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Hydraulic tunnels are subjected to both internal and external water pressures, 
which further complicates the contact behavior between the surrounding rock 
and the lining. Currently, analyses addressing this issue remain insufficiently 
thorough, and this phenomenon is particularly prominent in engineering 
applications. For this purpose, this study established a unified analytical 
framework, integrating adhesive, smooth and frictional slip contact, then 
compared and analyzed the interaction mechanism between the surrounding 
rock and the lining using numerical and analytical methods. The research results 
show that a critical friction threshold governs contact behavior, below which 
interfacial slip reduces lining tensile stress by 9.5% through stress redistribution; 
Elastic modulus ratio E2/E1 dominates stress sensitivity, an increase from 2 to 5 
elevates crown tension by 80.3%—far exceeding thickness effects; The lateral 
pressure coefficient and the displacement release coefficient have significant 
impacts on both the distribution pattern and the magnitude of stresses. 
Appropriately delaying the timing of lining installation can effectively reduce 
the stresses in the lining. The new variable reduction algorithm proposed in this 
paper accelerates computation by 75% and improves accuracy by 2.2%, which is 
highly feasible. This mechanics-based framework transforms lining design from 
empirical practice to quantified optimization, delivering actionable protocols for 
the safety and economy of hydropower infrastructure.

KEYWORDS

hydraulic tunnel, support delay, frictional slip contact, rock-lining interaction, 
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 1 Introduction

Cascade development in river basins has been widely adopted to harness 
abundant hydropower resources in the mountainous canyon regions of Southwest 
China. As hydropower projects progressively shift toward these high-altitude areas, 
water-diversion tunnels now exhibit larger scales and greater burial depths, thereby 
imposing more complex structural demands (Wang and Tan, 2010). Under such 
challenging geological conditions, appropriate linings and supports become essential to 
ensure surrounding rock stability and structural safety. Unlike transportation tunnels,
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hydraulic tunnels face combined internal and external water 
pressures, making their structural integrity under multi-field 
loading a critical concern. According to the continuum mechanics-
based New Austrian Tunneling Method (NATM), tunnel stability is 
fundamentally maintained through synergistic interaction between 
linings and surrounding rock (Chen, 2006).

The selection of interaction models for rock-lining interfaces 
significantly influences structural calculations. Although analytical 
and numerical methods are extensively employed in tunnel 
engineering (Timoshenko and Goodier, 2007), three persistent 
limitations hinder practical applications: the complexity of contact 
due to material heterogeneity at the lining-rock interfaces, the 
computational inefficiency of deriving rapid analytical solutions, 
and insufficient quantification of parameter sensitivity (e.g., relative 
lining stiffness E2/E1, thickness d/R0, lateral pressure coefficient λ,
and displacement release coefficient η). These gaps are particularly 
pronounced for frictional sliding contact conditions where mature 
methodologies remain underdeveloped.

Previous research has primarily progressed along three contact-
model paradigms. The analysis of circular lining tunnels is 
generally conducted using the thick-walled cylinder theory from 
elasticity. This approach mainly distinguishes between two types of 
problems: those involving fully bonded contact and those involving 
smooth contact (Moore and Booker, 1985). For fully bonded 
contact, characterized by perfect displacement continuity, closed-
form solutions were first derived by Bobet for pressurized tunnels 
considering pore water effects (Bobet, 2003), later extended to 
shallow tunnels (Bobet and Nam, 2007). While Li et al. investigated 
elastic responses to initial stress fields (Li and Wang, 2008), support 
delay was neglected—an omission subsequently addressed through 
displacement release coefficients (Lu et al., 2011). Considering the 
influence of pore water pressure, Guo et al. evaluated the stability of 
the surrounding rock of lined tunnels under full contact conditions 
using the Mohr-Coulomb criterion. However, they still assumed that 
the lining was constructed immediately after excavation (Guo et al., 
2021). Wang et al. considered the support delay, but only in the radial 
direction, without addressing the impact of tangential displacement 
(Wang and Li, 2009). Han et al. further integrated support lag 
into complex-variable formulations (Han et al., 2018). In contrast, 
smooth contact models imposing zero interfacial shear stress 
were pioneered using relative stiffness methods (Richard, 1964; 
Hoeg, 1968), with rigorous benchmarks established by Moore and 
Booker (Moore and Booker, 1985). Recent innovations include Gao’s 
double-layer cylinder solutions (Gao et al., 2013) and Lu’s models 
combining support delay with pure slip conditions (Lu et al., 2014).

Regarding frictional sliding contact, the Coulomb friction 
model for rigid bodies is simple, easy to use, and widely applicable. 
Meschke et al. employed the Coulomb friction model to simulate the 
interaction between piles and soil (Meschke et al., 2013). Analytical 
complexity arises from nonlinear boundary constraints, leading 
most studies toward numerical approximations such as augmented 
Lagrangian methods (Cavalieri and Cardona, 2013; Cavalieri and 
Cardona, 2015) or segment-spring systems (Su and He, 2007; 
Yang et al., 2010). Although analytical solutions for circular 
tunnels were derived by Lu et al. (2019), comparative analyses 
across all three contact modes—particularly quantification of stress 
transitions modulated by different engineering parameters—were 
not conducted. Ahn and Pouya established a new analytical solution 

for elastic contact between the lining and ground, the comparisons 
are given with other works for various slip conditions, but the lining 
is modeled as an elastic circular shape shell (beam in 2D) (Ahn and 
Pouya, 2023).

