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Climate and land use change are increasingly altering the water balance and
flood dynamics of East African wetlands. In Tanzania's Kilombero floodplain, rice
cultivation relies on seasonal flooding, which is becoming more variable and
intense due to climate and land use change. While floodwater is essential for
rice cultivation, prolonged submergence poses a threat to yields and regional
food security. However, it remains unclear how catchment-scale hydrological
changes translate into floodplain-scale flood dynamics and submergence risks
for rice crops. To address this, we developed a HEC-RAS 2D hydrodynamic
model of the Kilombero floodplain, simulating future flood dynamics under
climate change (RCP 4.5 and 8.5) and land use change scenarios. We assessed
the susceptibility of rice crops to prolonged submergence by integrating
flood model outputs with physiological traits of rice plants. Results show
that high-emission scenarios (RCP 8.5) and extensive land conversion to rice
cultivation in the floodplain significantly increase areas prone to prolonged rice
crop submergence compared to baseline conditions and moderate-emission
scenarios (RCP 4.5). Rice plant height was the dominant factor influencing
submergence susceptibility. Our findings highlight the importance of integrating
hydrodynamic modelling with crop characteristics to inform adaptive rice variety
selection and agricultural planning in the context of global change.
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1 Introduction

Climate and land use change alter the water balance of East African wetlands
(Notter et al., 2013; Naschen et al., 2018; Gabiri et al., 2019; Naschen et al.,, 2019b;
Naschen et al., 2019a; Gabiri et al., 2020). Despite high spatial variability, studies on the
effect of climate change on the water cycle in East Africa widely expect an intensification
of hydro-climatic extremes (Shongwe et al., 2011; James et al., 2013; Naschen et al,
2019b; Almazroui et al., 2020; Haile et al., 2020). Additionally, East African wetlands are
increasingly used for agricultural production due to their relatively large size, fertile soils,
and prolonged periods of soil water availability (Sakané et al., 2011; Behn et al,, 2018;
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Gabiri et al.,, 2018). Current developments in East Africa show
a shift of upland agricultural production into wetlands to
increase food security in the region (Dixon and Wood, 2003;
Gabiri et al, 2018). This development is driven by population
growth, degradation, and overuse of upland soils and increasing
rainfall variability due to climate change (Sakané et al, 2011;
Behn et al., 2018; Burghof et al., 2018).

The Kilombero Valley in Tanzania shows evidence of these
developments. It contains a floodplain wetland embedded in a
mountainous catchment and is drained by the Kilombero River,
which forms the most important tributary of the Rufiji River, the
largest river system in Tanzania (Wilson et al., 2017). Designated
as a protected Ramsar Site since 2002 due to its high biodiversity
and ecological importance for residents and downstream regions
(Mombo et al., 2011; Munishi and Jewitt, 2019), the Kilombero
floodplain faces increasing pressure from climate change and Land
Use and Land Cover Change (LULCC) impacts.

Recent studies in the Kilombero Valley expect the catchment
to face more pronounced hydrological extremes and intensified
seasonality due to climate change and LULCC (Naschen et al,
2019b; Naschen et al,, 2019a). These changes affect agricultural
management practices in the Kilombero floodplain, where
seasonal Land Use and Land Cover (LULC) dynamics are
strongly dependent on the depth, duration, and extent of the
seasonal flooding of the Kilombero River and its tributaries
(Leembhuis et al., 2017; Kirimi et al., 2018).

Rice is the main crop in the Kilombero floodplain
(Gebrekidan et al., 2020) and land conversion to rice cropland
is the primary driver of LULCC in the Kilombero floodplain
(Leemhuis et al., 2017; Naschen et al., 2019a; Thonfeld et al,,
2020b). The Kilombero floodplain wetland contributes about 9%
of Tanzanias rice production and is therefore highly relevant for
the regions food security (United Republic of Tanzania, 2004).
While the availability of floodwater in the floodplain is an essential
condition for wet-season rice cultivation, unfavourable hydrological
conditions such as prolonged crop submergence pose a risk to rice
plants (Burghof, 2017; Kwesiga et al., 2020; Groteliischen, 2021;
Ayyad etal., 2022). During prolonged crop submergence, rice plants
are submerged in water for several days or even weeks, which
impairs gas exchange and photosynthesis, resulting in reduced
growth and productivity, as well as crop loss (Singh et al., 2011;
Singh et al,, 2017; Michael et al., 2023a).

However, a critical research gap remains in translating
catchment-scale water balance modelling findings into river-
reach-scale flood dynamics within the Kilombero floodplain. This
is underlined in previous studies, which highlight the need for
a hydrodynamic model of the Kilombero floodplain to analyse
future flood dynamics affected by climate change and LULCC
(Leemhuis et al., 2017; Naschen et al., 2019a). Furthermore,
Kwesiga et al. (2020) and Groteliischen (2021) emphasise the risk of
changing flood dynamics for sustainable agricultural management
in the floodplain. Specifically, prolonged submergence of rice crops
during floods is identified as the main cause of rice yield gaps in the
Kilombero floodplain (Kwesiga et al., 2020).

Therefore, the main objective of this study is to investigate the
occurrence of prolonged rice crop submergence in the Kilombero
floodplain under past and future conditions. To achieve this,
we simulate spatiotemporal dynamics of seasonal floods under
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combined climate change and LULCC scenarios as well as
baseline conditions. For this purpose, we establish a HEC-RAS 2D
hydrodynamic model for the section of the Kilombero floodplain
surrounding the town of Ifakara. We then integrate the output from
the hydrodynamic model with selected physiological traits of rice
plants from the Kilombero Valley to investigate the susceptibility
of rice crops to prolonged submergence. By including the effects
of climate change and LULCC on flooding as well as agricultural
management practices in the analysis, which we subsume under the
term Global Change, this study supports adapted future human-
flood interactions.

2 Methods
2.1 Study area

The study area is located around the town of Ifakara within the
Kilombero River floodplain in south-central Tanzania, East Africa
(see Figure 1). Thus, it is part of the broader Kilombero catchment,
which forms one of the four main sub-basins of the Rufiji River Basin
and covers an area of approximately 40.000 km? (Mombo etal., 2011;
Lyon et al., 2015). The Kilombero River system traverses the flat
valley floor and floodplain in a bifurcating and meandering form,
following a southwest-to-northeast direction (Jitzold and Baum,
1968). After passing through the town of Ifakara in the northeastern
part of the catchment, the river enters a bottleneck-like terrain
feature, where the valley floor narrows. An alluvial fan, on which
Ifakara is located, acts as a natural dam that retains water during
flood season. Water levels can rise to 4.5 m over the riverbanks at
this location (Daconto et al., 2018; Kirimi et al., 2018).

