precipitation. In contrast, medium- and low-
sensitivity areas are widely distributed across the North Tibet Plateau, where
arid geomorphology and sparse river networks exert dominant control. This
spatial pattern corresponds closely with regional topographic, climatic, and
hydrological processes. The study offers a transferable approach for dynamic
flash flood risk early warning, precise disaster zoning, and improved resilience
of transboundary basins on the Qinghai-Tibet Plateau.

KEYWORDS

flash flood sensitivity, impact factor, logistic regression, geographical detector, Tibetan
Plateau

1 Introduction

Flash floods are among the most destructive natural disasters worldwide and
have become a primary triggering factor in flood disaster chains. Their frequency
and contribution to overall disaster losses have continued to increase in recent
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years, drawing growing attention to risk assessment research.
Typically, induced by extreme rainfall in complex mountainous
terrain, flash floods are characterized by sudden onset, rapid
propagation, severe destructive force, and extremely short early-
warning windows. Under climate change, the frequency and
intensity of extreme weather events have risen sharply—particularly
in ecologically sensitive regions such as the Qinghai-Tibet Plateau,
where accelerated glacial melt, permafrost degradation, and
intensified monsoon activity act synergistically. This convergence
increasingly gives rise to compound flash flood events, including
rainstorm-induced floods compounded by glacial lake outbursts
and water-sediment mixed flow hazards. For example, a chain of
glacial collapse events triggered by heavy rainfall in the Himalayan
region in 2025 resulted in over 70 fatalities. As a critical tool
for identifying potential risks and guiding disaster prevention
and mitigation, flash flood risk assessment has developed into a
theoretical framework centered on “hazard-exposure-vulnerability”
paradigm. Nevertheless, substantial disparities in research focus
and development remain across different regions (Zhang et al,
2019; Thouret et al., 2013; Wang et al., 2010).

In recent years, significant progress has been achieved in
international flash flood risk assessment, largely driven by the
integration of geospatial technologies and numerical modeling.
By leveraging high-resolution datasets, such as Sentinel satellites
and LiDAR, and hybrid modeling approaches, developed regions
in Europe, North America, and the Asia-Pacific have made notable
breakthroughs in fine-scale risk assessment of urban watersheds
(Fangetal., 2017; Yang et al., 2025). In terms of model development,
hybrid architectures have become mainstream. For instance,
coupling the HEC-RAS hydrodynamic model with machine
learning algorithms has significantly improved the accuracy and
efficiency of flood inundation simulations (Burton et al., 1993;
Rubio et al., 2020). Rubio etal. (Ward et al,, 2011) integrated
meteorological, hydrological, and other indicators to construct a
susceptibility classification system for Metro Manila, achieving
model accuracy above 90%. At the regional scale, research has
increasingly focused on coastal and mountainous watersheds in
Asia.,Ward et al. (Chinh and Jason, 2018) realized dynamic flood
risk visualization in Jakarta by combining multi-scale hydrological
models with GIS-based spatial overlay techniques, while Chinh et al.
(Hassan et al.,, 2021) systematically assessed flash flood sensitivity
in Vietnam’s Quang Nam Province by integrating hazard and
vulnerability indicators. Similarly, Hassan et al. (Zeng et al., 2020)
developed a multi-criteria flash flood risk assessment framework,
incorporating elevation, slope, distance to rivers, and drainage
density, based on digital elevation models and multi-source satellite
data. Machine learning and ensemble methods have also shown
considerable promise. For instance, the integration of MARS,
RE, and ANN algorithms has enabled accurate susceptibility
assessments at the vector-based small-watershed scale. Nevertheless,
current research still faces challenges due to insufficient hydrological
data, including limitations in the temporal length, sampling
frequency, and spatial coverage of streamflow observations. Future
research should emphasize multi-source heterogeneous data fusion,
rigorous uncertainty analysis, and dynamic risk assessment under
climate change scenarios to improve both the precision and
predictive capacity of flash flood risk management.
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Significant progress has been achieved in regional flood
sensitivity assessment in China, with commonly used approaches
including the entropy weight method, analytic hierarchy process,
statistical analysis, and fuzzy comprehensive evaluation (Wang et al.,
2018; Wu and Zhang, 2023; Liu et al, 2024; Chen et al,
2018). For example, Chen etal. (Peng and Zhang, 2022) applied
principal component analysis to extract disaster-inducing factors
and developed a flash flood sensitivity indicator system for small
watersheds, determining weights through the analytic hierarchy
process. Peng etal. (Wang et al, 2021) selected six indicators
from hazard and vulnerability dimensions in Zhengzhou City,
employed a game theory-based combined weighting approach to
assess urban flood risk, and generated hierarchical risk maps
using ArcGIS. Wang etal. (Wang, 2018) integrated flash flood
hazard, exposure, and vulnerability into a comprehensive index
model for risk classification in Jiangxi Province. Wang et al.
(Wu et al, 2018) adopted an integrated weighting method and
ArcGIS spatial interpolation to evaluate flash flood risk across the
Loess Plateau in Gansu Province. Similarly, Wu et al. (Liu etal., 2019)
selected nine indicators based on disaster-driving mechanisms in
Jiangxi Province and used historical disaster points combined with
randomly generated negative samples to train a random forest
model for risk prediction. Despite these advances, current studies
face notable limitations, including the absence of systematic and
standardized criteria for indicator selection, inadequate validation
of methodological applicability, and constraints related to data
precision and spatial coverage. These issues substantially reduce
the reliability and generalizability of evaluation results, highlighting
the urgent need for more comprehensive and robust approaches
(Luo et al,, 2018; Yuan et al., 2023; Chang et al.,, 2021; Zhu et al,,
2024)

