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Snow depth (SD) estimations are very valuable in particular for snow-
hydrological modelling, water resource management, ecological studies, 
and natural hazard assessment such as avalanche forecasting. In statistical 
SD models, snow-covered area is often used as a source of information. 
This study explores whether including additional snow cover geometrical 
descriptors, i.e., the second and third Minkowski functionals: total perimeter 
(MF2) and Euler-Poincaré characteristic (MF3), improves SD estimation. We 
performed two different SD simulation setups employing a Random Forest 
regression framework in the Tuolumne River Basin, California, U.S., at a 500 m 
resolution. We used the high-resolution remote sensing-derived SD maps of 
the multi-year Airborne Snow Observatory (ASO) dataset (2013–2016) at a 3 m 
spatial resolution for model development regarding the geometrical descriptors 
and evaluation regarding SD. In the baseline setup (BL-MF1), we trained the 
model with fractional snow-covered area, being the first Minkowski functional 
(MF1), topographic, and geographic variables. In the enhanced setup (EN-
MF123), we also applied MF2 and MF3. Model performance, assessed by using R2, 
RMSE, MAE and MBE was compared between the enhanced model run including 
MF2 and MF3 and the baseline simulation. Results show that adding MF2 and 
MF3 (R2 = 0.87, RMSE = 0.17 cm, MAE = 0.10, MBE = 0.00) consistently improves 
model accuracy across diverse snow conditions and topographies compared to 
the baseline (R2 = 0.85, RMSE = 0.19 cm, MAE = 0.11, MBE = 0.00), however, 
with both variants performing in general well. The inclusion of the additional 
descriptors was beneficial in late-season melt conditions and fragmented snow 
cover areas, as the spatial structure captured by the geometrical descriptors 
improved prediction accuracy and reducing overestimation errors. However, the 
largest improvements were observed in deep, homogeneous snow cover areas 
where traditional predictors showed less variability. The methodology shows 
potential for enhancing snow-hydrological and avalanche risk models, with 
future work exploring its scalability across different mountain environments and 
spatial resolutions including different remote sensing products, and applicability 
to snow water equivalent estimation.
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1 Introduction

Seasonal snow can cover up to approximately one-third of 
the Earth’s land surface, making it one of the most temporary 
yet crucial natural water reservoirs (Dayal et al., 2023). It is an 
established fact that the meltwater from this region plays a vital role 
in sustaining forelands and large river systems (Castellazzi et al., 
2019; Nienow et al., 2017; Flett et al., 2017). This, in turn, 
provides support for the livelihoods of billions of people worldwide 
(Viviroli et al., 2007). Snow-covered area (SCA), snow depth (SD), 
and snow water equivalent (SWE) are considered essential climate 
variables and serve as key indicators for climatology, hydrology, 
and ecology. The use of long-term records is essential for the 
identification of trends, particularly important within mountainous 
regions (Safavi et al., 2017). It is evident that alterations in snow 
cover properties and shifts in precipitation seasonality significantly 
affect runoff timing, ecosystem dynamics, and avalanche risk 
(Lebiedzinski and Fürst, 2018; Callaghan et al., 2011). In recent 
decades, both the extent and the duration of snow cover in mountain 
regions have been subject to a general decline, with significant 
regional variations (Hock et al., 2019; Thackeray et al., 2019; 
Notarnicola, 2020). Combined with ongoing glacier retreat, these 
changes are expected to substantially impact mountain hydrology 
and water security in the coming decades (Kuttippurath et al., 2024; 
Deng et al., 2019; Huss et al., 2017).

In response to these challenges, consistent and spatially 
extensive snow monitoring has become necessary (Gascoin et al., 
2024; Tsai et al., 2019). The field of operational satellite remote 
sensing has witnessed considerable advancements in this respect, 
offering a range of products with high temporal resolution and 
global coverage. These products, including binary and fractional 
SCA, have been available for over 2 decades, largely facilitated by 
the MODIS (Hall et al., 2002) and the subsequent VIIRS. More 
recently, high-resolution datasets from the Landsat and Sentinel-
2 missions have become freely accessible (Gascoin et al., 2019), 
albeit with lower temporal frequency than MODIS. The use of 
satellite-based observations in the context of large-scale snow 
monitoring has been demonstrated to be of considerable importance 
(Helbig et al., 2021; Dong, 2018).

However, in contrast to SCA, freely available satellite-derived 
SD and SWE products remain scarce, particularly in mountainous 
regions and at high spatial and temporal resolutions (Gascoin et al., 
2024). Consequently, there is an increasing demand for precise 
SD data (Deschamps-Berger et al., 2020; Lievens et al., 2019; 
Painter et al., 2016), particularly to support hydrological modelling 
and water resource management, but also for other purposes, e.g., to 
support avalanche forecasting (Richter et al., 2021) and ecosystem 
monitoring (Pauli et al., 2013; Revuelto et al., 2022). Numerous 
studies have sought to estimate SD and SWE indirectly through a 
combination of terrestrial and remote observations, such as those 
obtained from drones, satellites, and aircraft (McGrath et al., 2022; 
Jenssen and Jacobsen et al., 2021). These observations have been 
integrated through photogrammetry, radar, or LiDAR methods, and 
those datasets are frequently utilized in conjunction with physically 
based or empirical snowpack models and data assimilation 
techniques (Alonso-Gonzàlez et al., 2022; Girotto et al., 2024).

In light of the persistent lack of spatially distributed SD data 
with fine temporal and spatial resolution in many mountainous 

areas, especially during snowmelt, statistical and machine learning 
approaches have emerged as practical alternatives to physically-
based models, which require high-quality meteorological input 
that is often unavailable. Earth Observation data combined 
with machine learning techniques has shown great potential in 
supporting large-scale and continuous SD and SWE monitoring 
(Persello et al., 2022). Deep learning models (e.g., convolutional and 
recurrent neural networks) have proven to be useful in complex 
image-based hydrological data, although their accuracy remains 
constrained by the spatial resolution of input data in topographically 
heterogeneous alpine environments (Elyoussfi et al., 2025; Anderson 
and Radić, 2022; Lu et al., 2022). A significant advancement 
was proposed by Daudt et al. (2023), who developed a recurrent 
convolutional neural network that integrates multispectral optical, 
SAR, and elevation data for high-resolution SD estimation across 
Switzerland. Other approaches, such as those by Wang et al. 
(2022) using deep belief networks and Xing et al. (2022) 
combining CNNs with residual blocks for the Qinghai-Tibet 
Plateau, further demonstrate the potential of these methods. 
Among the various input variables explored, SCA is the most 
commonly used predictor for estimating SD and SWE, and 
although challenges remain, current research increasingly aims 
to develop robust models based on SCA and other satellite 
observations.

Despite these methodological advances, one important aspect 
remains largely unexplored in current SD and SWE estimation 
models: the geometric structure of snow cover patterns. While 
several studies have highlighted the influence of topographic 
variables such as slope, elevation, and SD in hydrological processes 
(Grünewald et al., 2013), few have focused specifically on the 
geometric structure of snow cover distribution. Early work by 
Blöschl et al. (1991) demonstrated that snow cover patterns are 
shaped by both topography and meteorological conditions, and 
that hydrological processes, such as snowmelt, directly reflect 
these influences. Their findings indicated that, despite spatial 
complexity, the fundamental structure of snow cover patterns 
tend to persist throughout the melt season due to topographic 
controls. Snow accumulation and melt processes are highly 
variable across both spatial and temporal scales and are influenced 
by wind redistribution, gravitational effects, and inter-annual 
climate variability (Winstral et al., 2013; Clark et al., 2011). In 
this context, the final spatial distribution of snow at the end 
of the accumulation season plays a critical role in determining 
hydrological responses in alpine basins (Freudiger et al., 
2017; Liston, 2004), as heterogeneity in SD, combined with 
meteorological forcings, drives asynchronous melt patterns, faster 
runoff from shallow areas, and prolonged melt in deeper zones 
(Brauchli et al., 2017). Ferrarin et al. (2023) introduced the use 
of geometrical descriptors, i.e., Minkowski Functionals (MF) and 
average chord length distributions, to characterize snow cover 
patterns in the Zugspitze catchment (Germany), linking geometric 
features of snow cover to topography and seasonal dynamics. Their 
results suggest that incorporating such geometrical descriptors 
alongside in situ observations or modelling frameworks could 
improve spatial SWE estimation in high-alpine environments. These 
findings suggest that adding geometrical descriptors to the existing 
set of predictors (with SCA being the most widely used) could 
enhance current semi-empirical and machine learning models, 
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which frequently rely predominantly on fractional snow-covered 
area as an input.