Past this point, the river turns in a NW-SE direction, flowing
into the Rufiji River, which ultimately drains into the Indian Ocean
near Dar es Salaam (Kato, 2007). The climate in the Kilombero
catchment is sub-humid tropical (Koutsouris et al., 2016). A distinct
spatiotemporal variability characterises the precipitation within the
catchment area. The mountains and low-altitude southwest plains
receive between 1,500-2,100 mm of annual rainfall, while most
lowlands receive only 1,200-1,400 mm annually (Wilson et al,
2017). Distinct rainy and dry seasons are observable. The rainy
season roughly spans from November to April, and the dry season
from June to October. However, the rainy season exhibits a bimodal
pattern and can be subdivided into the short rains (November-
January) and the long rains (March-May) (Koutsouris et al., 2016;
Wilson et al., 2017). The climate leads to seasonal flooding of the
Kilombero floodplain, mainly during the wet season from December
to May, while from June to November, it dries up (Munishi and
Jewitt, 2019).

2.2 Data

The input data for a HEC-RAS 2D hydrodynamic model
comprises river discharge data, surface roughness data, terrain data,
and satellite imagery of flood extent, which are used to validate the
model (see Table 1).

We obtained discharge input data for the upper boundary
condition of the hydrodynamic model and four tributaries from
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FIGURE 1

(A) Kilombero catchment, (B) Location of Kilombero catchment in Tanzania, (C) Study area in Kilombero floodplain near Ifakara.

the hydrological Soil and Water Assessment Tool (SWAT) model of
the Kilombero catchment set up by Naschen et al. (2019a). Further
details about the model calibration, validation, and scenarios are
provided by Naschen et al. (2019a) and Naschen et al. (2018).
The authors provided discharge hydrographs with daily values for
the 2050-2060 period under two Representative Concentration
Pathways (RCP). Both RCP scenarios were available with a specific
Global Climate Model (GCM) - Regional Climate Model (RCM)
combination. Namely, RCP 4.5 with GCM: CNRM-CM5 and RCM:
CCLM4-8-17_v1 and RCP 8.5 with GCM: MIROC5 and RCM:
RCA4_v1 (see Table 1). RCP 4.5 assumes moderate greenhouse
gas emissions and a radiative forcing of 4.5 W m-2, while RCP
8.5 assumes very high greenhouse gas emissions without efforts to
constrain and a radiative forcing of 8.5 W m-2 at the end of the
twenty-first century (Collins et al., 2013; Naschen et al., 2019b). The
GCM-RCM combinations represent a range of wet and dry scenarios
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covering increasing and decreasing annual precipitation amounts
compared to historical data (1951-2005) (Néschen et al., 2019a). For
RCP 4.5, the driest available GCM-RCM combination was chosen
(—8.3% annual precipitation compared to the past) and for RCP 8.5,
the wettest (+22.5% annual precipitation compared to the past).
Asabaseline scenario, Niaschen et al. (2019a) provided modelled
daily discharge values for the 1958-2005 period. Modelled discharge
data was used for the baseline scenario due to the lack of
measured historical discharge data at the upper boundary of the
hydrodynamic model. To produce this data, the SWAT model
was run with an Ensemble Mean (EM) of six different historical
Cordex RCMs for the 1958-2005 period (Nischen et al., 2019b).
Further information about the ensemble members can be found in
Nischen et al. (2019b). Additionally, to validate the hydrodynamic
model, we retrieved modelled discharge data with daily values from
1 January 2014, to 31 December 2014, from the SWAT model to
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compare the modelled maximum flood extent for that year with
the observed maximum flood extent. The 2014 discharge data
were extracted under RCP 8.5 conditions (the wettest GCM-RCM
combination), as historical RCM data ended in 2005, and there
was no available measured discharge data for 2014 at the upper
boundary condition and the tributaries of the hydrodynamic model.
RCP 8.5 was chosen over RCP 4.5 to align with the severity of the
2014 flood (Kirimi et al., 2018).

We obtained Manning’s n surface roughness coefficients for each
land use class from the Natural Resources Conservation Center
(NRCS) of the United States Department of Agriculture (USDA)
(Janssen, 2016) and Emery et al. (2021) (see Table 2). We gathered
five different LULC scenarios for the study area: 1994 and 2014
LULC data by Thonfeld et al. (2020b) and three LULCC projections
for 2030 by Naschen et al. (2019a) and Proswitz et al. (2021) (see
Table 1). The 1994 LULC classification was used for a baseline
scenario, whereas the 2014 classification was used for a model
validation scenario. Nischen et al. (2019a) provided a projection
of LULCC for 2030 with an extreme level of conversion of natural
land to (rice) cropland, from here on named LULCC Extreme
(Néschen et al,, 2019a). Proswitz et al. (2021) provided a Business-
as-usual (BAU) and a Conservation LULCC projection for 2030,
from here on named LULCC BAU and LULCC Conservation.
The LULCC BAU scenario assumes that existing trends and
policy decisions, as well as the intensification and expansion of
agricultural land, will continue without interventions. The LULCC
Conservation scenario assumes that protected areas are effectively
managed and protected, and no further land is to be converted into
cropland where prohibited (see Table 2). Detailed information on
methodologies and underlying assumptions can be found in the
respective publications.

We used the COPERNICUS GLO-30 digital elevation model
(DEM) by the European Space Agency (ESA) as terrain input data
(see Table 1). The 30 m spatial resolution DEM has already been
processed for hydrological applications. It is based on the 12 m
TanDEM-X DEM by the German Aerospace Center (DLR), which
was acquired between 2011 and 2015 and underwent terrain editing
(including water body flattening) (Airbus, 2022; ESA, 2025).

For model validation, the maximum flood extent of the 2014
flood event in the Kilombero floodplain was derived from satellite
images and compared with model results. We downloaded Landsat
images pre-processed to surface reflectance from the United States
Geological Survey (USGS) Earth Explorer (see Table 1). The Landsat
8 Operational Land Imager (OLI) image from 10/05/2014 (path
168, row 66) and the Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) from 11/05/2014 (path 167, row 66) showed the largest
flood extent for this rainy season. We performed cloud masking
using the function of mask (Fmask) stored in the pixel quality files
(Zhu and Woodcock, 2012; Zhu et al., 2015). We then calculated
the Normalized Difference Vegetation Index (NDVT) (Tucker, 1979)
and the Normalized Difference Water Index (NDWTI) (McFeeters,
1996), appended them to the individual image stacks and mosaicked
the images. We carried out a Random Forest (RF) supervised
classification to derive a water mask. RF is widely used for land
cover classification, including wetland monitoring (Corcoran et al.,
2015; Millard and Richardson, 2015; Gxokwe et al., 2022), and
specifically in the Kilombero catchment (Thonfeld et al., 2020a). As
training data, we created a set of 300 random samples for water and
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TABLE 2 Share of LULC classes in LULC scenarios within the model domain and Manning’s n roughness coefficients.