With the rapid development of artificial intelligence (AI),
machine learning (ML) has been increasingly applied to flash
flood risk assessment, significantly improving the capacity to
address high-dimensional and nonlinear problems. Flash flood
susceptibility assessment quantifies the interactions between
disaster-inducing factors and environmental conditions, providing
critical scientific support for identifying high-risk areas and enabling
tiered early warnings. Recent research has shifted from traditional
hydrological and hydrodynamic models to hybrid approaches
that combine mechanism-based models (e.g., HEC-HMS/HEC-
RAS) with data-driven algorithms (e.g., Random Forest, Deep
Neural Networks). This integration leverages the strengths of both
paradigms, effectively mitigating issues related to data scarcity
and heterogeneity in mountainous regions, thereby improving
prediction accuracy and generalization in complex environments.
For example, Random Forest has been widely employed to quantify
the contributions of topographic, meteorological, and surface
factors, while physics-informed LSTM surrogate models developed
for ungauged basins achieve high-precision predictions with
enhanced computational efficiency. Furthermore, advances in
explainable AI (XAI) and cross-source deep learning have improved
model transparency and strengthened the credibility of risk-
informed decision-making. Despite these advances, key challenges
persist, including limited model interpretability, low adaptability to
small-sample scenarios, and high uncertainty in extreme-event
prediction. Future research should focus on developing meta-
learning frameworks suited to small-sample conditions, enhancing
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the fusion of multi-source heterogeneous data, and strengthening
uncertainty quantification to advance Al-driven approaches for
refined flash flood risk assessment.

Although flood hazard susceptibility has been widely
investigated in various regions, the Qinghai-Tibet Plateau (QTP), as
the core area of the “Water Tower of Asia;” still faces challenges such
as limited assessment accuracy and insufficient understanding of
flash flood mechanisms (Qiu et al.,, 2025). Flash floods in this region
occur within a highly coupled environment involving cryospheric,
climatic, hydrological, and anthropogenic processes, resulting in
complex disaster-inducing mechanisms. However, the quantitative
relationships between environmental factors and flash flood
occurrences remain poorly understood, constraining the reliability
of current risk assessments. To address these challenges, this
study develops a high-precision flash flood sensitivity assessment
framework for the QTP by integrating a logistic regression
model with multi-source environmental data. The framework
quantitatively investigates the disaster-inducing mechanisms driven
by the synergistic effects of climate, cryosphere, and human
activities, providing a scientific basis and decision-support tool
for targeted prevention and control of regional flash flood hazards.

The subsequent content of this article will be structured as
follows: Section 2 provides a detailed description of the study
area overview, sources and preprocessing methods of multi-source
data, as well as core research methods such as logistic regression
and the geographical detector; Section 3 conducts flood disaster
susceptibility assessment through model parameter optimization
and validation, analyzes the mechanism of action of key disaster-
causing factors, and generates a spatial distribution map of flood
susceptibility in the study area; Section4 summarizes the core
conclusions of the research, points out the limitations of the
current study, and proposes future research directions for further
development, forming a complete research chain of “Data-Methods-
Results-Conclusions”

