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Traditional interwell connectivity analysis methods for water-flooding reservoirs 
suffer from two major limitations: insufficient integration of seepage physics, 
leading to poor interpretability, and inadequate temporal modeling, which fails 
to capture the dynamic evolution of injection–production relationships. To 
overcome these issues, this study proposes a Knowledge-Interactive Gated 
Recurrent Unit (KIGRU) model that integrates physical constraints with temporal 
deep learning. The model adopts a dual-subnet architecture: Net-INJ encodes 
injection rates and interwell connectivity through gate functions and connection 
matrices, while Net-VOL characterizes reservoir volume changes. By embedding 
material balance equations into the network design, the model ensures physical 
consistency, while GRU modules effectively capture long-term temporal 
dependencies. Numerical experiments on synthetic reservoir cases demonstrate 
that KIGRU outperforms conventional neural networks and the Capacitance-
Resistance Model (CRM) in both history matching and production forecasting. 
The model accurately identifies high-permeability channels, quantifies non-
equilibrium flow, and yields more reliable predictions of liquid production 
rates. These results confirm that KIGRU achieves a balance between physical 
interpretability and predictive accuracy, offering a practical and theoretically 
sound tool for interwell connectivity analysis.
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 1 Introduction

Water-flooding is the primary enhanced oil recovery method in China’s oil and gas 
fields, where addressing injection-production contradictions is critical for maximizing 
recovery efficiency (Hernandez-Mejia et al., 2023). During reservoir development, 
high-permeability channels cause premature water breakthrough at production wells 
(Zhang H. et al., 2022; Dai et al., 2025; Gu et al., 2021), preventing injected fluids 
from reaching low-permeability zones and effectively displacing remaining oil. This 
creates an inefficient cycle of high water injection and high water production, 
leading to significant resource waste and limited recovery improvement (Wang et al., 
2023; Karpatne et al., 2017). Inter-well connectivity analysis determines the flow 
communication patterns between injection and production wells, providing essential

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1678611
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1678611&domain=pdf&date_stamp=2025-11-04
mailto:zhangliming@upc.edu.cn
mailto:zhangliming@upc.edu.cn
https://doi.org/10.3389/feart.2025.1678611
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1678611/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1678611/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1678611/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1678611/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ji and Zhang 10.3389/feart.2025.1678611

guidance for hydrodynamic adjustments, chemical plugging 
operations, and injection-production optimization strategies 
(Yousef et al., 2009; Yousef et al., 2006). Therefore, accurate 
connectivity characterization represents a key component of 
reservoir development dynamics analysis, with direct practical value 
for comprehensive field management, remaining oil distribution 
mapping, and water-flooding performance enhancement.

Recent advances in artificial intelligence have accelerated the 
intelligentization of petroleum engineering (Haghighat et al., 2021; 
Meng and Karniadakis, 2020; Abbasi and Andersen, 2024), offering 
new approaches to address the growing challenges of global energy 
demand. Oil and gas companies increasingly utilize new information 
technology and intelligent management processes to improve 
efficiency and enhance development outcomes (Nagao et al., 2024; 
Zhang K. et al., 2022). Data-driven models based on injection-
production dynamics can learn correlation relationships to predict 
well performance and evaluate field capacity (Chung et al., 2014; 
Xu et al., 2022; Chen et al., 2021). Among these, artificial 
neural networks can construct nonlinear mappings between 
injection rates and production rates, with network weights inversely 
representing inter-well connectivity. To enhance the reliability 
and applicability of neural network-based connectivity analysis, 
recent research has evolved along two complementary directions: 
physics-informed approaches that embed physical constraints 
and governing equations into model architectures, and temporal 
modeling architectures that leverage recurrent neural networks 
to capture dynamic injection-production relationships over time 
(Li et al., 2024; Yu et al., 2023; Huang et al., 2024; Zeng et al., 2022).

To overcome the limitations of traditional artificial neural 
networks, recent research has focused on developing more 
sophisticated deep learning architectures that incorporate physical 
constraints and interpretable mechanisms. Physics-informed neural 
networks (PINNs) have gained significant attention in reservoir 
engineering applications, demonstrating the capability to embed 
governing equations and physical constraints directly into the 
neural network training process (Raissi et al., 2019; Fraces and 
Hamdi, 2021; Wen et al., 2021). Recent studies have successfully 
applied PINNs to reservoir pressure prediction, history matching, 
and production optimization, showing improved generalization 
compared to purely data-driven approaches (Tang et al., 2020; 
Wang N. et al., 2021; Mudunuru, 2020). However, PINNs face 
critical limitations when applied to dynamic interwell connectivity 
analysis: their formulation typically assumes static or quasi-
static physical relationships, making it challenging to model the 
time-evolving nature of injection-production responses where 
historical patterns create cumulative effects on current reservoir 
behavior (Almajid and Abu-Al-Saud, 2022; Harp et al., 2021). 
Furthermore, while PINNs excel at enforcing known physical 
laws, they struggle to simultaneously capture complex temporal 
dependencies and spatial heterogeneity in multi-well systems with 
long-term historical data (Alakee et al., 2020).

