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Seamounts and related
topographic highs — automated
mapping in support of
sustainable ocean management,
Norway

Margaret F. J. Dolan* and Lilja R. Bjarnadottir

Earth Surface and Seabed Department, Geological Survey of Norway (NGU), Trondheim, Norway

Seamounts are a prime example of an ecologically relevant marine landform.
They are internationally recognized by the OSPAR commission as a threatened
and/or declining habitat yet estimates of their distribution in Norwegian waters
are not adequately reported in databases used for ocean management. Here
we describe mapping of the distribution of seamounts and related topographic
highs, conducted for Norway's offshore seabed mapping program MAREANO.
We employ a combination of automated methods to detect, delineate and
characterize peaks and associated areas of elevated terrain from the GEBCO
global bathymetry data compilation. The resulting broad-scale (1:2,000 000)
map includes seamounts (over 1,000 m high), lower knolls and mounds as well
as many ridges, several of which are of comparable height to seamounts. Our
results include hundreds of topographic highs not reported by previous studies
as well as confirming and further characterizing many known features through
geomorphometric analysis. This new information contributes to documentation
of seabed geodiversity and provides timely data for international reporting and
knowledge-based ocean management supporting sustainable development of
offshore resources, following SDG14 (Life Below Water). The maps serve as
baseline information for further scientific studies, including characterization of
the associated benthic habitats which will ultimately help define appropriate
management measures.

KEYWORDS

seamounts, landforms, marine geology, geomorphology, geomorphometry, GIS,
GEBCO bathymetry, SDG #14

1 Introduction

Seamounts are commonly defined as subcircular topographic highs more than 1,000 m
above the surrounding seabed (Dove et al., 2020; Stagpoole and Mackay, 2022) but
sometimes include lower features and a variety of forms (Staudigel et al., 2010). They have
been mapped by several global (Gevorgian et al., 2023; Harris et al., 2014; Kitchingman
and Lai, 2004; Yesson et al., 2011; Yesson et al., 2021) and regional (Morato et al.,
2013) studies which report occurrences in Norwegian waters. These estimates vary, and
may over- or under-estimate the prevalence of seamounts in this area depending on
the data, methods and definitions used.
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From an ecological perspective, topographic features which
extend higher into the water column are typically subject to
different biophysical regimes than the surrounding seabed. Benthic
habitats on these elevated features tend to reflect these variations
(e.g., Hanz et al., 2021; Meyer et al., 2023; Roberts et al., 2018).
The OSPAR' commission is the intergovernmental organization
coordinating efforts to protect the marine environment of the North-
East Atlantic. OSPAR defines seamounts as undersea mountains
with crests rising more than 1,000 m above the surrounding seabed
(OSPAR, 2008), and recognizes them as a threatened and/or
declining habitat. Currently less than ten seamounts are included in
the OSPARS collated records of threatened and/or declining habitats
in Norwegian waters (OSPAR, 2024a; OSPAR, 2024b). OSPAR-
related reports (Kutti et al., 2019; OSPAR, 2010; 2022) nevertheless
mention additional features over 1,000 m high in this area. Shaded
relief images further indicate the presence of numerous topographic
highs, particularly in the deep Norwegian Sea near the Arctic
Mid-Ocean Ridge (AMOR). Some of these features are over the
height threshold for OSPAR seamounts, while smaller features are
important in a wider ecosystem and habitat context (Rogers, 2018)
and fall within some seamount definitions (Staudigel et al., 2010).

Here we present the results of broad-scale (1:2,000 000) mapping
of seamounts and related topographic highs from bathymetry
data within all areas included in recent management plans for
Norwegian sea areas (Ministry of Climate and Environment,
2020). These results are produced for Norway’s national offshore
2020)
which provides ecosystem relevant maps and data across the

seabed mapping program-MAREANO (Boe et al,

Norwegian shelf, slope and deep sea to support knowledge-
based management. Interest in sustainable development of ocean
resources (Ministry of Trade Industry and Fisheries, 2024) is
especially high in large parts of our study area, particularly where
designated vulnerable and valuable areas (Eriksen et al.,, 2021)
overlap areas of fisheries interest (Ministry of Trade Industry
and Fisheries, 2024) or those opened for seabed mineral related
activities (Ministry of Energy, 2024). Our results provide timely
information for national management, international reporting (e.g.,
OSPAR) and scientific study.