LULC class Manning’s n 1994

roughness
coefficient (source)

2014

2030 extreme 2030 BAU 2030 conservation

Built-up 0.1 (USDA) 0.03% 0.1% 0.1% 0.1% 0.1%
Closed woodland 0.16 (USDA) 11.8% 11.9% 12% 11.9% 11.8%
Cropland 0.035 (USDA) 17.7% 18.3% 8% 19.2% 18.3%
Grassland 0.035 (USDA) 34.2% 24.9% 9.5% 17.4% 24.6%
Montane Forest 0.16 (USDA) 0% 0% 0% 0% 0%
Savanna 0.03 (USDA) 31.7% 14.3% 13.3% 12.2% 14%
Rice 0.083 (according to Emery et al. 1.2% 28.6% 55.3% 37.4% 29.3%
(2021))

Swamp 0.07 (USDA) 1.7% 0.2% 0.2% 0.2% 0.2%
Water (main channel) 0.04 (USDA) 1.6% 1.6% 1.6% 1.6% 1.6%
Teak plantation 0.16 (USDA) 0% 0.01% 0% 0.01% 0.01%

400 for non-water classes in the catchment and visually interpreted
them based on the image mosaic, which we applied in the EnMap
Box software (van der Linden et al., 2015). We further created a valid
pixel mask for all observations unaffected by cloud or scan line gaps
to restrict the accuracy assessment to these areas.

2.3 Hydrodynamic modelling approach

We ran flood simulations in the Kilombero floodplain using
the HEC-RAS 2D hydrodynamic model (HEC-RAS 6.3.1).
Hydrodynamic models are commonly used tools for flood
mapping, hazard and risk assessment, and flood prediction
(Afzal et al., 2022; Alipour et al., 2022; Mubialiwo et al.,
2022; Yang et al, 2022). Specifically, the HEC-RAS 2D
hydrodynamic model software, employed in this study, finds
wide application in flood modelling across various fields of
research (Rao et al., 2019; Singh et al, 2020; Yalcin, 2020;
Afzal et al, 2022; Alipour et al., 2022). In floodplain wetland
environments, hydrodynamic models provide valuable information
for floodplain management, which can enhance decision-making
and planning of climate change adaptation and mitigation measures
(Chomba et al., 2021).

There are two common approaches for flood simulation
through a hydrodynamic model: one-dimensional (1D) and two-
dimensional (2D). 1D models consider only the longitudinal
flow for the main channel and floodplains. 2D models, on the
other hand, consider longitudinal and lateral flow in the main
channel and floodplains (Afzal et al., 2022). 1D models are quicker
to create, while 2D models have a finer spatial and temporal
resolution but are associated with higher computational costs
(Timbadiya et al, 2011; Yang et al,, 2022). HEC-RAS 2D has
demonstrated reliable performance for flood estimation (Pinos
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and Timbe, 2019) and has been successfully applied in studies in
East Africa (Desalegn and Mulu, 2021; Mubialiwo et al., 2022)
as well as in wetland modelling studies (Alawadi et al., 2023).
Hydrodynamic modelling to investigate growing conditions for rice
has been successfully conducted in South Africa by Kleynhans et al.
(2007) and in India by Samantaray etal. (2015), supporting
our approach.

2D hydrodynamic models, such as HEC-RAS 2D, simulate
the spatiotemporal propagation of water through a given area by
solving physics-based equations (Yang et al., 2022). The HEC-RAS
2D model performs flood simulations by solving 2D Saint-Venant
diffusive wave equations using the numerical finite-volume method
(Brunner, 2021; Afzal et al., 2022; Mubialiwo et al., 2022). In this
study, we applied it to compute the maximum flood depths per
pixel, the flood depth per pixel over time, and the flood extent
over time.

The HEC-RAS 2D model was set up with the COPERNICUS
GLO-30 DEM as terrain input, Manning’s n roughness coeflicients
attributed to LULC data, 365-day discharge hydrographs as the
inputs for the upper boundary condition and four tributaries, and a
normal depth configuration as the lower boundary condition of the
model. Normal depth was chosen for the lower boundary condition
of the model due to the lack of measured or modelled discharge
hydrographs and rating curves for this point on the Kilombero River.
With the normal depth configuration, HEC-RAS can back-calculate
water stage at the lower boundary from Mannings Equation using
the friction slope, flow, Manning’s n value, and the cross-section
shape (Brunner, 2021). According to the HEC-RAS manual, we used
the local bed slope (0.0002) as the friction slope. To initiate the
model runs, we set initial conditions to ramp up the water surface
in the model over 48 h to achieve a continuous water surface in
the Kilombero River before the model run (Brunner, 2021). The
computational timestep of the model was set to 1 h, while the output
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TABLE 3 Input scenarios of the hydrodynamic model with discharge
(including climate change signal) input and LULC(C) input signals.

Flood scenario | Discharge/Timespan LULC(C)
A RCP 8.5 2050-2060 2030 extreme
B RCP 4.5 2050-2060 2030 extreme
C RCP 8.5 2050-2060 2030 BAU
D RCP 4.5 2050-2060 2030 BAU
E RCP 8.5 2050-2060 2030 conservation
F RCP 4.5 2050-2060 2030 conservation
Validation RCP 8.5 2014 2014
Baseline Cordex hist. Ensemble mean 1994
1958-2005

interval was set to 1 day (see Supplementary Table S1). The intervals
were determined through an iterative process aimed at achieving
the best possible temporal resolution while keeping computation
time within reasonable limits and avoiding model instability. The
start and end dates were set to November 1st to simulate a full
hydrological year.

The model domain covers a size of 871.3km? and a river
reach length of 60.5 km. Within the domain, the cell size of the
computational mesh was set to 60 x 60 m in an iterative process,
which allowed the best possible spatial resolution while keeping the
computation time within a reasonable limit and avoiding model
instabilities. The stream was covered with a refined mesh of 10
x 10 m cells (see Supplementary Table S1). Cell faces were aligned
with the riverbanks and lines of substantial topographical change
within the floodplain to avoid premature spill over.