To address this gap, in this study we investigate the impact 
of incorporating two specific snow cover geometrical descriptors 
(describing features of the topological structure of snow cover 
patterns) into predictive, statistically-based models for estimating 
SD in mountainous terrain. Specifically, we examine whether 
including the second and third MF, respectively the total 
perimeter of snow cover boundaries (MF2) and the Euler-Poincaré 
characteristic (MF3), improves model accuracy. The research 
utilizes high-resolution remote sensing-derived SD and thereof 
derived snow cover maps. A predictive model setup for SD based 
solely on fractional snow-covered area (i.e., MF1), topographic 
conditions, and seasonal information is compared as a baseline 
with a model setup that also integrates geometrical descriptors MF2 
and MF3. The study aims to determine whether these additional 
descriptors enhance SD estimation accuracy and to identify 
the conditions under which their inclusion is most beneficial. 
Furthermore, we explore the key drivers of these conditions, such 
as seasonality, snow accumulation, and topographic influences, 
to better understand the role of snow cover geometric features in 
SD predictive modelling and give an outlook of potential future 
next steps. 

2 Methods and data

2.1 Study area

The Tuolumne River Basin (Figure 1), located in California’s 
Sierra Nevada within Yosemite National Park, is a crucial water 
source for the San Francisco Bay Area in the U.S. (Painter et al., 
2016). Covering ca. 1,180 km2 with elevations ranging from 1,150 
to 3,999 m (Hedrick et al., 2018), it lies upstream of the Hetch 
Hetchy Reservoir, which supplies drinking water and hydropower 
to nearly three million residents (Lundquist et al., 2016). The 
region experiences a Mediterranean climate, with most precipitation 
falling between November and March. Snow serves as a seasonal 
reservoir, releasing meltwater in summer when demand is highest. 
However, large interannual variability results in runoff ranging 
from below 50% to over 200% of climatological averages, requiring 
adaptive water management (Lundquist et al., 2003). More than 
half of the annual precipitation falls as snow, though this varies 
due to droughts and atmospheric river events (Li et al., 2017; 
Lahmers et al., 2022; Hedrick et al., 2020; Pflug et al., 2022). 
Precipitation type varies with elevation: 60% of precipitation 
falls as rain below 1,600 m; the 1,600–2,000 m range marks the 
rain-snow transition zone; and above 2,000 m, covering 90% 
of the basin, snowfall dominates, although summer rain can 
occur even at high elevations (Lundquist et al., 2016). Vegetation 
varies with elevation, from deciduous and coniferous forests in 
lower areas to subalpine and alpine zones above the 2,900 m 
treeline. The upper 35% of the basin (2,900–3,999 m) consists 
of sparsely vegetated alpine terrain, where snow distribution is 
shaped by wind and exposed granodiorite. The basin’s role as 
a “water tower” has made it a key site for snow-hydrology 
research (Viviroli et al., 2007; Henn et al., 2018a; Raleigh and 
Small, 2017; Rice et al., 2011).

FIGURE 1
Location and relief map of the Tuolumne River Basin within the U.S. 
State of California.

2.2 Minkowsky functionals as snow pattern 
predictors

We computed Minkowski Functionals (MF) for each date with 
snow cover to characterize the spatial structure of snow distribution. 
MF are mathematical tools used to describe the geometry and 
connectivity of spatial patterns and have been applied across 
various disciplines, including soil structure (Vogel et al., 2005) 
and snow microstructure analysis (Schleef et al., 2014). Recently, 
they have also been employed to assess snow cover dynamics 
(Ferrarin et al., 2023). In two-dimensional space, three MF can be 
defined (Parker et al., 2013): 

i. Total Area Density (MF1), which quantifies the proportion of 
the extent covered by snow in a selected area, and is equivalent 
to the fractional Snow Covered Area (fSCA);

ii. Total Perimeter Density (MF2), which measures the total 
length of the boundary between snow-covered and snow-free 
regions, normalized by the total area. It represents a measure 
of the complexity of the boundary between snow-covered 
and snow-free regions: a higher perimeter density indicates a 
more intricate or irregular snow cover boundary, while a lower 
value suggests a smoother, more continuous snow cover. This 
metric helps capture the variability in snow distribution and 
is useful for assessing the heterogeneity and connectivity of 
snow-covered areas.

iii. Euler–Poincaré Characteristic Density (MF3), which captures 
the connectivity of the snow cover. A positive MF3 indicates 
that the snow cover is fragmented, with isolated snow patches 
scattered across the area. Conversely, a negative MF3 suggests 
a more connected snow network, with the absolute value 
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representing the number of internal gaps or holes within the 
snow cover. This metric is particularly useful for assessing 
the degree of fragmentation or continuity of snow-covered 
regions, helping to understand the spatial configuration of 
snow distribution (Vogel and Babel, 2006). MF3 is given in 
Equation 1:

 
MF3(X) = 1

2π
∫

X
[ 1

R
]dc (1)

where X is the snow cover pattern, R is the radius of curvature 
of the circumference of a single snow cover object in the 
pattern and dc is an infinitesimal element of the circumference
(Vogel et al., 2005).

All MF are affected by a saturation effect: they provide 
meaningful information only when the analysed area includes both 
snow-covered and snow-free regions. Once snow depth becomes 
sufficient to completely cover the area, MF1 simply reflects the total 
extent of the area, while MF2 and MF3 drop to zero.

Figure 2 illustrates examples of MF calculated over four distinct 
snow cover patterns, each covering an area of 500 m: MF1 (i.e., 
fractional snow-covered area) increases as the extent of snow 
cover increases. MF2 (i.e., perimeter of the snow-covered regions) 
increases when the snow pattern is more fragmented and irregular 
(i.e., more complex and heterogeneous, Figures 2B,C), and decreases 
in cases where the snow cover consists of either small, isolated 
patches (Figure 2A) or forms a large, continuous, and homogeneous 
area (Figure 2D). MF3 (i.e., Euler-Poincaré characteristic) shows low 
positive values when there are only a few small and isolated snow 
patches (Figure 2A), higher positive values appear when there are 
many disconnected patches (Figure 2B), high negative values when 
the snow cover is highly heterogeneous but forms a well-connected 
structure with multiple internal interruptions (Figure 2C), and low 
negative values in cases of extended, mostly homogeneous snow 
cover with few discontinuities (Figure 2D).

In this study, MF were calculated using the imMinkowski 
MATLAB toolbox (Legland, 2025), applied to binary snow cover 
maps for each available date. All metrics were computed relative 
to the total extent of the study area and aggregated across the 
full dataset. Further methodological details and examples of MF 
application to snow cover can be found in Ferrarin et al. (2023). 