We employ a combination of automated methods for detection
and delineation of seamounts and related topographic highs from
compiled bathymetry data. Our analysis further discriminates
between these elevated features based on depth attributes,
morphology and the underlying data quality. Here we outline
the workflows used and present selected results from the study to
support online maps published by the Geological Survey of Norway
for MAREANO.

2 Methods
2.1 Study area

The study area covers all areas included in recent management

plans for Norwegian sea areas (Ministry of Climate and

1 OSPAR is named after the OSlo and PARis conventions of 1972 and 1974
respectively, now superseded by the 1992 OSPAR convention.
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Environment, 2020), Figure 1. This includes areas claimed by
Denmark and the newly ratified Faroese areas. The area includes
several physiographic regions shaped by various geological
processes through millions of years (Gaina et al., 2025), including
multiple glaciations through the Quaternary ice ages (Ramberg et al.,
2008). The deep parts of the Norwegian Sea, which extend to
depths of nearly 6,000 m, consist of oceanic crust and are a result
of the opening of the North Atlantic Ocean. Slow rifting, with
accompanying volcanic and hydrothermal activity, is still occurring
along the AMOR (Stubseid et al, 2023) which runs from Jan
Mayen north and into the Arctic Ocean, while the Aegir Ridge
to the southeast of Jan Mayen is inactive. The rugged AMOR
is hundreds to thousands of meters high, with a rift valley at
the center and sparsening topographic highs to either side. By
comparison the Lofoten, Greenland, Nansen and Norwegian
basins are relatively flat-bottomed. Meanwhile, the formerly
glaciated continental shelves of the North Sea, Norwegian Sea
and Barents Sea exhibit a dominance of glacial influence which
is evident in the seabed stratigraphy and morphology. Banks,
valleys, moraines and other glacial features are commonplace
(Ottesen et al., 2005).

2.2 Bathymetry data

Multibeam bathymetry data, facilitating the production of
digital terrain models (<50 m resolution) are available for large
parts of Norway’s seabed, but do not cover all areas of interest
for this study. We have therefore used the global bathymetry
data compilation GEBCO (Mayer et al., 2018) as a basis for
this broad-scale analysis. Specifically, we use the GEBCO_2024
15-arc second grid (GEBCO Compilation Group, 2024) which
incorporates all MAREANO’s 2019 multibeam bathymetry in
the deep Norwegian Sea as well as earlier data managed by the
Norwegian Mapping Authority and other contributors. GEBCO_
2024’s accompanying type identifier (TID) grid (Figure 1B) indicates
the type of source data at each location, primarily separating
between direct and indirect measurements or other unknown
sources. To facilitate our analysis GEBCO_2024 data for the
study area were projected to north pole stereographic projection
and resampled to 500 m resolution. Although this resampling
generalizes the topographic information from multibeam data,
where available, the 500 m raster remains suitable for detection
of features measuring at least 1km (Tobler, 1987), which
is smaller than the minimum feature size we aim to detect
(Section 2.3.2).

2.3 Feature detection and delineation

We employ a combination of analysis tools to

identify relevant topographic features and classify them by
morphology and other attributes relevant to MAREANO’s
end wusers. The include

complementary approaches used

raster analyses, feature delineation and filtering routines,

each of which are outlined below and summarized in

Figure 2 (see also Supplementary Material).
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FIGURE 1

blue for reference. Map projection: north pole stereographic.

Overview maps of the study area showing (A) Color shaded relief GEBCO_2024 bathymetry and registered OSPAR seamounts (OSPAR, 2024b). (B)
Reclassified GEBCO_2024 TID grid showing direct and indirect data. (C) Area designations for deep sea mineral activities (Ministry of Energy, 2024):
DSM opened—the areas open for deep sea mineral activities; DSM prop.Ll.lic.r.: Proposed areas for the 1. licensing round for deep sea mineral
exploration. SVO area—particularly vulnerable and valuable areas (Eriksen et al., 2021). Management areas (Ministry of Climate and Environment, 2020;
Ministry of Climate and Environment, 2024) are outlined in black with the earlier boundary shown as a dashed line which includes areas no longer
under Norway's jurisdiction. The location of major sea areas is shown in (A) NaB, Nansen Basin; LB, Lofoten Basin; GB, Greenland Basin; NoB,
Norwegian Basin. Spreading ridges including the Arctic Mid Ocean Ridge—~AMOR and Aegir ridge AR are shown in yellow, source (Gevorgian et al., 2023
accompanying data). The yellow star indicates the position of Norway's deepest point Molloy Deep (5,569 m). The 1,000 m depth contour is shown in