We developed model scenarios by combining hydrological
and LULCC input data in different variations (see Table 3). The
hydrological input data were prepared by calculating the mean daily
discharge for each day of the hydrological year, forming 365-day
discharge hydrographs representing the 2050-2060 decade under
RCP 4.5 and RCP 8.5 conditions, as well as the 1958-2005 timeframe
under baseline conditions (see Figure 2). Input hydrographs were
created for the upper boundary condition and four tributaries
of the Kilombero River within the model domain. We chose the
hydrological year, starting on November 1st, to align with both the
wet season and the cropping season, which typically commence
around November. Surface roughness data was prepared by linking
LULC classes to the respective Manning’s n value for each scenario
in HEC-RAS.

To validate the hydrodynamic model, we used a scenario
mirroring the 2014 flood conditions, which extended up to 3 km
on both sides of the river during the rainy season (Kirimi et al.,
2018). The model validation incorporated the 2014 LULC dataset
as input for surface roughness and the 2014 discharge hydrograph
under RCP 8.5 conditions. Observed and modelled maximum flood
extent were compared using a contingency table. The table includes
True Positives (TP, pixels are flooded in both observed and modelled
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FIGURE 2

Input hydrographs for the upper boundary condition of the
hydrodynamic model with RCP 4.5, RCP 8.5 and baseline conditions.
Values represent the mean daily discharge per day of the hydrological
year, starting November 1st.

data), True Negatives (TN, pixels are dry in observed and modelled
data), False Positives (FP, pixels are flooded in the modelled data but
not in the observation), and False Negatives (FN, pixels are flooded
in the observed data but not in the modelled data). Based on the
table, skill scores quantifying the model accuracy were calculated,
including Overall Accuracy (OA), Probability of Detection (POD),
False Alarm Ratio (FAR), and Critical Success Index (CSI). The
OA, POD, FAR, and CSI were calculated using Equations 1-4
(Ming et al., 2025; Thiemig et al., 2015):

TP+ TN
A-_ IP+TN 1
OA= o N TN - )
POD=—L 4100 2
TP+EN @
FAR= —2 4100 3)
TP+ FP
csi=—TP 100 4)
TP+ FP+ FN

We assessed parameter sensitivity of the model by perturbing
the model parameters individually and examining how the model
output changed in each case. The tested parameters were discharge,
Manning’s n, mesh cell size, computational timestep, and slope at
the lower boundary condition. Discharge, mesh cell size, and slope
were varied by +50%, +20%, 0%, —20%, and —50%. Manning’s n
was increased by +100% as well. The computational timestep was
varied by +100% and —50% due to limitations in the timestep setting
options. The results were evaluated in terms of discharge at the lower
boundary of the model and flood depth at a central cross-section of
the floodplain close to Ifakara (Paiva et al., 2013).
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TABLE 4 Scenarios for assessing the susceptibility to prolonged submergence for rice plants in the Kilombero floodplain with selected physiological
traits of rice plants: Mature growth height and temporal tolerance to submergence.

Rice scenario Rice variety Mature growth height (approx.) Submergence tolerance
Scenario 1 Saro 5 100 cm 7 days

Scenario 2 Saro 5 100 cm 14 days

Scenario 3 Saro 5 100 cm 21 days

Scenario 4 Supa India 130 cm 7 days

Scenario 5 Supa India 130 cm 14 days

Scenario 6 Supa India 130 cm 21 days

2.4 Assessment of the susceptibility of rice
crops to prolonged submergence

Floods and prolonged crop submergence are the main physical
stressors and causes of yield gaps in lowland rice farming in the
Kilombero floodplain (Kwesiga et al., 2020; Michael et al., 2023a).
To assess the susceptibility of rice crops to prolonged submergence,
we integrated the hydrodynamic model results from scenarios
A-F and the baseline scenario with selected physiological traits
of rice plants, including plant height and temporal tolerance to
submergence.

Farmers typically encounter floods mainly in March, April, and
May, when plants have usually matured (Michael et al., 2023a).
Therefore, we assumed mature rice plants for the analysis. The
growth height of mature rice plants in the Kilombero floodplain
varies with rice variety, site, management practices and other
variables (Kitilu et al., 2019). In this study, we adopted the rice plant
height values reported by Kitilu et al. (2019), which were measured
in field experiments conducted on two different sites near Ifakara
and thus reflect natural plant height variability. We chose the tallest-
growing local variety, Supa India (approximately 130 cm), and
Saro 5, a relatively short-growing (approximately 100 cm) modified,
high-yielding variety (Kitilu et al., 2019; Michael et al., 2023a).
Varieties without specific tolerance traits cannot survive more than
a week of complete submergence (Xu et al., 2006). Submergence-
or flood-tolerant rice varieties (e.g., with the Subl gene) can
survive fully submerged for 10-14 days and resume growth after
the water recedes (Xu et al.,, 2006; Singh et al., 2017). Examples
of highly tolerant varieties can survive complete submergence for
up to 21 days (Panda et al, 2021). These values are based on
experimental observations and therefore represent approximate
ranges that are subject to field variability. Based on the gathered
information, we developed six scenarios with different combinations
of mature growth height and submergence tolerance to compare
these exemplified plant requirements with the hydrodynamic model
results (see Table 4).

To quantify the susceptibility of rice crops to prolonged
submergence under global change scenarios, we applied a rolling
window algorithm to the flood depth per pixel over time output
from the hydrodynamic model (scenarios A-F and baseline), using
the parameter combinations in the rice scenarios (scenarios 1-6).
For each pixel, the algorithm checks whether there exists any stretch
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of y consecutive days where the depth exceeds x. This way, the
algorithm returns a binary susceptibility map of the floodplain for
each combined scenario, indicating areas where rice plants would be
susceptible (1) to prolonged submergence or not (0). This resulted in
42 susceptibility scenario maps (seven flood scenarios multiplied by
six rice scenarios).

To examine the relative influence of each input variable
(Discharge and LULCC in the hydrodynamic model; rice growth
height and rice submergence tolerance as rice plant variables) on the
size of the area susceptible to prolonged rice crop submergence, we
derived Feature Importance with an RF regression model. Feature
Importance analysis is a technique used in machine learning and
data analysis to identify and quantify the influence of individual
features (variables) on the output of a model (Cappelli and Grimaldi,
2023). For this purpose, the dataset was split into training and testing
sets and trained using the scikit-learn machine learning library
in Python. R? and Root Mean Squared Error (RMSE) served as
performance metric for model fit. To ensure robust validation, we
used 5-fold cross-validation and reported the mean R? and RMSE
across folds. Feature Importance scores were extracted from the
trained model to identify which features contribute the most to the
size of the susceptible area.