2.3 The airborne snow observatory dataset

We used freely available data from the Airborne Snow 
Observatory (ASO), which combines scanning LiDAR and imaging 
spectrometry in the study area (Painter, 2018). ASO provided high-
resolution maps of SD, SWE, and snow albedo across mountain 
watersheds from April 2013 to October 2019, supporting both 
research and operational water management (Painter et al., 2016). 
For this study, we used the 3 m resolution ASO-derived snow-free 
digital elevation model (DEM) and SD datasets. SD was calculated 
by differencing snow-on and snow-off DEMs in non-forested areas, 
with bias correction applied using snow-free zones set to zero 
(Painter et al., 2016). ASO performed annual flights from peak SWE 
through the melt season; we used data from five flights in 2013, 
eleven in 2014, nine in 2015, and two in 2016. Comparison with 80 in 
situ manual measurements showed no significant bias, and a RMSE 

FIGURE 2
Examples of different snow cover patterns (500 m extent) and 
corresponding geometrical descriptors MF1, MF2, and MF3 (A–D).

of 0.08 m per 3 m pixel and <0.02 m per 50 m pixel (Painter et al., 
2016). Snow cover maps were derived from the SD maps. Further 
details on ASO instrumentation and processing methodology are 
provided in Painter et al. (2016).

Overall, the applied ASO dataset is often used to develop and 
validate modelling and remote sensing products due to their high 
temporal and spatial availability of SD data over a quite large area 
over several years. Recently, numerous studies have used the ASO 
dataset to analyse snow cover dynamics and improve water resources 
management. Deschamps-Berger et al. (2020) used it for example, to 
validate stereo-satellite derived and Sourp et al. (2025) to evaluate it 
against high-resolution snowpack simulations from global datasets 
and a comparison with Sentinel-1 SD retrievals. Pinder et al. (2024) 
employed neural network-based forecasting models using ASO data 
to predict snow water equivalent by considering SD and density. 
Several studies reconstructed continuous space-time estimates for 
SWE based on the dataset applying different techniques such as 
physically-based modelling, data assimilation and machine learning 
techniques (e.g., Margulis et al., 2019; Oaida et al., 2019; Painter et al., 
2016; Premier et al., 2023; Smyth et al., 2020). Henn et al. 
(2018b) combined ASO LiDAR-derived snow data with streamflow 
observations to estimate basin-scale water balance and assess 
processes such as snowmelt, infiltration, and evapotranspiration 
during drought conditions.

We employ the ASO dataset to derive two distinct types of 
variables for the construction of the predictive models: 
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FIGURE 3
(A) 500 m resolution snow depth map examples of left: peak snow-cover conditions, acquired on 29/04/2013, and right: low snow cover conditions, 
acquired on 08/06/2013. (B) 3 m resolution snow cover map examples of left: peak snow cover conditions, acquired on 29/04/2013, 50.8% of total 
snow coverage, and right: low snow cover conditions, acquired on 08/06/2013, 8.0% of total snow coverage. (C) Examples of snow cover patterns of 
500 m × 500 m extents used to compute the MF in different locations (P1, P2, P3). White areas represent no snow cover in all plots.

i. SD distribution resampled to a 500-m resolution and utilized 
as the dependent variable for model calibration and validation. 
The resampling is necessary because the MF are area-based 
metrics therefore they relate to the cell-mean SD of the grid 
used for their computation (further details on the selected 
resolution are provided in the next section). Two examples 
are shown in Figure 3A for peak snow cover conditions (left, 
29/4/2013) and for minimum snow cover conditions (right, 
8/6/2013).

ii. Binary snow cover maps, derived from the native 3-m 
resolution snow height data, from which the MF were 
computed on the 500-m grid as predictor variables. Figure 3B 
shows two examples of snow cover maps for peak (left) 

and minimum (right) snow cover conditions (same dates as 
Figure 3A), and Figure 3C shows examples of 500 m extents 
used for the computation of MF in three separate locations (P1, 
P2, P3).

2.4 Snow depth model setup using a 
random forest approach

For SD modelling, we adopted the Random Forest (RF) 
algorithm (Breiman, 2001), an ensemble learning method that 
aggregates the predictions of multiple regression trees to reduce 
variance and improve generalization (Guo et al., 2011). Each tree 
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is trained on a bootstrap sample, i.e., a subset of the original data 
generated by sampling with replacement (bagging), which contains 
two-thirds of the original observations. The remaining one-third, 
known as out-of-bag (OOB) samples, are not used in training 
and serve as an internal validation set to estimate an unbiased 
generalization error (Breiman, 2001; Peters et al., 2007). At each 
node, RF does not evaluate all available predictors but instead selects 
a random subset of size mtry. The best split is chosen only among this 
subset, which reduces correlation among trees while maintaining 
predictive strength.

Splits are chosen by maximizing the reduction in impurity, given 
by the ratio between the weighted variance and the Mean Squared 
Error (MSE). For a parent node t split into children tL and tR on 
predictor xj, the reduction in impurity can be calculated as:

Δ(t,xj) = p(t) ∗MSE(t) − [(p(tL) ∗MSE(tL) + p(tR) ∗MSE(tR)] (2)

Where p(·) is the empirical node probability (Louppe et al., 2013). 
The reduction Δ is the basis for the importance scores (Section 3.2).

The ensemble prediction is then obtained by averaging the 
outputs of all trees in the forest. Random Forest was selected 
because it has been applied effectively to related cryospheric and 
snow-mapping problems (e.g., Revuelto et al., 2020; Yang et al., 
2020; Meloche et al., 2022) and is well suited to capture non-linear 
relationships and interactions among multi-source predictors while 
remaining robust to noise and collinearity. More detailed on the RF 
method are given in the supplementary. For further details on the 
mathematical procedure used see Breiman (2001).

Two user-defined parameters are central to the algorithm: the 
number of trees (ntree) and the number of variables considered at 
each split (mtry) (Rodriguez-Galiano et al., 2012). As the number of 
trees increases, the generalization error converges to a limiting value, 
preventing overfitting. In practice, a sufficiently large ntree ensures 
stability, while mtry controls the trade-off between tree correlation 
and individual tree strength. Reducing mtry tends to decrease 
correlation between trees but may also weaken their predictive 
power; hence, an optimal balance must be sought (Breiman, 1996). 
For the RF algorithm in this study, ntree was set to 500: this value 
was selected based on preliminary tests in which increasingly higher 
numbers of trees, typically used in literature for similar analysis, 
were evaluated, and performance gains from increasing the number 
of trees became negligible above this threshold. The parameter mtry
was set to 4, consistent with the default setting of p/3, where p is the 
total number of predictors, 13 in this study.

Model robustness was evaluated using a simple cross-validation 
approach. Specifically, models were trained on 100 randomly 
selected subsets (according to Filzmoser et al., 2009), each 
comprising 70%–80% of the dataset while ensuring high spatial 
and temporal variability. The calibration-to-validation ratio was 
chosen based on values commonly adopted in similar applications, 
as reported in recent literature (e.g., Khosravi et al., 2023; 
Blandini et al., 2023), where 70/30 or 80/20 partitions are frequently 
used to balance training representativeness and validation reliability. 
The subsets were drawn by randomly sampling individual grid 
cells rather than entire geographic sub-regions, thereby minimising 
potential biases associated with distinctive local topographic or 
climatic conditions; this strategy, well established in literature 
(e.g., Ma et al., 2023; Blandini et al., 2023), ensures the model 

is calibrated and validated across a wide spectrum of conditions, 
avoiding cluster-specific over- or under-representation. With this 
configuration, every cell of the grid was included at least once in 
the validation group. To test the sensitivity of model performance 
to training set variability, additional experiments were conducted 
using up to 200 randomly selected subsets. The results obtained 
with this expanded sampling scheme did not significantly differ 
from those of the initial configuration, confirming the robustness 
of the model performance observed in the previous analysis; Given 
that an increase in the number of subsets results in a proportional 
increase in computational time, it was decided to limit the analysis 
to 100 subsets.

RF provides a measure of feature importance, which is 
particularly useful in studies involving heterogeneous data sources 
(Pal, 2005). This is quantified by permuting the values of each 
predictor and evaluating the resulting increase in OOB error 
(Breiman, 2001; Gislason et al., 2006). Features that cause a larger 
drop in accuracy are considered more relevant to the model. This 
property is of particular interest in environmental modelling, where 
multiple interacting predictors are often available and their relative 
contributions are not known a priori.