2.3.1 Preparatory raster analyses
2.3.1.1 Local topographic position

Using the CoMMa toolbox for ArcGIS Pro (Arosio et al,
2024; Gafeira et al., 2024) we generate a local topographic position
(LTP) derivative from the bathymetry data which reports the
height relative to a mean or median value within a local analysis
neighborhood. When dealing with sloping terrain and complex
length scales a directional median approach can offer a better
estimate of relative position than standard median- or mean-based
indices (Gafeira et al, 2024; Kim and Wessel, 2008). Here we
create a Directional Median Bathymetry Position Index (dirM-
BPI) LTP (Arosio et al., 2024; Gafeira et al., 2024), hereinafter
referred to as LTP_dirM-BPI, which reports the height relative to
the lowest (least biased) median value occurring in N “bow-tie”
sectors within a circular analysis neighborhood (Kim and Wessel,
2008). Following Kim and Wessel’s (2008) recommendations we
set the analysis neighborhood to have a diameter roughly twice
the size of the expected size of most features of interest. Although
our data indicates undersea mountains spanning a range of sizes
within the study area, through visual assessment we confirmed that
the 20 km radius analysis neighborhood used by Morato et al’s
(2013) study of seamounts in the NE Atlantic is a good general
estimate. Consequently LTP_dirM-BPI was calculated using a
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20 km radius and, as per the CoMMa v.1.2 implementation, with
N = 8 sectors.

2.3.1.2 Geomorphons

As with previous seamount mapping studies, the first step
is detection of peaks. Several approaches can be adopted,
typically harnessing hydrological and/or neighborhood/focal
statistics (e.g., Harris et al, 2014; Kitchingman and Lai, 2004;
Morato et al., 2013; Yesson et al., 2011; Yesson et al., 2021).
Geomorphons (Jasiewicz and Stepinski, 2013) is a machine vision
approach to distinguishing morphometric features from elevation
data based on principles of openness and pattern recognition.
It is well suited to the current study and is computationally
more efficient than neighborhood/focal approaches. Using
geomorphons ten common landform elements (flat, peak, ridge,
shoulder, slope, convex slope [spur], concave slope [hollow],
footslope, valley and pit) are typically recognized. This classified
output can be used to delineate areas of elevated terrain
associated with the peaks, and to characterize their morphological
setting.

Here we use the BRESS toolbox (Masetti et al, 2018;
Masetti, 2024) implementation of the geomorphon algorithm.
This incorporates Jasiewicz and Stepinski’s (2013) original
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method and includes some spatial generalization of the output
landforms based on texton theory. Geomorphon outputs are
dependent on several user-defined settings as well as the input
data. Here we employ settings and data that facilitate emphasis
of ridges and peaks since these are the landform elements
most relevant for onward delineation of seamounts and related
topographic highs.

To highlight these peaks and ridges we apply geomorphon
analysis not to the bathymetry but to the LTP_dirM-BPI
surface (Section 2.3.1.1), to produce the GMlandforms LTP
raster (Supplementary Table S1). This is an effective approach
for delineating certain morphological features (Arosio et al,
2024) and can help overcome data artefacts (Gafeira et al., 2024).
We use an analysis neighborhood with the same outer radius
as for the LTP_dirM-BPI calculation. An inner radius of 5km
helps minimize (local-scale) artefacts while preserving relevant
(broad-scale) features, and the flatness threshold is set at one.
A second geomorphon analysis was applied to the bathymetry
data directly (Supplementary Table S1), this time with a flatness
threshold of two to strike a good balance between detection of real
features and artefacts. This GMlandforms_bathy output indicates
natural landform elements and is used to classify the mapped
features in terms of their neighboring terrain, separating those
occurring in otherwise flat areas from those in rugged areas.
The onward use of each of these two geomorphons outputs is
summarized in Figure 2.
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2.3.2 Delineation of elevated terrain