A review of existing research on lined tunnels reveals that 
the most common approaches assume either a fully bonded or 
a perfectly smooth interface between the surrounding rock and 
the lining. However, these studies often neglect the excavation 
process or fail to account for the practical phenomenon of support 
delay. Under frictional slip contact conditions, the work of Ahn 
and Pouya simplifies the lining to a beam and does not consider 
the excavation load ratio prior to the installation of the lining, 
similarly assuming that the application of the lining is instantaneous. 
Although Lu takes support delay into account, the setup and 
solution process of his optimization model have inherent flaws, 
which lead to difficulties when extending the approach to tunnels 
with arbitrary cross-sections. Consequently, two critical research 
deficiencies persist: the absence of a unified framework comparing 
stress distributions across bonded, smooth, and frictional slip 
contacts, and limited engineering applicability due to unquantified 
parameter influences. To address these deficiencies, complementary 
analytical and numerical approaches were employed to investigate 
the interaction mechanisms. The engineering applicability of 
both methods was evaluated through rigorous comparison with 
conventional design methodologies. Building upon this foundation, 
a rapid and accurate optimization method for analytical solutions 
was developed, and parametric influences on stress distribution 
patterns were systematically analyzed. This integrated framework 
is intended to advance theoretical models for tunnel surrounding 
rock and lining, and make up for the deficiencies in the theory and 
practice of hydropower tunnel design. 

2 Analytical methods for the 
rock-lining interaction

2.1 Fundamental theory

The stress-strain calculation of the surrounding rock and 
lining in a circular tunnel is usually simplified as a key section 
solution due to its high length-to-diameter ratio and high symmetry 
characteristics. The contact between the surrounding rock and the 
lining can be classified into three types: fully bonded contact, 
smooth contact and frictional slip contact.

Fully bonded contact assumes no relative displacement at any 
point along the interface. In numerical methods, this is typically 
simulated through shared nodes, assuming continuity of normal 
stress, tangential shear stress, and displacements (the subscripts I 
and II represent the surrounding rock and the lining, respectively). 
The stress and the displacement continuity conditions are expressed 
as Equations 1, 2, respectively:

(σr)I = (σr)II, (τrθ)I = (τrθ)II (1)

(ur)I = (ur)II, (uθ)I = (uθ)II (2)

However, actual concrete materials often cause slight separation 
and relative slippage, making this model conservative.
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Smooth contact maintains normal stress and displacement 
continuity but permits tangential displacement discontinuity with 
zero shear stress. At this point, the expressions for the boundary 
conditions and continuity conditions are given by Equations 3, 4:

(σr)I = (σr)II, (τrθ)I = (τrθ)II = 0 (3)

(ur)I = (ur)II, (uθ)I ≠ (uθ)II (4)

This model allows relative sliding but is rarely used practically 
due to unrealistic frictionless assumptions.

Frictional slip contact represents an intermediate state governed 
by Coulomb’s friction theory, as expressed in Equation 5. When 
the coefficient of friction is zero or exceeds a certain threshold, 
the analytical solutions for two extreme contact conditions (perfect 
combined contact and smooth contact) can be derived.

min F(X),X ∈ D (5)

D:aj(X) = 0, j = 1,⋯,8

fr|σr|j − |τrθ|j ≥ 0, j = 1,2,⋯,m+ 1

This method is also often referred to as an optimization 
algorithm based on the complex function theory, in which, relative 
sliding may occur when the friction coefficient is below a critical 
threshold, while higher values induce bonded behavior. Therefore, 
the application of complex function theory requires determining 
analytic function coefficients from boundary conditions and contact 
models to derive stress and deformation fields. 

2.2 Engineering construction of analytical 
function

The computational model of deeply buried circular tunnels 
under in-situ stresses and internal water pressure was established 
as shown in Figure 1. Parameters were specified as: p0 = 2.0 MPa, 
R1 = 3.0 m, R0 = 2.5 m, μ1 = 0.25 (rock), μ2 = 0.20 (lining), E2/E1 = 
10.0, and η = 0.20. The coefficient η quantifies support delay, where 
η = 0 indicates immediate lining installation after excavation and η
= 1 corresponds to installation after complete rock deformation. For 
frictional slip contact, fr  = 0.5 was initially adopted.

After tunnel excavation, the surface forces on the boundary are 
released, and the displacement resulting from this excavation can be 
expressed in Equation 6,

ur + iuθ =
1

2G1
e−iθ[ϒ

κ1R2
1

z
+ϒ

R2
1z

z2 −ϒ
′R

2
1

z
−ϒ

R4
1

z3 ] (6)

Where Υ = p(1−λ)
2

, Υ′ = p(1+λ)
2

, κ1 = 3−4μ1, G1 = E1/[2∗(1+μ1)], 
E1 and μ1 are the elastic modulus and Poisson’s ratio of the rock mass, 
respectively.

The two complex potential functions in the rock and 
lining are γR(z), χR(z), γL(z), χL(z), they can be expressed 

FIGURE 1
Analytical function calculation model under in-situ stresses and 
internal water pressure.

by Taylor and Laurent series. The expressions for the stress 
and displacement of the surrounding rock are given by
Equations 7, 8.