3 Results

3.1 Hydrodynamic model validation and
sensitivity analysis

Model validation was conducted using a contingency table, in
which the modelled and satellite-based observed maximum flood
extents were compared. Since areas with clouds and scan line gaps
were masked from the satellite data, a coverage of 43.5% of the
model domain remained. The modelled 2014 maximum flood extent
matched the observed maximum flood extent of the same year,
with an Overall Accuracy of 91.82% and Probability of Detection
of 90.33%. Slight overestimations are visible at elevated areas in
the centre of the floodplain, underestimations towards the northern
edges of the flooded area. The False Alarm Ratio is 6.64% and
the Critical Success Index is 84.88% (see Figure 3; Table 5). The
sensitivity analysis revealed that the discharge input at the upper
boundary has a significant impact on both the flood depth at the
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FIGURE 3
Validation of the hydrodynamic model by comparing observed and
modelled max. flood extent of the 2014 flood. True Positives indicate
areas correctly modelled as flooded; False Positives are overestimated
flooded areas; False Negatives are underestimated flooded areas; and
True Negatives are correctly identified as dry.

TABLE 5 Contigency table comparing the modelled and observed
maximum flood extent in 2014 in the Kilombero floodplain. Yes and no
indicate if a pixel was flooded in the respective dataset. Numbers
indicate the number of pixels that are either True Positive (TP), False
Negative (FN), False Positive (FP), or True Negative (TN).

Observed
\[o)
Yes TP: 193125 FP: 13725
Modelled
No FN: 20675 TN: 192928

central floodplain cross-section and discharge at the lower model
boundary (see Figure 4). Changing the computational mesh cell size
had no effect on the discharge at the lower boundary of the model,
but did affect the flood depth in the rising and falling limbs of the
depth hydrograph. Reducing the cell size led to a flattening of the
depth hydrograph, while increasing the cell size led to a steeper
hydrograph. Additionally, decreasing cell size negatively affected
stability and computation time (e.g., reducing the cell size by —50%
increased the computation time by ca. 452%). Perturbing Manning’s
n roughness coefficient minimally affected discharge at the lower
boundary but significantly influenced flood depth. Substantial
changes in the discharge hydrograph at the lower boundary start
to become more visible with a change in Manning’s n of +100%.
Slope at the lower boundary condition and computational timestep
showed negligible sensitivity. However, reducing the timestep by
50% increased computation time by ca. 300%.
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3.2 Flood dynamics in the Kilombero
floodplain

With the hydrodynamic model, we simulated spatiotemporal
dynamics of the seasonal flood in the Kilombero floodplain under
combined climate change and LULCC scenarios (2050-2060) and
under baseline conditions (1958-2005) (see Table 1). The primary
output variables of the HEC-RAS 2D model employed in this study
are the maximum flood depth per pixel, flood depth per pixel
over time, and flood extent over time. Analysis of maximum flood
depth per pixel in the study area revealed that RCP 8.5 scenarios
(A, C, E) yielded higher maximum flood depths compared to the
baseline and the RCP 4.5 scenarios (B, D, F) (see Figure 5). The
effect of LULCC is evident in the increase in maximum flood depth
per pixel from LULCC Conservation to LULCC BAU to LULCC
Extreme. The increase is most pronounced in scenarios with LULCC
Extreme input signal (A and B). Scenario A shows an increase of
23.1% compared to baseline, whereas scenarios C and E show an
increase of 8.8% and 6.6% respectively. Remarkably, the effect of the
LULCC signal in scenario B (LULCC Extreme) leads to an increase
of maximum flood depth compared to baseline condition (4.4%). In
contrast, scenarios D and F (both with an RCP 4.5 input signal) show
decreases of —5.5% and —6.6%, respectively.

Flood extent over time showed a similar dynamic to the
maximum flood depth per pixel. Scenarios A, C, and E with RCP
8.5 input signal and scenario B with RCP 4.5 and LULCC Extreme
input signals show an increase in peak flood extent compared to
baseline conditions (see Figure 6). Unlike scenario B (RCP 4.5 and
LULCC Extreme), where only the peak flood extent exceeds the
baseline, RCP 8.5 scenarios show larger flood extents already during
the rising limb of the flood. Scenarios D and F show a smaller
flood extent compared to the baseline scenario at all times of the
simulation. It is noticeable that the peak flood extent of RCP 8.5
scenarios occurs around day 167, whereas the peak of RCP 4.5
scenarios and the baseline scenario occur around day 187 of the
simulation. This corresponds to a peak flood extent in mid- April for
RCP 8.5 scenarios, and in early May for RCP 4.5 scenarios and the
baseline scenario.

3.3 Susceptibility of rice crops to
prolonged submergence in the Kilombero
floodplain

Finally, we integrated the hydrodynamic model output with
selected physiological traits of rice plants to assess their susceptibility
to prolonged submergence. Overall, flood scenarios with wetter
climate and more extensive LULCC towards rice cultivation in the
floodplain and rice scenarios with short-growing varieties result in
larger areas susceptible to prolonged rice crop submergence. The
size of the areas decreases with a drier climate input signal and
less land use change towards rice cultivation in the flood scenarios,
as well as taller varieties in the rice scenarios (see Figure 7). The
riparian zone (areas proximal to the Kilombero River) is susceptible
to prolonged rice crop submergence in all scenarios. In contrast,
the fringe zone (areas distal from the Kilombero River) and middle
zone become increasingly susceptible as the scenario becomes more
extreme (see Figure 7).
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Boxplot of maximum flood depth per pixel for scenarios (A-F). The red
dashed line represents the baseline scenario median. (A) = RCP 8.5,
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BAU; (E) = RCP 8.5, Conservation; (F) = RCP 4.5, Conservation.
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A comparison of baseline scenarios (Basel-Base6) with future
scenarios (A1-F6) reveals that RCP 8.5 climate inputs generally
result in an increase in the area susceptible to prolonged rice crop
submergence compared to baseline conditions in most scenario
combinations (see Figure 8). Only when short rice varieties (100 cm)
are used in the baseline and tall varieties (130 cm) are used in RCP
8.5 scenarios, a decrease in susceptibility can be observed. However,
the combination of RCP 8.5 with LULCC Extreme consistently
results in increased susceptibility to submergence.

Overall, the influence of LULCC follows a clear pattern:
susceptibility increases from LULCC Conservation to LULCC BAU
and is highest under LULCC Extreme. Scenarios with RCP 4.5
and LULCC Extreme inputs (B-scenarios) also show increased
susceptibility compared to baseline conditions in most cases. For B-
scenarios, a decrease is only observed when comparing short-variety
baseline scenarios with tall-variety future scenarios.

