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Climate and land use change are increasingly altering the water balance and 
flood dynamics of East African wetlands. In Tanzania’s Kilombero floodplain, rice 
cultivation relies on seasonal flooding, which is becoming more variable and 
intense due to climate and land use change. While floodwater is essential for 
rice cultivation, prolonged submergence poses a threat to yields and regional 
food security. However, it remains unclear how catchment-scale hydrological 
changes translate into floodplain-scale flood dynamics and submergence risks 
for rice crops. To address this, we developed a HEC-RAS 2D hydrodynamic 
model of the Kilombero floodplain, simulating future flood dynamics under 
climate change (RCP 4.5 and 8.5) and land use change scenarios. We assessed 
the susceptibility of rice crops to prolonged submergence by integrating 
flood model outputs with physiological traits of rice plants. Results show 
that high-emission scenarios (RCP 8.5) and extensive land conversion to rice 
cultivation in the floodplain significantly increase areas prone to prolonged rice 
crop submergence compared to baseline conditions and moderate-emission 
scenarios (RCP 4.5). Rice plant height was the dominant factor influencing 
submergence susceptibility. Our findings highlight the importance of integrating 
hydrodynamic modelling with crop characteristics to inform adaptive rice variety 
selection and agricultural planning in the context of global change.
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 1 Introduction

Climate and land use change alter the water balance of East African wetlands 
(Notter et al., 2013; Näschen et al., 2018; Gabiri et al., 2019; Näschen et al., 2019b; 
Näschen et al., 2019a; Gabiri et al., 2020). Despite high spatial variability, studies on the 
effect of climate change on the water cycle in East Africa widely expect an intensification 
of hydro-climatic extremes (Shongwe et al., 2011; James et al., 2013; Näschen et al., 
2019b; Almazroui et al., 2020; Haile et al., 2020). Additionally, East African wetlands are 
increasingly used for agricultural production due to their relatively large size, fertile soils, 
and prolonged periods of soil water availability (Sakané et al., 2011; Behn et al., 2018;
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Gabiri et al., 2018). Current developments in East Africa show 
a shift of upland agricultural production into wetlands to 
increase food security in the region (Dixon and Wood, 2003; 
Gabiri et al., 2018). This development is driven by population 
growth, degradation, and overuse of upland soils and increasing 
rainfall variability due to climate change (Sakané et al., 2011; 
Behn et al., 2018; Burghof et al., 2018).

The Kilombero Valley in Tanzania shows evidence of these 
developments. It contains a floodplain wetland embedded in a 
mountainous catchment and is drained by the Kilombero River, 
which forms the most important tributary of the Rufiji River, the 
largest river system in Tanzania (Wilson et al., 2017). Designated 
as a protected Ramsar Site since 2002 due to its high biodiversity 
and ecological importance for residents and downstream regions 
(Mombo et al., 2011; Munishi and Jewitt, 2019), the Kilombero 
floodplain faces increasing pressure from climate change and Land 
Use and Land Cover Change (LULCC) impacts.

Recent studies in the Kilombero Valley expect the catchment 
to face more pronounced hydrological extremes and intensified 
seasonality due to climate change and LULCC (Näschen et al., 
2019b; Näschen et al., 2019a). These changes affect agricultural 
management practices in the Kilombero floodplain, where 
seasonal Land Use and Land Cover (LULC) dynamics are 
strongly dependent on the depth, duration, and extent of the 
seasonal flooding of the Kilombero River and its tributaries 
(Leemhuis et al., 2017; Kirimi et al., 2018).

Rice is the main crop in the Kilombero floodplain 
(Gebrekidan et al., 2020) and land conversion to rice cropland 
is the primary driver of LULCC in the Kilombero floodplain 
(Leemhuis et al., 2017; Näschen et al., 2019a; Thonfeld et al., 
2020b). The Kilombero floodplain wetland contributes about 9% 
of Tanzania’s rice production and is therefore highly relevant for 
the region’s food security (United Republic of Tanzania, 2004). 
While the availability of floodwater in the floodplain is an essential 
condition for wet-season rice cultivation, unfavourable hydrological 
conditions such as prolonged crop submergence pose a risk to rice 
plants (Burghof, 2017; Kwesiga et al., 2020; Grotelüschen, 2021; 
Ayyad et al., 2022). During prolonged crop submergence, rice plants 
are submerged in water for several days or even weeks, which 
impairs gas exchange and photosynthesis, resulting in reduced 
growth and productivity, as well as crop loss (Singh et al., 2011; 
Singh et al., 2017; Michael et al., 2023a).

However, a critical research gap remains in translating 
catchment-scale water balance modelling findings into river-
reach-scale flood dynamics within the Kilombero floodplain. This 
is underlined in previous studies, which highlight the need for 
a hydrodynamic model of the Kilombero floodplain to analyse 
future flood dynamics affected by climate change and LULCC 
(Leemhuis et al., 2017; Näschen et al., 2019a). Furthermore, 
Kwesiga et al. (2020) and Grotelüschen (2021) emphasise the risk of 
changing flood dynamics for sustainable agricultural management 
in the floodplain. Specifically, prolonged submergence of rice crops 
during floods is identified as the main cause of rice yield gaps in the 
Kilombero floodplain (Kwesiga et al., 2020).

Therefore, the main objective of this study is to investigate the 
occurrence of prolonged rice crop submergence in the Kilombero 
floodplain under past and future conditions. To achieve this, 
we simulate spatiotemporal dynamics of seasonal floods under 

combined climate change and LULCC scenarios as well as 
baseline conditions. For this purpose, we establish a HEC-RAS 2D 
hydrodynamic model for the section of the Kilombero floodplain 
surrounding the town of Ifakara. We then integrate the output from 
the hydrodynamic model with selected physiological traits of rice 
plants from the Kilombero Valley to investigate the susceptibility 
of rice crops to prolonged submergence. By including the effects 
of climate change and LULCC on flooding as well as agricultural 
management practices in the analysis, which we subsume under the 
term Global Change, this study supports adapted future human-
flood interactions. 

2 Methods

2.1 Study area

The study area is located around the town of Ifakara within the 
Kilombero River floodplain in south-central Tanzania, East Africa 
(see Figure 1). Thus, it is part of the broader Kilombero catchment, 
which forms one of the four main sub-basins of the Rufiji River Basin 
and covers an area of approximately 40.000 km2 (Mombo et al., 2011; 
Lyon et al., 2015). The Kilombero River system traverses the flat 
valley floor and floodplain in a bifurcating and meandering form, 
following a southwest-to-northeast direction (Jätzold and Baum, 
1968). After passing through the town of Ifakara in the northeastern 
part of the catchment, the river enters a bottleneck-like terrain 
feature, where the valley floor narrows. An alluvial fan, on which 
Ifakara is located, acts as a natural dam that retains water during 
flood season. Water levels can rise to 4.5 m over the riverbanks at 
this location (Daconto et al., 2018; Kirimi et al., 2018).