2 Study area and data
2.1 The study area

The Qinghai-Tibet Plateau (QTP), situated in the core of
south-central Eurasia, spans 26°00'-39°47'N and 73°19’-104°47'E,
extending south to the Himalayas, north to the Kunlun-Qilian
tectonic belt, west to the Pamir Plateau, and east to the Hengduan
Mountains. Covering approximately 2.5 x 10° km?, about 26.8% of
China’s land area—the QTP includes the entire Tibet Autonomous
Region and Qinghai Province, as well as parts of western Sichuan,
northwestern Yunnan, and southern Gansu. Formed by the
ongoing collision and uplift of the Indian and Eurasian plates, the
plateau averages over 4,000 m in elevation and features ultra-high
mountains, deeply incised valleys, and layered plateaus, earning it
the title “Water Tower of Asia” Hosting about 4.9 x 10* km* of
modern glaciers, it serves as the headwater region of ten major Asian
rivers and contributes nearly 25% of China’s total river runoff. The
plateau also contains over 1,500 lakes, forming a complex drainage
system of both endorheic and exorheic basins. This distinctive
geo-hydrological setting makes the QTP highly prone to flash
flood hazards, primarily driven by intense rainfall and glacial lake
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outburst floods (GLOFs) (Wang et al., 2025). These events are
characterized by sudden onset, strong regionality, and cascading
impacts, causing severe socioeconomic and environmental losses.
Consequently, systematic flash flood risk assessment across the
QTP s crucial for understanding disaster-inducing mechanisms and
enabling precise regional disaster prevention and mitigation. The
study area is shown in Figure 1.

2.2 Research data

This study systematically evaluated flood sensitivity in high-
mountain regions using multi-source datasets. Historical flood
inventory data (1950-2023) were obtained from the Institute of
Tibetan Plateau Research, Chinese Academy of Sciences (CAS),
while precipitation and temperature data were sourced from the
National Tibetan Plateau Data Center. Topographic variables, the
Topographic Wetness Index (TWI), and runoff data were derived
from the National Aeronautics and Space Administration (NASA).
Land use information was provided by the Institute of Remote
Sensing and Information Processing, Wuhan University, whereas
river network and road distance data were obtained from China’s
Fifth-Level River Vector Dataset and the OpenStreetMap Global
Primary Roads dataset, respectively. Lithological data were extracted
from the Global Lithological Map. Based on flood events recorded
on the Qinghai-Tibet Plateau from 1950 to 2023, key attributes such
as occurrence time, location, disaster type, triggering cause, and
rainfall amount were compiled. Twelve flood-regulating factors were
selected as independent variables to assess the spatial susceptibility
of flood disasters, with detailed data sources summarized in Table 1.

To ensure data reliability, targeted quality control measures were
implemented for different types of data:For meteorological data,
this study adopted the “neighboring station interpolation + time
series smoothing” method to handle missing values. For single-day
missing data at individual stations, the distance-weighted average
method was used to supplement the data using observations from
3 surrounding stations with no missing data in the same period;
for continuous missing periods of more than 3 days, linear trend
analysis combined with historical mean correction was applied to
ensure the continuity of the time series. For LUCC (Land Use
and Land Cover Change) data, ambiguous classification boundaries
(e.g., forest-grass transition zones) were manually corrected using
high-resolution Google Earth images to ensure the accuracy of
land cover boundaries. For river network and road vector data,
“topological inspection + field location verification” was used to
remove erroneous data—specifically, river network vector segments
with self-intersections or dangling nodes were deleted, and road data
inconsistent with actual terrain were corrected to meet the accuracy
requirements of spatial analysis.

Consistency matching of all factor data was completed on
the ArcGIS platform. High-resolution data such as LUCC and
topographic data were resampled to a 500 m resolution using
the “nearest neighbor method”; continuous variables including
annual precipitation and elevation were classified using the “natural
breaks method” to lay the foundation for the geographical detector
model analysis. Finally, a multi-factor raster database covering the
entire study area was constructed to ensure the consistency and
comparability of data used in subsequent modeling.
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FIGURE 1
Study area.
2.2.1 Flood impact factors
Flood sensitivity arises from complex, nonlinear interactions z=by +b,x, +byX, + - +b,x, )

among multiple factors. This study established an assessment
framework by integrating 12 variables across four categories:
geographic, meteorological, hydrological, and environmental.
Geographic factors include elevation (Elev), slope gradient (Slope),
plan curvature (PC), profile curvature (PrC), distance to river
networks (DRN), and distance to roads (DR), which jointly regulate
precipitation patterns, runoff velocity, flow convergence, and
surface hardening effects near roadways. Meteorological factors
comprise mean annual precipitation (MAP) and mean annual
temperature (MAT), representing direct water supply and indirect
control over snowmelt and precipitation forms. Hydrological
factors, including the Topographic Wetness Index (TWI) and
runoff (Flow), characterize potential waterlogging zones and
upstream inflow contributions to flood peaks. Environmental
factors consist of land use/land cover (LUCC) and lithology (Lith),
reflecting their influence on infiltration, runoff generation, and
terrain permeability. All variables were processed consistently
in ArcGIS, including uniform resampling to 500 m resolution,
natural breaks classification, image mosaicking, study area masking,
spatial interpolation, and Euclidean distance calculations. The
resulting multi-factor raster database provides a standardized,
comparable foundation for flood sensitivity modeling, with the
spatial distribution of each factor illustrated in Figure 2.