Other RCP 4.5-based scenarios (D and F) tend to show reduced
susceptibility when rice varieties are either short-growing in both the
baseline and future scenarios, tall-growing in both, or short-growing
in the baseline and tall-growing in the future scenarios.

In contrast, future scenarios with RCP 4.5 combined with short-
growing rice varieties, when compared to baseline scenarios with
tall varieties, always result in increased submergence susceptibility.
Generally, any comparison in which the baseline scenario uses tall
varieties and the future scenario uses short ones shows an increase
in susceptible area.

A comparison between scenarios with an RCP 4.5 input signal
(B, D, F) in combination with short rice varieties (1-3) and
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Flood extent over time in the Kilombero floodplain near Ifakara for each flood scenario.

baseline scenarios in combination with tall rice varieties (4-6)
consistently shows an increase in area susceptible to prolonged crop
submergence. Generally, when comparing baseline scenarios with
tall rice varieties to future scenarios with short rice varieties, there is
always an increase in the susceptible area.

The analysis reveals that the size of the area susceptible to
prolonged rice crop submergence is influenced to varying degrees
by different input parameters. The Feature Importance results from
the RF regression model (R? = 0.939, RMSE = 3.907) indicate
that rice growth height is the dominant factor in controlling
the susceptibility of rice crops to submergence in the Kilombero
floodplain (see Figure 9). Discharge, which includes the climate
change input signal in the hydrodynamic model, is the second most
important predictor of future rice crop submergence susceptibility
in the study area. The importance of LULCC falls off substantially
compared to rice growth height and discharge. Submergence
tolerance shows negligible influence.

4 Discussion

4.1 Modelling flood dynamics in the
Kilombero floodplain using HEC-RAS 2D

This study examines potential future developments of seasonal
flood dynamics in the Kilombero floodplain under various land use
and climate change scenarios, in comparison to baseline conditions.
We developed and validated an overall well-performing HEC-RAS
2D hydrodynamic model of the Kilombero floodplain near Ifakara,
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effectively connecting catchment-scale hydrological modelling
with floodplain-scale flood dynamics. Coupling hydrological and
hydrodynamic modelling proved to be an efficient way to handle
data scarcity regarding gauged discharge data and to enable
simulations of possible future developments in the study area. This
finding is consistent with studies in data-scarce regions in Africa
that use a similar approach (Kleynhans et al., 2007; Chomba et al.,
2021). Ultimately, coupled hydrological-hydrodynamic models
can improve decision-making and planning for adaptation and
mitigation measures in African floodplains (Chomba et al., 2021).

Still, the lack of measured discharge and water level data
in the data-scarce Kilombero Valley hindered a more accurate
validation of the model outputs, especially when considering
temporally variable model outputs. In the satellite data, artefacts
introduced through clouds and cloud shadows, as well as the Landsat
7 scan line corrector failure posed a challenge to quantitative
validation (Storey et al., 2005). Nevertheless, the coverage with
valid data was highest in the flood-affected areas of the floodplain,
whereas significant gaps were primarily located in areas unlikely to
experience flooding. The revisit times of 16 days of both satellites
need to be considered as a factor of uncertainty in terms of the exact
timing of maximum flooding. A delay between the satellite image
acquisition of the assumed maximum flood extent and the modelled
maximum extent limits the accuracy (Afzal et al., 2022).

Overall, discharge input and Manning’s n roughness coefficient,
linked to LULCC input, emerged as the primary sources of model
uncertainty due to their high sensitivity, which is in line with the
literature (Alipour et al., 2022). Therefore, hydrological and surface
roughness input values must be carefully selected. As the discharge
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Absolute change in susceptible area size: Future vs. Baseline Scenarios. Numbers in cells indicate absolute change (km?) between baseline scenarios
(bottom) and future scenarios (left). Each future flood scenario (A-F), climate change and LULCC input signals in brackets) was combined with each of
the rice scenarios (1-6, maximum growth height and temporal tolerance to submergence in brackets). The baseline flood scenario (EM = Ensemble
Mean, 1958-2005 period, 1994 LULC) was combined with rice scenarios 1-6 to facilitate cross-comparison.

data was derived from the hydrological SWAT model, it can be
assumed that uncertainties already inherent to the SWAT model
were propagated to the hydrodynamic model outputs. Although
the SWAT model performed well in the Kilombero catchment
(NSE = 0.80-085, KGE = 0.89-0.93), its calibration and validation
indicated that the predicted flows (95% prediction uncertainty band)
encompassed 62%-67% of observed flows, with a relative width
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(R-factor) of 0.45-0.56 (Nischen et al., 2018). This indicates that
simulated discharges may vary within this range due to parameter
and input data uncertainties, which, in turn, propagate through the
HEC-RAS model. We addressed uncertainties introduced by input
data by adopting a scenario-based approach that covers increasing
(RCP 8.5 with wettest available GCM-RCM combination) and
decreasing (RCP 4.5 with driest available GCM-RCM combination)

frontiersin.org


https://doi.org/10.3389/feart.2025.1672749
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Tuschen et al.

R?=0.939
o 24 RMSE = 3.907
o
c
03+
o
Q.
E 021
()
—_
=2
© 0.1
[}
L
0.0 1
&
&
& <
év\Q’ (Qe' O <0
N @ O &
& o N S
© Q N
© 6\@
N
)
FIGURE 9
Feature Importance (mean decrease in impurity) of susceptibility input
parameters calculated with RF regression model. Growth height refers
to the mature growth height of rice plants. Discharge is the discharge
hydrograph input in the hydrodynamic model, which includes the
climate change signal. LULCC is the Land Use and Land Cover Change
input (surface roughness) in the hydrodynamic model. Submergence
tolerance refers to the temporal tolerance of rice plants to
submergence.

annual precipitation amounts in the catchment (Nischen et al,
2019b). However, the results should be interpreted with awareness
that these uncertainties affect the magnitude and timing of simulated
flood peaks and flood extents.

While our scenario-based approach captures potential long-
term trends in flood dynamics under RCP 4.5 and RCP 8.5, it
should be noted that these deterministic pathways mainly represent
mean climatic responses to radiative forcing and do not explicitly
account for climate variability. Recent studies have shown that both
increases and decreases in flood magnitude and frequency can be
attributed to uncertainty introduced by climatic variability rather
than directional change (Gao et al.,, 2020; Faghih and Brissette,
2023). Consequently, the RCP-based projections applied in this
study represent two plausible trajectories within a wider spectrum of
potential futures. Incorporating stochastic (Jafarzadegan et al., 2021)
or ensemble-based (Callaghan and Hughes, 2022) frameworks in
future work could therefore complement our deterministic scenarios
by explicitly addressing the variability component of flood behaviour
in the Kilombero floodplain.

