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Traditional interwell connectivity analysis methods for water-flooding reservoirs
suffer from two major limitations: insufficient integration of seepage physics,
leading to poor interpretability, and inadequate temporal modeling, which fails
to capture the dynamic evolution of injection—production relationships. To
overcome these issues, this study proposes a Knowledge-Interactive Gated
Recurrent Unit (KIGRU) model that integrates physical constraints with temporal
deep learning. The model adopts a dual-subnet architecture: Net-INJ encodes
injection rates and interwell connectivity through gate functions and connection
matrices, while Net-VOL characterizes reservoir volume changes. By embedding
material balance equations into the network design, the model ensures physical
consistency, while GRU modules effectively capture long-term temporal
dependencies. Numerical experiments on synthetic reservoir cases demonstrate
that KIGRU outperforms conventional neural networks and the Capacitance-
Resistance Model (CRM) in both history matching and production forecasting.
The model accurately identifies high-permeability channels, quantifies non-
equilibrium flow, and yields more reliable predictions of liquid production
rates. These results confirm that KIGRU achieves a balance between physical
interpretability and predictive accuracy, offering a practical and theoretically
sound tool for interwell connectivity analysis.

machine learning, water-flooding reservoir, gated recurrent unit, well connectivity
analysis, neural network

1 Introduction

Water-flooding is the primary enhanced oil recovery method in China’s oil and gas
fields, where addressing injection-production contradictions is critical for maximizing
recovery efficiency (Hernandez-Mejia et al, 2023). During reservoir development,
high-permeability channels cause premature water breakthrough at production wells
(Zhang H. et al, 2022; Dai et al, 2025; Gu et al, 2021), preventing injected fluids
from reaching low-permeability zones and effectively displacing remaining oil. This
creates an inefficient cycle of high water injection and high water production,
leading to significant resource waste and limited recovery improvement (Wang et al.,
2023; Karpatne et al, 2017). Inter-well connectivity analysis determines the flow
communication patterns between injection and production wells, providing essential
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guidance for hydrodynamic adjustments, chemical plugging
operations, and injection-production optimization strategies
(Yousef et al., 2009; Yousef et al, 2006). Therefore, accurate
connectivity characterization represents a key component of
reservoir development dynamics analysis, with direct practical value
for comprehensive field management, remaining oil distribution
mapping, and water-flooding performance enhancement.

Recent advances in artificial intelligence have accelerated the
intelligentization of petroleum engineering (Haghighat et al., 2021;
Meng and Karniadakis, 2020; Abbasi and Andersen, 2024), offering
new approaches to address the growing challenges of global energy
demand. Oil and gas companies increasingly utilize new information
technology and intelligent management processes to improve
efficiency and enhance development outcomes (Nagao et al., 2024;
Zhang K. et al,, 2022). Data-driven models based on injection-
production dynamics can learn correlation relationships to predict
well performance and evaluate field capacity (Chung et al., 2014;
Xu et al, 2022; Chen et al, 2021). Among these, artificial
neural networks can construct nonlinear mappings between
injection rates and production rates, with network weights inversely
representing inter-well connectivity. To enhance the reliability
and applicability of neural network-based connectivity analysis,
recent research has evolved along two complementary directions:
physics-informed approaches that embed physical constraints
and governing equations into model architectures, and temporal
modeling architectures that leverage recurrent neural networks
to capture dynamic injection-production relationships over time
(Li et al., 2024; Yu et al., 2023; Huang et al., 2024; Zeng et al., 2022).

To overcome the limitations of traditional artificial neural
networks, recent research has focused on developing more
sophisticated deep learning architectures that incorporate physical
constraints and interpretable mechanisms. Physics-informed neural
networks (PINNs) have gained significant attention in reservoir
engineering applications, demonstrating the capability to embed
governing equations and physical constraints directly into the
neural network training process (Raissi et al., 2019; Fraces and
Hamdi, 2021; Wen et al., 2021). Recent studies have successfully
applied PINNSs to reservoir pressure prediction, history matching,
and production optimization, showing improved generalization
compared to purely data-driven approaches (Tang et al., 2020;
Wang N. et al,, 2021; Mudunuru, 2020). However, PINNs face
critical limitations when applied to dynamic interwell connectivity
analysis: their formulation typically assumes static or quasi-
static physical relationships, making it challenging to model the
time-evolving nature of injection-production responses where
historical patterns create cumulative effects on current reservoir
behavior (Almajid and Abu-Al-Saud, 2022; Harp et al, 2021).
Furthermore, while PINNs excel at enforcing known physical
laws, they struggle to simultaneously capture complex temporal
dependencies and spatial heterogeneity in multi-well systems with
long-term historical data (Alakee et al., 2020).