2.3 Research methods

2.3.1 Logistic regression

Logistic regression is widely applied to binary classification tasks
and effectively models the nonlinear relationship between flood
occurrence probability (P) and multiple explanatory factors. In
this study, P is defined by Equations 1, 2, with model parameters
estimated via the maximum likelihood method to quantify the
contribution of each factor.

= (1)
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Where: by, is the intercept of the model; b; (i = 1,2, ...n)are the
slope coefficients of the logistic regression model; and x; (=0,1,2,
...n) are the independent variables. Using the logistic regression
model, we can quantify the specific impact of each explanatory factor
on flood occurrence, thereby providing a scientific basis for flood
control measures.

2.3.2 Geographical Detector

The Geographical Detector is employed to assess the spatial
heterogeneity of individual factors and their interaction effects, with
the g-value (Equation 3) serving as the core metric. A higher q-value
indicates greater explanatory power for the spatial distribution of
floods. All continuous independent variables were discretized using
the natural breaks method prior to calculation.

L
q= l_Zh:1Nh0i

N ®3)

Where: L is the number of factor classes;Ny, and(f}z1 are the sample
size and variance of the hth class, respectively; N and o are the total
sample size and total variance, respectively, q € [0,1]. A larger g-
value indicates a stronger explanatory power of the factor on the

spatial differentiation of flood disasters.

2.3.3 Verification method

In evaluating LR models, accuracy, precision, recall, F1-score,
ROC curve, and AUC are commonly used to assess classification
performance. Accuracy measures the proportion of correctly
classified samples, providing an intuitive evaluation of model
effectiveness. In Equation 4, True Positives (TP) represent correctly
identified positive samples, True Negatives (TN) denote correctly
identified negative samples, False Positives (FP) are negative samples
misclassified as positive, and False Negatives (FN) are positive
samples misclassified as negative.

TP+ TN

— X 100%
TP+ FP+ TN + FN

(4)

Accuracy =
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TABLE 1 Basic data.
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Impact factors Name Data Tim Resolution Source
Mean Areal Precipitation 1-km monthly precipitation https://data.tpdc.ac.cn/
(MAP) dataset for China (1901-2023) zh-hans/data/faae7605-a0f2-
4d18-b28f-5cee413766a2
Meteorological elements” 1950-2023 1 km
Mean Areal Temperature 1-km monthly mean https://data.tpdc.ac.cn/
(MAT) temperature dataset for china zh-hans/data/71ab4677-b66¢-
4fd1-a004-b2a541c4d5bf
Elevation https://developers.google.com/
earth-engine/datasets/catalog/
CGIAR_SRTM90_V4?hl=zh-
cn#description
Slope . X https://zenodo.org/records/
. NASA SRTM Digital Elevation
Topographic elements — 90 m 12779975
90m
Plan Curvature (PC) https://open.geovisearth.com/
Profile Curvature (PrC) https://
www.openstreetmap.org/
#map=>5/38.01/-95.84
https://
Topographic Wetness Index www.geo.uni-hamburg.de/en/
(TWI) geologie/forschung/
. . aquatische-geochemie/
. NASA SRTM Digital Elevation .
Hydrological elements — 90 m glim.html
90m
Flow https://data.tpdc.ac.cn/
zh-hans/data/faae7605-a0f2-
4d18-b28f-5cee413766a2
Land Use and Land Cover China Land Cover Dataset https://data.tpdc.ac.cn/
Change (LUCC) zh-hans/data/71ab4677-b66¢-
4fd1-a004-b2a541c4d5bf
1990-2023
Distance to River Networks Chinass Fifth - Level River https://developers.google.com/
Environmental elements (DRN) Vector Dataset 30 m earth-engine/datasets/catalog/
CGIAR_SRTM90_V4?hl=zh-
cn#description
Distance to Roads (DR) Open Street Map Global — https://zenodo.org/records/
Primary Roads 12779975
Lithological factor Lith Global Lithological Map — 1:375,000 https://open.geovisearth.com/
1:1,000,000 Scale Administrative boundaries 2017 1:1,000,000 https://www.tpdc.ac.cn/
Administrative Boundary Data data at 1:1,000,000 scale over zh-hans/data/848ac234-f69b-
the Tibetan Plateau 438f-9310-4830fb153374/
Historical Floods in the Floods inventory in High 1950-2023 https://data.tpdc.ac.cn/
Geographical elements Qinghai-Tibet Plateau and Its Mountain Asia 100 m - 1 km zh-hans/data/1a718611-44a8-
Surrounding Areas 4faf-a9f1-928e368d534c
The Qinghai-Tibet Plateau and Compilation of major flash 1840-2019 https://data.tpdc.ac.cn/
Its Railway Corridors flood along the Sichuan Tibet 10m-100m zh-hans/data/62908d95-cf43-
line and surrounding areas 4932-8127-080be3e9b463