The landform output (GMlandforms_LTP) from the BRESS
analysis of the LTP_dirM-BPI derivative is used to delineate
polygons, hereinafter referred to as Elevated Terrain Polygons
(ETPs), encompassing connected areas of elevated terrain associated
with each detected peak. We apply Elements-Based Delineation in
CoMMa v.1.2 (CoMMa:EBD) to create polygons capturing this
elevated terrain (see Supplementary Table S2 for settings applied).
Selecting peaks as the core geomorphons and ridges as subordinate
geomorphons we restrict the delineation to elevated areas
directly associated with peaks. Including additional subordinate
geomorphons (e.g., slopes) is counterproductive, resulting in large
areas of connected elevated terrain being delineated rather than
individual areas of elevated terrain directly associated with each
peak. Additional settings restrict the dimensions and degree of
polygon generalization applied such that we produce an output
suitable for a 1:2,000 000 map product. Since our primary goal is to
detect prominent topographic highs, while avoiding limitations
associated with the compiled bathymetry data the minimum
detectable height is set at 200 m, and the minimum width set at
2 km. This width setting is more conservative than the theoretically
attainable (Tobler, 1987) minimum detectable feature size of 1 km
(1:1,000 000) from 500 m raster data. This is because we add the
condition that ETPs are at least 4 cells wide to ensure reliable
detection and generalization, especially given the variation in the
quality of the underlying bathymetry data.
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2.3.3 Refining mapped features
2.3.3.1 Filtering ETPs

The output ETPs fulfill CoMMa:EBD settings and are linked
to the flatness threshold and radii used in the geomorphon
analysis. However, many ETPs are indistinct features and/or are
not pertinent due to their location, form or dimensions. We first
remove internal holes in the ETPs using a fixed area threshold
suited to the 1:2,000 000 mapping scale. A series of filtering
operations is then applied so that only relevant ETPs remain
(Supplementary Material Section S1; Supplementary Table S3). To
facilitate this filtering process, we use 10 m contours generated from
the GEBCO_2024 bathymetry. Using spatial joins, we retain only
ETPs containing closed contours. Dissolved versions of these closed
contour polygons are then used for further filtering and creation of
peak points.

2.3.3.2 Peak points

Rather than estimating peak locations using polygon centroids
(e.g., Morato et al.,, 2013) we create points at the minimum depth for
each dissolved contour polygon within the ETPs (Section 1). These
peak points are used to summarize attributes of interest. Due to
large variations in data quality within the study region, which affect
both delineation and contouring, our peak positions are indicative
only. They serve as a companion to the ETPs but may differ from
the registered position of named features (IHO-IOC, 2025) or peaks
reported by other studies.

2.4 Feature attributes

Characterization of the peaks and polygons provide
information which helps to highlight similarities and differences
between them. Here we describe some key attributes; see also
Supplementary Material for more information on specific attributes

and the summary information in Supplementary Tables 54, S5.

2.4.1 Height above the surrounding seabed

For each peak point and ETP we assign a measure of its
height relative to the surrounding seabed. This relative height is
later classified to separate mountains and ridges over 1,000 m
high from lower features. Since the LTP_dirM-BPI inherently
compares height relative to a base height represented by the lowest
value of the directional median within the analysis neighborhood
(Section 2.3.1.1) this gives a suitable indicator of height for the
present study. By extracting the maximum value of LTP_dirM-
BPI for each closed contour polygon (each of which contains
a single peak point) we obtain an estimate of the height of
each peak relative to the surrounding seabed. This approximation
produces a reasonable height estimate for features occurring on
sloping terrain, due to the directional approach (Kim and Wessel,
2008), without compromising estimates for flat terrain. It also
minimizes issues with single spurious values which are often linked
to artefacts in compiled datasets like GEBCO_2024. For polygons
the relative height is taken as the maximum value of LTP_dirM-BPI
within the entire ETP. See Supplementary Section S3, Figure S1 for
further information and a discussion of alternative height metrics
considered.
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2.4.2 Peaks - source data quality

The quality of the underlying bathymetry is an important
indicator of confidence in the mapped features. We use a reclassified
version of the GEBCO_2024 TID grid (Section 2.1) with sub-
codes for different measurement types merged to a 3-category
raster—direct, indirect and unknown. This is analyzed using zonal
statistics within a 20 km buffer around each peak point to
summarize the majority, count and percentage of cells in each
category. The unknown category is virtually absent within our
study area and hence does not feature in our categorization. Each
peak is then classified based on the majority value within the
20 km buffer and its percentage within the analysis neighborhood
(Direct: >90% majority direct; Partial: 50%-90% majority direct;
Indirect: majority (>50%) indirect). See Supplementary Material
Section S4; Supplementary Figures S2 for further information on
this topic.