Past this point, the river turns in a NW-SE direction, flowing 
into the Rufiji River, which ultimately drains into the Indian Ocean 
near Dar es Salaam (Kato, 2007). The climate in the Kilombero 
catchment is sub-humid tropical (Koutsouris et al., 2016). A distinct 
spatiotemporal variability characterises the precipitation within the 
catchment area. The mountains and low-altitude southwest plains 
receive between 1,500–2,100 mm of annual rainfall, while most 
lowlands receive only 1,200–1,400 mm annually (Wilson et al., 
2017). Distinct rainy and dry seasons are observable. The rainy 
season roughly spans from November to April, and the dry season 
from June to October. However, the rainy season exhibits a bimodal 
pattern and can be subdivided into the short rains (November-
January) and the long rains (March-May) (Koutsouris et al., 2016; 
Wilson et al., 2017). The climate leads to seasonal flooding of the 
Kilombero floodplain, mainly during the wet season from December 
to May, while from June to November, it dries up (Munishi and 
Jewitt, 2019). 

2.2 Data

The input data for a HEC-RAS 2D hydrodynamic model 
comprises river discharge data, surface roughness data, terrain data, 
and satellite imagery of flood extent, which are used to validate the 
model (see Table 1).

We obtained discharge input data for the upper boundary 
condition of the hydrodynamic model and four tributaries from 
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FIGURE 1
(A) Kilombero catchment, (B) Location of Kilombero catchment in Tanzania, (C) Study area in Kilombero floodplain near Ifakara.

the hydrological Soil and Water Assessment Tool (SWAT) model of 
the Kilombero catchment set up by Näschen et al. (2019a). Further 
details about the model calibration, validation, and scenarios are 
provided by Näschen et al. (2019a) and Näschen et al. (2018). 
The authors provided discharge hydrographs with daily values for 
the 2050–2060 period under two Representative Concentration 
Pathways (RCP). Both RCP scenarios were available with a specific 
Global Climate Model (GCM) – Regional Climate Model (RCM) 
combination. Namely, RCP 4.5 with GCM: CNRM-CM5 and RCM: 
CCLM4-8–17_v1 and RCP 8.5 with GCM: MIROC5 and RCM: 
RCA4_v1 (see Table 1). RCP 4.5 assumes moderate greenhouse 
gas emissions and a radiative forcing of 4.5 W m-2, while RCP 
8.5 assumes very high greenhouse gas emissions without efforts to 
constrain and a radiative forcing of 8.5 W m-2 at the end of the 
twenty-first century (Collins et al., 2013; Näschen et al., 2019b). The 
GCM-RCM combinations represent a range of wet and dry scenarios 

covering increasing and decreasing annual precipitation amounts 
compared to historical data (1951–2005) (Näschen et al., 2019a). For 
RCP 4.5, the driest available GCM-RCM combination was chosen 
(−8.3% annual precipitation compared to the past) and for RCP 8.5, 
the wettest (+22.5% annual precipitation compared to the past).

As a baseline scenario, Näschen et al. (2019a) provided modelled 
daily discharge values for the 1958–2005 period. Modelled discharge 
data was used for the baseline scenario due to the lack of 
measured historical discharge data at the upper boundary of the 
hydrodynamic model. To produce this data, the SWAT model 
was run with an Ensemble Mean (EM) of six different historical 
Cordex RCMs for the 1958–2005 period (Näschen et al., 2019b). 
Further information about the ensemble members can be found in 
Näschen et al. (2019b). Additionally, to validate the hydrodynamic 
model, we retrieved modelled discharge data with daily values from 
1 January 2014, to 31 December 2014, from the SWAT model to 
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compare the modelled maximum flood extent for that year with 
the observed maximum flood extent. The 2014 discharge data 
were extracted under RCP 8.5 conditions (the wettest GCM-RCM 
combination), as historical RCM data ended in 2005, and there 
was no available measured discharge data for 2014 at the upper 
boundary condition and the tributaries of the hydrodynamic model. 
RCP 8.5 was chosen over RCP 4.5 to align with the severity of the 
2014 flood (Kirimi et al., 2018).

We obtained Manning’s n surface roughness coefficients for each 
land use class from the Natural Resources Conservation Center 
(NRCS) of the United States Department of Agriculture (USDA) 
(Janssen, 2016) and Emery et al. (2021) (see Table 2). We gathered 
five different LULC scenarios for the study area: 1994 and 2014 
LULC data by Thonfeld et al. (2020b) and three LULCC projections 
for 2030 by Näschen et al. (2019a) and Proswitz et al. (2021) (see 
Table 1). The 1994 LULC classification was used for a baseline 
scenario, whereas the 2014 classification was used for a model 
validation scenario. Näschen et al. (2019a) provided a projection 
of LULCC for 2030 with an extreme level of conversion of natural 
land to (rice) cropland, from here on named LULCC Extreme 
(Näschen et al., 2019a). Proswitz et al. (2021) provided a Business-
as-usual (BAU) and a Conservation LULCC projection for 2030, 
from here on named LULCC BAU and LULCC Conservation. 
The LULCC BAU scenario assumes that existing trends and 
policy decisions, as well as the intensification and expansion of 
agricultural land, will continue without interventions. The LULCC 
Conservation scenario assumes that protected areas are effectively 
managed and protected, and no further land is to be converted into 
cropland where prohibited (see Table 2). Detailed information on 
methodologies and underlying assumptions can be found in the 
respective publications.

We used the COPERNICUS GLO-30 digital elevation model 
(DEM) by the European Space Agency (ESA) as terrain input data 
(see Table 1). The 30 m spatial resolution DEM has already been 
processed for hydrological applications. It is based on the 12 m 
TanDEM-X DEM by the German Aerospace Center (DLR), which 
was acquired between 2011 and 2015 and underwent terrain editing 
(including water body flattening) (Airbus, 2022; ESA, 2025).

For model validation, the maximum flood extent of the 2014 
flood event in the Kilombero floodplain was derived from satellite 
images and compared with model results. We downloaded Landsat 
images pre-processed to surface reflectance from the United States 
Geological Survey (USGS) Earth Explorer (see Table 1). The Landsat 
8 Operational Land Imager (OLI) image from 10/05/2014 (path 
168, row 66) and the Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) from 11/05/2014 (path 167, row 66) showed the largest 
flood extent for this rainy season. We performed cloud masking 
using the function of mask (Fmask) stored in the pixel quality files 
(Zhu and Woodcock, 2012; Zhu et al., 2015). We then calculated 
the Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) 
and the Normalized Difference Water Index (NDWI) (McFeeters, 
1996), appended them to the individual image stacks and mosaicked 
the images. We carried out a Random Forest (RF) supervised 
classification to derive a water mask. RF is widely used for land 
cover classification, including wetland monitoring (Corcoran et al., 
2015; Millard and Richardson, 2015; Gxokwe et al., 2022), and 
specifically in the Kilombero catchment (Thonfeld et al., 2020a). As 
training data, we created a set of 300 random samples for water and 
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TABLE 2  Share of LULC classes in LULC scenarios within the model domain and Manning’s n roughness coefficients.