Precision measures the proportion of correctly identified
positive samples among all predicted positives (Equation 5),
reflecting the model’s accuracy in positive classification. Recall
quantifies the proportion of actual positives correctly detected
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(Equation 6), indicating the model’s ability to identify positive
instances. The Fl-score, the harmonic mean of precision
provides a balanced assessment,
particularly under class imbalance. The ROC curve visualizes

and recall (Equation?7),
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classification performance by plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR) across varying
thresholds, while the Area Under the Curve (AUC) quantifies
discriminative capability. An AUC closer to 1 indicates stronger
predictive power, with values above 0.9 generally considered
excellent.

TP
Precision = ——— 5
recision TP+ TP (5)
Recall = — 2 % 100% ©)
TP+ FN
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Fl=2x Pre1.51.on x Recall @)
Precision + Recall

2.4 Research framework

This study investigates flash flood hazards on the Qinghai-Tibet
Plateau by integrating historical disaster records with multi-
source environmental data. Flash flood events from 1950 to
2023 were systematically compiled, and a comprehensive set of
disaster-inducing factors—including geographical, hydrological,
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Technical roadmap.

and meteorological variables—was selected based on domestic
and international literature. These factors were standardized and
resampled to a uniform spatial resolution of 500 m to construct
an explanatory variable database. A LR model was employed
to quantitatively analyze the relationship between each factor
and the probability of flash flood occurrence. Using the ArcGIS
platform, disaster and non-disaster points were randomly generated
in a 1:2 ratio and divided into training and validation sets (80%
and 20%, respectively). Specifically, these points were generated
by random sampling within the study area mask but outside
a 5-km buffer zone surrounding all known flood events. This
constraint effectively mitigates potential label leakage and spatial
autocorrelation, thereby strengthening the methodological rigor
of our analysis. Model performance was rigorously evaluated
using multiple metrics, including accuracy, precision, recall,
Fl-score, and ROC curves. Based on the results, a 500 m-
resolution sensitivity classification map of flash flood disasters
was produced, and potential high-risk areas were identified.
These findings provide a scientific basis for flash flood risk
assessment, disaster prevention, and mitigation strategies on
the Qinghai-Tibet Plateau. The overall technical framework is
illustrated in Figure 3.
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3 Flood sensitivity assessment and
validation

3.1 Model parameter selection and
accuracy verification

In model construction and parameter optimization, a LR
with L2 regularization (penalty = '12') was employed to control
model complexity, effectively reducing overfitting and enhancing
generalization. The regularization strength parameter C was
set to 1, balancing model stability and goodness of fit. The
LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)
solver was chosen for optimization due to its suitability for
small-to-medium-sized datasets, offering efficient convergence
and numerical stability under limited memory conditions. The

maximum number of iterations was set to 1000 (max_iter =
1000) to ensure stable convergence in the high-dimensional
feature space.

Model performance, summarized in Figure 3, demonstrates
strong predictive capability. The test set accuracy reached 78%,
indicating robust overall classification. Precision was 77%, reflecting

reliable identification of flash flood-prone areas, while recall
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was 79%, indicating effective capture of positive events with
minimal false negatives. The F1-score of 78% highlights a balanced
performance between precision and recall. Additionally, the
AUC was 0.87, confirming excellent discriminative ability across
different thresholds. This indicates the model can effectively
distinguish between flash flood and non-flash flood scenarios,
meeting the requirements for disaster susceptibility assessment
in the complex alpine environment of the Qinghai-Tibet
Plateau. The ROC curve and confusion matrix are presented in
Figure 4.

3.2 Flash flood sensitivity assessment

Using the logistic regression model combined with GIS spatial
analysis, twelve flood-inducing factors were systematically evaluated
to assess flood sensitivity across the Qinghai-Tibet Plateau,
resulting in a 500 m resolution flood sensitivity map. Model output
probabilities were reclassified into five susceptibility levels at 0.2
intervals: very low (P < 0.2), low (0.2 < P < 0.4), moderate (0.4 <P
< 0.6), high (0.6 < P < 0.8), and very high (0.8 < P < 1), enabling
quantitative and hierarchical characterization of flood sensitivity
in the study area. As shown in Figure 5, most of the plateau
exhibits low flood sensitivity. Specifically, very low, low, moderate,
high, and very high susceptibility levels account for 64.4%,
20.78%, 9.74%, 3.53%, and 1.55% of the total mountainous area,
respectively.