To evaluate the influence of the MF 2 and MF3, two RF models 
were developed for this study: 

i. A baseline model (BL-MF1) incorporating fractional snow 
cover (MF1), topographic predictors, i.e., elevation (mean and 
standard deviation), slope (mean and standard deviation), 
curvature (profile, plan, and tangential), North/South and 
East/West exposition (mean values), Topographic Position 
Index (TPI, Wilson and Gallant, 2000), Terrain Roughness 
Index (TRI, Amatulli et al., 2018), Wind Shelter index (WSI, 
Winstral et al., 2002), latitude, longitude, distance from the 
coast, and month.

ii. An enhanced model (EN-MF123) that also includes two snow-
cover geometrical descriptors, MF2 (total perimeter) and MF3 
(connectivity and fragmentation), to assess the impact of 
snow cover geometric structure on SD estimation and evaluate 
whether their inclusion improves predictive performance. 
Predictors included in the two setups are shown in Table 1.

All predictors were computed on a 500 m resolution grid 
covering the entire study area.

The model specification was identical for both cases. SD was 
aggregated to a 500 m grid, and all topographic predictors were 
resampled to the same resolution. The MF, being area-based metrics, 
were computed on the 3 m snow cover maps, over the same 
500 m cells. This ensures a one-to-one correspondence between the 
geometric descriptors of the snow-cover pattern, the cell-average SD, 
and the underlying topographic attributes, all defined on the same 
spatial support.

A spatial resolution of 500 m was adopted in this study due 
to its frequent application in snow cover research (Yang et al., 
2022; Zhu et al., 2021; Schneider et al., 2020), thereby 
ensuring methodological consistency with previous literature and 
interoperability with satellite-derived products (e.g., Ferrarin et al., 
2023). This resolution provides a balanced trade-off between 
computational efficiency and the capacity to resolve physiographic 
and snowpack heterogeneity. Moreover, it enables the integration 
of multiple geospatial datasets while retaining sufficient granularity 
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TABLE 1  Overview of predictor variables included in the baseline (BL-MF1) and enhanced (EN-MF123, including MF2 and MF3 as predictors) random 
forest models. All predictors were computed on a 500 m grid resolution over the study domain.

Predictor Description BL-MF1 EN-MF123

Fractional snow covered area (MF1) Fraction of each grid’s cell covered by snow. ✓ ✓

Snow cover perimeter (MF2) Total perimeter length of snow-covered patches, describing snow 
cover patterns complexity.

✗ ✓

Snow cover Euler-Poincaré Characteristic (MF3) Topological descriptor capturing connectivity and fragmentation 
of snow cover patterns.

✗ ✓

Altitude (mean) Average and standard deviation of elevation, representing vertical 
position (i.e., related to temperature and wind exposure) and 
terrain heterogeneity.

✓ ✓

Aspect (North/South, East/West) Average terrain aspect components controlling solar exposure and 
melt rates.

✓ ✓

Slope (mean, std) Average and standard deviation of local slope, influencing snow 
accumulation and redistribution.

✓ ✓

Curvature (profile, plan and tangential) Terrain curvature components describing concavity/convexity, 
relevant to snow deposition and melt dynamics.

✓ ✓

Topographic Position Index (TPI) Relative elevation compared to surrounding terrain in the cell, 
indicative of ridges, valleys, or flat areas.

✓ ✓

Terrain Roughness Index (TRI) Measure of local elevation variability affecting e.g., wind effect and 
snow retention.

✓ ✓

Wind Shelter Index (WSI) Degree of shelter from prevailing wind, influencing snow erosion 
and deposition.

✓ ✓

Latitude, Longitude Geographical coordinates capturing large-scale climatic and 
orographic gradients.

✓ ✓

Distance from coast Proxy for continentality, affecting e.g., humidity and snowfall. ✓ ✓

Month (categorical) Seasonal indicator to account for intra-annual variability in snow 
precipitation and accumulation.

✓ ✓

for the characterization of snow cover geometric structure and the 
estimation of SD. To validate this choice, a sensitivity analysis was 
conducted during the preliminary phase of the study, evaluating 
three spatial resolutions: 250 m, 500 m, and 1 km. Stepwise 
linear regression revealed that R2 and relative contribution of the 
geometrical descriptors MF2 and MF3 in the predictive model, 
increased with decreasing spatial resolution (e.g., coarser grids). 
Consequently, the 500 m resolution was selected as an optimal 
compromise, offering adequate spatial fidelity for SD representation 
while maximizing the effectiveness of MF. Ferrarin et al. (2023) also 
employed a 500 m spatial scale in their correlation analysis between 
MF indices and SWE. 

2.5 Model evaluation

To evaluate the impact of including MF2 and MF3 in 
SD estimation models, we analysed the following standard 
performance metrics: the coefficient of determination (R2), which 
quantifies the proportion of the observed variance explained by 

the model; the Root Mean Square Error (RMSE), which measures 
the typical magnitude of prediction errors and is sensitive to 
large deviations; the Mean Bias Error (MBE), which indicates the 
average tendency of the model to overestimate or underestimate 
observations; and the Mean Absolute Error (MAE), which 
represents the average absolute difference between simulated and 
observed values, providing a robust measure of overall accuracy.

To obtain a robust estimate of the influence of MF2 and MF3, 
we examined the distributions of R, RMSE, MBE and MAE across 
the two models, trained on the 100 different random subsets of 
the dataset. To assess the statistical significance of performance 
differences, we applied the Wilcoxon paired test (Wilcoxon, 1945) to 
compare the results from EN-MF123 and BL-MF1 models. As a non-
parametric test, it does not require assumptions of normality and 
evaluates differences based on ranked pairs. This approach allowed 
us to determine whether the inclusion of MF2 and MF3 leads to 
significant improvements in SD prediction performance.

Secondly, we restricted the analysis to R2 and RMSE, and 
we investigated how these metrics change over time and across 
different snow-cover pattern conditions as well as different 
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topographic conditions. The focus was placed on these two metrics, 
because together they capture the most relevant aspects of model 
performance for snow depth estimation in a hydrological modelling 
context (variance explained and magnitude of errors). MBE was 
not further considered, as both models exhibit negligible systematic 
bias, rendering this metric of limited interpretative value. Similarly, 
MAE was not reported because it exhibited very similar patterns 
to RMSE. Since no strong outlier effects were observed in the 
data, the additional information provided by MAE would have 
been limited, and RMSE alone was considered sufficient for
interpretation. 

3 Results and discussion

In this chapter we present the evaluation of the two SD model 
setups: BL-F1 and EN-MF123, focusing on the impact of including 
MF2 and MF3, the predictor importance, and SD error distributions. 
Additionally, we examine the temporal dynamics of R2 and RMSE, 
variations in model performance across different snow cover 
patterns and topographic conditions and addresses the potential 
limitations of the derived SD models. 

3.1 Effect of including MF2 and MF3 on 
modelling SD

Table 2 reports the average, maximum, and minimum values 
of each performance metric, computed across all runs of the 
models over the 100 subsets. Overall, the EN-MF123 model 
outperforms the BL-MF1 model for all metrics, except for MBE, 
where no meaningful improvement is observed (average value 
remains below 10−2 m for both models). On average, R2 increases 
by 0.02 (2%), while RMSE and MAS decrease by 0.02 m (11%) 
and 0.01 m (9%), respectively. To assess the statistical significance 
of these differences, a non-parametric Wilcoxon signed-rank test 
was applied. The results confirm that the distributions differ 
significantly at the 95% confidence level, with p-values below 4∙10−18

for both metrics.
The reduction in average RMSE, corresponds to approximately 

5% of the mean snow depth across the entire basin. Quantifying 
the impact of this reduction in terms of SWE would be useful, 
but it is not straightforward. However, a simple assessment 
indicates that, assuming an average snow density of 400 kg m−3, this 
reduction corresponds to approximately 6% of the basin-average 
SWE provided by ASO for the same dates considered in this study 
(Yang et al., 2025). Moreover, since the absolute reduction in RMSE 
is 0.02 m, and the RMSE of the ASO snow depth data at 50 m 
resolution is reported as <0.02 m (Painter et al., 2016), the decrease 
observed in this study is larger than the intrinsic uncertainty of 
the reference dataset, which, given the coarser 500 m resolution 
applied here, is expected to be even smaller, further supporting the 
significance of the result.