LULC class Manning’s n 
roughness 
coefficient (source)

1994 2014 2030 extreme 2030 BAU 2030 conservation

Built-up 0.1 (USDA) 0.03% 0.1% 0.1% 0.1% 0.1%

Closed woodland 0.16 (USDA) 11.8% 11.9% 12% 11.9% 11.8%

Cropland 0.035 (USDA) 17.7% 18.3% 8% 19.2% 18.3%

Grassland 0.035 (USDA) 34.2% 24.9% 9.5% 17.4% 24.6%

Montane Forest 0.16 (USDA) 0% 0% 0% 0% 0%

Savanna 0.03 (USDA) 31.7% 14.3% 13.3% 12.2% 14%

Rice 0.083 (according to Emery et al. 
(2021))

1.2% 28.6% 55.3% 37.4% 29.3%

Swamp 0.07 (USDA) 1.7% 0.2% 0.2% 0.2% 0.2%

Water (main channel) 0.04 (USDA) 1.6% 1.6% 1.6% 1.6% 1.6%

Teak plantation 0.16 (USDA) 0% 0.01% 0% 0.01% 0.01%

400 for non-water classes in the catchment and visually interpreted 
them based on the image mosaic, which we applied in the EnMap 
Box software (van der Linden et al., 2015). We further created a valid 
pixel mask for all observations unaffected by cloud or scan line gaps 
to restrict the accuracy assessment to these areas. 

2.3 Hydrodynamic modelling approach

We ran flood simulations in the Kilombero floodplain using 
the HEC-RAS 2D hydrodynamic model (HEC-RAS 6.3.1). 
Hydrodynamic models are commonly used tools for flood 
mapping, hazard and risk assessment, and flood prediction 
(Afzal et al., 2022; Alipour et al., 2022; Mubialiwo et al., 
2022; Yang et al., 2022). Specifically, the HEC-RAS 2D 
hydrodynamic model software, employed in this study, finds 
wide application in flood modelling across various fields of 
research (Rao et al., 2019; Singh et al., 2020; Yalcin, 2020; 
Afzal et al., 2022; Alipour et al., 2022). In floodplain wetland 
environments, hydrodynamic models provide valuable information 
for floodplain management, which can enhance decision-making 
and planning of climate change adaptation and mitigation measures
(Chomba et al., 2021).

There are two common approaches for flood simulation 
through a hydrodynamic model: one-dimensional (1D) and two-
dimensional (2D). 1D models consider only the longitudinal 
flow for the main channel and floodplains. 2D models, on the 
other hand, consider longitudinal and lateral flow in the main 
channel and floodplains (Afzal et al., 2022). 1D models are quicker 
to create, while 2D models have a finer spatial and temporal 
resolution but are associated with higher computational costs 
(Timbadiya et al., 2011; Yang et al., 2022). HEC-RAS 2D has 
demonstrated reliable performance for flood estimation (Pinos 

and Timbe, 2019) and has been successfully applied in studies in 
East Africa (Desalegn and Mulu, 2021; Mubialiwo et al., 2022) 
as well as in wetland modelling studies (Alawadi et al., 2023). 
Hydrodynamic modelling to investigate growing conditions for rice 
has been successfully conducted in South Africa by Kleynhans et al. 
(2007) and in India by Samantaray et al. (2015), supporting 
our approach.

2D hydrodynamic models, such as HEC-RAS 2D, simulate 
the spatiotemporal propagation of water through a given area by 
solving physics-based equations (Yang et al., 2022). The HEC-RAS 
2D model performs flood simulations by solving 2D Saint-Venant 
diffusive wave equations using the numerical finite-volume method 
(Brunner, 2021; Afzal et al., 2022; Mubialiwo et al., 2022). In this 
study, we applied it to compute the maximum flood depths per 
pixel, the flood depth per pixel over time, and the flood extent
over time.

The HEC-RAS 2D model was set up with the COPERNICUS 
GLO-30 DEM as terrain input, Manning’s n roughness coefficients 
attributed to LULC data, 365-day discharge hydrographs as the 
inputs for the upper boundary condition and four tributaries, and a 
normal depth configuration as the lower boundary condition of the 
model. Normal depth was chosen for the lower boundary condition 
of the model due to the lack of measured or modelled discharge 
hydrographs and rating curves for this point on the Kilombero River. 
With the normal depth configuration, HEC-RAS can back-calculate 
water stage at the lower boundary from Manning’s Equation using 
the friction slope, flow, Manning’s n value, and the cross-section 
shape (Brunner, 2021). According to the HEC-RAS manual, we used 
the local bed slope (0.0002) as the friction slope. To initiate the 
model runs, we set initial conditions to ramp up the water surface 
in the model over 48 h to achieve a continuous water surface in 
the Kilombero River before the model run (Brunner, 2021). The 
computational timestep of the model was set to 1 h, while the output 
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TABLE 3  Input scenarios of the hydrodynamic model with discharge 
(including climate change signal) input and LULC(C) input signals.

Flood scenario Discharge/Timespan LULC(C)

A RCP 8.5 2050–2060 2030 extreme

B RCP 4.5 2050–2060 2030 extreme

C RCP 8.5 2050–2060 2030 BAU

D RCP 4.5 2050–2060 2030 BAU

E RCP 8.5 2050–2060 2030 conservation

F RCP 4.5 2050–2060 2030 conservation

Validation RCP 8.5 2014 2014

Baseline Cordex hist. Ensemble mean 
1958–2005

1994

interval was set to 1 day (see Supplementary Table S1). The intervals 
were determined through an iterative process aimed at achieving 
the best possible temporal resolution while keeping computation 
time within reasonable limits and avoiding model instability. The 
start and end dates were set to November 1st to simulate a full 
hydrological year.

The model domain covers a size of 871.3 km2 and a river 
reach length of 60.5 km. Within the domain, the cell size of the 
computational mesh was set to 60 × 60 m in an iterative process, 
which allowed the best possible spatial resolution while keeping the 
computation time within a reasonable limit and avoiding model 
instabilities. The stream was covered with a refined mesh of 10 
× 10 m cells (see Supplementary Table S1). Cell faces were aligned 
with the riverbanks and lines of substantial topographical change 
within the floodplain to avoid premature spill over.

We developed model scenarios by combining hydrological 
and LULCC input data in different variations (see Table 3). The 
hydrological input data were prepared by calculating the mean daily 
discharge for each day of the hydrological year, forming 365-day 
discharge hydrographs representing the 2050–2060 decade under 
RCP 4.5 and RCP 8.5 conditions, as well as the 1958–2005 timeframe 
under baseline conditions (see Figure 2). Input hydrographs were 
created for the upper boundary condition and four tributaries 
of the Kilombero River within the model domain. We chose the 
hydrological year, starting on November 1st, to align with both the 
wet season and the cropping season, which typically commence 
around November. Surface roughness data was prepared by linking 
LULC classes to the respective Manning’s n value for each scenario 
in HEC-RAS.