2.4.3 Peaks - neighboring terrain classification

In geological and ecological contexts, it is useful to know if
a seamount candidate is a distinct feature on an otherwise flat
seabed, or if it occurs in rugged terrain. To produce a classification
of the morphological setting of a peak in relation to its neighboring
terrain we use the geomorphon landforms generated directly
from the bathymetry (GMlandforms_bathy) (Section2.3.1.1;
Supplementary Table S2). We compute a composition signature of
the percentage cover of each of the ten landform classes occurring
in this raster within a 20 km buffer around each peak using the
“motif” package (Nowosad, 2021) in R. This signature is then
converted to a distance object using the Jensen-Shannon distance
method and hierarchical clustering applied.

2.4.4 Polygons - morphology classification

The delineated ETPs comprise a variety of shapes and sizes.
Basic attributes summarizing properties such as their width to
length ratio is incorporated in the output from CoMMa:EBD. The
toolbox also offers the possibility to generate further attributes which
may be useful in characterizing features for onward interpretation
(e.g., Arosio et al., 2023) but it currently stops short of performing
a morphology classification per se. By contrast, the GA-SaMMT
toolbox (Huang et al., 2023) includes routines specifically directed
to characterizing and classifying morphology. It generates multiple
attributes towards this end based on input polygons, bathymetry
data and derivatives. Classification in GA-SaMMT v.1.2 is possible
for a selection of morphological features from the two-part
morphology/geomorphology classification system developed by the
International Seabed Geomorphology Mapping working group
(ISGM - formerly MIM-GA) (Dove et al, 2016; Dove et al,
2020; Nanson et al, 2023). We applied the various steps in
GA-SaMMT for characterizing topographic highs and classifying
their morphology, which takes a hierarchal rule-based approach
(Huang et al., 2023). Slight modifications were made to the default
settings and workflows (see Supplementary Material Section S2).
Most importantly we use the relative heights from LTP_dirM-BPI at
the morphology classification stage rather than simple depth ranges.
This ensures that the morphological classifications are consistent
with our other attributes for height above the surrounding seabed.
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FIGURE 3

(A) Overview map showing peaks symbolized by height class with GEBCO_2024 color shaded bathymetry (depth range 0-5,931 m), Norway and
management plan areas in black. Map projection: north pole stereographic. (B) Pie chart showing peak counts and percentages by height class. (C)
Example 3D map extract (see A for location) showing closed contours (blue) and polygon outlines (black) with peaks superimposed—note varied detail
of topography due to data quality (D) Histogram for relative heights of peaks per height class. Mean (solid line) and standard deviation (SD) (dotted line)
values for each class are indicated and maximum and minimum values listed for each height class. The extent of Figure 4A is indicated for reference.
Symbolization by other peak attributes is available in the online maps (see Data Availability Statement) with examples in Supplementary Material.

Results
Our analysis produces two datasets.

« Points representing the main peaks of topographic highs
including seamounts, knolls, mounds and ridges.

o Polygons (ETPs) delineating the elevated terrain associated
with each peak. Note that an ETP may contain several peaks
representing the main topographic highs within the structure.

Here we present example maps and summary statistics to give
an overview of the results and some key attributes (see also Data
Availability Statement and Supplementary Material).

3.1 Peaks

3.1.1 Peak height

Our analysis identified 974 peaks occurring in 754 ETPs within
the study area (Figure 3). They are distributed throughout the deep
Norwegian Sea with the greatest densities close to the AMOR
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and several occurrences in the Barents Sea. All these features
could be considered seamounts depending on the definition used
(Staudigel et al.,, 2010). In this study features which exceed 1,000 m
in height are of particular interest (OSPAR candidates), but lower
features are also relevant. We therefore preserve and categorize
lower peaks into those with relative heights of 500-1,000 m, and
200-500 m. Figure 3C illustrates how the peak points are distributed
within the delineated polygons and closed contours. More than one
peak may occur within a polygon, but only a single peak may occur
for each closed contour group. From Figure 3B we see that over half
the peaks are less than 500 m high, while few are over the 1000 m
threshold. Further details per height class are shown in Figure 3D.