Figure 4 presents the histograms of the performance metrics 
across the 100 subsets. The inclusion of MF2 and MF3 produces a 
marked shift in the distributions, with R2 moving towards higher 
values (Figure 4A) and RMSE and MAE shifting towards lower 
values (Figures 4B,D). MAE shows a stronger decrease compared to 

TABLE 2  Summary statistics of model performance metrics, R2, RMSE 
(m), MAE (m) and MBE (m), computed over 100 random subsets of the 
dataset. The table reports the mean, maximum, and minimum values for 
models trained with (EN-MF123) and without MF2 and MF3 (BL-MF1).

Performance metric Model Mean Max Min

R2
EN-MF123 0.87 0.89 0.85

BL-MF1 0.85 0.87 0.82

RMSE (m)
EN-MF123 0.17 0.20 0.15

BL-MF1 0.19 0.22 0.16

MAE (m)
EN-MF123 0.10 0.11 0.08

BL-MF1 0.11 0.12 0.09

MBE (m)
EN-MF123 0.00 0.02 −0.02

BL-MF1 0.00 0.02 −0.01

RMSE, suggesting that EN-MF123 decreases the overall magnitude 
of errors more effectively and provides more consistent accuracy 
across the majority of predictions compared to BL-MF1, while few 
relatively large errors persist. Histogram of MBE (Figure 4C) shows 
no differences, indicating that both models exhibit no tendency 
toward estimation/underestimation and that MF2 and MF3 do not 
substantially affect this aspect.

3.2 Predictors’ importance of the SD model

To further investigate the role of MF in SD prediction, 
we analysed the relative importance of each predictor used in 
the models. Predictor importance was computed by evaluating 
reductions in node risk at each split in the decision trees, where 
node risk is defined as the node error weighted by node probability 
(Equation 2). The importance of each predictor was then estimated 
by summing the reductions in mean squared error due to its 
splits and normalizing by the total number of branch nodes across 
the ensemble (Louppe et al., 2013).

Figure 5 shows predictor importance scores for BL-MF1 and 
EN-MF123. The scores were normalized by dividing each predictor’s 
score by the sum of all predictor scores for the specific model, 
so that their total equals 100%, thereby expressing the relative 
percentage contribution of each predictor. When MF2 and MF3 
are excluded, MF1 (fractional snow cover) dominates the model 
(importance score above 70%), reflecting the strong relationship 
between snow extent and SD variability. Other predictors contribute 
only marginally (all below 10%). When MF2 (perimeter density 
of the snow cover, i.e., heterogeneity of the pattern) and MF3 
(Euler–Poincaré characteristic of snow cover, i.e., connectivity or 
fragmentation of the pattern) are included, they emerge as highly 
relevant predictors (with an importance score of, in order, 11% 
and 23%), second only to MF1. Importantly, the importance 
of MF1 decreases in this case (reaching 50%), suggesting that 
MF2 and MF3 provide new, non-redundant information that 
complements the contribution of fractional snow cover. This implies 

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1672558
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ferrarin et al. 10.3389/feart.2025.1672558

FIGURE 4
Frequency distributions of (A) R2, (B) RMSE (m), (C) MBA (m) and (D) MAE (m) of snow depth estimation models, computed over 100 random subsets of 
the dataset. Results are shown for models excluding (BL-MF1) and including (EN-MF123) snow cover geometrical descriptors of perimeter (MF2) and 
Euler-Poincaré Characteristic (MF3).

that MF2 and MF3 capture aspects of snow cover spatial structure 
not represented by MF1, improving model generalization under 
varying snow conditions. Interestingly, MF3 shows an importance 
factor which is double the one of MF2; this result suggest 
the Euler-Poincaré characteristic is more relevant in capturing 
additional information on snow cover geometric characteristics, 
compared to the extent of the snow cover boundaries. This 
may reflect the intrinsic ambiguity of low MF2 values: they 
can correspond either to nearly homogeneous snow cover with 
few or small gaps, or to patterns with only a few small snow 
patches (e.g., Figures 2A,D). By contrast, MF3, because it can take 
negative as well as positive values, better discriminates between these 
very different snow-cover condition, providing more predictive
information for SD.

Beyond MF predictors, elevation and north-south aspect are the 
most influential topographic variables and keep their rank whether 
or not MF2 and MF3 are included. Elevation reflects temperature 
and precipitation gradients, while aspect controls incoming solar 
radiation. Next in importance are TRI and WSI, with overall stable 
rankings, followed by latitude, whose influence on SD is mainly 
mediated by synoptic and local weather conditions and, to a lesser 

extent, by its impact on solar radiation. Slope gains importance once 
MF2 and MF3 are included, suggesting that slope effects are better 
resolved when the geometric structure of the snow cover is explicitly 
captured by these descriptors. On the other hand, the temporal 
predictor “month” drops markedly in importance with MF2 and 
MF3, implying that these metrics encode richer seasonal signals. 
East-west aspect, curvature indices, TPI, longitude, and distance to 
the ocean remain of very low importance in both models, indicating 
a marginal role for these factors in SD prediction at the scales 
considered. 

3.3 Error distributions of SD estimates

A comparative analysis of the error distributions derived 
from BL-MF1 model and the enhanced EN-MF123 model was 
conducted to delineate the SD ranges where MF2 and MF3 most 
effectively enhance estimation accuracy. Errors were quantified as 
the difference between observed and predicted SD values. Figure 6 
presents histograms showing the frequency distributions of these 
errors for EN-MF123 model (blue) versus BL-MF1 (red). To facilitate 
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FIGURE 5
Predictor importance for the SD estimation, for EN-MF123 (blue), and BL-MF1 model (red). Scores are normalized so that their total equals 100%, 
representing the relative percentage contribution of each predictor to the overall prediction.

FIGURE 6
Frequency distribution of SD estimation errors (log-shifted,
see Equation 3 for mathematical transformation) for EN-MF123 model 
(blue) and BL-MF1 (red).

interpretation and emphasize differences around zero, we applied 
a logarithmic transform of the shifted errors, with the shift being 
equal to the absolute value of the minimum observed error to ensure 
positivity. Letting ei denote the signed error, the corresponding 
transformed value zi is:

zi = log(ei+|min (e)|) (3)

This strictly increasing transformation compresses the tails and 
enhances resolution near zero while preserving the relative ordering 
of errors and their sign. The results demonstrate that the error 
distribution for EN-MF123 model is more tightly centred around 
zero, indicating improved predictive accuracy. Notably, the most 
significant divergence is observed in the negative error range 
(i.e., overestimation) where EN-MF123 model exhibits a marked 
reduction in error frequency compared to models without these 
descriptors. This reduction in overestimation suggests that the 
incorporation of snow cover geometric structure via MF2 and MF3 
substantively mitigates bias in SD estimation.