To validate the hydrodynamic model, we used a scenario 
mirroring the 2014 flood conditions, which extended up to 3 km 
on both sides of the river during the rainy season (Kirimi et al., 
2018). The model validation incorporated the 2014 LULC dataset 
as input for surface roughness and the 2014 discharge hydrograph 
under RCP 8.5 conditions. Observed and modelled maximum flood 
extent were compared using a contingency table. The table includes 
True Positives (TP, pixels are flooded in both observed and modelled 

FIGURE 2
Input hydrographs for the upper boundary condition of the 
hydrodynamic model with RCP 4.5, RCP 8.5 and baseline conditions. 
Values represent the mean daily discharge per day of the hydrological 
year, starting November 1st.

data), True Negatives (TN, pixels are dry in observed and modelled 
data), False Positives (FP, pixels are flooded in the modelled data but 
not in the observation), and False Negatives (FN, pixels are flooded 
in the observed data but not in the modelled data). Based on the 
table, skill scores quantifying the model accuracy were calculated, 
including Overall Accuracy (OA), Probability of Detection (POD), 
False Alarm Ratio (FAR), and Critical Success Index (CSI). The 
OA, POD, FAR, and CSI were calculated using Equations 1–4 
(Ming et al., 2025; Thiemig et al., 2015):

OA = TP+TN
TP+ FP+ FN+TN

∗ 100 (1)

POD = TP
TP+ FN

∗ 100 (2)

FAR = FP
TP+ FP

∗ 100 (3)

CSI = TP
TP+ FP+ FN

∗ 100 (4)

We assessed parameter sensitivity of the model by perturbing 
the model parameters individually and examining how the model 
output changed in each case. The tested parameters were discharge, 
Manning’s n, mesh cell size, computational timestep, and slope at 
the lower boundary condition. Discharge, mesh cell size, and slope 
were varied by +50%, +20%, 0%, −20%, and −50%. Manning’s n 
was increased by +100% as well. The computational timestep was 
varied by +100% and −50% due to limitations in the timestep setting 
options. The results were evaluated in terms of discharge at the lower 
boundary of the model and flood depth at a central cross-section of 
the floodplain close to Ifakara (Paiva et al., 2013). 
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TABLE 4  Scenarios for assessing the susceptibility to prolonged submergence for rice plants in the Kilombero floodplain with selected physiological 
traits of rice plants: Mature growth height and temporal tolerance to submergence.

Rice scenario Rice variety Mature growth height (approx.) Submergence tolerance

Scenario 1 Saro 5 100 cm 7 days

Scenario 2 Saro 5 100 cm 14 days

Scenario 3 Saro 5 100 cm 21 days

Scenario 4 Supa India 130 cm 7 days

Scenario 5 Supa India 130 cm 14 days

Scenario 6 Supa India 130 cm 21 days

2.4 Assessment of the susceptibility of rice 
crops to prolonged submergence

Floods and prolonged crop submergence are the main physical 
stressors and causes of yield gaps in lowland rice farming in the 
Kilombero floodplain (Kwesiga et al., 2020; Michael et al., 2023a). 
To assess the susceptibility of rice crops to prolonged submergence, 
we integrated the hydrodynamic model results from scenarios 
A-F and the baseline scenario with selected physiological traits 
of rice plants, including plant height and temporal tolerance to 
submergence.

Farmers typically encounter floods mainly in March, April, and 
May, when plants have usually matured (Michael et al., 2023a). 
Therefore, we assumed mature rice plants for the analysis. The 
growth height of mature rice plants in the Kilombero floodplain 
varies with rice variety, site, management practices and other 
variables (Kitilu et al., 2019). In this study, we adopted the rice plant 
height values reported by Kitilu et al. (2019), which were measured 
in field experiments conducted on two different sites near Ifakara 
and thus reflect natural plant height variability. We chose the tallest-
growing local variety, Supa India (approximately 130 cm), and 
Saro 5, a relatively short-growing (approximately 100 cm) modified, 
high-yielding variety (Kitilu et al., 2019; Michael et al., 2023a). 
Varieties without specific tolerance traits cannot survive more than 
a week of complete submergence (Xu et al., 2006). Submergence- 
or flood-tolerant rice varieties (e.g., with the Sub1 gene) can 
survive fully submerged for 10–14 days and resume growth after 
the water recedes (Xu et al., 2006; Singh et al., 2017). Examples 
of highly tolerant varieties can survive complete submergence for 
up to 21 days (Panda et al., 2021). These values are based on 
experimental observations and therefore represent approximate 
ranges that are subject to field variability. Based on the gathered 
information, we developed six scenarios with different combinations 
of mature growth height and submergence tolerance to compare 
these exemplified plant requirements with the hydrodynamic model 
results (see Table 4).

To quantify the susceptibility of rice crops to prolonged 
submergence under global change scenarios, we applied a rolling 
window algorithm to the flood depth per pixel over time output 
from the hydrodynamic model (scenarios A-F and baseline), using 
the parameter combinations in the rice scenarios (scenarios 1–6). 
For each pixel, the algorithm checks whether there exists any stretch 

of y consecutive days where the depth exceeds x. This way, the 
algorithm returns a binary susceptibility map of the floodplain for 
each combined scenario, indicating areas where rice plants would be 
susceptible (1) to prolonged submergence or not (0). This resulted in 
42 susceptibility scenario maps (seven flood scenarios multiplied by 
six rice scenarios).

To examine the relative influence of each input variable 
(Discharge and LULCC in the hydrodynamic model; rice growth 
height and rice submergence tolerance as rice plant variables) on the 
size of the area susceptible to prolonged rice crop submergence, we 
derived Feature Importance with an RF regression model. Feature 
Importance analysis is a technique used in machine learning and 
data analysis to identify and quantify the influence of individual 
features (variables) on the output of a model (Cappelli and Grimaldi, 
2023). For this purpose, the dataset was split into training and testing 
sets and trained using the scikit-learn machine learning library 
in Python. R2 and Root Mean Squared Error (RMSE) served as 
performance metric for model fit. To ensure robust validation, we 
used 5-fold cross-validation and reported the mean R2 and RMSE 
across folds. Feature Importance scores were extracted from the 
trained model to identify which features contribute the most to the 
size of the susceptible area. 