In modeling temporal dynamics of oilfield production data,
researchers have explored various time-series approaches for
injection-production relationships. Traditional methods often
assume static or quasi-static connectivity patterns, failing to
capture the dynamic evolution of reservoir flow behavior over
time. Gated recurrent units (GRUs) and long short-term memory
(LSTM) networks have demonstrated strong capabilities in
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modeling sequential production data, effectively capturing temporal
dependencies and long-term correlations in injection-production
dynamics (Yu et al, 2023; Jiang et al, 2022). These recurrent
architectures process time-series information through internal
memory mechanisms, enabling them to learn how injection rate
variations propagate through the reservoir and influence production
responses at different time lags (Al-Shabandar et al., 2020). Recent
advances in attention mechanisms and transformer architectures
have further enhanced temporal modeling by explicitly quantifying
time-varying influence relationships between injection and
production wells, allowing the model to adaptively weight historical
information based on temporal relevance (Wang H. et al., 2021).
Despite these developments in temporal modeling techniques,
significant challenges remain in simultaneously achieving accurate
time-series prediction while maintaining physically meaningful
representations of reservoir connectivity for water-flooding analysis.

However, despite these methodological advances, practical
application reveals significant limitations in both physics-
informed and temporal modeling approaches. Physics-informed
neural networks, while capable of embedding physical laws
into the learning process through loss function constraints,
are fundamentally designed for static or quasi-static problems
and cannot effectively model the dynamic temporal evolution
of injection-production responses, where historical patterns
create time-dependent cumulative effects on reservoir behavior.
Conversely, RNN-based architectures, though effective at capturing
temporal sequences and long-term dependencies, operate as black-
box models that lack mechanisms to incorporate fundamental
seepage physics, limiting their ability to produce physically
meaningful connectivity parameters that satisfy Darcy flow
principles. For instance, when analyzing long-term waterflood
performance in mature fields, PINN approaches struggle to capture
the delayed response characteristics because their framework
assumes instantaneous physical equilibrium, while conventional
RNN models evaluate injection-production relationships based
purely on data patterns without ensuring compliance with porous
media flow mechanics. These modeling challenges are further
compounded by the complex physical processes occurring within
reservoir systems. Recent experimental advances in nuclear
magnetic resonance (NMR) techniques have provided new insights
into pore structure evolution and permeability changes under
stress conditions (Wang and Chen, 2023), while studies on
thermo-mechanical degradation in low-permeability formations
have revealed how temperature cycling affects fracture networks
and connectivity pathways (Teng et al., 2025). These findings
underscore the complexity of reservoir connectivity dynamics and
highlight the need for modeling approaches that can simultaneously
capture temporal evolution while respecting fundamental physical
constraints governing fluid flow in porous media.

To address these critical research gaps and overcome the
fundamental limitations of existing approaches, there is an urgent
need for a method that combines two essential capabilities: (1)
physics-informed architecture to ensure model parameters have
clear physical interpretations. (2) temporal modeling to capture
the dynamic evolution of injection-production relationships. This
paper proposes a novel inter-well connectivity analysis method
for water-flooding reservoirs based on a knowledge-interacting
gated recurrent network model to address the aforementioned
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issues. Firstly, the material balance equation for injection and
production is integrated into the construction process of the
machine learning model, endowing the model parameters with
clear physical meanings related to percolation, effectively enhancing
the interpretability of the machine learning model in connectivity
analysis. Additionally, the model employs a gated recurrent unit
structure to consider the impact of historical water injection on
the current production moment, thereby improving the model’s
prediction accuracy for liquid production rate and water-cut. This
method overcomes the limitations of both traditional physical
methods and general machine learning approaches (Wang et al.,
2025). It provides a new solution for connectivity analysis of water-
flooding reservoirs with significant theoretical and practical value.

2 Inter-well connectivity analysis in
water-flooding reservoirs

2.1 Material balance equation for
water-flooding reservoirs

The material balance equation is one of the fundamental
percolation principles for multi-phase flow in fluid-porous media
systems. Assuming a single-source and single-sink water-flooding
reservoir development scenario with only oil-water two-phase
flow, and disregarding the effects of capillary forces, gravity, and
reservoir boundary conditions, the material balance equation can
be described as follows (Equation 1):

-
ctvpd—f — i() - q(0) (1)

where C, represents the comprehensive compression coefficient,

MPa'l; Vp

represents the average formation pressure, MPa; i(f) and g(¢) and

is the control volume of the production well, m% p

respectively represent the water injection and production rates of the
water injection well and production well at time step £, m*-d".