σR
r = 2Re{−

∞

∑
k=1

kckz−k−1 − e2iθ[z
∞

∑
k=1

k(k+ 1)ckz−k−2 −
∞

∑
k=1

kdkz−k−1]}

σR
θ = 2Re{−

∞

∑
k=1

kckz−k−1 + e2iθ[z
∞

∑
k=1

k(k+ 1)ckz−k−2 −
∞

∑
k=1

kdkz−k−1]}

τR
rθ = Im{e2iθ[z

∞

∑
k=1

k(k+ 1)ckz−k−2 −
∞

∑
k=1

kdkz−k−1]}

(7)

uR
r = (1− η)ur +

1
2G1

Re{e−iθ[κ1

∞

∑
k=1

ckz−k + z
∞

∑
k=1

kckzk+1 −
∞

∑
k=1

dkzk]}

uR
q = (1− η)uθ +

1
2G1

Im{e−iθ[κ1

∞

∑
k=1

ckz−k + z
∞

∑
k=1

kckzk+1 −
∞

∑
k=1

dkzk]}
(8)

In the lining, the expressions for the stress and displacement of 
the lining are given by Equations 9, 10.

σL
r = 2Re{−

∞

∑
k=1

kekz−k−1 +
∞

∑
k=1

k fkzk−1−

e2iθ[z(
∞

∑
k=1

k(k+ 1)ekz−k−2 +
∞

∑
k=1

k(k+ 1) fkzk−2)−
∞

∑
k=1

kgkz−k−1 +
∞

∑
k=1

khkzk−1]}

σL
θ = 2Re{−

∞

∑
k=1

kekz−k−1 +
∞

∑
k=1

k fkzk−1+

e2iθ[z(
∞

∑
k=1

k(k+ 1)ekz−k−2 +
∞

∑
k=1

k(k+ 1) fkzk−2)−
∞

∑
k=1

kgkz−k−1 +
∞

∑
k=1

khkzk−1]}

τL
rθ = Im{e2iθ[z(

∞

∑
k=1

k(k+ 1)ekz−k−2 +
∞

∑
k=1

k(k+ 1) fkzk−2)−
∞

∑
k=1

kgkz−k−1 +
∞

∑
k=1

khkzk−1]}

(9)

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1687458
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yin et al. 10.3389/feart.2025.1687458

uL
r = (1− η)ur +

1
2G2

Re{e−iθ[κ2(
∞

∑
k=1

ekz−k +
∞

∑
k=1

fkzk)

+z(
∞

∑
k=1

kekzk+1 −
∞

∑
k=1

k fkz−k+1)−
∞

∑
k=1

gkzk −
∞

∑
k=1

hkz−k]}

uL
q = (1− η)uθ +

1
2G2

Im{e−iθ[κ2(
∞

∑
k=1

ekz−k +
∞

∑
k=1

fkzk)

+z(
∞

∑
k=1

kekzk+1 −
∞

∑
k=1

k fkz−k+1)−
∞

∑
k=1

gkzk −
∞

∑
k=1

hkz−k]}

(10)

Based on the boundary conditions and contact conditions 
described in Section 2.1, a system of equations (or inequalities) 
for determining the coefficients of the analytic functions can be 
formulated. The calculation processes of the analytical solutions 
under the three different contact modes are as follows respectively: 

1. Fully bonded contact needs to take into account the internal 
boundary conditions of the lining, the continuity conditions at 
the contact interface, the displacement boundary conditions, 
and the contact interface conditions. For circular tunnels, 
according to the derivation process, only nine parameters 
are required to determine the corresponding analytical 
function, as follows:

2R2
0x5 + x7 = −p0R2

0 (11)

x4 + 3R4
0x6 +R2

0x9 = 0 (12)

R2
0x4 −R6

0x6 − x8 = 0 (13)

(κ1 + I3)x1 − I3(κ2 + 1)x4 = −
p
2

I2I6R2
1 (14)

(I3 − 1)x2 − I3(κ2 + 1)R2
1x5 =

I1p
2

I5R2
1 (15)

(I3 − 1)R2
1x1 − (I3 − 1)x3 + I3(κ2 + 1)R6

1x6 = 0 (16)

x2 − 2R2
1x5 − x7 = 0 (17)

x1 − x4 − 3R4
1x6 −R2

1x9 = 0 (18)

R2
1x1 − x3 −R2

1x4 +R6
1x6 + x8 = 0 (19)

where, I1 = 1-η, I2=(1-η)∗κ1, I3 = G1/G2, I5 = 1+λ, I6 = 1- λ, 
the same applies below. The coefficients of the analytic function 
can be determined by solving the system of equations composed of 
expressions (Equations 11–19).

2. Smooth contact modifies five equations while retaining 
Equations 11–13, 17 due to differences in continuity of the 
contact interface and the contact conditions:

2R2
1x1 − 3x3 = 0 (20)

−2R2
1x4 + 6R6

1x6 + 3x8 +R4
1x9 = 0 (21)

4R2
1x1 − 3x3 − 4R2

1x4 + 3x8 −R4
1x9 = 0 (22)

2x2 − 2I3(1− κ2)R
2
1x7 − 2I3x7 = −I1I5pR2

1 (23)

(κ1 + 1) ⁢R2
1 ⁢x1 − x3 − I3 ⁢ (κ2 + 1) ⁢R2

1 ⁢x4 − I3 ⁢ (κ2 − 3)

⁢R6
1 ⁢x6 + I3 ⁢x8 + I3 ⁢R4

1 ⁢x9 = −
1
2
⁢I2 ⁢I6 ⁢pR4

1 (24)

By simultaneously solving Equations 6–8, 12, 20–24, the 
coefficients of the analytic functions under smooth contact 
conditions can be obtained.