In modeling temporal dynamics of oilfield production data, 
researchers have explored various time-series approaches for 
injection-production relationships. Traditional methods often 
assume static or quasi-static connectivity patterns, failing to 
capture the dynamic evolution of reservoir flow behavior over 
time. Gated recurrent units (GRUs) and long short-term memory 
(LSTM) networks have demonstrated strong capabilities in 

modeling sequential production data, effectively capturing temporal 
dependencies and long-term correlations in injection-production 
dynamics (Yu et al., 2023; Jiang et al., 2022). These recurrent 
architectures process time-series information through internal 
memory mechanisms, enabling them to learn how injection rate 
variations propagate through the reservoir and influence production 
responses at different time lags (Al-Shabandar et al., 2020). Recent 
advances in attention mechanisms and transformer architectures 
have further enhanced temporal modeling by explicitly quantifying 
time-varying influence relationships between injection and 
production wells, allowing the model to adaptively weight historical 
information based on temporal relevance (Wang H. et al., 2021). 
Despite these developments in temporal modeling techniques, 
significant challenges remain in simultaneously achieving accurate 
time-series prediction while maintaining physically meaningful 
representations of reservoir connectivity for water-flooding analysis.

However, despite these methodological advances, practical 
application reveals significant limitations in both physics-
informed and temporal modeling approaches. Physics-informed 
neural networks, while capable of embedding physical laws 
into the learning process through loss function constraints, 
are fundamentally designed for static or quasi-static problems 
and cannot effectively model the dynamic temporal evolution 
of injection-production responses, where historical patterns 
create time-dependent cumulative effects on reservoir behavior. 
Conversely, RNN-based architectures, though effective at capturing 
temporal sequences and long-term dependencies, operate as black-
box models that lack mechanisms to incorporate fundamental 
seepage physics, limiting their ability to produce physically 
meaningful connectivity parameters that satisfy Darcy flow 
principles. For instance, when analyzing long-term waterflood 
performance in mature fields, PINN approaches struggle to capture 
the delayed response characteristics because their framework 
assumes instantaneous physical equilibrium, while conventional 
RNN models evaluate injection-production relationships based 
purely on data patterns without ensuring compliance with porous 
media flow mechanics. These modeling challenges are further 
compounded by the complex physical processes occurring within 
reservoir systems. Recent experimental advances in nuclear 
magnetic resonance (NMR) techniques have provided new insights 
into pore structure evolution and permeability changes under 
stress conditions (Wang and Chen, 2023), while studies on 
thermo-mechanical degradation in low-permeability formations 
have revealed how temperature cycling affects fracture networks 
and connectivity pathways (Teng et al., 2025). These findings 
underscore the complexity of reservoir connectivity dynamics and 
highlight the need for modeling approaches that can simultaneously 
capture temporal evolution while respecting fundamental physical 
constraints governing fluid flow in porous media.

To address these critical research gaps and overcome the 
fundamental limitations of existing approaches, there is an urgent 
need for a method that combines two essential capabilities: (1) 
physics-informed architecture to ensure model parameters have 
clear physical interpretations. (2) temporal modeling to capture 
the dynamic evolution of injection-production relationships. This 
paper proposes a novel inter-well connectivity analysis method 
for water-flooding reservoirs based on a knowledge-interacting 
gated recurrent network model to address the aforementioned 
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issues. Firstly, the material balance equation for injection and 
production is integrated into the construction process of the 
machine learning model, endowing the model parameters with 
clear physical meanings related to percolation, effectively enhancing 
the interpretability of the machine learning model in connectivity 
analysis. Additionally, the model employs a gated recurrent unit 
structure to consider the impact of historical water injection on 
the current production moment, thereby improving the model’s 
prediction accuracy for liquid production rate and water-cut. This 
method overcomes the limitations of both traditional physical 
methods and general machine learning approaches (Wang et al., 
2025). It provides a new solution for connectivity analysis of water-
flooding reservoirs with significant theoretical and practical value. 

2 Inter-well connectivity analysis in 
water-flooding reservoirs

2.1 Material balance equation for 
water-flooding reservoirs

The material balance equation is one of the fundamental 
percolation principles for multi-phase flow in fluid-porous media 
systems. Assuming a single-source and single-sink water-flooding 
reservoir development scenario with only oil-water two-phase 
flow, and disregarding the effects of capillary forces, gravity, and 
reservoir boundary conditions, the material balance equation can 
be described as follows (Equation 1):

CtVp
dp
dt
= i(t) − q(t) (1)

where Ct  represents the comprehensive compression coefficient, 
MPa-1; Vp is the control volume of the production well, m3; p
represents the average formation pressure, MPa; i(t) and q(t) and 
respectively represent the water injection and production rates of the 
water injection well and production well at time step t, m3·d-1.