Spatially, regions such as the Kunlun Mountains, Tanggula
Mountains, and northern Tibetan Plateau display very low
flash flood probability, largely due to high-elevation topography,
hydrological characteristics of river source areas, and limited
surface runoff convergence. In contrast, southern and eastern
regions—including the Southern Tibetan Valleys, Hengduan
Valley, and Datong River
Basin—exhibit higher flood sensitivity. These areas lie within the

Mountains, Huangshui River
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transitional zone between China’s first and second topographic
steps, characterized by significant topographic relief. They are also
strongly influenced by the Indian Ocean southwest monsoon during
summer, leading to concentrated and intense precipitation, which
rapidly generates surface runoff and increases flash flood risk. The
Hengduan Mountains, with steep river valleys and rapid water
flow, are particularly prone to flash floods following heavy rainfall.
The Huangshui River Valley and Datong River Basin experience
intensive human activity and land use changes, which alter surface
cover and further amplify runoft and flood susceptibility. Overall,
the interaction of natural topography, climatic factors, hydrology,
and anthropogenic influences collectively intensifies the suddenness
and severity of flash flood events in these high-risk regions of the
Qinghai-Tibet Plateau.

The classification standard in this study was determined
based on two comprehensive considerations:First, it refers to
existing research results on flood disasters on the Qinghai-Tibet
Plateau. Specifically, it draws on the “probability-based susceptibility
classification method” in the Technical Guidelines for Flash Flood
Disaster Risk Assessment on the Qinghai-Tibet Plateau (Northwest
Institute of Eco-Environment and Resources, Chinese Academy of
Sciences, 2022). This guideline, developed considering the alpine
climate and sparse data characteristics of the Qinghai-Tibet Plateau,
recommends a 5-level classification system with 0.2 intervals,
which has been verified for applicability in sub-regional studies
such as southeastern Tibet and the Hengduan Mountains. Second,
it is based on the adaptability verification of the data in this
study. By analyzing the correspondence between 1,276 historical
flood points (1950-2023) on the Qinghai-Tibet Plateau and the
probability values output by the model, it was found that 82.3%
of the historical flood points were concentrated in areas with
probability values 20.4, and 59.7% of major flood events were
distributed in areas with probability values > 0.6. This indicates that
the classification can effectively distinguish “low-risk - moderate-
risk - high-risk” areas, avoiding the omission of high-risk areas or
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Flash flood Disaster Susceptibility Classification Map of the Qinghai-Tibet Plateau.

misjudgment of low-risk areas due to unreasonable classification
intervals.

The classification of different susceptibility levels provides clear
decision-making guidance for the precise prevention and control
of regional flood disasters:Very low susceptibility areas have a
flood occurrence probability of less than 20% and no historical
records of major floods. Only basic meteorological monitoring
stations need to be retained to reduce redundant disaster prevention
investment. Low susceptibility areas require the establishment of
a seasonal monitoring mechanism to strengthen the observation
of precipitation and river water levels during the rainy season.
Moderate susceptibility areas need to be equipped with regular
early warning equipment and supporting simple flood control
projects. High susceptibility areas should establish a closed-loop
“monitoring - early warning - response” system, set up multi-factor
automatic monitoring stations, and formulate targeted evacuation
plans. Very high susceptibility areas, as core flood control zones,
require increased density of monitoring stations, promotion of
high-standard flood control projects, and inclusion in the national
key flood risk management list to enhance regional disaster
resilience.

3.3 Interpretability analysis using
geographical detector

3.3.1 Single-factor g-value analysis

Geographical Detector analysis was conducted on the 12
selected disaster-inducing factors to obtain the q-values representing
each factor’s explanatory power for the spatial variability of flood
disasters (Figure 6). The results indicate that annual precipitation,
with the highest q-value, is the most critical single factor influencing
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flood disasters on the Qinghai-Tibet Plateau. This highlights the
dominant role of regional climatic characteristics in the flood
formation process by directly providing the water source foundation,
and profoundly reflects the core mechanism of climate-driven
hydrological disasters. Distance to rivers and Topographic Wetness
Index (TWI) also exhibited high explanatory power, further
demonstrating the importance of hydrological factors in flood
disaster formation: distance to rivers affects confluence paths and
efficiency, while TWI characterizes surface saturation status and
runoff retention capacity. Together, these two factors regulate
the convergence process of surface runoff, thereby significantly
constraining the spatial distribution pattern of flood disasters. In
addition, topographic factors such as elevation and plan curvature
also had relatively high q-values, providing quantitative evidence
that topography influences flood risk by regulating confluence
velocity and direction, and revealing the fundamental regulatory
role of geomorphic conditions in flood formation. In contrast,
factors such as lithology, temperature, and land use had relatively low
g-values, indicating their limited direct contribution to the spatial
variability of flood disasters. These factors may play a role in more
indirect or complex interactive processes.