Based on this, extending to the development scenario of M
injection wells and N production wells, the injection-production
material balance equation centered on the nth production well can
be described as Equation 2:

M d}—)mn M
Z_lc;"”v;"" 5 :Z_lﬁ'""imm—qj(t) (2)

where m € [1,2,..,M] and ne€[1,2,..,N] represent the indices
of injection wells and production wells, respectively; ™" is the
connectivity coefficient between the mth injection well and the nth
production well, and i"(¢) is the injection rate of the mth injection
well at time .

2.2 Inter-well connectivity representation
of water-flooding reservoirs

For the development scenarios of M water injection wells and
N production wells, considering the closed reservoir boundary
conditions, the connectivity coefficient corresponding to the mth
water injection well should satisfy the constraint that the sum of the
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splitting coefficients for each production well it flows to should be
1, that is Equation 3:

N

Zﬁmn_l

n=1

=0 (3)

Taking into account the situation of M wells, the connectivity
coefficients in the entire block should satisfy the following
constraints (Equation 4):

M N
Z(Zﬁm”—1>=o (4)

To ensure the connectivity coefficients satisfy the unit sum
constraint during training, a softmax normalization layer is applied
to the raw connectivity outputs (Equation 5):

__ep(B)
Y exp(Bo)

where f, represents the raw (unconstrained) connectivity

B ()

coefficient output from the KIGRU network for injection well m
to production well n.

At each training iteration, the constraints are
automatically verified (Equation 6):
N
abs<z Boun — 1) <e, Vm (6)
n=1

where ¢ is a small tolerance value (typically 107°).

3 Knowledge interactive gated
recurrent network modeling

3.1 Recursive neural network

The Recurrent Neural Network (RNN) (Nagao et al., 2024) is
a deep learning model suitable for processing data with sequential
structures. A key feature of RNN is its “recurrent” structure, which
allows the model state at each time step to be composed of the
input at the current time step and the state (known as the hidden
state) passed from the previous time step, used for output calculation
at the current time step and state calculation for the next time
step. The forward propagation calculation process is as follows
(Equations 7, 8):

he = f(Upx, + Vyhey +by) (7)

y,=g(Wh,+b,) (8)

where x, represents the model input at time ¢, i, ; denotes the hidden
state at time ¢-1, h, signifies the hidden state at time ¢, U, V,, and
W are network weights, b;, and b, are network biases, f and g are
activation functions, and y, stands for the model output at time ¢.
During the back-propagation process of RNN, the gradient (i.e.,
error signal) may gradually become very small when propagating
between multiple layers, resulting in the phenomenon of gradient
vanishing and leading to stagnation in the learning process.
This issue is particularly prominent when dealing with long
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sequences. Because long sequences increase the number of steps
for gradient propagation between multiple layers, thereby increasing
the risk of gradient vanishing. The root cause of this problem
lies in the design structure of RNN. To overcome this limitation,
many researchers have proposed variants such as LSTM (Long
Short-Term Memory) (Zhang K. et al, 2022) and GRU (Gated
Recurrent Unit) (Chung et al., 2014) models. Compared to LSTM,
GRU has fewer parameters, lower computational cost, faster
convergence speed, and higher learning efficiency. Therefore, the
model used in this paper is developed based on GRU.

As illustrated in the model architecture, two parallel GRU-
based subnets (Net-INJ and Net-VOL) are employed to capture the
temporal dynamics of different physical processes in the reservoir
system. Net-INJ processes injection rate descriptions combined
with gate functions through a connection matrix, while Net-VOL
handles volume change descriptions incorporating both injection
rate and pressure data. Each subnet utilizes GRU cells with
hidden states (h; and h,) that can effectively preserve long-term
dependencies through their reset and update gate mechanisms.
The temporal knowledge extraction networks within both subnets
enable the model to learn complex sequential patterns from
historical data, with the reset gates controlling information retention
and update gates determining the integration of new inputs.
This dual-subnet architecture allows the model to simultaneously
learn injection-related dynamics and volume changes, ultimately
generating predictions for liquid production rate through their
combined outputs, thereby addressing the multi-physics coupling
challenges inherent in reservoir production forecasting.