3 Results

3.1 Hydrodynamic model validation and 
sensitivity analysis

Model validation was conducted using a contingency table, in 
which the modelled and satellite-based observed maximum flood 
extents were compared. Since areas with clouds and scan line gaps 
were masked from the satellite data, a coverage of 43.5% of the 
model domain remained. The modelled 2014 maximum flood extent 
matched the observed maximum flood extent of the same year, 
with an Overall Accuracy of 91.82% and Probability of Detection 
of 90.33%. Slight overestimations are visible at elevated areas in 
the centre of the floodplain, underestimations towards the northern 
edges of the flooded area. The False Alarm Ratio is 6.64% and 
the Critical Success Index is 84.88% (see Figure 3; Table 5). The 
sensitivity analysis revealed that the discharge input at the upper 
boundary has a significant impact on both the flood depth at the 
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FIGURE 3
Validation of the hydrodynamic model by comparing observed and 
modelled max. flood extent of the 2014 flood. True Positives indicate 
areas correctly modelled as flooded; False Positives are overestimated 
flooded areas; False Negatives are underestimated flooded areas; and 
True Negatives are correctly identified as dry.

TABLE 5  Contigency table comparing the modelled and observed 
maximum flood extent in 2014 in the Kilombero floodplain. Yes and no 
indicate if a pixel was flooded in the respective dataset. Numbers 
indicate the number of pixels that are either True Positive (TP), False 
Negative (FN), False Positive (FP), or True Negative (TN).

Observed

Yes No

Modelled
Yes TP: 193125 FP: 13725

No FN: 20675 TN: 192928

central floodplain cross-section and discharge at the lower model 
boundary (see Figure 4). Changing the computational mesh cell size 
had no effect on the discharge at the lower boundary of the model, 
but did affect the flood depth in the rising and falling limbs of the 
depth hydrograph. Reducing the cell size led to a flattening of the 
depth hydrograph, while increasing the cell size led to a steeper 
hydrograph. Additionally, decreasing cell size negatively affected 
stability and computation time (e.g., reducing the cell size by −50% 
increased the computation time by ca. 452%). Perturbing Manning’s 
n roughness coefficient minimally affected discharge at the lower 
boundary but significantly influenced flood depth. Substantial 
changes in the discharge hydrograph at the lower boundary start 
to become more visible with a change in Manning’s n of +100%. 
Slope at the lower boundary condition and computational timestep 
showed negligible sensitivity. However, reducing the timestep by 
50% increased computation time by ca. 300%.

3.2 Flood dynamics in the Kilombero 
floodplain

With the hydrodynamic model, we simulated spatiotemporal 
dynamics of the seasonal flood in the Kilombero floodplain under 
combined climate change and LULCC scenarios (2050–2060) and 
under baseline conditions (1958–2005) (see Table 1). The primary 
output variables of the HEC-RAS 2D model employed in this study 
are the maximum flood depth per pixel, flood depth per pixel 
over time, and flood extent over time. Analysis of maximum flood 
depth per pixel in the study area revealed that RCP 8.5 scenarios 
(A, C, E) yielded higher maximum flood depths compared to the 
baseline and the RCP 4.5 scenarios (B, D, F) (see Figure 5). The 
effect of LULCC is evident in the increase in maximum flood depth 
per pixel from LULCC Conservation to LULCC BAU to LULCC 
Extreme. The increase is most pronounced in scenarios with LULCC 
Extreme input signal (A and B). Scenario A shows an increase of 
23.1% compared to baseline, whereas scenarios C and E show an 
increase of 8.8% and 6.6% respectively. Remarkably, the effect of the 
LULCC signal in scenario B (LULCC Extreme) leads to an increase 
of maximum flood depth compared to baseline condition (4.4%). In 
contrast, scenarios D and F (both with an RCP 4.5 input signal) show 
decreases of −5.5% and −6.6%, respectively.

Flood extent over time showed a similar dynamic to the 
maximum flood depth per pixel. Scenarios A, C, and E with RCP 
8.5 input signal and scenario B with RCP 4.5 and LULCC Extreme 
input signals show an increase in peak flood extent compared to 
baseline conditions (see Figure 6). Unlike scenario B (RCP 4.5 and 
LULCC Extreme), where only the peak flood extent exceeds the 
baseline, RCP 8.5 scenarios show larger flood extents already during 
the rising limb of the flood. Scenarios D and F show a smaller 
flood extent compared to the baseline scenario at all times of the 
simulation. It is noticeable that the peak flood extent of RCP 8.5 
scenarios occurs around day 167, whereas the peak of RCP 4.5 
scenarios and the baseline scenario occur around day 187 of the 
simulation. This corresponds to a peak flood extent in mid-April for 
RCP 8.5 scenarios, and in early May for RCP 4.5 scenarios and the 
baseline scenario.

3.3 Susceptibility of rice crops to 
prolonged submergence in the Kilombero 
floodplain

Finally, we integrated the hydrodynamic model output with 
selected physiological traits of rice plants to assess their susceptibility 
to prolonged submergence. Overall, flood scenarios with wetter 
climate and more extensive LULCC towards rice cultivation in the 
floodplain and rice scenarios with short-growing varieties result in 
larger areas susceptible to prolonged rice crop submergence. The 
size of the areas decreases with a drier climate input signal and 
less land use change towards rice cultivation in the flood scenarios, 
as well as taller varieties in the rice scenarios (see Figure 7). The 
riparian zone (areas proximal to the Kilombero River) is susceptible 
to prolonged rice crop submergence in all scenarios. In contrast, 
the fringe zone (areas distal from the Kilombero River) and middle 
zone become increasingly susceptible as the scenario becomes more 
extreme (see Figure 7).
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FIGURE 4
Sensitivity analysis: Discharge (Q [m3/s]) at lower model boundary and flood depth [m] at central floodplain cross-section close to Ifakara. Derived from 
model runs using perturbed values of discharge, mesh cell size, slope at the lower boundary condition and computational timestep. Discharge 
hydrographs are zoomed in on the period of peak flow.

FIGURE 5
Boxplot of maximum flood depth per pixel for scenarios (A-F). The red 
dashed line represents the baseline scenario median. (A) = RCP 8.5, 
Extreme; (B) = RCP 4.5, Extreme; (C) = RCP 8.5, BAU; (D) = RCP 4.5, 
BAU; (E) = RCP 8.5, Conservation; (F) = RCP 4.5, Conservation.

A comparison of baseline scenarios (Base1-Base6) with future 
scenarios (A1-F6) reveals that RCP 8.5 climate inputs generally 
result in an increase in the area susceptible to prolonged rice crop 
submergence compared to baseline conditions in most scenario 
combinations (see Figure 8). Only when short rice varieties (100 cm) 
are used in the baseline and tall varieties (130 cm) are used in RCP 
8.5 scenarios, a decrease in susceptibility can be observed. However, 
the combination of RCP 8.5 with LULCC Extreme consistently 
results in increased susceptibility to submergence.

Overall, the influence of LULCC follows a clear pattern: 
susceptibility increases from LULCC Conservation to LULCC BAU 
and is highest under LULCC Extreme. Scenarios with RCP 4.5 
and LULCC Extreme inputs (B-scenarios) also show increased 
susceptibility compared to baseline conditions in most cases. For B-
scenarios, a decrease is only observed when comparing short-variety 
baseline scenarios with tall-variety future scenarios.