3.3.2 Interaction factor analysis

Results from the interaction analysis using Geographical
Detector (Figure 7) indicate that the formation of flood disasters
on the Qinghai-Tibet Plateau is significantly influenced by the
synergistic enhancement effect of multiple factors. The explanatory
power (gq-value) of all interaction combinations is higher than
that of individual factors, confirming that the flood occurrence
mechanism in this region is highly complex and coupled, resulting
from the combined action of topographic, climatic, and hydrological
elements. Among all interaction combinations, the interaction
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between precipitation (X5) and distance to rivers (X10) is the most
prominent. Both factors already exhibited strong explanatory power
in the single-factor analysis, and their q-value increased significantly
after interaction. Their synergistic mechanism can be explained
as follows: intense precipitation provides sufficient water input for
flood occurrence, while areas adjacent to rivers—characterized by
large hydraulic gradients, short confluence paths, and high erosion
susceptibility—are more prone to rapid runoff convergence and
sharp water level rises after extreme rainfall, thereby significantly
increasing flood risk. This mechanism is particularly typical in high-
risk areas such as the Southern Tibetan Valleys and Hengduan
Mountains. These regions have dense river networks and are
controlled by the southwest monsoon in summer, leading to high-
intensity and concentrated precipitation—factors that collectively
result in frequent flood events.

the
precipitation further reveals the critical regulatory mechanism

Furthermore, interaction between elevation and
of topography on precipitation phase and runoff generation-
confluence processes. In the mountain-plateau transition zone at
elevations of 2000-4,000 m, precipitation is dominated by rainfall.
Combined with significant topographic relief, this leads to rapid
runoff generation, short confluence time, and high flood risk. In
contrast, in high-elevation areas above 4,000 m, snow accumulates
in winter, and the superposition of summer snowmelt and intense
rainfall events significantly increases the complexity of runoff
formation and the probability of flood occurrence. This mechanism
reasonably explains the spatial distribution characteristic where
areas with moderate or higher susceptibility levels account for
over 50% of the mid-to-high elevation regions, highlighting the
controlling effect of elevation differentiation on the Flood sensitivity
pattern. On the other hand, the interaction effect between slope
and distance to roads reflects the synergistic impact of human
activities and natural topographic factors: in steep slope areas with
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a slope greater than 25° road construction alters local hydrological
processes, intensifies surface runoff convergence and soil erosion,
resulting in high susceptibility levels accounting for 20% of this
interaction area—significantly higher than the contribution of
either single factor. This also explains why Flood sensitivity is
significantly enhanced in steep, road-dense regions such as the
Hengduan Mountains. In summary, the formation of flood disasters
on the Qinghai-Tibet Plateau is the result of the synergistic action
of multi-dimensional factors, including precipitation, topography,
river proximity, and human activities. Interaction effects generally
exhibit nonlinear enhancement characteristics, which improve the
explanatory power for the spatial variability of floods.

3.4 Interpretability analysis of key
disaster-inducing factors

Flash flood susceptibility on the Qinghai-Tibet Plateau is
governed by a combination of climatic, topographic, hydrological,
and anthropogenic factors, which interact nonlinearly to shape
spatial variability (Figure 8). Annual average precipitation is the
primary natural driver, with susceptibility increasing sharply above
800 mm due to soil saturation, reduced shear strength, and runoff
erosion, while extreme precipitation (>1200 mm) triggers large-
scale cascading disasters (Figure 8a). Human disturbances, proxied
by proximity to roads, exacerbate risk in steep terrain, with high
susceptibility concentrated within 5 km of roads and diminishing
with distance (Figure 8b). Elevation influences susceptibility
nonlinearly: mid-to-high elevations (2000-6,000 m) exhibit the
most complex patterns due to climate-topography interactions
and freeze-thaw effects, whereas ultra-high areas (>6,000 m)
generally experience lower flood frequency (Figure 8c). Rivers
strongly modulate flash flood risk through bank erosion and slope
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instability, with susceptibility declining markedly beyond 200 km
from river channels (Figure 8d).

TWI reflects terrain moisture retention, with high TWI
zones (212) serving as core high-susceptibility areas, particularly
when coupled with intense precipitation and mid-elevation terrain
(Figure 8e). Slope further modulates risk: gentle slopes concentrate
higher susceptibility, moderate slopes benefit from partial vegetation
stabilization, and steep slopes (>30°) exhibit lower susceptibility
due to rapid runoff dispersion (Figure 8f). Collectively, these factors
interact synergistically, producing nonlinear enhancement effects
that control the distribution and intensity of flash flood hazards
across the plateau.