Based on this, extending to the development scenario of M
injection wells and N production wells, the injection-production 
material balance equation centered on the nth production well can 
be described as Equation 2:

M

∑
m=1

Cmn
t Vmn

p
dpmn

dt
=

M

∑
m=1

βmnim(t) − qj(t) (2)

where m ∈ [1,2, ...,M] and n ∈ [1,2, ...,N] represent the indices 
of injection wells and production wells, respectively; βmn is the 
connectivity coefficient between the mth injection well and the nth 
production well, and im(t) is the injection rate of the mth injection 
well at time t. 

2.2 Inter-well connectivity representation 
of water-flooding reservoirs

For the development scenarios of M water injection wells and 
N production wells, considering the closed reservoir boundary 
conditions, the connectivity coefficient corresponding to the mth 
water injection well should satisfy the constraint that the sum of the 

splitting coefficients for each production well it flows to should be 
1, that is Equation 3:

|
N

∑
n=1

βmn − 1| = 0 (3)

Taking into account the situation of M wells, the connectivity 
coefficients in the entire block should satisfy the following 
constraints (Equation 4):

M

∑
m=1
(|

N

∑
n=1

βmn − 1|) = 0 (4)

To ensure the connectivity coefficients satisfy the unit sum 
constraint during training, a softmax normalization layer is applied 
to the raw connectivity outputs (Equation 5):

βmn =
exp( ̂βmn)

∑N
k=1

exp( ̂βmn)
(5)

where βmn represents the raw (unconstrained) connectivity 
coefficient output from the KIGRU network for injection well m 
to production well n.

At each training iteration, the constraints are 
automatically verified (Equation 6):

abs(
N

∑
n=1

βmn − 1) <∈, ∀m (6)

where ϵ is a small tolerance value (typically 10–6). 

3 Knowledge interactive gated 
recurrent network modeling

3.1 Recursive neural network

The Recurrent Neural Network (RNN) (Nagao et al., 2024) is 
a deep learning model suitable for processing data with sequential 
structures. A key feature of RNN is its “recurrent” structure, which 
allows the model state at each time step to be composed of the 
input at the current time step and the state (known as the hidden 
state) passed from the previous time step, used for output calculation 
at the current time step and state calculation for the next time 
step. The forward propagation calculation process is as follows 
(Equations 7, 8):

ht = f(Uhxt +Vhht−1 + bh) (7)

yt = g(Wht + by) (8)

where xt  represents the model input at time t, ht-1 denotes the hidden 
state at time t-1, ht  signifies the hidden state at time t, Uh, Vh, and 
W are network weights, bh and by are network biases, f  and g are 
activation functions, and yt  stands for the model output at time t.

During the back-propagation process of RNN, the gradient (i.e., 
error signal) may gradually become very small when propagating 
between multiple layers, resulting in the phenomenon of gradient 
vanishing and leading to stagnation in the learning process. 
This issue is particularly prominent when dealing with long 
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sequences. Because long sequences increase the number of steps 
for gradient propagation between multiple layers, thereby increasing 
the risk of gradient vanishing. The root cause of this problem 
lies in the design structure of RNN. To overcome this limitation, 
many researchers have proposed variants such as LSTM (Long 
Short-Term Memory) (Zhang K. et al., 2022) and GRU (Gated 
Recurrent Unit) (Chung et al., 2014) models. Compared to LSTM, 
GRU has fewer parameters, lower computational cost, faster 
convergence speed, and higher learning efficiency. Therefore, the 
model used in this paper is developed based on GRU.

As illustrated in the model architecture, two parallel GRU-
based subnets (Net-INJ and Net-VOL) are employed to capture the 
temporal dynamics of different physical processes in the reservoir 
system. Net-INJ processes injection rate descriptions combined 
with gate functions through a connection matrix, while Net-VOL 
handles volume change descriptions incorporating both injection 
rate and pressure data. Each subnet utilizes GRU cells with 
hidden states (h1 and h2) that can effectively preserve long-term 
dependencies through their reset and update gate mechanisms. 
The temporal knowledge extraction networks within both subnets 
enable the model to learn complex sequential patterns from 
historical data, with the reset gates controlling information retention 
and update gates determining the integration of new inputs. 
This dual-subnet architecture allows the model to simultaneously 
learn injection-related dynamics and volume changes, ultimately 
generating predictions for liquid production rate through their 
combined outputs, thereby addressing the multi-physics coupling 
challenges inherent in reservoir production forecasting. 