3.4 Temporal dynamics of R2 and RMSE of 
SD model estimates

In this section we analyse the temporal evolution of the average 
R2 and RMSE of SD estimation models, comparing EN-MF123 
model (blue line in Figure 7) with BL-MF1 (red line), during the 
study period (February-June). Each panel in the figure represents 
1 year from 2013 to 2016, and each point corresponds to a prediction 
date. Overall, model EN-MF123 outperform BL-MF1 in most cases 
(26 out of 27 dates), as attested by higher R2 values and lower RMSE. 
The time series of both R2 and RMSE exhibit a similar temporal 
pattern. On average, the daily mean R2 increases by 0.036, while 
daily RMSE improves by 0.015 m; the maximum improvement of 
R2, equal to +0.125, is observed on the 9/4/2015, while maximum 
improvement of RMSE, equal to −0.038 cm, is observed on the 
29/4/2013. The slight decrease in model performance on 23/3/2014, 
with a reduction of −0.013 in R2 and an increase of +0.006 cm in 
RMSE, can be attributed to the model calibration approach and 
the specific snow cover conditions on that day. The models were 
calibrated using subsets spanning the entire study period, ensuring 
no single day was exclusively used for calibration or validation. 
This method prevents biases tied to specific days, as the models are 
optimized for the overall period. Consequently, the performance 
deterioration on 23/3/2014 is likely due to unique snow cover 
patterns on that day, which resulted in low correlations between 
MF2 and MF3 descriptors and SD. The model, calibrated for the 
entire range of conditions happening between middle-winter to late 
melting season, does not adapt well to these particular conditions. 
No significant temporal dependency in R2 and RMSE improvements 
was observed.

To better understand the snow cover pattern conditions affecting 
model performance, Figure 8 illustrates the temporal evolution of 
mean SD (left) and the three geometrical descriptors (MF1, MF2, 
MF3, right), for each year from 2013 to 2016 (SD spatial distribution 
at every recorded date is shown in Figure 1 of the Supplementary). 
In general, SD and MF show a strong time dependence, which 
can be observed in 2013, 2014 and, in the few dates where data 
is available, 2016; for these years SD and MF show also the same 
range of values. On the other hand, 2015 shows lower values of 
SD, alongside lower values of MF1 and MF2, and higher values 
of MF3. These values suggest a particularly dry year, with smaller 
amount of snow cover in terms of depth and extension, and a 
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FIGURE 7
Temporal evolution of R2 (left) and RMSE (right) for snow depth estimation models with (blue, EN-MF123) and without (red, BL-MF1) geometrical 
descriptors MF2 and MF3 across 4 years (2013–2016). Each point represents model performance for a single date.

higher level of fragmentation (with the exception of April). In 
particular, MF2 and MF3 exhibit evident seasonal cycles, albeit with 
interannual phase shifts. This recurrence of melt-season snow-cover 
patterns under persistent topographic controls supports their utility 
as SD predictors, consistent with the high predictor-importance 
scores reported earlier. In addition, we also examined the temporal 
evolution of the standard deviation of SD (both absolute and 
relative), but this metric did not reveal clear temporal trends and 
therefore did not provide additional explanatory value. For this 
reason, it is not shown among the main results.

As expected, the mean SD tends to decrease throughout the 
study period, from late winter into spring. As the season progresses 
and melt processes begin, particularly at mid and lower elevations, 
SD progressively decreases throughout the entire study area, and 
the terrain becomes increasingly exposed. This exposure gives rise 
to increasingly fragmented and topographically influenced snow 
cover patterns. This shift in snow cover complexity is reflected in 
the model performance: R2 values tend to increase, while RMSE 
values tend to decrease, as the season progresses. This suggests 
that more complex and heterogeneous snow patterns provide richer 
spatial cues that can be effectively captured by MF2 and MF3, 
leading to improved model accuracy. A notable exception to this 
general trend occurs in 2015 (Figure 8), when two dates in April 
(9/4 and 27/4) exhibit a sharp decline in model accuracy, reaching 
the lowest R2 values observed across the 4-year period and the 

highest RMSE vales of the year. These drops coincide with a spike 
in average SD, indicating a late-season snow event that temporarily 
reset the snowpack to a more homogeneous state. Snow cover 
maps from those dates (Figures 9B,C), along with those from 
days before and after (Figure 9A acquired on 03/04; Figure 9D, 
acquired on 01/05), reveal the drastic change in the conditions of 
the snow cover, characterized by a lower fragmentation, typically 
associated with decreased model accuracy. Despite the challenging 
conditions, the difference in R2 and RMSE between EN-MF123 
and BL-MF1 on those dates is the largest observed across the 
entire study period. This underscores the significant contribution 
of MF2 and MF3 even under conditions of relatively uniform 
snow cover, demonstrating their ability to enhance SD estimation 
performance even and especially when snow pattern complexity
is reduced.

Regarding MF1, plots in Figure 8 reveal a strong similarity with 
the mean SD, confirming the role of MF1 as the dominant predictor 
in all models (as previously shown in Figure 5). This is expected, as 
greater SD generally corresponds to more extensive snow coverage. 
MF2, shows a similar, but not identical, trend to MF1. In fact, 
while higher SD often corresponds to greater boundary extent, this 
relationship breaks down in cases of highly homogeneous snowpack, 
with small and sparse empty spots. MF3 exhibits an inverse trend 
compared to MF1 and SD. As SD and coverage decrease, MF3 tends 
to increase, indicating the emergence of patchy and discontinuous 
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FIGURE 8
Temporal evolution of the average SD (left) and the three geometrical descriptors (MF1, MF2, MF3, right) for each year from 2013 to 2016.

snow distributions, and the increase of small ad isolated snow-
covered areas. Conversely, when snow is more continuous and 
extensive, MF3 values drop, reflecting fewer isolated snow patches 
and more internal gaps within the snow cover. These trends support 
the interpretation that SD estimation models perform best under 
conditions of high MF2 and low MF3, i.e., when the snowpack is 
spatially heterogeneous and present multiple diffused non-snow-
covered patches. In such configurations, topographic features are 
more exposed, and spatial structure is more complex, providing 
more informative cues for SD prediction. This again reinforces the 
importance of including MF2 and MF3 in the models. Focusing 
once more on the two anomalous April dates in 2015, we observe 
low MF3 values combined with unusually high MF2 values. This 
pattern indicates the presence of large, contiguous snow-covered 
areas with multiple but small and isolated gaps, confirming an 
extended and homogeneous snowpack hypothesized earlier. These 
conditions explain both the drop in model performance and the 
particularly large difference in R2 between EN-MF123 and BL-MF1 
models, as discussed with respect to Figure 8.

The similarity in the temporal evolution of MF1 and MF2, and 
their clear divergence from MF3, partially explains the predictor-
importance scores in Figure 5. As discussed above, MF3 ranks as the 
second most informative predictor, whereas MF2 is less influential 
for SD because it contributes less novel information beyond MF1, 

however still more than any other topographical descriptor, which 
show lower predictor-importance scores. 

3.5 Variation of R2 and RMSE of SD model 
estimates across different snow pattern 
conditions

To further investigate the influence of snow cover conditions 
on the accuracy of SD estimation, boxplots of R2 and RMSE were 
generated (Figure 10), comparing EN-MF123 model with BL-MF1 
model, across different snow cover patterns conditions, identified by 
different MF classes. Figure 11 shows the distribution of observed 
SD values in the same MF classes, providing contextual insight for 
interpreting model performance.

In Figure 10A data is categorized according to four MF1(snow 
covered area) classes: 0%–25%, 25%–50%, 50%–75%, and 
75%–100%. EN-MF123 model consistently show higher R2 and 
lower RMSE across all MF1 classes. Although no consistent trend in 
accuracy with MF1 is observed, the highest model performance is 
found in the 0%–25% class, likely corresponding to late-season snow 
conditions when snow is patchy and topographically influenced. 
These settings are associated with the lowest SD values of the season, 
as shown in Figure 11A. Conversely, the lowest model accuracy 
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FIGURE 9
Snow cover maps acquired on (A) 03/04/2015, (B) 09/04/2015, (C)
27/04/2015 and (D) 01/05/2015, displaying a late-season snow event.

is found in the 25%–50% MF1 class, representing a transitional 
snow cover phase. Meanwhile, RMSE increases with MF1, reflecting 
the expected relationship between greater snow cover and larger 
absolute SD values. However, RMSE remains consistently lower 
in EN-MF123 model, confirming the added value of geometrical 
information in improving prediction.