3. Frictional slip contact due to the lack of contact condition 
equations, only eight equations can be formulated, similarly. 
And the equations different from those for smooth contact 
are given by Equation 25:

−2R2
1x1 + 3x3 = −2R2

1x4 + 6R6
1x6 + 3x8 +R4

1x9 (25)

There are nine unknowns but only eight equations, so it is 
necessary to use additional conditions for optimal solution.

Characteristics of frictional sliding contact conditions are 
defined by identifying the onset of minimal relative sliding as 
the critical point. According to the Coulomb friction theory, the 
corresponding inequality equation is as follows:

fr|x2R−21 + (3x3R−41 − 4x1R−21 )cos 2θ| − |(2x1R−21 − 3x3R−41 ) sin 2θ| ≥ 0
(26)

Taking the minimization of the relative slip on the contact 
surface as the objective function,

F = | 1
4G1
[−pR1I2(1− λ) +

2(1− κ1)c1

R1
− 2x3R−31 ]

− 1
2G2
[
(1− κ2)x4

R1
+ (3+ κ2)x6R3

1 − x8R−31 + x9R1]| (27)

Finally, by employing optimization computational methods, the 
coefficients of the analytical functions that satisfy the boundary 
conditions can also be obtained.

Here, a novel optimization method is considered to solve this 
problem. The expressions for the inequality constraints and the 
objective function are given in Equations 26, 27, respectively. The 
original optimization model contains 9 design variables and 8 sets 
of equality equations. By selecting any one of the variables in xi (i 
= 1, …, 9) as the design variable—for example, x9—and assigning 
it an initial value, the remaining 8 variables xi (i = 1, …, 8) can be 
determined by solving the 8 equations. Subsequently, these values of 
xi (i = 1, …, 8) are substituted into the following optimization model 
to obtain the optimized result.

min F(X),X ∈ D (28)

D:c+ fr|σr|j − |τrθ|j ≥ 0, j = 1,2,⋯,m+ 1

Similarly, by employing the augmented penalty function method 
for optimization, and compared with the traditional penalty 
function form that includes equality constraints, the penalty 
function form given in Equation 28 does not contain the quadratic 
loss term with ∑8

j=1a2
j (X). Moreover, the initial point involves 

only x9, which greatly simplifies the mathematical model of the 
optimization.
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FIGURE 2
Distribution of contact stress on the contact surface: (a) Variation of radial stress σr with fr; (b) Variation of shear stress τrθ with fr.

FIGURE 3
Distribution of relative slip on the contact surface.

To compare the accuracy of the two models, we use frictional slip 
contact as an example. When fr  = 0.1, the objective function values 
(i.e., the tangential displacement difference) calculated by the new 
and old models are 2.4129 and 2.4659, respectively, representing an 
improvement of approximately 2.2%. Comparing the stress results 
obtained by the two models, and taking the radial stress at the 
inner boundary of the lining as an example, the theoretical value 
is 2.0 MPa. The maximum relative error of the stress obtained 
using the new optimization model is 2.025 × 10−2%, whereas the 
maximum relative error obtained using the old optimization model 
is 2.047%. Therefore, with respect to the theoretical solution, the 
results from the old optimization model exhibit a larger error. 

Meanwhile, in the old optimization model, the objective function 
was accessed approximately 1,000 to 3,000 times, whereas in the 
new model, this number has been reduced to the range of 200–300. 
This improvement is attributed to the fact that the method proposed 
in this paper can ensure, through equation solving, that aj(X) =
0 is satisfied exactly in Formula 5, making it more accurate than 
the previous optimization model. In addition, the number of 
design variables is greatly reduced, which significantly enhances 
the optimization speed. Moreover, this method can be extended to 
address the optimization problems of tunnels with arbitrary cross-
sections. For complex cross-sections, the number of unknowns can 
reach as many as 6N + 4, where N is generally greater than 60. 
When using the original optimization model, the solution process 
often becomes trapped in local optima or even fails to converge. By 
applying the new model, the coefficient of unknowns can be reduced 
by approximately 80%, effectively preventing the issue of excessive 
unknowns leading to unsolvable problems. 

2.3 Process of solving the analytical 
function

After determining the coefficients of the analytic functions, 
the stress components within the lining (σL

r ; σL
θ , τL

rθ) are given in 
Equations 29–31:

σL
r = 2x5 + x7r−2 + (−4x4r−2 + 3x8r−4 − x9)cos 2θ (29)

σL
θ = 2x5 − x7r−2 + (12x6r2 − 3x8r−4 + x9)cos 2θ (30)

τL
rθ = (6x6r2 − 2x4r−2 + 3x8r−4 + x9) sin 2θ (31)

The stress field in the surrounding rock is formulated by 
superimposing three distinct components: the initial stress before 
excavation, the stress state after excavation, and the stress after 
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FIGURE 4
Ansys computational model.

FIGURE 5
Tangential stress and shear stress distribution contour maps of the lining. (a) Tangential stress; (b) shear stress.