3.2 Knowledge interactive gated recurrent 
network model

The distribution of oil-water two-phase flow is influenced not 
only by fluid properties (such as viscosity), but also by the physical 
heterogeneity of the reservoir rock (such as porosity, permeability, 
etc.) (Xu et al., 2022; Chen et al., 2021). Therefore, the underground 
flow pattern exhibits strong uncertainty. The complex nonlinear 
relationship between injection and production signals is primarily 
manifested on the time scale of reservoir development. Reservoir 
numerical simulators can accurately simulate the injection-
production relationship, but modeling requires geological attribute 
parameters such as permeability, porosity, and saturation for each 
grid, and obtaining these geological attributes through well logging 
is very costly. Additionally, as the size of the reservoir increases, 
the computational cost of numerical simulators also increases, and 
completing a simulation for a large-scale reservoir can take tens 
of minutes or even hours (Huang et al., 2024; Zeng et al., 2022). 
Under the framework of machine learning integrated with the 
material balance equation for water-flooding reservoirs, this paper 
proposes a Knowledge Interaction Gated Recurrent Unit (KIGRU) 
model. Guided by the material balance equation for water-flooding 
reservoirs, the KIGRU model considers the impact of reservoir 
boundary conditions on the injection-production relationship. 
By coupling injection-production dynamic information on a time 
scale, it uses a modular parallel computing model to simulate the 
injection-production relationship.

The KIGRU architecture, illustrated in Figure 1, employs a dual-
subnet design that integrates physical principles with deep learning 
for reservoir production forecasting. The model comprises two 
parallel components: the Injection Rate Description Subnet (Net-
INJ) and the Volume Change Description Subnet (Net-VOL). Net-
INJ processes injection rate time series through a gate function 
and connection matrix that encodes inter-well spatial relationships, 
feeding into a GRU network with hidden states (h1, h2) to extract 
temporal knowledge about injection-production connectivity. Net-
VOL jointly processes injection rate and injection pressure data 
through a similar GRU architecture to characterize volume change 
dynamics within the reservoir. Both subnets utilize standard GRU 
cells with reset gates, update gates, and tanh activation functions 
to maintain temporal memory across time steps. The outputs from 
Net-INJ and Net-VOL are combined through matrix operations 
(Hadamard product, matrix multiplication, matrix addition, and 
matrix subtraction) in the Model Output Part to predict the final 
Liquid Production Rate for each well.

3.2.1 Injection rate description subnet (Net-INJ)
This subnet is an important component of the knowledge 

exchange neural network input system, designed to calculate the 
total water injection rate from each injection well to the production 
well to be analyzed, and infer inter-well connectivity through a gate 
function. Assuming the water injection rate and injection pressure 
data of M injection wells are described as Equations 9, 10:

WIR = [wir1,⋯,wirm,⋯,wirM]
T (9)

PINJ = [pinj,1, ... pinj,m, ... pinj,M ]
T (10)

The liquid production rate, bottom hole pressure, and water-cut 
data of N production wells are represented as Equations 11–13:

LPR = [lpr1, ... lprn, ... lprN ]T (11)

PPRO = [ppro,1,⋯,ppro,n,⋯,ppro,N]
T (12)

WCT = [wct1,⋯,wctn,⋯,wctN]
T (13)

where m ∈ [1,2, ...,M] and n ∈ [1,2, ...,N] represent the indices of 
injection wells and production wells, respectively. Water injection 
rate WIR, water injection pressure PINJ, and bottom hole pressure 
PPRO are the inputs of the subnet in KIGRU. Meanwhile, the liquid 
production rate LPR and water-cut WCT of the production well are 
the output labels of the model.

The input to the injection adjustment module is WIR, and the 
injection-production relationship is measured through the following 
gate function (Equation 14):

gate(λ) = exp(−λ2) (14)

It represents the injection-production correspondence 
between the mth injection well and the nth production 
well. The mth input of GRU is WIRm ⊙ gate(WIRm), i.e., 
[wirm1 · gate(wirm1),wirm2 · gate(wirm2),⋯,wirmM · gate(wirmS)], 
where S denotes the number of samples.

If there is a strong connectivity between the mth water injection 
well and the nth production well, the value will approach 1, 
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FIGURE 1
Architecture of knowledge interaction gated recurrent unit.

indicating that a large amount of water injected from the mth water 
injection well flows into the nth production well. Conversely, if the 
connectivity with the nth production well is weak, a lower function 
value will be assigned in the injection rate description network 
module, and this value will approach 0.

In KIGRU, the temporal knowledge extraction network utilizes 
an update gate to determine how much information from past data 
needs to be passed to the future, while employing a reset gate to 
decide how much past data to forget. Under this mechanism, the 
important response signals from past data can be retained, while the 
redundant or useless signals are eliminated.