In Figure 10B, the analysis is repeated using MF2 classes 
(perimeter density of the snow-covered area, which quantifies 
the heterogeneity of the snow pattern): 0–0.0375, 0.0375–0.0750, 
0.0750–0.1125, and 0.1125–0.1500. Across all classes, the EN-
MF123 model outperforms the BL-MF1 model. The best 
performance is observed in the lowest MF2 class. Low MF2 
values can correspond to two contrasting situations: (i) nearly 
continuous snow cover with very few and small gaps, typical of 
peak accumulation periods (e.g., Figure 2D), or (ii) very sparse 
snow remaining in isolated patches, typical of late melt season (e.g., 
Figure 2A. These conditions are usually associated with either very 
high (case i) or very low (case ii) snow depth values, as shown by 
the SD distribution in Figure 11B. In both cases, model accuracy is 
high for EN-MF123 and BL-MF1, and the benefit of including MF2 
and MF3 is limited.

As MF2 increases, the snow cover pattern becomes more 
complex and heterogeneous: the number and size of snow patches 
or gaps within the snowpack grows (e.g., Figures 2B,C), reflecting 
a more fragmented distribution. These intermediate MF2 values 
are typically observed in transitional phases, just before or after 

FIGURE 10
Boxplots of R2 and RMSE (m) for snow depth estimation models 
EN-MF123 (blue) and BL-MF1 (red). The analysis is divided into different 
snow cover classes based on (A) MF1 (fractional snow cover): 
0%–25%, 25%–50%, 50%–75%, and 75%–100%. (B) MF2 (total 
perimeter length of snow-covered areas): 0–0.0375, 0.0375–0.0750, 
0.0750–0.1125 and 0.1125–0.1500. High positive MF2 values represent 
complex and discontinuous snow cover (typical of late melt season), 
while low values represent either an extended and homogenous snow 
cover (typical of peak accumulation conditions) or small and few snow 
cover patches (typical of very early or very late snow season). (C) MF3 
(Euler-Poincaré Characteristic): −0.04 to −0.01, −0.01 to 0.00, 0.00 to 
0.01, and 0.01 to 0.04. High positive MF3 values represent numerous 
disconnected snow patches, while high negative values indicate many 
internal gaps within a discontinuous but connected snow cover.
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FIGURE 11
Boxplots of observed SD categorized by the same geometrical descriptor and topographic classes used in the model performance analysis: (A)
fractional snow-covered area (MF1), (B) snow cover perimeter (MF2), (C) snow cover connectivity and fragmentation (MF3), (D) elevation, (E) exposure, 
and (F) slope.

peak accumulation. Under such conditions, snow depth values 
cluster around a narrower low-to-medium range (∼0.25 m), making 
accurate prediction more difficult. Both models show reduced 
accuracy in these scenarios; however, the inclusion of MF2 and 
MF3 substantially improves the EN-MF123 model, as the additional 
geometrical descriptors help capture the spatial variability of the 
snowpack that is not represented by MF1 alone.

Finally, Figure 10C groups the data according to MF3 values 
(Euler–Poincaré characteristic of snow cover, which describes the 
degree of connectivity or fragmentation of snow-covered areas), 
using four classes: -0.04 to −0.01, −0.01 to 0.00, 0.00 to 0.01, and 0.01 
to 0.04. Negative MF3 values indicate a more connected snowpack, 
where snow cover is extensive but includes internal gaps (e.g., 
Figure 2C). While positive MF3 values reflect fragmented patterns 
with numerous disconnected snow patches (e.g., Figure 2B).

Across all MF3 classes, the EN-MF123 model outperforms the 
BL-MF1 model, achieving higher R2 and lower RMSE across all 
MF3 classes. The best performance is observed in the central classes 
(−0.01 to 0.00 and 0.00–0.01), which correspond to intermediate 
connectivity states: (i) conditions with only a few isolated snow 
patches (e.g., Figure 2A), or (ii) a continuous snow cover layer 

with scattered gaps (e.g., Figure 2D). These scenarios are generally 
associated with either low SD values with exceptions at high-altitude 
sites where snow accumulation remains deep outside peak season 
(case i) or high SD values with exceptions at low-altitude sites that 
maintain shallow snow even during peak accumulation (case ii). The 
differences in RMSE between these classes can be explained by the 
distinct SD distributions shown in Figure 11C.

The lowest R2 values occur in the highest MF3 class (0.01–0.04), 
which reflects highly fragmented snow patterns with many small, 
disconnected patches (e.g., Figure 2B). These conditions are typically 
associated with low-to-medium SD values, consistent with the 
findings from the MF1 and MF2 analyses. Importantly, even in this 
fragmented regime, including MF2 and MF3 substantially improves 
prediction accuracy, highlighting the added value of geometrical 
descriptors in representing the spatial variability of the snowpack.

Some additional considerations in regards of the importance MF 
as predictors can be done: 

i. MF2 is the least important among the 3 MFs. It produces a 
marked performance increase only in the highest MF2 class 
(1.72% of the data) and a smaller increase in the second-highest 
class (49.52%). Hence, MF2 improves SD prediction for just 
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over half of the dataset; for the remaining half, its contribution 
is negligible.

ii. For MF3, the magnitude of the performance gain decreases 
across its classes, but the sample size in each class also 
decreases. Overall, the benefit of including MF3 is evident 
for the majority of the dataset, 53.68%, 32.49%, and 11.70% 
in the first three classes, respectively, whereas only 2.13% 
falls into the last class, where the improvement is negligible. 
These observations are consistent with, and help explain, 
the predictor-importance distribution discussed earlier 
and shown in Figure 5.

3.6 Variation of R2 and RMSE of SD model 
estimates across different topographic 
conditions

To assess how terrain characteristics influence SD model 
performance, we analysed R2 and RMSE across classes of elevation, 
aspect, and slope (Figure 12). The distribution of observed SD values 
within the same categories (Figures 11D–F) provides the necessary 
context for interpreting model behaviour. We selected these 
variables because elevation and aspect emerge as particularly 
relevant descriptors for both models, consistently influencing snow 
distribution and model accuracy; slope although it does not exhibit 
a high relative importance score in the predictor analysis, remains 
a fundamental topographic variable, affecting snow redistribution 
and stability, with implications for various applications, including 
avalanche hazard assessment, hydrological modelling, ecosystem 
processes, and the planning and maintenance of infrastructure in 
mountain regions.

In terms of model performance, both EN-MF123 and BL-
MF1 achieved the highest accuracy under these conditions: 
intermediate elevations (1,800–3,200 m, Figure 12A) and gentle 
slopes (0°–15°, Figure 12C), where SD is moderate to high, and 
south-facing aspects, associated with moderate to low SD. These 
results suggest that estimation is most reliable when snowpacks 
are thick enough to reflect terrain controls, but not so deep as 
to mask them.

The inclusion of geometrical descriptors MF2 and MF3 proved 
particularly beneficial under conditions of generally high SD. At 
high elevations (3200–3900 m, Figure 12A), the mean R2 increased 
by 0.07 and RMSE decreased by 0.04 m; on strongly north-facing 
aspects (Figure 12B, R2 increased by 0.03 and RMSE decreased by 
0.03 m; and on steep slopes (30°–45°; Figure 12C), R2 improved by 
0.04 and RMSE decreased by 0.03 m. In these cases, the additional 
spatial information provided by MF2 and MF3 enhanced the 
models’ ability to capture snowpack variability that is less apparent 
when snow cover is consistently deep.