Other RCP 4.5-based scenarios (D and F) tend to show reduced 
susceptibility when rice varieties are either short-growing in both the 
baseline and future scenarios, tall-growing in both, or short-growing 
in the baseline and tall-growing in the future scenarios.

In contrast, future scenarios with RCP 4.5 combined with short-
growing rice varieties, when compared to baseline scenarios with 
tall varieties, always result in increased submergence susceptibility. 
Generally, any comparison in which the baseline scenario uses tall 
varieties and the future scenario uses short ones shows an increase 
in susceptible area.

A comparison between scenarios with an RCP 4.5 input signal 
(B, D, F) in combination with short rice varieties (1–3) and 
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FIGURE 6
Flood extent over time in the Kilombero floodplain near Ifakara for each flood scenario.

baseline scenarios in combination with tall rice varieties (4–6) 
consistently shows an increase in area susceptible to prolonged crop 
submergence. Generally, when comparing baseline scenarios with 
tall rice varieties to future scenarios with short rice varieties, there is 
always an increase in the susceptible area.

The analysis reveals that the size of the area susceptible to 
prolonged rice crop submergence is influenced to varying degrees 
by different input parameters. The Feature Importance results from 
the RF regression model (R2 = 0.939, RMSE = 3.907) indicate 
that rice growth height is the dominant factor in controlling 
the susceptibility of rice crops to submergence in the Kilombero 
floodplain (see Figure 9). Discharge, which includes the climate 
change input signal in the hydrodynamic model, is the second most 
important predictor of future rice crop submergence susceptibility 
in the study area. The importance of LULCC falls off substantially 
compared to rice growth height and discharge. Submergence 
tolerance shows negligible influence.

4 Discussion

4.1 Modelling flood dynamics in the 
Kilombero floodplain using HEC-RAS 2D

This study examines potential future developments of seasonal 
flood dynamics in the Kilombero floodplain under various land use 
and climate change scenarios, in comparison to baseline conditions. 
We developed and validated an overall well-performing HEC-RAS 
2D hydrodynamic model of the Kilombero floodplain near Ifakara, 

effectively connecting catchment-scale hydrological modelling 
with floodplain-scale flood dynamics. Coupling hydrological and 
hydrodynamic modelling proved to be an efficient way to handle 
data scarcity regarding gauged discharge data and to enable 
simulations of possible future developments in the study area. This 
finding is consistent with studies in data-scarce regions in Africa 
that use a similar approach (Kleynhans et al., 2007; Chomba et al., 
2021). Ultimately, coupled hydrological-hydrodynamic models 
can improve decision-making and planning for adaptation and 
mitigation measures in African floodplains (Chomba et al., 2021).

Still, the lack of measured discharge and water level data 
in the data-scarce Kilombero Valley hindered a more accurate 
validation of the model outputs, especially when considering 
temporally variable model outputs. In the satellite data, artefacts 
introduced through clouds and cloud shadows, as well as the Landsat 
7 scan line corrector failure posed a challenge to quantitative 
validation (Storey et al., 2005). Nevertheless, the coverage with 
valid data was highest in the flood-affected areas of the floodplain, 
whereas significant gaps were primarily located in areas unlikely to 
experience flooding. The revisit times of 16 days of both satellites 
need to be considered as a factor of uncertainty in terms of the exact 
timing of maximum flooding. A delay between the satellite image 
acquisition of the assumed maximum flood extent and the modelled 
maximum extent limits the accuracy (Afzal et al., 2022).

Overall, discharge input and Manning’s n roughness coefficient, 
linked to LULCC input, emerged as the primary sources of model 
uncertainty due to their high sensitivity, which is in line with the 
literature (Alipour et al., 2022). Therefore, hydrological and surface 
roughness input values must be carefully selected. As the discharge 
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FIGURE 7
Areas indicating susceptibility of rice crops to prolonged submergence per scenario (in red) in the Kilombero floodplain near Ifakara. Scenario 
combination (flood scenario A-F and rice scenario 1–6) in the top left corner. The size of the area susceptible to prolonged rice crop submergence is in 
the bottom right corner.
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FIGURE 8
Absolute change in susceptible area size: Future vs. Baseline Scenarios. Numbers in cells indicate absolute change (km2) between baseline scenarios 
(bottom) and future scenarios (left). Each future flood scenario (A-F), climate change and LULCC input signals in brackets) was combined with each of 
the rice scenarios (1-6, maximum growth height and temporal tolerance to submergence in brackets). The baseline flood scenario (EM = Ensemble 
Mean, 1958–2005 period, 1994 LULC) was combined with rice scenarios 1-6 to facilitate cross-comparison.

data was derived from the hydrological SWAT model, it can be 
assumed that uncertainties already inherent to the SWAT model 
were propagated to the hydrodynamic model outputs. Although 
the SWAT model performed well in the Kilombero catchment 
(NSE = 0.80–085, KGE = 0.89–0.93), its calibration and validation 
indicated that the predicted flows (95% prediction uncertainty band) 
encompassed 62%–67% of observed flows, with a relative width 

(R-factor) of 0.45–0.56 (Näschen et al., 2018). This indicates that 
simulated discharges may vary within this range due to parameter 
and input data uncertainties, which, in turn, propagate through the 
HEC-RAS model. We addressed uncertainties introduced by input 
data by adopting a scenario-based approach that covers increasing 
(RCP 8.5 with wettest available GCM-RCM combination) and 
decreasing (RCP 4.5 with driest available GCM-RCM combination) 
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FIGURE 9
Feature Importance (mean decrease in impurity) of susceptibility input 
parameters calculated with RF regression model. Growth height refers 
to the mature growth height of rice plants. Discharge is the discharge 
hydrograph input in the hydrodynamic model, which includes the 
climate change signal. LULCC is the Land Use and Land Cover Change 
input (surface roughness) in the hydrodynamic model. Submergence 
tolerance refers to the temporal tolerance of rice plants to 
submergence.

annual precipitation amounts in the catchment (Näschen et al., 
2019b). However, the results should be interpreted with awareness 
that these uncertainties affect the magnitude and timing of simulated 
flood peaks and flood extents.

While our scenario-based approach captures potential long-
term trends in flood dynamics under RCP 4.5 and RCP 8.5, it 
should be noted that these deterministic pathways mainly represent 
mean climatic responses to radiative forcing and do not explicitly 
account for climate variability. Recent studies have shown that both 
increases and decreases in flood magnitude and frequency can be 
attributed to uncertainty introduced by climatic variability rather 
than directional change (Gao et al., 2020; Faghih and Brissette, 
2023). Consequently, the RCP-based projections applied in this 
study represent two plausible trajectories within a wider spectrum of 
potential futures. Incorporating stochastic (Jafarzadegan et al., 2021) 
or ensemble-based (Callaghan and Hughes, 2022) frameworks in 
future work could therefore complement our deterministic scenarios 
by explicitly addressing the variability component of flood behaviour 
in the Kilombero floodplain.