The calculation formulas for the update gate and reset gate are as 
follows (Equations 15, 16):

zt = σ(Wz · [ht−1,xt]) (15)

rt = σ(Wr · [ht−1,xt]) (16)

where σ is the Sigmoid activation function, Wz  and W r  are weight 
matrices, and [ht−1,xt] is the vector formed by concatenating the 
hidden state and input at the current time step. Therefore, the 
calculation process of the candidate hidden state is as follows 
(Equation 17):

̃ht = tanh(W · [rt ⊙ ht−1,xt]) (17)

where tanh represents the hyperbolic sine function, W denotes the 
weight matrix, and ⊙ denotes the product of corresponding elements 
in the matrix, namely, the Hadamard product. The updated formula 

for the new hidden state is as follows (Equation 18):

ht = (1− zt) ⊙ ht−1 + zt ⊙ ̃ht (18)

The input and output of the temporal knowledge extraction 
network can be described by Equations 19, 20:

SEQn =
M

∑
m=1
(gate(xmn) ⊙wirm) (19)

KKt = Vht (20)

where SEQn = [seqn1, seqn2, ..., seqnS]; The input matrix of the 
temporal knowledge extraction network can be represented as 
SEQ = [SEQ1,⋯,SEQn, ...,SEQN]

T. ⊙ is the Hadamard product. V
represents the weight matrix of the current output.

The output of the injection rate description subnet can be 
expressed as Equation 21:

INJt = GRU([SEQt,1,⋯,SEQt,n, ...,SEQt,N]
T) (21)

where GRU represents the extraction and calculation of temporal 
knowledge in Equations 15–19. INJt is the tth column of the 
total inflow rate matrix INJ for N production wells, calculated 
after coupling the injection and production data with KIGRU, 
INJECTION ∈ ℝN×S. [SEQt,1,⋯,SEQt,n, ...,SEQt,N]

T represents the 
total inflow rate of N production wells at time t, which is the tth 
column of the SEQ matrix. 

3.2.2 Volume change description subnet 
(Net-VOL)

The volume change description subnet reflects the fluid change 
rate within the control volume caused by the compressibility 
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of underground porous media and fluids. Utilizing the GRU 
network, the objective is to establish the relationship between 
the liquid production rate from the production well and the 
fluid change rate within the control volume. In the volume 
change description network, not only pressure changes but 
also water injection rate and liquid production rate are taken 
into account. In this module, the water injection rate, water 
injection pressure, and production well pressure data set 
VOLINPUT  are employed as inputs, which can be denoted
as Equation 22:

VOLINPUT = [WIR,PINJ,PPRO]
T (22)

During the simulation of injection-production development 
dynamics in water-flooding reservoirs, it is necessary to consider 
the mutual interference between injection and production well 
groups. Moreover, injection-production dynamic data belong to 
complex nonlinear time series with time delays. Injected water 
needs to travel through porous media for several days or even 
weeks before reaching the bottom of the production well. Therefore, 
GRU is still used in the volume change description network to 
capture the dynamic time series behavior hidden in the data, 
thereby accurately depicting the complex nonlinear relationship 
between the production rate and the fluid change rate within 
the control volume. The GRU used is structurally identical 
to that in the injection rate description network, as shown
in Equations 13–17.

For a given input data set VOLINPUT , the volume change 
description subnet can generate the fluid volume change 
rate VV t  between the control volumes of each production 
well through the GRU subnet, which can be denoted as
Equation 23:

VVt = GRU(VOLINPUT) (23)

where VV t  represents the tth column of the total liquid production 
rate matrix VV for N production wells calculated after KIGRU 
coupled injection and production, VV ∈ ℝN×S.

Figure 2 illustrates the training process of reservoir production 
prediction model. The entire process employs an iterative 
optimization strategy and consists of the following key steps: 

a. Model Initialization: Initialize model parameters at the 
beginning

b. Injection Rate Allocation Calculation: Calculate the split 
inflow rate for each production well (INJ t) based on water 
injection rate data (WIR)

c. Fluid Change Rate Calculation: Compute the rate of fluid 
volume change (VVᵢ)

d. Production Prediction: Predict liquid production rate 
(MODELLPRt) based on the calculated INJ t  and VV t

e. Error Calculation: Calculate the Mean Squared Error (MSE) 
between model predictions and actual values

f. Parameter Update: Update model parameters through error 
backpropagation mechanism

g. Convergence Check: Verify if training conditions are met; if 
not, return to step 2 for continued iteration until convergence, 
then end training

FIGURE 2
KIGRU algorithm.

FIGURE 3
Permeability field of the two-channel reservoir case.