FIGURE 6
Comparison between analytical solutions and ANSYS numerical solutions. (a) Comparison of contact stresses; (b) Comparison of tangential 
displacements of the contact surface lining.
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FIGURE 7
The influence of the modulus ratio on stress distribution. (a) Tangential stress on the inner boundary of the lining for different E2/E1; (b) Tangential 
stress of the surrounding rock at the contact surface for different E2/E1.

FIGURE 8
The influence of the relative lining thickness on stress distribution. (a) Tangential stress on the inner boundary of the lining for different relative lining 
thickness; (b) Tangential stress of the surrounding rock at the contact surface for different relative lining thickness.

support installation. The complete expressions are given in 
Equations 32–34:

σR
r = −

I5p
2
+ 1

r2 ⁢ [
I5pR2

1

2
+ x2]+

I6p
2
⁢cos 2θ

+{−
2(I6pR2

1 + 2x1)

r2 +(
3I6pR4

1

2r4 +
3x3

r4 )} ⁢cos 2θ (32)

σR
θ = −

I5p
2
− 1

r2 [
I5pR2

1
2
+ x2]−

I6p
2

cos 2θ− 1
r4(

3I6pR4
1

2
+ 3x3)cos 2θ

(33)

τR
rθ = −[

I6p
2
+ 1

r2 (I6R2
1 + 2x1)] sin 2θ+ 1

r4(
3I6pR4

1

2
+ 3x3) sin 2θ

(34)

The tangential displacements for both surrounding rock and 
lining are similarly obtained, and their expressions are given by 
Equations 35, 36:

uR
θ = −

I2I6pR1 sin 2θ
2G1

+
(1− κ1)x1

2G1R1
sin 2θ−

x7

2G1R3
1

sin 2θ (35)
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FIGURE 9
The influence of the lateral pressure coefficient on stress distribution. (a) Tangential stress of the lining; (b) shear stress at the contact surface.

FIGURE 10
The influence of the displacement release coefficient η on stress distribution. (a) Tangential stress of the lining; (b) shear stress at the contact surface.

uL
θ = −
(1− κ1)x2

2G1R1
sin 2θ+ x3R1 sin 2θ− (3+ κ2)x8R3

1 sin 2θ−
x9

R3
1

sin 2θ

(36)

The distributions of contact stress under the three contact modes 
are analyzed within the [0°–90°] interval, utilizing the inherent 
symmetry of circular tunnels. To maintain consistency and facilitate 
the analysis of stress distribution patterns, the stresses in the figures 
are presented in the form of stresses p. Computations employ a 
lateral pressure coefficient λ = 0.5 and cohesion c = 0.15 MPa. 
As demonstrated in Figure 2, when the friction coefficient fr = 0 
and cohesion c = 0, the interfacial contact stresses exhibit exact 

correspondence with smooth contact solutions. Conversely, when 
fr  ≥ 0.59, the results converge completely to fully bonded contact 
solutions. For intermediate values of fr , the solutions consistently 
reside between these two limiting cases.

Further analysis in Figure 3 reveals that the maximum relative 
slip between the lining and surrounding rock occurs at the 45°
position, corresponding to the arch shoulder, with the magnitude 
of slip diminishing progressively as fr  increases. The radial stress 
σr  at the 45° arch shoulder remains invariant when the horizontal 
in-situ stress is less than the vertical component. Under smooth 
contact conditions ( fr  = 0), peak radial stresses are observed at the 
arch crown (90°) and arch base (0°). However, when the friction 
coefficient exceeds 0.2, the stress peak shifts toward the arch haunch. 
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FIGURE 11
Site photograph of the excavation face in the Class III surrounding rock tunnel section.

TABLE 1  Rock mass classification and recommended values for physical-mechanical parameters.

Rock 
mass

Lithology Rock type unit 
weight

γ/kN.m-3

Modulus 
of 

deformation
Er/GPa

Poisson 
ratio μr

Internal 
friction 

angle φ/°

Platts 
index f

II; Granite, diorite Hard rock 27.0 11∼15 0.23 52.4∼47.7 5∼6

Ⅲ

Ⅲ1 Granite, diorite hard rock 26.5 7∼10 0.25 41.9∼47.7 4∼5

Ⅲ2

Granite, diorite hard to 
medium hard 

rock
26.0 5∼6 0.27 35.0∼41.9 3∼4

Diabase dykes

Ⅳ

Granite, diorite

soft to 
medium-hard 

rock
25.0 2∼4 0.30 26.6∼35.0 2∼3

Diabase dykes

Greisen and 
pegmatite 

dykes

V

fracture zone

soft rock 24.0 0.2∼0.3 >0.35 19.3∼26.6 <1Greisen and 
pegmatite 

dykes

TABLE 2  Calculation Parameters of C25 concrete.

Weight γ/kNm-3 Elastic modulus El/GPa Poisson ratio ul Uniaxial compressive 
strength/MPa

Uniaxial tensile 
stress/MPa

25 28 0.167 11.9 1.27

As fr  continues to increase, the distribution of radial stress around 
the tunnel periphery transitions toward a flattened elliptical pattern, 
characterized by reduced stress at the crown and elevated stress at 
the haunch.