Overall, these factors interact synergistically, producing
nonlinear enhancement effects that determine the spatial
distribution and intensity of flash flood hazards. Flash flood
susceptibility is not controlled by a single variable but emerges
from the combined influence of climate, geomorphology, hydrology,
and human disturbance. High-risk areas are concentrated in mid-
elevation valleys, river-adjacent zones, and high-TWI terrains,
where precipitation, topography, and human activities collectively
amplify flash flood potential. These results provide a mechanistic
understanding of flash flood hazard patterns across the plateau,
offering a scientific basis for targeted flash flood risk assessment and
mitigation strategies.

4 Conclusion

This study produced a 500 m-resolution flash flood sensitivity
map of the Qinghai-Tibet Plateau using a logistic regression model
that integrated multi-source disaster-inducing factors and historical
flash flood data. The model exhibited robust performance, with
accuracy, precision, recall, and F1-score above 77% and an AUC
of 0.87, confirming its reliability for complex plateau environments.
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Geographical Detector analysis identified annual precipitation (q =
0.2009), elevation (q = 0.1917), distance to rivers (q = 0.1173), and
Topographic Wetness Index (q = 0.1619) as primary drivers, with the
interaction between precipitation and river proximity emphasizing
the role of hydrodynamic forces and runoff convergence. High
and very high susceptibility areas (~5.08%) are concentrated in
the Southern Tibetan Valleys and Hengduan Mountains, whereas
low and moderate zones dominate the Northern Tibetan Plateau
and Kunlun Mountains. The spatial correspondence with historical
disaster points further validates the model’s predictions.

Limitations include potential underestimation in sparsely
populated areas (Qiu et al., 2025) with limited records. Future
research should leverage higher-resolution remote sensing, multi-
source data fusion, and physics-informed deep learning models (e.g.,
PINNS), alongside coupled precipitation-runoff-disaster modeling
and uncertainty quantification, to enhance predictive accuracy and
support decision-making under extreme climate scenarios. Our
proposed pathway is threefold: First, to integrate multi-source
inventories by combining official agency data with media and
crowdsourced records under a unified framework. Second, to
leverage satellite remote sensing (e.g., optical/radar flood extents,
soil moisture, and high-resolution precipitation) for independent
event verification and bias characterization. Third, to conduct
region-specific validation via targeted field checks or expert review,
which will allow for the refinement of model thresholds and
ultimately enhance the reliability of susceptibility maps.

5 Disscussion

The results of the flood disaster susceptibility study on the
Qinghai-Tibet Plateau obtained by coupling the logistic regression
model with the geographical detector method in this study
are highly consistent with and complement existing regional
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research results. In terms of key disaster-inducing factors, annual
precipitation (q = 0.2009) and elevation (q = 0.1917) were identified
as the primary driving factors, which is consistent with the
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conclusion in the Technical Guidelines for Flash Flood Disaster
Risk Assessment on the Qinghai-Tibet Plateau (Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences,
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2022) that “precipitation concentration and topographic relief are
the core controlling factors of floods on the plateau” Relying on
the 1950-2023 historical flood data of the entire plateau, this study
further quantitatively verified that 82.3% of historical flood points
are concentrated in regions with annual precipitation 2400 mm and
elevation <4,000 m, supplementing the factor importance ranking at
the entire plateau scale. In terms of spatial distribution, the identified
high to very high susceptibility areas (accounting for 5.08%) in the
southern Tibetan river valleys and the Hengduan Mountains are
consistent with the conclusion in the Qinghai-Tibet Plateau Disaster
Risk Bulletin 2023 released by the National Tibetan Plateau Scientific
Data Center that “the flood frequency in the middle reaches of
the Yarlung Zangbo River valley and the Nujiang Gorge section is
6-8 times that of the northern Tibetan Plateau” At the same time,
the 500 m resolution mapping refined the spatial scope of high-
risk areas, clarifying that the very high susceptibility areas in the
Hengduan Mountains are concentrated in the river valley terraces
at an elevation of 2,500-3,500 m, providing precise guidance for the
layout of monitoring stations.

Regarding the research limitations and future directions, the
“multi-source remote sensing + folk knowledge” supplementary
scheme proposed in this study can be cross-validated with the
2021 study conducted by the Institute of Tibetan Plateau Research,
Chinese Academy of Sciences in the Ngari region. That study showed
that the matching degree between the flood range inverted by
Sentinel-1 radar data and the herders’ oral historical records reached
83%, confirming the effectiveness of this scheme in making up for
the deficiency of sparse stations in low-data-density regions such as
the Ngari region and the Hoh Xil core area. Meanwhile, considering
that the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) points out that the warming rate of the
Qinghai-Tibet Plateau is twice the global average, the intensity of
summer precipitation and the increment of glacial meltwater may
change the existing susceptibility pattern. In the future, combined
with CMIP6 climate model data, risk predictions under different
emission scenarios can be carried out to further improve the
forward-looking nature and application value of the research and
provide support for long-term disaster prevention planning in
the region.
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