Research indicates that rice cropping will increase in the 
Kilombero floodplain and move closer to the river due to 
increasing competition for arable land and water resources 
(Nindi et al., 2014; Leemhuis et al., 2017; Daconto et al., 
2018; Höllermann et al., 2021; Proswitz et al., 2021). This 
development was addressed by implementing three LULCC 
scenarios (Extreme, BAU, Conservation), which project conversion 
from natural vegetation to rice cropland on different levels 
of extensiveness in the hydrodynamic model. This approach 
enabled the quantification of the effects of possible future LULCC 
scenarios on flood characteristics in the study area. The procedure 

and outcome are also consistent with the existing literature 
(Zia et al., 2016; Jayapadma et al., 2022).

Notably, discharge at the lower boundary of the HEC-RAS 2D 
model does not change substantially when perturbing Manning’s n 
in the sensitivity analysis. Still, it did affect flood depths within the 
floodplain. Changes in the timing and magnitude of the hydrograph 
become more visible with a 100% increase from base values. This 
behaviour could be caused by the size and low inclination of 
the floodplain as well as the characteristics of the hydrograph. 
Together, these characteristics lead to a long-lasting, shallow and 
extensive flooding of the floodplain, in which the effects of surface 
roughness are less pronounced. The limited influence of floodplain 
roughness on hydrograph propagation and downstream discharge 
in the HEC-RAS 2D model is consistent with previous findings. 
(Liu et al., 2019). Further uncertainty might be introduced by the 
resolution of the underlying DEM. However, a corrected DEM 
with a spatial resolution of 30 m can be considered sufficient 
for floodplain-scale hydrodynamic modelling, as demonstrated in 
previous studies (Arash and Yasi, 2023).

The results from the HEC-RAS 2D hydrodynamic model 
show that the climate change signal (in the discharge data) is 
the dominant driver of future flood dynamics in the Kilombero 
floodplain. The overall trend–decrease or increase in maximum 
flood depth and extent compared to baseline conditions–can be 
attributed to the climate change input signal. The results reflect 
the underlying hydrographs and climate change scenarios, which 
predict wetter conditions and an earlier peak discharge under the 
high-emission scenario RCP 8.5, and drier conditions under the 
moderate-emission scenario RCP 4.5, compared to the baseline 
scenario. These hydrographs were derived from the catchment-
scale SWAT simulations by Näschen et al. (2019a), enabling us 
to translate catchment-scale hydrological projections into detailed 
floodplain-scale hydrodynamics and thereby link large-scale climate 
and LULCC impacts to local flooding processes. Contextualising 
these findings with similar studies in East Africa proves difficult, 
as the impacts of climate change are projected to be considerably 
heterogeneous across East Africa (Choi et al., 2022).

However, the overall trend in the results is broken by scenario 
B, where an RCP 4.5 climate change signal is combined with a 
LULCC Extreme input signal. In this scenario, discharge is lower 
than in the baseline, but maximum flood depths and extent are 
higher. The LULCC Extreme input signal stands out in particular 
because it shows a disproportionate change in land use towards rice 
in the floodplain compared to the other two LULCC input signals. 
LULCC Extreme shows 55.3% of land use in the model domain 
as rice, while LULCC BAU has 37.4% and LULCC Conservation 
has 29.3% rice land use (Table 3). With the applied set of 
Manning’s n roughness coefficients, LULCC towards rice cultivation 
leads to increased floodplain roughness because monoculture 
rice plantations have a higher roughness coefficient (0.083) than 
grassland (0.035), which would be the natural vegetation. In turn, 
this leads to more extensive and deeper floods due to backwater 
effects (Kiss et al., 2019). In general, translating LULC data into 
surface roughness coefficients is considered a source of uncertainty 
in hydrodynamic modelling. Uncertainty can be introduced, for 
example, by seasonal variations in vegetation growth (e.g., rice 
growth stage) that are complex to reproduce (Gabriel, 2009; Ji, 
2017) and model insensitivity to changes in surface roughness 

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1672749
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tuschen et al. 10.3389/feart.2025.1672749

(Liu et al., 2019). Potential feedback on the hydrodynamic model 
behaviour from different rice plant sizes, which are considered in 
the second step of our analysis, is also not taken into account. 
Simplifications further limit the HEC-RAS 2D model used in this 
study, as infiltration is not represented in the model. However, 
infiltration can be neglected as the floodplain is already saturated 
with rainwater and groundwater inflow from the mountains 
before overbank flow occurs. Consequently, floodwater infiltration 
does not significantly contribute to groundwater recharge in the 
Kilombero floodplain (Burghof et al., 2018). 

4.2 Impact of global change on rice 
submergence susceptibility and 
implications for rice cultivation in the 
Kilombero floodplain

This study investigated the occurrence of prolonged rice crop 
submergence in the Kilombero floodplain under both historical 
and future climate and land use conditions. By integrating climate 
change and LULCC scenarios as well as physiological traits of rice 
plants in our analysis, we were able to assess spatial susceptibility 
patterns and derive practical implications for rice cultivation in the 
Kilombero floodplain. Our results demonstrate that high-emission 
RCP 8.5 scenarios result in larger areas susceptible to prolonged 
submergence of rice crops in the Kilombero floodplain compared 
to baseline and moderate-emission RCP 4.5 scenarios in most 
cases, regardless of LULCC scenario. This can be attributed to 
higher peak discharges and a more pronounced seasonal flood 
in RCP 8.5 scenarios. The results confirm findings from existing 
literature, suggesting that higher flood magnitudes increase the 
susceptibility to rice crop submergence in the Kilombero floodplain 
(Kwesiga et al., 2020; Grotelüschen, 2021). However, this study adds 
that LULCC and agricultural management decisions, such as rice 
variety selection (mature growth height and temporal tolerance 
to submergence), also control susceptibility to crop submergence. 
Hydrological conditions and flood characteristics are key drivers 
of the susceptibility of rice crops to prolonged submergence in the 
Kilombero floodplain. These flood characteristics are further shaped 
by land use in the floodplain. Recent studies in the Kilombero 
Valley have documented extensive conversion of grassland, savanna, 
and open woodland into agricultural land, particularly rice fields, 
and a progressive expansion of cultivation toward the main river 
channel and its tributaries (Thonfeld et al., 2020a; Thonfeld et al., 
2020b). This spatial shift has effectively reduced the distance between 
anthropogenic land use and flood zones, thereby increasing the 
exposure of agricultural areas to flooding. Similar patterns of human 
encroachment toward rivers have been observed in Africa over 
recent decades, contributing to higher flood risk through intensified 
land use pressure in floodplains (Wang et al., 2023). In RCP 8.5 
scenarios, land use policy could only control the rate of increase 
in submergence susceptibility, but it cannot prevent it. In contrast, 
scenarios with an RCP 4.5 input signal offer potential for mitigating 
risk, particularly under LULCC Conservation and LULCC BAU 
conditions. Well-enforced floodplain protection against land use 
change, particularly towards increased rice cultivation, can therefore 
be seen as an adaptation measure to climate change, especially 
under a moderate-emission climate change scenario, such as RCP 