3.2 Knowledge interactive gated recurrent
network model

The distribution of oil-water two-phase flow is influenced not
only by fluid properties (such as viscosity), but also by the physical
heterogeneity of the reservoir rock (such as porosity, permeability,
etc.) (Xu et al., 2022; Chen et al,, 2021). Therefore, the underground
flow pattern exhibits strong uncertainty. The complex nonlinear
relationship between injection and production signals is primarily
manifested on the time scale of reservoir development. Reservoir
numerical simulators can accurately simulate the injection-
production relationship, but modeling requires geological attribute
parameters such as permeability, porosity, and saturation for each
grid, and obtaining these geological attributes through well logging
is very costly. Additionally, as the size of the reservoir increases,
the computational cost of numerical simulators also increases, and
completing a simulation for a large-scale reservoir can take tens
of minutes or even hours (Huang et al., 2024; Zeng et al., 2022).
Under the framework of machine learning integrated with the
material balance equation for water-flooding reservoirs, this paper
proposes a Knowledge Interaction Gated Recurrent Unit (KIGRU)
model. Guided by the material balance equation for water-flooding
reservoirs, the KIGRU model considers the impact of reservoir
boundary conditions on the injection-production relationship.
By coupling injection-production dynamic information on a time
scale, it uses a modular parallel computing model to simulate the
injection-production relationship.
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The KIGRU architecture, illustrated in Figure 1, employs a dual-
subnet design that integrates physical principles with deep learning
for reservoir production forecasting. The model comprises two
parallel components: the Injection Rate Description Subnet (Net-
INJ) and the Volume Change Description Subnet (Net-VOL). Net-
INJ processes injection rate time series through a gate function
and connection matrix that encodes inter-well spatial relationships,
feeding into a GRU network with hidden states (h;, h,) to extract
temporal knowledge about injection-production connectivity. Net-
VOL jointly processes injection rate and injection pressure data
through a similar GRU architecture to characterize volume change
dynamics within the reservoir. Both subnets utilize standard GRU
cells with reset gates, update gates, and tanh activation functions
to maintain temporal memory across time steps. The outputs from
Net-INJ and Net-VOL are combined through matrix operations
(Hadamard product, matrix multiplication, matrix addition, and
matrix subtraction) in the Model Output Part to predict the final
Liquid Production Rate for each well.

3.2.1 Injection rate description subnet (Net-INJ)

This subnet is an important component of the knowledge
exchange neural network input system, designed to calculate the
total water injection rate from each injection well to the production
well to be analyzed, and infer inter-well connectivity through a gate
function. Assuming the water injection rate and injection pressure
data of M injection wells are described as Equations 9, 10:

WIR = [wiry, -+, wir,,, ---,wirM]T 9)

T
Py = [pinj,l’ Pinjm> Pinjm ] (10)

The liquid production rate, bottom hole pressure, and water-cut
data of N production wells are represented as Equations 11-13:

LPR = [Ipr,, Ipr,, Ipry 1" (11)
T

PPRO = [ppro,l’ ""ppro,n’ ""Ppra,N] (12)

WCT = [wet,, -, wet,, -+, wety] (13)

where m € [1,2,...,M] and n € [1,2,...,N] represent the indices of
injection wells and production wells, respectively. Water injection
rate WIR, water injection pressure Pjy;, and bottom hole pressure
Ppro are the inputs of the subnet in KIGRU. Meanwhile, the liquid
production rate LPR and water-cut WCT of the production well are
the output labels of the model.

The input to the injection adjustment module is WIR, and the
injection-production relationship is measured through the following
gate function (Equation 14):

gate(1) = exp (-1?) (14)

It represents the injection-production correspondence
between the mth injection well and the nth production
well. The mth input of GRU is WIR, ogate(WIR,,), i.e.
[wir,,, - gate(wir,,; ), wir,,, - gate(wir,, ), -+, Wir,,, - gate(wir,,g) ],
where S denotes the number of samples.

If there is a strong connectivity between the mth water injection

well and the nth production well, the value will approach 1,
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indicating that a large amount of water injected from the mth water
injection well flows into the nth production well. Conversely, if the
connectivity with the nth production well is weak, a lower function
value will be assigned in the injection rate description network
module, and this value will approach 0.

In KIGRU, the temporal knowledge extraction network utilizes
an update gate to determine how much information from past data
needs to be passed to the future, while employing a reset gate to
decide how much past data to forget. Under this mechanism, the
important response signals from past data can be retained, while the
redundant or useless signals are eliminated.