3.2.3 Collaborative mechanism of dual 
subnetworks

The Net-INJ and Net-VOL subnetworks are interconnected 
through a computational graph, forming a complete injection-
production relationship modeling framework. Although the two 
subnetworks exhibit structural similarity, this is determined by 
their functional characteristics: Net-INJ specializes in extracting 
temporal features from injection rate data, while Net-VOL focuses 
on extracting temporal features from liquid production rate data. 
Since both injection and production data are essentially flow rate 
information with similar temporal dynamic characteristics and 
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FIGURE 4
Inter-well connectivity heatmaps of two-channel reservoir case by CRM and KIGRU. (a) CRM (b) KIGRU.

FIGURE 5
Prediction results of liquid production rate of two-channel reservoir model by CRM and KIGRU. (a) CRM (b) KIGRU.

physical properties, adopting similar network architectures can 
better capture the common patterns inherent in such flow rate data.

The collaborative mechanism between the two subnetworks 
is manifested as follows: the injection feature vectors output by 
Net-INJ serve as intermediate variables and are jointly input into 
Net-VOL along with reservoir property parameters. Through this 
cascaded computational graph approach, an end-to-end mapping 
from injection signals to production signals is achieved, effectively 
establishing dynamic connectivity relationships between injection 
and production wells. 

3.2.4 Model output
Based on the material balance equation for water-flooding 

reservoirs, the simulated liquid production rate of KIGRU can be 
derived from the injection rate description network and the volume 
change description network in Equation 24:

MOELLPRt = INJt −VVt (24)

where INJ t  represents the output of the injection rate description 
network, corresponding to the water injection rate on the right side 
of the material balance equation. VV t  denotes the fluid volume 
change rate, which corresponds to the left side of the material 
balance equation. The difference between the two, MODELLPRt , 
corresponds to the liquid production rate on the right side of the 
material balance equation. When predicting water-cut, the water-cut 
data WCT is used to replace LPR for fitting and predicting water-cut.

The KIGRU model employs mean squared error (MSE) as the 
loss function and takes into account the influence of the closed 
boundary constraints of the oil reservoir. Its calculation formula is 
expressed as follows:

LOSS = 1
S

N

∑
n=1
‖LPRn −MODELLPRn‖

2 + μ
M

∑
m=1
|(

N

∑
n=1

gate(wirmn))− 1|

(25)

 where LPRn represents the observed liquid production rate of 
the nth production well, while MODELLPRn denotes the model-
output liquid production rate of the nth production well. μ is a 
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FIGURE 6
Permeability field of the three-channel reservoir case.

FIGURE 7
Inter-well connectivity heatmaps of three-channel reservoir case by 
SLFNN and KIGRU. (a) Inter-well connectivity heatmap of SLFNN in a 
three-channel oil reservoir case. (b) Inter-well connectivity heatmap 
of KIGRU in a three-channel oil reservoir case.

coefficient that balances the loss of liquid production rate and the 
loss due to connectivity constraints. The training process of KIGRU 
is illustrated in Figure 2. 

4 Test study on oil reservoir cases

4.1 Two-channel oil reservoir scenario

The two-channel reservoir case, proposed by (Yousef et al., 
2006), is a two-dimensional heterogeneous reservoir model 
composed of a grid with dimensions of 31 × 31 × 1, measuring 

24 × 24 × 4 m. The case includes 5 water injection wells and four 
production wells, denoted as I1 to I5 and P1 to P4, respectively. 
The porosity and initial oil saturation of the model are 0.18 and 0.7, 
respectively. The permeability field of the model is shown in Figure 3, 
featuring two high-permeability channels, namely, I1-P1 and I3-
P4, with permeabilities of 1000mD and 500mD, respectively. The 
permeability of other areas is uniformly set at 5mD.

This paper compares the inter-well connectivity results of the 
Capacitance-Resistance Model (CRM) (Yousef et al., 2009) and the 
proposed KIGRU model on two-channel oil reservoir scenario. The 
CRM model is a physically-based approach that has been proven to 
be a powerful tool in reservoir modeling applications. It is capable 
of analyzing inter-well connectivity with minimal inputs and a small 
amount of production and water injection history data. The KIGRU 
model employs a dual-subnet architecture consisting of Net-INJ and 
Net-VOL to capture injection-production dynamics in oil reservoirs. 
Net-INJ processes injection rate data through a gate function and 
connection matrix to model inter-well connectivity, while Net-
VOL jointly processes injection rate and pressure to characterize 
volume changes. Each subnet utilizes two layer GRU networks with 
64 hidden units per layer. The model is trained using the Adam 
optimizer with an initial learning rate of 0.001, a batch size of 
32, and sequence lengths of 300 time steps covering meaningful 
injection-production response cycles. Dropout regularization (0.2) 
and gradient clipping are applied to prevent overfitting, with training 
conducted over 100 epochs using early stopping. The outputs from 
both subnets are fused through matrix operations to predict liquid 
production rates, enabling the model to learn both data-driven 
patterns and physics-informed relationships.