4.5. On the other hand, extensive land use change (LULCC 
Extreme) towards rice cultivation can increase risks for rice 
cultivation in the floodplain compared to LULCC BAU, LULCC 
Conservation, and baseline conditions, even in RCP 4.5 scenarios, 
as higher surface roughness leads to an increase in the depth and 
extent of the seasonal flood. Strengthening the enforcement of 
existing protection frameworks, such as the Ramsar Convention, 
is therefore critical for sustaining the ecological and agricultural 
functions of the Kilombero floodplain. Thonfeld et al. (2020a) 
demonstrated that almost half of the Kilombero Ramsar site is 
already under anthropogenic land use and that two-thirds of the land 
environmentally suitable for future expansion lies within protected 
areas. These findings underline that formal designation alone is 
insufficient. Effective management and enforcement are needed 
to balance agricultural development with wetland conservation. 
Moreover, effective floodplain management should also consider 
areas outside the current protection zones that are susceptible 
to future land conversion but are essential to maintaining the 
floodplain’s hydrological and ecological integrity.

In terms of rice plant traits, taller plants with greater 
submergence tolerance can generally be associated with smaller 
areas susceptible to prolonged rice crop submergence than shorter 
plants with lower submergence tolerance. In fact, plant height 
emerged as the dominant factor in controlling crop submergence 
susceptibility in the Feature Importance analysis. Simulation 
results show that using taller plants (130 cm) instead of shorter 
plants (100 cm) can reduce the area susceptible to prolonged crop 
submergence in the Kilombero floodplain by ca. 19.7% on average. 
This underlines the necessity of considering rice plant height when 
selecting flood-resilient rice varieties for the floodplain. Moreover, 
taller local varieties, such as Supa India (130 cm), appear better 
suited to mitigate the effects of more pronounced flood events, 
especially under high-emission scenario RCP 8.5. Conversely, 
shorter, high-yielding varieties, such as Saro 5 (100 cm), which is 
already partially cultivated in the Kilombero floodplain, appear less 
adapted from this perspective. Currently, local farmers in flood-
prone riparian zones already favour taller varieties, suggesting 
an existing adaptation strategy that aligns with our findings 
(Michael et al., 2023a). However, it is worth noting that these 
traditional, taller varieties tend to produce lower yields compared to 
improved, shorter cultivars, such as Saro 5 (Michael et al., 2023a). 
Especially in the transition zone between the riparian zone and the 
fringe of the floodplain, where fields are not flooded every year due 
to interannual variability (Michael et al., 2023b), the selection of rice 
varieties currently is a trade-off between flood resilience and yield.

Temporal submergence tolerance of rice plants played a minor 
role in our analysis, as susceptibility was defined jointly by depth and 
duration thresholds. As flood duration is strongly correlated with 
flood depth, pixels experiencing deeper flooding also tend to remain 
flooded for longer periods. Consequently, plant height, which 
determines the depth threshold for complete submergence, was 
identified as the dominant factor in the Feature Importance analysis. 
However, other factors, such as floodwater quality, also affect 
rice submergence tolerance but were not considered in this study 
(Oladosu et al., 2020). Furthermore, an assessment of susceptibility 
to prolonged submergence in the submergence-sensitive early 
reproductive growth stage of rice plants was not considered and 
should be the subject of further research (Kwesiga et al., 2020).
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The interannually varying onset and magnitude of floods still 
pose a challenge for establishing planting times and crop selection 
(Michael et al., 2023a; Michael et al., 2023b). Strategies of farmers 
to mitigate risks due to interannual flood variability include careful 
observation of weather patterns at the onset of the rainy season to 
inform cropping calendars and crop selection (Höllermann et al., 
2021), as well as transplanting or seeding during the rainy season 
to maximise the use of available water. Nevertheless, transplanting 
or seeding during the rainy season comes with the risk of crop 
loss due to submergence (Kirimi et al., 2018). Our results provide 
practical guidance for policymakers and agricultural practitioners 
in the Kilombero floodplain by linking the impacts of climate and 
land use change on flood dynamics and agricultural management 
decisions.

In perspective, such a model could support adaptive planning by 
forecasting likely spatio-temporal flood conditions in the floodplain 
based on observed rainfall at the onset of the rainy season. 
This scenario-based approach could inform optimal rice variety 
selection, planting locations, and cropping calendars, particularly 
in the transition zone between the riparian zone and the fringe of 
the floodplain. Future research could extend the approach to long-
term simulations that explicitly account for interannual variability. 
Coupling hydrodynamic flood modelling with crop-growth models 
would enable a more comprehensive assessment of the impacts 
of climate variability on rice cultivation and resilience in the 
Kilombero floodplain. Overall, we presented a novel approach to 
assess the susceptibility of rice crops to prolonged submergence 
in the Kilombero floodplain. East African floodplain wetlands 
are considered vital for the region’s food security (Sakané et al., 
2011; Behn et al., 2018; Gabiri et al., 2018). Our approach can 
contribute to a better understanding and management of human-
flood interactions in terms of climate and land use change, as well 
as the risk and chance of specific rice cultivation techniques in East 
African floodplain wetlands. 

5 Conclusion

This study presents a novel scenario-based approach to assessing 
the susceptibility of rice crops to prolonged submergence in the 
Kilombero floodplain under combined climate change and Land 
Use and Land Cover Change scenarios. By coupling hydrological 
and hydrodynamic modelling with physiological traits of rice 
plants, we identified spatial patterns of susceptibility to prolonged 
submergence and their primary drivers.

The study shows that climate change is a large-scale driver of 
flood magnitudes and prolonged crop submergence that determines 
the broader boundary conditions for flood risk and agricultural 
planning in the Kilombero floodplain but cannot be directly 
managed at the local level. In contrast, local management decisions, 
such as land use planning, enforcement of floodplain protection 
(e.g., Ramsar site), and the selection of suitable rice varieties, offer 
levers for adaptation. Especially the use of taller, submergence-
tolerant rice varieties and the restriction of further agricultural 
expansion into active flood zones could substantially reduce the area 
of rice crops susceptible to prolonged submergence.

Future research should include in situ discharge gauging 
campaigns or ground-truthing of the spatiotemporal characteristics 

of floods in the Kilombero floodplain to aid model calibration 
and validation. Furthermore, the possibilities of the coupled 
hydrological-hydrodynamic model for flood forecasting should be 
further explored to enhance cropping calendars and rice variety 
selection.

The findings of this study underline the value of integrating 
coupled hydrological-hydrodynamic modelling with crop 
characteristics to support adaptive agricultural planning. The 
developed approach can provide practical guidance for managing 
human-flood interactions and optimising rice cultivation in East 
African wetlands. It supports informed decision-making on crop 
variety selection for resilient agriculture in the face of global change.
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