Shear stress τrθ and tangential displacement differences exhibit 
an inverse relationship: increases in shear stress correspond 
to decreases in relative displacement differences, with both 

parameters attaining their maximum values in the vicinity of the 
arch shoulder. When the friction coefficient attains the critical 
threshold frl = 0.59, the condition |τp

rθ| < fr|σ
p
r | + c is fully satisfied 

throughout the interface, indicating a complete transition to bonded 
contact behavior. Consequently, with knowledge of the interface 
friction coefficient and cohesion, engineers can reliably select the 
appropriate contact model for design calculations. 
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FIGURE 12
Operational condition load calculation model.

3 Validation and analysis

3.1 Numerical validation of the analytical 
results

The accuracy of the analytical solutions is verified through 
stress and displacement results from the three contact models. 
To further validate these results, ANSYS software is employed for 
numerical analysis. Unlike the conventional “load-structure model” 
historically used in design, a contact model incorporating initial 
ground stress is implemented in this study. The “reverse stress release 
method” is adopted to simulate the delayed support installation 
process. Equivalent nodal loads after excavation are calculated, with 
the released load magnitude modeling the support delay effect. In 
the elastic state, when the displacement release coefficient is η, the 
remaining (1-η) portion of the load acts on the lining, inducing 
rock-lining interaction. The final stress at the excavation boundary is 
determined by superimposing the initial in-situ stress and the stress 
induced by releasing η times the equivalent load.

Among several contact models in ANSYS, the “surface-to-surface” 
contact was selected due to its numerous advantages, such as 
supporting large sliding and friction, providing frictional stress results, 
and allowing multiple modeling controls. During the calculation 
process, the PLANE42 element was employed to simulate both the 
surrounding rock and the lining components. The contact between 
the surrounding rock and the lining was realized through the “surface-
to-surface” contact approach in ANSYS. Specifically, the surface of the 
lining was subdivided into target elements (TARGE169) through mesh 
division, which were paired with the contact elements (CONTA171) 
on the surface of the surrounding rock. Both shared the same real 
constant set to form a contact pair. Since the study addresses a frictional 

slip contact problem, the KEYOPT (12) keyword option was set to 2 
to allow relative sliding, and the friction coefficient between the two 
materials was set to 0.5. In this study, a mapping function is used to 
map the ζ-plane onto the z-plane. As a result, the theoretical solution is 
rotated 90° degrees clockwise relative to the numerical software results. 

The boundary conditions and load application schemes of the 
simulation examples in ANSYS are shown in Figure 4. The external 
boundary of the selected model measures 50.0 m × 50.0 m, with an 
excavated tunnel radius of 3.0 m. Point constraints are applied at 
location A in both the horizontal and vertical directions, while only 
vertical constraint is imposed at point B. A surface load of 2.0 MPa is 
applied to the lining’s inner boundary, and the calculated equivalent 
nodal loads are applied to nodes on the contact surface.

Figure 5 shows the Tangential stress and shear stress distribution 
contour plot of the lining. Within the range of [0 °–90 °], the 
tangential stress gradually decreases, while the shear stress reaches 
its maximum value at 45 °. Figure 6 presents a comparison between 
the numerical and analytical solutions. Due to symmetry, the 
results within the range of [0 °–90 °] are compared. At the rock-
lining interface, contact stresses obtained by both methods show 
close agreement, with the maximum relative error of approximately 
3.84% occurring at the crown. This minor deviation is attributed 
to the full compliance with contact conditions at boundaries, 
demonstrating the superiority of this contact model over traditional 
“load-structure” approaches. Displacement comparisons reveal a 
maximum relative error of 13.1% at the crown, further confirming 
model consistency. 

3.2 Analysis of stress distribution in 
surrounding rock and lining

The effects of relative lining thickness and material stiffness 
on lining and rock stresses are systematically analyzed. Given the 
significant support delay typical in hydraulic tunnel construction, 
a displacement release coefficient of η = 0.8 is adopted. All 
parameters except those under investigation remain unchanged, 
with analysis focused on the [0 °–90 °] range and engineering-
critical tangential stresses.

The influence of elastic modulus ratio E2/E1 is first examined 
through values of 2, 3, 4, and 5, simulating varying rock-concrete 
combinations. As shown in Figure 7a, lining stress is significantly 
affected by modulus ratio changes, exhibiting both tensile and 
compressive states. At the 0° haunch position, compressive stress 
is observed, while tensile stress occurs at the 90° crown. Both 
stress magnitudes increase with higher E2/E1 ratios: when the ratio 
increases by 2.5 times, haunch compressive stress rises by 50.9%, and 
crown tensile stress increases by approximately 80.3%, indicating 
more pronounced effects on crown tension. Figure 7b shows the 
surrounding rock under compression throughout, with compressive 
stress gradually decreasing from haunch to crown. Higher modulus 
ratios reduce the range of stress variation.

The effect of relative lining thickness is then investigated while 
maintaining constant tunnel internal diameter. Ratios of d/2R0 = 
1/8, 1/10, 1/12, and 1/16 are considered. Figure 8a demonstrates 
that lining thickness has lesser influence than modulus ratio. 
Compressive stress near the haunch decreases while tensile stress 
near the crown increases as the lining thins: when thickness 
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FIGURE 13
Tangential stress variation and major principal stress contour plot of the lining under operational condition. (a) Tangential stress by analytical method;
(b) Major principal stress by numerical method.