Figure 4 illustrates the heatmap of inter-well connectivity 
analysis between injection and production wells on the two-channel 
oil reservoir using both CRM and KIGRU methods. The horizontal 
axis labels represent the production well numbers, denoted as 
P1∼P5, while the vertical axis labels represent the injection well 
numbers, denoted as I1∼ I5. As shown in the figure, both methods 
have identified the two high-permeability channels, namely, I1-P1 
and I3-P4. However, the connectivity of other well pairs in the CRM 
method exhibits unreasonable results. For instance, the connectivity 
values obtained for well pairs I2-P1, I2-P2, I2-P4, I4-P1, I4-P2, and 
I5-P3 in the CRM method are significantly high. Especially for I2-
P2, the obtained value of CRM is 0.9452, which is inconsistent with 
the actual situation. Conversely, KIGRU more accurately portrays 
the weak connectivity of low-permeability well pairs. Additionally, 
although the CRM method can distinguish between these two high-
permeability channels, its results suggest that I1-P1 and I3-P4 have 
similar connectivity, which is inconsistent with the actual situation.

Figure 5 illustrates the fluid production prediction results of 
CRM and KIGRU on the two-channel oil reservoir measured 
in cubic meters per day (m3/day). From a fitting accuracy 
perspective, KIGRU demonstrates significant improvements over 
CRM in characterizing reservoir dynamics. The model achieves 
superior material balance accuracy, with minimal discrepancy 
between injection rates (injRate, blue curve) and total fluid 
production (pro4, purple area), whereas CRM shows notable gaps 
indicating mass balance errors. KIGRU’s more flexible elastic 
term produces smoother, more physically realistic production 
profiles for individual wells (pro1-pro4), effectively filtering 
noise while preserving genuine trends, in contrast to CRM’s 
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TABLE 1  Liquid production rate history matching and prediction performance by SLFNN and KIGRU.

Metric type Evaluation index SLFNN KIGRU

History matching
performance

MSE 0.0933 ± 0.0124 0.0113 ± 0.0018

RMSE 0.3054 ± 0.0203 0.1063 ± 0.0085

R2 0.8234 ± 0.0421 0.9812 ± 0.0034

Prediction
performance

MSE 0.2465 ± 0.0356 0.0189 ± 0.0027

RMSE 0.4965 ± 0.0359 0.1375 ± 0.0098

R2 0.8128 ± 0.0567 0.9654 ± 0.0041

The bolded figures are our key focus indicators, reflecting the improvements in our model.

TABLE 2  Comprehensive model performance Comparison.

Noise level SLFNN prediction MSE KIGRU prediction MSE

No noise sensitivity (baseline) 0.2465 0.0189

5% Gaussian noise 0.2891 0.0216

10% Gaussian noise 0.3547 0.0267

15% Gaussian noise 0.4623 0.0358

excessive fluctuations suggesting overfitting or inadequate temporal 
modeling. Additionally, KIGRU demonstrates better peak capture 
capability around time steps 150–250, maintaining peak magnitudes 
aligned with injection variations, while CRM exhibits dampened or 
exaggerated responses. The model also maintains stable temporal 
consistency in relative producer proportions throughout the 
time series, reflecting realistic inter-well connectivity, whereas 
CRM displays erratic changes indicating unstable parameter 
estimation. Quantitatively, the reduced variance and tighter 
injection-production coupling in KIGRU predictions translate to 
lower Mean Squared Error (MSE), validating its superior fitting 
accuracy and credibility for reservoir production forecasting. 

4.2 Three-channel oil reservoir scenario

As shown in the permeability field depicted in Figure 6, 
the three-channel reservoir scenario (Meng and Karniadakis, 
2020) represents a two-dimensional fluvial heterogeneous reservoir 
model. This model comprises 25 × 25 × 1 grids with dimensions of 
30 × 30 × 3 m. The reservoir porosity and initial oil saturation are set 
at 0.2 and 0.8, respectively. The model incorporates nine production 
wells and 4 water injection wells.

This paper compares the results of feed-forward neural network 
model SLFNN and KIGRU model on the three channel reservoir 
case. Figure 7 shows the heat map of inter-well connectivity between 
injection and production wells by SLFNN and KIGRU. It can be seen 
from the figure that SLFNN is difficult to accurately characterize 
the true connectivity of all injection and production well groups, 
while KIGRU successfully identifies four high permeability channel 
well pairs I1-P1, I2-P3, I3-P5 and I3-P4 for the three channel case. 

At this time, the mean square error of SLFNN and KIGRU liquid 
production rate historical fitting and prediction is shown in Table 1 
measured in cubic meters per day (m3/day). Quantitative validation 
using Mean Squared Error (MSE) further confirms KIGRU’s 
superiority. The values are reported in m3/day for both training 
and testing datasets, where the training set comprises 80% of the 
historical production data and the remaining 20% serves as the 
testing set for model validation. The bolded figures are our key focus 
indicators, reflecting the improvements in our model.