Research indicates that rice cropping will increase in the
Kilombero floodplain and move closer to the river due to
increasing competition for arable land and water resources
(Nindi et al, 2014; Leemhuis et al., 2017; Daconto et al,
2018; Hollermann et al., 2021; 2021). This
development was addressed by implementing three LULCC

Proswitz et al.,

scenarios (Extreme, BAU, Conservation), which project conversion
from natural vegetation to rice cropland on different levels
of extensiveness in the hydrodynamic model. This approach
enabled the quantification of the effects of possible future LULCC
scenarios on flood characteristics in the study area. The procedure
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and outcome are also consistent with the existing literature
(Zia et al., 2016; Jayapadma et al., 2022).

Notably, discharge at the lower boundary of the HEC-RAS 2D
model does not change substantially when perturbing Manning’s n
in the sensitivity analysis. Still, it did affect flood depths within the
floodplain. Changes in the timing and magnitude of the hydrograph
become more visible with a 100% increase from base values. This
behaviour could be caused by the size and low inclination of
the floodplain as well as the characteristics of the hydrograph.
Together, these characteristics lead to a long-lasting, shallow and
extensive flooding of the floodplain, in which the effects of surface
roughness are less pronounced. The limited influence of floodplain
roughness on hydrograph propagation and downstream discharge
in the HEC-RAS 2D model is consistent with previous findings.
(Liu et al., 2019). Further uncertainty might be introduced by the
resolution of the underlying DEM. However, a corrected DEM
with a spatial resolution of 30 m can be considered sufficient
for floodplain-scale hydrodynamic modelling, as demonstrated in
previous studies (Arash and Yasi, 2023).

The results from the HEC-RAS 2D hydrodynamic model
show that the climate change signal (in the discharge data) is
the dominant driver of future flood dynamics in the Kilombero
floodplain. The overall trend-decrease or increase in maximum
flood depth and extent compared to baseline conditions—can be
attributed to the climate change input signal. The results reflect
the underlying hydrographs and climate change scenarios, which
predict wetter conditions and an earlier peak discharge under the
high-emission scenario RCP 8.5, and drier conditions under the
moderate-emission scenario RCP 4.5, compared to the baseline
scenario. These hydrographs were derived from the catchment-
scale SWAT simulations by Naschen et al. (2019a), enabling us
to translate catchment-scale hydrological projections into detailed
floodplain-scale hydrodynamics and thereby link large-scale climate
and LULCC impacts to local flooding processes. Contextualising
these findings with similar studies in East Africa proves difficult,
as the impacts of climate change are projected to be considerably
heterogeneous across East Africa (Choi et al., 2022).

However, the overall trend in the results is broken by scenario
B, where an RCP 4.5 climate change signal is combined with a
LULCC Extreme input signal. In this scenario, discharge is lower
than in the baseline, but maximum flood depths and extent are
higher. The LULCC Extreme input signal stands out in particular
because it shows a disproportionate change in land use towards rice
in the floodplain compared to the other two LULCC input signals.
LULCC Extreme shows 55.3% of land use in the model domain
as rice, while LULCC BAU has 37.4% and LULCC Conservation
has 29.3% rice land use (Table3). With the applied set of
Manning’s n roughness coefficients, LULCC towards rice cultivation
leads to increased floodplain roughness because monoculture
rice plantations have a higher roughness coeflicient (0.083) than
grassland (0.035), which would be the natural vegetation. In turn,
this leads to more extensive and deeper floods due to backwater
effects (Kiss et al., 2019). In general, translating LULC data into
surface roughness coefficients is considered a source of uncertainty
in hydrodynamic modelling. Uncertainty can be introduced, for
example, by seasonal variations in vegetation growth (e.g., rice
growth stage) that are complex to reproduce (Gabriel, 2009; Ji,
2017) and model insensitivity to changes in surface roughness
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(Liu et al,, 2019). Potential feedback on the hydrodynamic model
behaviour from different rice plant sizes, which are considered in
the second step of our analysis, is also not taken into account.
Simplifications further limit the HEC-RAS 2D model used in this
study, as infiltration is not represented in the model. However,
infiltration can be neglected as the floodplain is already saturated
with rainwater and groundwater inflow from the mountains
before overbank flow occurs. Consequently, floodwater infiltration
does not significantly contribute to groundwater recharge in the
Kilombero floodplain (Burghof et al., 2018).

4.2 Impact of global change on rice
submergence susceptibility and
implications for rice cultivation in the
Kilombero floodplain

This study investigated the occurrence of prolonged rice crop
submergence in the Kilombero floodplain under both historical
and future climate and land use conditions. By integrating climate
change and LULCC scenarios as well as physiological traits of rice
plants in our analysis, we were able to assess spatial susceptibility
patterns and derive practical implications for rice cultivation in the
Kilombero floodplain. Our results demonstrate that high-emission
RCP 8.5 scenarios result in larger areas susceptible to prolonged
submergence of rice crops in the Kilombero floodplain compared
to baseline and moderate-emission RCP 4.5 scenarios in most
cases, regardless of LULCC scenario. This can be attributed to
higher peak discharges and a more pronounced seasonal flood
in RCP 8.5 scenarios. The results confirm findings from existing
literature, suggesting that higher flood magnitudes increase the
susceptibility to rice crop submergence in the Kilombero floodplain
(Kwesiga et al., 2020; Groteliischen, 2021). However, this study adds
that LULCC and agricultural management decisions, such as rice
variety selection (mature growth height and temporal tolerance
to submergence), also control susceptibility to crop submergence.
Hydrological conditions and flood characteristics are key drivers
of the susceptibility of rice crops to prolonged submergence in the
Kilombero floodplain. These flood characteristics are further shaped
by land use in the floodplain. Recent studies in the Kilombero
Valley have documented extensive conversion of grassland, savanna,
and open woodland into agricultural land, particularly rice fields,
and a progressive expansion of cultivation toward the main river
channel and its tributaries (Thonfeld et al., 2020a; Thonfeld et al.,
2020b). This spatial shift has effectively reduced the distance between
anthropogenic land use and flood zones, thereby increasing the
exposure of agricultural areas to flooding. Similar patterns of human
encroachment toward rivers have been observed in Africa over
recent decades, contributing to higher flood risk through intensified
land use pressure in floodplains (Wang et al., 2023). In RCP 8.5
scenarios, land use policy could only control the rate of increase
in submergence susceptibility, but it cannot prevent it. In contrast,
scenarios with an RCP 4.5 input signal offer potential for mitigating
risk, particularly under LULCC Conservation and LULCC BAU
conditions. Well-enforced floodplain protection against land use
change, particularly towards increased rice cultivation, can therefore
be seen as an adaptation measure to climate change, especially
under a moderate-emission climate change scenario, such as RCP
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4.5. On the other hand, extensive land use change (LULCC
Extreme) towards rice cultivation can increase risks for rice
cultivation in the floodplain compared to LULCC BAU, LULCC
Conservation, and baseline conditions, even in RCP 4.5 scenarios,
as higher surface roughness leads to an increase in the depth and
extent of the seasonal flood. Strengthening the enforcement of
existing protection frameworks, such as the Ramsar Convention,
is therefore critical for sustaining the ecological and agricultural
functions of the Kilombero floodplain. Thonfeld et al. (2020a)
demonstrated that almost half of the Kilombero Ramsar site is
already under anthropogenic land use and that two-thirds of the land
environmentally suitable for future expansion lies within protected
areas. These findings underline that formal designation alone is
insufficient. Effective management and enforcement are needed
to balance agricultural development with wetland conservation.
Moreover, effective floodplain management should also consider
areas outside the current protection zones that are susceptible
to future land conversion but are essential to maintaining the
floodplains hydrological and ecological integrity.