The calculation formulas for the update gate and reset gate are as
follows (Equations 15, 16):

z,=o(W,-[h_1,x,]) (15)

ro=0o(W,- [he_p,x,]) (16)

where ¢ is the Sigmoid activation function, W, and W, are weight
matrices, and [h,_,x,] is the vector formed by concatenating the
hidden state and input at the current time step. Therefore, the
calculation process of the candidate hidden state is as follows
(Equation 17):

h,=tanh(W-[r,0h,_,,x,]) (17)
where tanh represents the hyperbolic sine function, W denotes the

weight matrix, and © denotes the product of corresponding elements
in the matrix, namely, the Hadamard product. The updated formula
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for the new hidden state is as follows (Equation 18):

ht:(l_zt)Oht—l"'ztOﬁt (18)

The input and output of the temporal knowledge extraction
network can be described by Equations 19, 20:
M

SEQ, = Z (gate(x,,,) © wir,,) (19)
m=1

KK, = Vh, (20)

where SEQ, = [seq,,;,s€q,,...5eq,g]; The input matrix of the
temporal knowledge extraction network can be represented as
SEQ = [SEQ,,---,SEQ,,,...SEQy]". @ is the Hadamard product. V
represents the weight matrix of the current output.

The output of the injection rate description subnet can be
expressed as Equation 21:

INJ, = GRU([SEQ, 1+ SEQ, > SEQ, 5] ") (1)

where GRU represents the extraction and calculation of temporal
knowledge in Equations 15-19. INJ, is the tth column of the
total inflow rate matrix INJ for N production wells, calculated
after coupling the injection and production data with KIGRU,
INJECTION € RV, [SEQ,,"++,SEQ, ,,...SEQ,y]" represents the
total inflow rate of N production wells at time ¢, which is the tth
column of the SEQ matrix.

3.2.2 Volume change description subnet
(Net-VOL)

The volume change description subnet reflects the fluid change
rate within the control volume caused by the compressibility
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of underground porous media and fluids. Utilizing the GRU
network, the objective is to establish the relationship between
the liquid production rate from the production well and the
fluid change rate within the control volume. In the volume
change description network, not only pressure changes but
also water injection rate and liquid production rate are taken
into account. In this module, the water injection rate, water
injection pressure, and production well pressure data set
VOLj\pyr are employed as inputs, which can be denoted
as Equation 22:

VOLpyr = [WIR, Py, P PRO]T (22)

During the simulation of injection-production development
dynamics in water-flooding reservoirs, it is necessary to consider
the mutual interference between injection and production well
groups. Moreover, injection-production dynamic data belong to
complex nonlinear time series with time delays. Injected water
needs to travel through porous media for several days or even
weeks before reaching the bottom of the production well. Therefore,
GRU is still used in the volume change description network to
capture the dynamic time series behavior hidden in the data,
thereby accurately depicting the complex nonlinear relationship
between the production rate and the fluid change rate within
the control volume. The GRU used is structurally identical
to that in the injection rate description network, as shown
in Equations 13-17.

For a given input data set VOL;ypyr, the volume change
description subnet can generate the fluid volume change
rate VV, between the control volumes of each production
well through the GRU subnet, which can be denoted as
Equation 23:

VV, = GRU(VOLpyr) (23)
where VV, represents the tth column of the total liquid production
rate matrix VV for N production wells calculated after KIGRU
coupled injection and production, VV € RMS,

Figure 2 illustrates the training process of reservoir production
prediction model. The entire process employs an iterative

optimization strategy and consists of the following key steps:

Model Initialization: Initialize model parameters at the
beginning

Injection Rate Allocation Calculation: Calculate the split
inflow rate for each production well (INJ,) based on water
injection rate data (WIR)

Fluid Change Rate Calculation: Compute the rate of fluid
volume change (VV;)

Production Prediction: Predict liquid production
(MODELLPR,) based on the calculated INJ, and VV,
Error Calculation: Calculate the Mean Squared Error (MSE)
between model predictions and actual values

rate

f. Parameter Update: Update model parameters through error
backpropagation mechanism

Convergence Check: Verify if training conditions are met; if
not, return to step 2 for continued iteration until convergence,
then end training
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Initialize model parameters

|
v

Calculate the split inflow rate of each production well
INJ, based on water injection rate data WIR

:

Calculate the rate of fluid change FV,

!

Caculation of liquid production rate M\ODELLPR,
based on INJ, and V'V,

!
Calculate the MSE error of the model

}

Error backpropagation and updating parameters

Condition is reached?

FIGURE 2
KIGRU algorithm.

Permeability/mD

500 700 1000

FIGURE 3
Permeability field of the two-channel reservoir case.