3.1.2 Neighboring terrain

Through hierarchical classification of geomorphon landform
composition signatures we find that the first two clusters
effectively separate distinct features from those occurring on
rugged terrain (Supplementary Figure S3). The former may be more
likely to differ in terms of environmental conditions from their
surrounding seabed and includes a far greater proportion of flat
seabed within the surrounding 20 km buffer.
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located in relation to ETPs symbolized by morphology (see A for location).

(A) Map extract (see Figure 3 for location) showing ETPs symbolized by their morphological classification (colors as per (B)). Map projection: north pole
stereographic. (B) Pie charts showing relative proportions of each morphological feature per height class. (C) 3D map extract showing how peaks are

3.1.3 Source data quality

At a regional level the quality issues related to the compiled
GEBCO_2024 data have a relatively minor impact on our overall
results but can lead to some features being missed, their shape
being misclassified or their height estimate misleading. Due to
the importance of this uncertainty for onward use of the output
maps we summarize these uncertainties for end-users by attributing
the peaks with the quality of the source data surrounding them
(see Supplementary Material Section S4; Supplementary Figures S2
for further information) including visualization of mosaic plots
(Meyer et al., 2006; Meyer et al., 2024) comparing data quality with
peak height and neighboring terrain. Comparison with shaded relief
images further highlights differences in data quality in terms of
degree to which topographic features are resolved, as well as the
potential influence of data artefacts. It is important to note that this
uncertainty is also linked to the quality of the containing ETP.

3.2 Elevated Terrain Polygons (ETPs)

Figure 4A shows the ETPs for a portion of the study area,
illustrating how the peak points complement the polygons, showing
the location of the main summits within each ETP (Figure 4C).
Across the entire study area, the proportions of ETPs in each
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height class are similar to those for the peaks, differing in
numbers because some ETPs contain multiple peaks. Although
GA-SaMMT’s morphology classification can currently discriminate
between ten types of topographic highs, just four categories
(mounds, knolls, seamounts and ridges) are recognized within
our study area, based on our ETPs and the settings applied. The
proportions of different morphological feature classifications within
each height category (Figure 4B) confirm that over half of the highest
features (>1,000 m relative height) are morphometrically classified
not as seamounts, but as ridges due to their high length/width ratios.

4 Discussion

Our combined method effectively identifies, classifies and
delineates the elevated terrain associated with the peaks of relevant
undersea mountains where a single approach would have been less
successful. Geomorphons offers a convenient and effective method
for initial identification of candidate peaks and for characterizing the
morphological setting of the mapped features. We adapted settings
and applied preprocessing to avoid data-related issues as far as
possible but cannot overcome the fact that the true topographic
complexity of features is undetected in indirect data, and hence by
geomorphons analysis. At locations where direct and indirect data
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meet, particularly where the direct data are single multibeam lines,
challenging alignment of the depth values in the GEBCO_2024 grid
leads to artefacts or unnaturally resolved features. These are detected
as spurious landforms by geomorphons and related analyses. Our
filtering routines helped to minimize the impact of such data on
the final map.

Delineation of features was important here with a view to
potential OSPAR reporting. Multiple approaches were tested for
delineation of the ETPs with the aim of finding a method that
does more than approximate the base area of each feature (e.g.,
Yesson et al., 2021), but which stops short of detailed delineation
of individual geomorphological landforms (sensu Nanson et al.,
2023). Combining geomorphons analysis and delineation routines,
the CoMMa toolbox offers a convenient workflow. As with any
automated approach, there is scope for improving the delineated
features by manual editing, but this is beyond the scope of the
present broad-scale study. The resulting 1:2,000 000 scale ETPs are
well matched to the areal extent, underlying data and user needs.
They effectively indicate the main areas of elevated terrain associated
with peaks of seamounts and related topographic highs visible in the
GEBCO_2024 data. These ETPs will appear generalized if viewed at
finer map scales and/or together with higher resolution bathymetry
data. Detailed delineation and geological interpretation are done
separately as part of the Geological Survey of Norway’s regional scale
(1:100,000-1:250,000) landform mapping for MAREANO within
prioritized areas where multibeam data and supporting geological
information are available. Additional in-situ information allows
MAREANO to further characterize the associated benthic habitats.