FIGURE 14
Distribution of tangential stress within the lining at different locations.

is halved, haunch compressive stress reduces by approximately 
7.4%, and crown tensile stress increases by 11.4%. Figure 8b 
confirms compressive stress throughout the surrounding rock, with 
the range of variation expanding as lining thickness decreases. 
Collectively, lining stress is more sensitive to elastic modulus and 
thickness variations than surrounding rock stress, with crown 
regions exhibiting greater susceptibility than haunch locations.

Next, the influence of the lateral pressure coefficient λ
and displacement release coefficient η on stress distribution is 
conducted. As indicated by the aforementioned results, the lining 
stress is more sensitive to changes in these parameters. Therefore, 
the following analysis focuses primarily on the tangential stress of 
the lining and the shear stress at the contact interface, with particular 
attention to stress variations within the 0 °–90 ° range.

As shown in Figure 9, variations in the lateral pressure coefficient 
(λ = 0.5, 0.8, 1.0, 1.5) lead to significant changes in both tangential 

and shear stresses. When λ = 1, meaning the horizontal and vertical 
stresses are equal, both the tangential stress and shear stress remain 
constant. For smaller values of λ (<0.8), the tangential stress reaches 
its minimum at the 0° haunch position and its maximum at the 90°
crown. Conversely, for larger values of λ, the distribution pattern is 
reversed, with the minimum tangential stress occurring at the 90°
crown. The shear stress attains its extremum at 45 °, and as λ gradually 
increases, the shear stress shifts from negative to positive. When λ
= 1, there is no shear stress on the contact surface, and no relative 
sliding occurs. Figure 10 illustrates the stress distribution patterns 
as the displacement release coefficient varies. Similarly, the stress 
distribution is highly sensitive to changes in the displacement release 
coefficient. When η = 0, the entire excavation-induced displacement 
of the surrounding rock is borne by the lining; at this point, both 
the tangential and shear stresses reach their maximum values. The 
maximum tangential stress occurs at the 0° haunch position, while 
the maximum shear stress remains at the 45° position. As η increases, 
the distribution of tangential stress becomes more uniform, resulting 
in a more even load on the lining, and the magnitude of the shear 
stress gradually decreases. When η = 1, indicating that the excavation-
induced displacement of the surrounding rock is fully released, the 
pressure acting on the lining drops to zero, the shear stress at the 
interface becomes zero, and the lining is subjected only to internal 
water pressure, thereby exhibiting a tensile state. 

4 Engineering applications and 
comparative analysis

4.1 Project background: Yingliangbao 
diversion tunnels

The Yingliangbao Hydropower diversion tunnels serve as a 
validation case study due to their large-scale and representative 
characteristics, featuring an internal diameter of 13.1 m and 
significant lengths of 14,316.909 m (Tunnel No. 1) and 14,418.569 m 
(Tunnel No. 2). Operating under internal water pressures ranging 
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FIGURE 15
Tangential stress variation and third principal stress contour plot of the lining under construction condition. (a) Tangential stress by analytical method;
(b) third principal stress by numerical method.

from 0.30 to 0.74 MPa, these tunnels employ full-section reinforced 
concrete linings with thicknesses varying according to surrounding 
rock classifications: 0.4 m for class III1, 0.5 m for class III2, 0.8 m 
for class IV, and 1.0 m for class V. Debris collection pits installed in 
favorable rock sections prevent turbine damage, while connections 
to dedicated surge chambers Nos. 1-2 ensure operational stability.

This analysis focuses on class III1 rock sections (Figure 11), 
utilizing surrounding rock parameters (unit weight 26.5 kN/m3, 
deformation modulus 10 GPa, Poisson’s ratio 0.25) and C25 concrete 
properties (unit weight 25 kN/m3, elastic modulus 28 GPa, tensile 
strength 1.27 MPa) as specified in Table 1 and 2. 

4.2 Parallel computational framework

A dual modeling approach is implemented to evaluate lining 
performance. The proposed analytical method adopts frictional 
slip contact with a friction coefficient fr  = 0.5 based on field 
measurements and displacement release coefficient η = 0.8 to 
account for support delay, explicitly simulating interfacial relative 
slip effects. Comparative analysis employs a conventional load-
structure model in ANSYS, where the lining is modeled with 
BEAM3 elements (192 nodes, 256 elements total) and surrounding 
rock with COMBIN39 spring elements. Earth pressures are 
calculated per GB-T 51394-2020 collapse arch theory, incorporating 
empirical reductions for actual rock conditions. The load application 
sequence initiates with full constraint imposition at spring elements, 
followed by gravitational acceleration on all elements, and concludes 
with internal pressure transmission through rock-lining connection 
springs, as depicted in Figure 12. 

4.3 Result comparison and discrepancy 
analysis

Both computational methods identify the vault inner edge as 
the critical tensile stress concentration zone. The analytical solution 
(Figure 13a) demonstrates progressive tensile stress increases from 

haunch (0 °) to crown (90 °), reaching peak values of 0.941 MPa 
at the inner edge and 0.875 MPa at the outer edge. In contrast, 
the numerical solution exhibits analogous distribution patterns but 
yields 9.51% higher peak tension (1.04 MPa), calculated as Δσ t  = 
∣1.04–0.941∣/0.941% × 100%. This discrepancy arises because the 
numerical model assumes perfect bonding, neglecting interfacial 
slip that reduces tensile stress in the analytical formulation. 
This mechanism is corroborated by principal stress contours in 
Figure 14b showing elevated tension at the bonded crown. Analysis 
of thickness effects (Figure 14) further reveals that increasing lining 
thickness from 0.4 m to 0.8 m decreases crown tensile stress by 
15% in analytical results, while haunch compressive stress variations 
remain below 8%.