3.2.3 Collaborative mechanism of dual
subnetworks

The Net-INJ and Net-VOL subnetworks are interconnected
through a computational graph, forming a complete injection-
production relationship modeling framework. Although the two
subnetworks exhibit structural similarity, this is determined by
their functional characteristics: Net-INJ specializes in extracting
temporal features from injection rate data, while Net-VOL focuses
on extracting temporal features from liquid production rate data.
Since both injection and production data are essentially flow rate
information with similar temporal dynamic characteristics and
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physical properties, adopting similar network architectures can
better capture the common patterns inherent in such flow rate data.

The collaborative mechanism between the two subnetworks
is manifested as follows: the injection feature vectors output by
Net-INJ serve as intermediate variables and are jointly input into
Net-VOL along with reservoir property parameters. Through this
cascaded computational graph approach, an end-to-end mapping
from injection signals to production signals is achieved, effectively
establishing dynamic connectivity relationships between injection
and production wells.

3.2.4 Model output

Based on the material balance equation for water-flooding
reservoirs, the simulated liquid production rate of KIGRU can be
derived from the injection rate description network and the volume
change description network in Equation 24:

MOELLPR, = INJ,- V'V, (24)

Frontiers in Earth Science

where INJ, represents the output of the injection rate description
network, corresponding to the water injection rate on the right side
of the material balance equation. VV, denotes the fluid volume
change rate, which corresponds to the left side of the material
balance equation. The difference between the two, MODELLPR,,
corresponds to the liquid production rate on the right side of the
material balance equation. When predicting water-cut, the water-cut
data WCT is used to replace LPR for fitting and predicting water-cut.

The KIGRU model employs mean squared error (MSE) as the
loss function and takes into account the influence of the closed
boundary constraints of the oil reservoir. Its calculation formula is
expressed as follows:

)

(25)

M

)

m=1

N

N
LOSS = é Y ILPR, - MODELLPR,||* + ( gate(wir,,,)
n=1 n=1

where LPR, represents the observed liquid production rate of
the nth production well, while MODELLPR,, denotes the model-
output liquid production rate of the nth production well. u is a
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FIGURE 7

Inter-well connectivity heatmaps of three-channel reservoir case by
SLFNN and KIGRU. (a) Inter-well connectivity heatmap of SLFNN in a
three-channel oil reservoir case. (b) Inter-well connectivity heatmap
of KIGRU in a three-channel oil reservoir case.

coefficient that balances the loss of liquid production rate and the
loss due to connectivity constraints. The training process of KIGRU
is illustrated in Figure 2.

4 Test study on oil reservoir cases
4.1 Two-channel oil reservoir scenario
The two-channel reservoir case, proposed by (Yousef et al,

2006), is a two-dimensional heterogeneous reservoir model
composed of a grid with dimensions of 31 x 31 x 1, measuring
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24 x 24 x 4 m. The case includes 5 water injection wells and four
production wells, denoted as I1 to I5 and P1 to P4, respectively.
The porosity and initial oil saturation of the model are 0.18 and 0.7,
respectively. The permeability field of the model is shown in Figure 3,
featuring two high-permeability channels, namely, I1-P1 and I3-
P4, with permeabilities of 1000mD and 500mD, respectively. The
permeability of other areas is uniformly set at 5mD.

This paper compares the inter-well connectivity results of the
Capacitance-Resistance Model (CRM) (Yousef et al., 2009) and the
proposed KIGRU model on two-channel oil reservoir scenario. The
CRM model is a physically-based approach that has been proven to
be a powerful tool in reservoir modeling applications. It is capable
of analyzing inter-well connectivity with minimal inputs and a small
amount of production and water injection history data. The KIGRU
model employs a dual-subnet architecture consisting of Net-INJ and
Net-VOL to capture injection-production dynamics in oil reservoirs.
Net-INJ processes injection rate data through a gate function and
connection matrix to model inter-well connectivity, while Net-
VOL jointly processes injection rate and pressure to characterize
volume changes. Each subnet utilizes two layer GRU networks with
64 hidden units per layer. The model is trained using the Adam
optimizer with an initial learning rate of 0.001, a batch size of
32, and sequence lengths of 300 time steps covering meaningful
injection-production response cycles. Dropout regularization (0.2)
and gradient clipping are applied to prevent overfitting, with training
conducted over 100 epochs using early stopping. The outputs from
both subnets are fused through matrix operations to predict liquid
production rates, enabling the model to learn both data-driven
patterns and physics-informed relationships.