In terms of rice plant traits, taller plants with greater
submergence tolerance can generally be associated with smaller
areas susceptible to prolonged rice crop submergence than shorter
plants with lower submergence tolerance. In fact, plant height
emerged as the dominant factor in controlling crop submergence
susceptibility in the Feature Importance analysis. Simulation
results show that using taller plants (130 cm) instead of shorter
plants (100 cm) can reduce the area susceptible to prolonged crop
submergence in the Kilombero floodplain by ca. 19.7% on average.
This underlines the necessity of considering rice plant height when
selecting flood-resilient rice varieties for the floodplain. Moreover,
taller local varieties, such as Supa India (130 cm), appear better
suited to mitigate the effects of more pronounced flood events,
especially under high-emission scenario RCP 8.5. Conversely,
shorter, high-yielding varieties, such as Saro 5 (100 cm), which is
already partially cultivated in the Kilombero floodplain, appear less
adapted from this perspective. Currently, local farmers in flood-
prone riparian zones already favour taller varieties, suggesting
an existing adaptation strategy that aligns with our findings
(Michael et al., 2023a). However, it is worth noting that these
traditional, taller varieties tend to produce lower yields compared to
improved, shorter cultivars, such as Saro 5 (Michael et al., 2023a).
Especially in the transition zone between the riparian zone and the
fringe of the floodplain, where fields are not flooded every year due
to interannual variability (Michael et al., 2023Db), the selection of rice
varieties currently is a trade-off between flood resilience and yield.

Temporal submergence tolerance of rice plants played a minor
role in our analysis, as susceptibility was defined jointly by depth and
duration thresholds. As flood duration is strongly correlated with
flood depth, pixels experiencing deeper flooding also tend to remain
flooded for longer periods. Consequently, plant height, which
determines the depth threshold for complete submergence, was
identified as the dominant factor in the Feature Importance analysis.
However, other factors, such as floodwater quality, also affect
rice submergence tolerance but were not considered in this study
(Oladosu et al., 2020). Furthermore, an assessment of susceptibility
to prolonged submergence in the submergence-sensitive early
reproductive growth stage of rice plants was not considered and
should be the subject of further research (Kwesiga et al., 2020).
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The interannually varying onset and magnitude of floods still
pose a challenge for establishing planting times and crop selection
(Michael et al., 2023a; Michael et al., 2023b). Strategies of farmers
to mitigate risks due to interannual flood variability include careful
observation of weather patterns at the onset of the rainy season to
inform cropping calendars and crop selection (Hollermann et al.,
2021), as well as transplanting or seeding during the rainy season
to maximise the use of available water. Nevertheless, transplanting
or seeding during the rainy season comes with the risk of crop
loss due to submergence (Kirimi et al., 2018). Our results provide
practical guidance for policymakers and agricultural practitioners
in the Kilombero floodplain by linking the impacts of climate and
land use change on flood dynamics and agricultural management
decisions.

In perspective, such a model could support adaptive planning by
forecasting likely spatio-temporal flood conditions in the floodplain
based on observed rainfall at the onset of the rainy season.
This scenario-based approach could inform optimal rice variety
selection, planting locations, and cropping calendars, particularly
in the transition zone between the riparian zone and the fringe of
the floodplain. Future research could extend the approach to long-
term simulations that explicitly account for interannual variability.
Coupling hydrodynamic flood modelling with crop-growth models
would enable a more comprehensive assessment of the impacts
of climate variability on rice cultivation and resilience in the
Kilombero floodplain. Overall, we presented a novel approach to
assess the susceptibility of rice crops to prolonged submergence
in the Kilombero floodplain. East African floodplain wetlands
are considered vital for the region’s food security (Sakané et al.,
2011; Behn et al, 2018; Gabiri et al., 2018). Our approach can
contribute to a better understanding and management of human-
flood interactions in terms of climate and land use change, as well
as the risk and chance of specific rice cultivation techniques in East
African floodplain wetlands.

5 Conclusion

This study presents a novel scenario-based approach to assessing
the susceptibility of rice crops to prolonged submergence in the
Kilombero floodplain under combined climate change and Land
Use and Land Cover Change scenarios. By coupling hydrological
and hydrodynamic modelling with physiological traits of rice
plants, we identified spatial patterns of susceptibility to prolonged
submergence and their primary drivers.

The study shows that climate change is a large-scale driver of
flood magnitudes and prolonged crop submergence that determines
the broader boundary conditions for flood risk and agricultural
planning in the Kilombero floodplain but cannot be directly
managed at the local level. In contrast, local management decisions,
such as land use planning, enforcement of floodplain protection
(e.g., Ramsar site), and the selection of suitable rice varieties, offer
levers for adaptation. Especially the use of taller, submergence-
tolerant rice varieties and the restriction of further agricultural
expansion into active flood zones could substantially reduce the area
of rice crops susceptible to prolonged submergence.

Future research should include in situ discharge gauging
campaigns or ground-truthing of the spatiotemporal characteristics
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of floods in the Kilombero floodplain to aid model calibration
and validation. Furthermore, the possibilities of the coupled
hydrological-hydrodynamic model for flood forecasting should be
further explored to enhance cropping calendars and rice variety
selection.

The findings of this study underline the value of integrating
coupled hydrological-hydrodynamic modelling with  crop
characteristics to support adaptive agricultural planning. The
developed approach can provide practical guidance for managing
human-flood interactions and optimising rice cultivation in East
African wetlands. It supports informed decision-making on crop

variety selection for resilient agriculture in the face of global change.
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