Besides topographic complexity the true dimensions of
topographic highs are often underestimated where they are detected
within indirect or partial bathymetry data. Differences in data
quality affect the reliability of LTPs and associated height estimates.
Nevertheless, our selected metric of height above the seabed (LTP_
dirM-BPI) works well for varying quality data across different
types of terrain and where the data resolution is coarse with
respect to the delineated polygons, (cf. Smith et al., 2009) see also
Supplementary Section S3, Supplementary Figure S1. It is also in
good general agreement with the IHO-IOC feature categorization
for most existing named features. Our maps employ strict height
categories relevant to widely used classifications, but the value
of relative height as estimated by LTP_dirM-BPI is retained in
the attribute table for flexibility. This is important since there is
uncertainty associated with the height values, particularly in areas
with indirect data. Furthermore, there is a lack of consensus on
how ecologically relevant the somewhat arbitrary, yet practical,
height thresholds for seamounts are. Additional depth attributes
allow the peaks and polygons also to be assessed in relation to
other data and ecological influences such as their relation to water
masses (Jeansson et al., 2017) and other oceanographic processes
(Hanz et al, 2021; Roberts et al, 2018) which may influence
benthic habitats (Meyer et al., 2023).

4.1 Seamount candidates

It is important to strike a good balance between over- and
under-estimating the prevalence of seamounts and related features,
especially where the results will be used for conservation planning
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and sustainable management. Due consideration of the underlying
data and methods employed is also important, e.g., now superseded
data (Harris et al., 2014; Morato et al., 2013; Yesson et al., 2011);
number of peaks reported per topographic high (Yesson et al.,
2021). The recent global study by Gevorgian et al. (2023) based
on the vertical gravity gradient (VGG) (Sandwell et al, 2021)
has helped highlight seamount peaks as far north as 80° and
is in good general agreement with our results. We nevertheless
detect several hundred ETPs and associated peaks which are not
documented in previous studies. Most of these newly mapped
features have a relative height of under 500 m (none are over
1,000 m). We report 38 ETPs with a relative height of over 1,000 m
which may be considered for inclusion in the OSPAR database.
For all but one of these features (where the highest peak within
the closed contour polygon was 996 m rather than 1,000 m within
the entire ETP) the height classification matches that of the
highest peak contained in the ETP. Nine of these 38 are currently
registered in OSPAR including seven within the present Norwegian
management area (Ministry of Climate and Environment, 2024),
which is reduced in area from the earlier boundary delimiting our
study area (see section 2.1). Eight additional ETPs are within 20 m of
this height limit and could be considered if there is some flexibility
in the threshold.

Several previously reported seamounts noted in OSPAR,
(2022) coincide with our ridges over 1,000 m. ISGM morphology
definitions (Dove et al., 2020) do not discriminate between ridges of
different heights hence there is no separation of ridges by height in
GA-SaMMT-based classification, nor can a feature be both a ridge
and a seamount due to the hierarchical approach (Huang et al.,
2023). Ridge-like seamounts are to be expected in a setting such as
the AMOR where they are formed by geological processes in the
rift zone (Stubseid et al., 2023). We therefore consider our ridge-
ETPs over 1,000 m to be of interest, alongside the seamount-ETPs
as OSPAR seamount candidates. Indeed, several already-registered
OSPAR seamounts are represented by ridge-ETPs in our results.
We see a similar proportion of ridge-shaped features of moderate
(500-1,000 m) height but fewer lower features take this form. We
expect ridges to be less prominent on older, more sedimented
structures away from the rift zone, but indirect data are also more
widespread in these areas with features poorly resolved.

Vector maps of the distribution of seamounts and related
topographic highs provide important baseline information and
help highlight and quantify these ecologically relevant landforms
visible in shaded relief images. Since our analysis is based
on automated methods the results may be readily updated to
take advantage of new data incorporated in future revisions
of GEBCO. This may include, but is not limited to, extensive
multibeam data being acquired in the deep Norwegian Sea
by The Norwegian Offshore Directorate 2024-2025. Our maps
can inform follow-up scientific studies, ecodiversity estimates,
conservation planning (e.g., Eriksen et al, 2021; Legrand et al.,
2024), regional habitat (Ramirez-Llodra et al., 2024) and status
assessments (OSPAR, 2022) as well as national red-listing of
landforms and nature types (Artsdatabanken, 2018). More generally
such landform maps contribute essential geodiversity information
(Schrodt et al., 2019; Dolan et al, 2022). This is particularly
important to support sustainable development in line with
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SDG 14, especially in regions where it is challenging to align
the needs of industry and conservation against a background of
incomplete knowledge.
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