Figure 4 illustrates the heatmap of inter-well connectivity
analysis between injection and production wells on the two-channel
oil reservoir using both CRM and KIGRU methods. The horizontal
axis labels represent the production well numbers, denoted as
P1~P5, while the vertical axis labels represent the injection well
numbers, denoted as I1~ I5. As shown in the figure, both methods
have identified the two high-permeability channels, namely, I11-P1
and I3-P4. However, the connectivity of other well pairs in the CRM
method exhibits unreasonable results. For instance, the connectivity
values obtained for well pairs 12-P1, 12-P2, 12-P4, 14-P1, I4-P2, and
I5-P3 in the CRM method are significantly high. Especially for 12-
P2, the obtained value of CRM is 0.9452, which is inconsistent with
the actual situation. Conversely, KIGRU more accurately portrays
the weak connectivity of low-permeability well pairs. Additionally,
although the CRM method can distinguish between these two high-
permeability channels, its results suggest that I1-P1 and I3-P4 have
similar connectivity, which is inconsistent with the actual situation.

Figure 5 illustrates the fluid production prediction results of
CRM and KIGRU on the two-channel oil reservoir measured
in cubic meters per day (m®/day). From a fitting accuracy
perspective, KIGRU demonstrates significant improvements over
CRM in characterizing reservoir dynamics. The model achieves
superior material balance accuracy, with minimal discrepancy
between injection rates (injRate, blue curve) and total fluid
production (pro4, purple area), whereas CRM shows notable gaps
indicating mass balance errors. KIGRUs more flexible elastic
term produces smoother, more physically realistic production
profiles for individual wells (prol-pro4), effectively filtering
noise while preserving genuine trends, in contrast to CRM’
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TABLE 1 Liquid production rate history matching and prediction performance by SLFNN and KIGRU.

Metric type Evaluation index ‘ SLFNN KIGRU

MSE 0.0933 + 0.0124 0.0113 +0.0018

Hist tchi
istory matching RMSE 0.3054 + 0.0203 0.1063 £ 0.0085

performance
R2 0.8234 + 0.0421 0.9812 + 0.0034
MSE 0.2465 + 0.0356 0.0189 + 0.0027

Predicti

rediction RMSE 0.4965 + 0.0359 0.1375 + 0.0098

performance
R2 0.8128 + 0.0567 0.9654 + 0.0041

The bolded figures are our key focus indicators, reflecting the improvements in our model.

TABLE 2 Comprehensive model performance Comparison.

Noise level ‘ SLFNN prediction MSE KIGRU prediction MSE
No noise sensitivity (baseline) 0.2465 0.0189
5% Gaussian noise 0.2891 0.0216
10% Gaussian noise 0.3547 0.0267
15% Gaussian noise 0.4623 0.0358

excessive fluctuations suggesting overfitting or inadequate temporal
modeling. Additionally, KIGRU demonstrates better peak capture
capability around time steps 150-250, maintaining peak magnitudes
aligned with injection variations, while CRM exhibits dampened or
exaggerated responses. The model also maintains stable temporal
consistency in relative producer proportions throughout the
time series, reflecting realistic inter-well connectivity, whereas
CRM displays erratic changes indicating unstable parameter
estimation. Quantitatively, the reduced variance and tighter
injection-production coupling in KIGRU predictions translate to
lower Mean Squared Error (MSE), validating its superior fitting
accuracy and credibility for reservoir production forecasting.

4.2 Three-channel oil reservoir scenario

As shown in the permeability field depicted in Figure 6,
the three-channel reservoir scenario (Meng and Karniadakis,
2020) represents a two-dimensional fluvial heterogeneous reservoir
model. This model comprises 25 x 25 x 1 grids with dimensions of
30 % 30 x 3 m. The reservoir porosity and initial oil saturation are set
at 0.2 and 0.8, respectively. The model incorporates nine production
wells and 4 water injection wells.

This paper compares the results of feed-forward neural network
model SLENN and KIGRU model on the three channel reservoir
case. Figure 7 shows the heat map of inter-well connectivity between
injection and production wells by SLFNN and KIGRU. It can be seen
from the figure that SLENN is difficult to accurately characterize
the true connectivity of all injection and production well groups,
while KIGRU successfully identifies four high permeability channel
well pairs I1-P1, 12-P3, I3-P5 and I3-P4 for the three channel case.

Frontiers in Earth Science

At this time, the mean square error of SLFNN and KIGRU liquid
production rate historical fitting and prediction is shown in Table 1
measured in cubic meters per day (m? /day). Quantitative validation
using Mean Squared Error (MSE) further confirms KIGRU’s
superiority. The values are reported in m®/day for both training
and testing datasets, where the training set comprises 80% of the
historical production data and the remaining 20% serves as the
testing set for model validation. The bolded figures are our key focus
indicators, reflecting the improvements in our model.