To comprehensively evaluate KIGRU performance, we conducted 
comparative experiments with traditional SLFNN on liquid production 
rate prediction. As shown in Table 1, KIGRU achieves MSE of 0.0113 
and 0.0189 for history matching and prediction respectively, with 
R2 of 0.9812 and 0.9654, significantly outperforming SLFNN (p < 
0.001). Robustness tests (Table 2) demonstrate that KIGRU consistently 
maintains significant performance advantages under 0%–15% noise 
interference. Notably, KIGRU under high noise still outperforms noise-
free SLFNN, confirming exceptional interference resistance. These 
results demonstrate KIGRU’s exceptional accuracy, robustness, and 
interference resistance. 

5 Conclusion

In response to the complex underground connectivity of oil 
reservoirs, this paper constructs a Knowledge Interactive Gated 
Recurrent Unit (KIGRU) model based on machine learning 
methods integrated with physical knowledge, aiming to simulate 
the inter-well flow process in water-flooding reservoirs. KIGRU 
incorporates reservoir boundary constraints into the model learning 
criteria to quantitatively describe the split coefficient of water 
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injection wells, ensuring the reliability of the model in representing 
inter-well connectivity. The model employs gated recurrent 
unit modules, leveraging memory and forgetting mechanisms 
to effectively address the temporal characteristics in water cut 
prediction, thereby enhancing the model’s applicability on the time 
scale of oil reservoir development. By introducing physical equations 
of percolation into the machine learning model, the robustness 
of the model in predicting production indicators and analyzing 
connectivity issues is effectively improved, making it valuable 
for practical applications in analyzing inter-well connectivity 
for injection and production in oil fields. Through numerical 
simulation experiments of oil reservoirs, the effectiveness of this 
method in solving production prediction and inter-well connectivity 
analysis problems is confirmed. The fundamental reason for the 
model’s effectiveness lies in the synergistic effect between physical 
constraints and GRU architecture: physical constraints ensure that 
model outputs comply with reservoir flow patterns, while the GRU 
memory mechanism effectively captures the temporal dependencies 
of injection-production processes, with physical constraints playing 
a more critical role in enhancing model reliability. However, 
model prediction errors primarily stem from two aspects: noise 
interference in measured data and limitations in the model 
structure’s ability to describe complex reservoir heterogeneity.

Beyond the aforementioned structural deficiencies, several 
critical limitations must be acknowledged. Regarding computational 
cost, the dual-subnet GRU architecture with 100–300 training 
epochs requires significant computational resources, with training 
time scaling nonlinearly with the number of wells and time steps, 
potentially limiting real-time optimization applications. In terms 
of scalability, while effective for moderate-scale problems (4–20 
wells), the model’s performance and memory requirements for 
large-scale reservoirs (more than 100 wells) remain untested, as the 
connection matrix and hidden state dimensions grow quadratically 
with well count. Concerning reservoir-scale applicability, the 
current implementation has been validated only on simplified two-
channel synthetic scenarios; its transferability to complex field-
scale reservoirs with heterogeneous geology, faults, and irregular 
well patterns requires substantial investigation. From a data 
perspective, the model demands continuous, high-quality injection 
and production data for effective training; sparse or intermittent 
measurements typical in mature fields may degrade performance. 
With respect to physical constraint enforcement, while knowledge-
informed, the model lacks hard constraints for thermodynamic 
consistency and may occasionally violate physical bounds under 
extrapolation.

Meanwhile, the KIGRU model still requires further research, 
which will focus on several concrete research directions to enhance 
the model’s practical applicability. First, field data validation: 
the KIGRU model will be validated using real-world production 
data from operating oil fields to assess its robustness under 
actual reservoir conditions with measurement noise and data 
uncertainties. Second, multiphase flow extension: the current single-
phase liquid production framework will be extended to incorporate 
oil-water-gas three-phase flow dynamics, requiring modifications 
to both Net-INJ and Net-VOL subnets to handle phase-specific 
properties and relative permeability effects. Third, well testing 
integration: coupling KIGRU with transient pressure analysis and 
well testing data will enable better characterization of near-wellbore 

properties and dynamic reservoir parameters. Fourth, natural water 
influx modeling: incorporating aquifer influx mechanisms into the 
injection rate description network module will allow the model 
to adapt to reservoirs with active bottom or edge water drives. 
Fifth, multi-layer reservoir modeling: developing hierarchical 
GRU architectures to handle stratified reservoirs with distinct 
layer properties and inter-layer communication. These targeted 
improvements will systematically address current limitations and 
expand the model’s applicability to diverse reservoir scenarios.
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