As for the construction conditions (Figure 15), according to 
Code for Design of Hydraulic Tunnel (NB/T 10391-2020), only 
external water pressure and rock pressure are considered, while 
internal water pressure is neglected. Under these conditions, the 
maximum compressive stress in the lining obtained by numerical 
method is 2.44 MPa, whereas the maximum compressive stress 
from the analytical solution is approximately 1.96 MPa. This 
discrepancy arises because the analytical solution derived in this 
study is currently unable to simulate the effect of external water 
pressure. When considering the effect of external water pressure, 
it is necessary to derive the expression for the inhomogeneous 
biharmonic equation with respect to ∇4χ based on the theory of 
planar elastic complex variable functions, in this case, ∇4χ ≠ 0, 
whereas the method derived in this paper does not take external 
water into account, and thus ∇4χ = 0. 

4.4 Design optimization guidelines

The comparative analysis yields three actionable engineering 
insights. First, interfacial behavior control through measures 
allowing controlled slip (e.g., geotextile interlayers) reduces 
crown tensile stress by approximately 9.5%, potentially decreasing 
reinforcement requirements by 15%–20% when evaluated against 
ACI 318 tension limits. Second, material optimization strategies 
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may be considered where friction coefficients are below 0.59; 
reducing concrete grade from C25 to C20 decreases elastic modulus 
from 28 GPa to 25 GPa, subsequently lowering tensile stress by 
15% while maintaining safety margins above 0.85 times tensile 
strength (1.08 MPa for C25). Third, model selection should be 
conditioned on interface parameters: frictional slip contact models 
are recommended when friction coefficients are below 0.59 and 
cohesion under 0.2 MPa, with analytical methods suitable for 
preliminary design and load-structure models incorporating slip 
allowances preferred for final safety verification. These principles 
have been preliminarily implemented in Yingliangbao Tunnel 
reinforcement design, demonstrating 12% material cost reduction 
in pilot sections while sustaining safety factors exceeding 2.0. 

5 Conclusion

This study establishes a unified analytical framework for 
simulating rock-lining interaction in hydraulic tunnels, resolving 
longstanding challenges in contact mechanics through optimized 
algorithms and systematic parametric validation. The principal 
conclusions, substantiated by analytical and numerical results, are 
summarized as follows: 

a. The contact mode controlled by friction has a significant 
impact on the stress distribution of the surrounding rock and 
lining of the tunnel. A critical friction coefficient threshold 
of fr  = 0.59 determines interfacial behavior transition, below 
which interfacial slip redistributes stresses significantly. This 
is evidenced by 9.5% lower crown tensile stress in analytical 
solutions (0.941 MPa) versus bonded-assumption numerical 
models (1.04 MPa) at Yingliangbao Tunnel, attributable to 
peak relative slip at 45° arch shoulder driving stress migration 
from crown to haunch when fr > 0.2.

b. The stress sensitivity of the lining is highly dependent on 
the elastic modulus ratio between surrounding rock to that 
of the lining. Elastic modulus ratio E2/E1 dominates stress 
magnitude with nonlinear escalation, where increasing from 
2 to 5 elevates crown tensile stress by 80.3% and haunch 
compression by 50.9%—exceeding thickness effects which 
show only 15% tensile variation when thickness reduces from 
0.8 m to 0.4 m. Crucially, maximum tensile stress consistently 
localizes at crown inner edge across all parameters.

c. The lateral pressure coefficient and displacement release 
coefficient significantly influence the distribution pattern 
of stress. Different initial in-situ stress distributions may 
lead to a reversal in the spatial distribution of tangential 
stress within the lining, whereas their effect on shear 
stress is primarily reflected in numerical changes, with 
the extremum consistently occurring near 45°. The timing 
of lining installation mainly affects the range of stress 
variation. In practical engineering, if the surrounding 
rock conditions are favorable, lining construction can be 
delayed, potentially reducing the maximum lining stress by 
approximately 57.1%. Conversely, if the surrounding rock 
conditions are poor, the timing of lining installation should 
be determined by comprehensively considering the stability of 
the surrounding rock.

d. The calculation method of tunnel surrounding rock and 
lining proposed in this paper has a significant effect on 
improving the actual design efficiency of the project. The 
variable-reduction technique accelerates computation by 
75%, solving 128 parametric cases in 15 min versus 2 h 
conventionally, while improving accuracy by 2.2% through 
exact boundary enforcement. This facilitates rapid sensitivity 
analyses previously constrained by computational cost, 
directly enabling material optimization strategies that reduced 
Yingliangbao pilot section costs by 12% while maintaining σ t
< 0.85ft  (1.08 MPa safety margin).

These findings collectively transform tunnel lining design 
from an empirical practice to mechanics-based optimization. By 
establishing friction thresholds as design levers ( fr  < 0.59 for 
slip utilization) and quantifying modulus-thickness tradeoffs, this 
calculation method delivers actionable protocols for balancing safety 
with economy in hydropower infrastructure. Future extensions to 
non-circular sections will further broaden its industry impact.
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