To comprehensively evaluate KIGRU performance, we conducted
comparative experiments with traditional SLFNN on liquid production
rate prediction. As shown in Table 1, KIGRU achieves MSE of 0.0113
and 0.0189 for history matching and prediction respectively, with
R? of 0.9812 and 0.9654, significantly outperforming SLENN (p <
0.001). Robustness tests (Table 2) demonstrate that KIGRU consistently
maintains significant performance advantages under 0%-15% noise
interference. Notably, KIGRU under high noise still outperforms noise-
free SLENN, confirming exceptional interference resistance. These
results demonstrate KIGRU’s exceptional accuracy, robustness, and
interference resistance.

5 Conclusion

In response to the complex underground connectivity of oil
reservoirs, this paper constructs a Knowledge Interactive Gated
Recurrent Unit (KIGRU) model based on machine learning
methods integrated with physical knowledge, aiming to simulate
the inter-well flow process in water-flooding reservoirs. KIGRU
incorporates reservoir boundary constraints into the model learning
criteria to quantitatively describe the split coefficient of water
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injection wells, ensuring the reliability of the model in representing
inter-well connectivity. The model employs gated recurrent
unit modules, leveraging memory and forgetting mechanisms
to effectively address the temporal characteristics in water cut
prediction, thereby enhancing the model’s applicability on the time
scale of oil reservoir development. By introducing physical equations
of percolation into the machine learning model, the robustness
of the model in predicting production indicators and analyzing
connectivity issues is effectively improved, making it valuable
for practical applications in analyzing inter-well connectivity
for injection and production in oil fields. Through numerical
simulation experiments of oil reservoirs, the effectiveness of this
method in solving production prediction and inter-well connectivity
analysis problems is confirmed. The fundamental reason for the
model’s effectiveness lies in the synergistic effect between physical
constraints and GRU architecture: physical constraints ensure that
model outputs comply with reservoir flow patterns, while the GRU
memory mechanism effectively captures the temporal dependencies
of injection-production processes, with physical constraints playing
a more critical role in enhancing model reliability. However,
model prediction errors primarily stem from two aspects: noise
interference in measured data and limitations in the model
structure’s ability to describe complex reservoir heterogeneity.

Beyond the aforementioned structural deficiencies, several
critical limitations must be acknowledged. Regarding computational
cost, the dual-subnet GRU architecture with 100-300 training
epochs requires significant computational resources, with training
time scaling nonlinearly with the number of wells and time steps,
potentially limiting real-time optimization applications. In terms
of scalability, while effective for moderate-scale problems (4-20
wells), the models performance and memory requirements for
large-scale reservoirs (more than 100 wells) remain untested, as the
connection matrix and hidden state dimensions grow quadratically
with well count. Concerning reservoir-scale applicability, the
current implementation has been validated only on simplified two-
channel synthetic scenarios; its transferability to complex field-
scale reservoirs with heterogeneous geology, faults, and irregular
well patterns requires substantial investigation. From a data
perspective, the model demands continuous, high-quality injection
and production data for effective training; sparse or intermittent
measurements typical in mature fields may degrade performance.
With respect to physical constraint enforcement, while knowledge-
informed, the model lacks hard constraints for thermodynamic
consistency and may occasionally violate physical bounds under
extrapolation.

Meanwhile, the KIGRU model still requires further research,
which will focus on several concrete research directions to enhance
the models practical applicability. First, field data validation:
the KIGRU model will be validated using real-world production
data from operating oil fields to assess its robustness under
actual reservoir conditions with measurement noise and data
uncertainties. Second, multiphase flow extension: the current single-
phase liquid production framework will be extended to incorporate
oil-water-gas three-phase flow dynamics, requiring modifications
to both Net-INJ and Net-VOL subnets to handle phase-specific
properties and relative permeability effects. Third, well testing
integration: coupling KIGRU with transient pressure analysis and
well testing data will enable better characterization of near-wellbore
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properties and dynamic reservoir parameters. Fourth, natural water
influx modeling: incorporating aquifer influx mechanisms into the
injection rate description network module will allow the model
to adapt to reservoirs with active bottom or edge water drives.
Fifth, multi-layer reservoir modeling: developing hierarchical
GRU architectures to handle stratified reservoirs with distinct
layer properties and inter-layer communication. These targeted
improvements will systematically address current limitations and
expand the model’s applicability to diverse reservoir scenarios.
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