By contrast, the inclusion of MF2 and MF3 reduced model 
accuracy under conditions associated with low SD, namely, 
low elevations (<1800 m, Figure 12A) and very steep slopes 
(>45°, Figure 12C). In these settings, mean R2 decreased by 0.2 
and 0.1 respectively, while changes in RMSE were negligible at low 
elevations and slightly adverse on steep slopes (+0.029 m). Besides 
the limited representation of these settings in the training data 
(1.05% and 0.28% of the study area, respectively), several factors 
likely contribute. First, when snow depth is low, the geometric 

FIGURE 12
Boxplots of R2 and RMSE (m) for snow depth estimation model 
EN-MF1 (blue) and BL-MF1 (red), grouped by: (A) Elevation 
(1,100–1,800 m, 1,800–2,500 m, 2,500–3,200 m, 3,200–3,900 m), (B)
Exposure, computed as the sine of the angle in respect to the North 
direction (South STR, −1 to −0.3, South WEA, −0.3 to 0, North WEA, 0 
to 0.3, North STR, 0.3–1) and (C) Slope (0°–15°, 15°–30°, 30°–45°, 
45°–60°).

structure of the snowpack is weak or short-lived, so MF2 and MF3 
might provide ambiguous/low-signal information relative to MF1, 
increasing model variance. Second, MF areal descriptors at 500 m 
may be mismatched to the fine-scale heterogeneity typical of steep 
or low-elevation areas. Third, because predictor-SD relationships 
vary across topographic classes (non-stationarity, e.g., differing 
accumulation/ablation controls) and MF2 and MF3 can be collinear 
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with existing variables, the ensemble may, especially with few 
samples, choose splits that are optimal globally but mis-specified 
locally, yielding sub-optimal partitions and degraded predictive 
accuracy within those subsets under these conditions. 

3.7 Potential limitations of the derived 
SD models

First, one potential limitation of this study is that the spatial 
distribution of the SD estimation was set to a resolution of 500 m, 
however, results might be different for other resolutions. This goes 
along with the fact that, to include MF in a predictive model, it 
is necessary to average topographic indices over entire grid cells 
and relate them to mean SD, which may limit the applicability of 
the results in contexts where finer spatial detail is required. This 
would be particularly important for applications such as avalanche 
forecasting, habitat modelling, or very localized hydrological 
assessments, which rely on high-resolution SD maps to capture 
small-scale variability, especially in complex and heterogeneous 
alpine terrain. It is acknowledged that using MF as predictors 
entails an intrinsic change-of-support. Because MF are area-based 
geometric indices, they refer to cell-averaged conditions; linking 
them to SD therefore requires aggregating SD to the MF support. 
Consequently, either SD estimates must be produced at a coarser 
resolution, or, if the target resolution is preserved, the MF must 
be computed from higher-resolution inputs. However, the question 
remains as to whether it would be possible to obtain higher-
resolution SD maps, compared to a coarser resolution of 500 m 
applied in this study, by applying a finer grid resolution during 
the computation of the MF. Also scaling issues for finer or coarser 
resolutions, e.g., continental or global scale applications, could occur 
due to non-linarites whilst averaging SD and topographic indices.

Second, the snow cover maps used to compute the geometrical 
descriptors were derived from an exceptionally high-resolution 
SD dataset (3 m). While this allowed for a detailed characterization 
of snow cover patterns, such high-resolution input data (see e.g., 
Cimoli et al., 2017; Wulf et al., 2020; Bühler et al., 2015) are rarely 
available across broader regions or other climate zones and for 
different time steps within a year and over multiple years. As a result, 
the testing of our method in other regions, as derived in this study, 
may be limited in areas where no or only coarser resolution datasets 
are available.

Third, our analysis is restricted to the late accumulation and 
ablation phases of the snow season (from late February to June). This 
period is hydrologically relevant, as it includes peak SWE and the 
melt season, but excludes early-winter and mid-winter accumulation 
and redistribution processes. The lack of data for the full snow season 
limits our ability to assess whether the added value of MF2 and 
MF3 persists under early-winter conditions, when snow distribution 
is strongly influenced by storm sequences, wind redistribution, 
and shallow snowpacks. Applying the method across the entire 
season, including accumulation onset, would be useful to evaluate 
its robustness in different snow regimes.

Fourth, in a limited number of specific cases, such as low-
elevation zones, areas with very steep slopes, or on isolated dates 
(e.g., 23/03/2014), the inclusion of MF2 and MF3 resulted in a slight 
reduction in model accuracy. Under these particular conditions, 

(caused by e.g., exceptional meteorological events, such as intense 
snowfall, strong wind episodes, or sudden warming or specific 
topographic features), the geometric signal of the snow cover 
patterns is weak or ambiguous (e.g., low MF2 can reflect either 
thin continuous cover or scattered patches, and MF3 may be noisy 
where patch connectivity is poorly resolved) and can introduce 
additional uncertainty into the estimation of SD. Moreover, because 
MF areal descriptors are computed at 500 m, areas with strong 
sub-cell heterogeneity can suffer change-of-support mismatch. In 
small, imbalanced subsets (e.g., low represented topographic areas, 
rare snow cover conditions) these weak or collinear signals can 
steer the ensemble toward globally good but locally sub-optimal 
splits, increasing variance/bias. The model, trained on data from 
the entire 4-year period, lacks the adaptability to account for 
such specific conditions. Therefore, the slight underperformance 
of the EN-MF123 model compared to the BL-MF1 model under 
certain specific conditions (whether temporal or topographical) 
can be attributed to the high spatial and temporal variability of 
the SD distribution in the study area, which makes it challenging 
for the models to adapt to all observed conditions. Accordingly, 
the inclusion of MF2 and MF3 must be best evaluated case 
by case, balancing the anticipated accuracy gains against the 
additional computational cost, with particular attention to low-
SD or highly heterogeneous settings where the benefits are more 
context-dependent.

Finally, as the analysis was conducted in one specific study area, 
the influence of local topographic and/or climatic conditions at 
other regions on model performance remains uncertain. We cannot 
conclude if the enhanced RF SD model with MF2 and MF3 also 
exceeds the baseline simulation at other resolutions and in other 
locations, which will be subject of further investigations. 

4 Conclusion and outlook

This study evaluates the added value of two geometric 
descriptors of snow cover, MF2 (perimeter density) and MF3 
(Euler–Poincaré characteristic, i.e., connectivity/fragmentation), 
alongside fractional snow-covered area (MF1) and standard 
topographic/geographic predictors, for snow-depth (SD) estimation 
with a Random Forest. The analysis was conducted in the Tuolumne 
River Basin (California, United States) using multi-year ASO 
SD maps (2013–2016). Using cross-validation, we calibrated two RF 
models: an enhanced model, EN-MF123 (including MF2 and MF3), 
and a baseline model, BL-MF1 (excluding them). Both models 
were trained on 100 random subsets to obtain robust performance 
estimates.

By analysing model performance across a range of spatial, 
temporal, topographic and geographic conditions, the results 
consistently show that adding these geometrical descriptors 
improves both the accuracy and robustness of SD predictions. 
Overall, both model realizations perform well. The EN-MF123 
setup (incorporating MF2 and MF3) generally outperforms the 
BL-MF1 model, as indicated by higher R2 and lower RMSE in the 
vast majority of test scenarios. Improvements are not uniform: 
they are visible under complex snow-cover patterns, such as during 
late melt seasons, in areas with fragmented snow distribution, 
and at higher elevations and steeper slopes, where the two 
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additional descriptors capture spatial characteristics not adequately 
represented by traditional baseline predictors. However, the most 
substantial contribution of MF2 and MF3 emerges under deep, 
homogeneous snow cover, where terrain-induced variability is less 
apparent in areal extent and conventional predictors often struggle 
to provide accurate estimates. In these cases, the spatial information 
conveyed by MF2 and MF3 becomes especially valuable, allowing 
the model to account for subtle patterns in snow distribution 
and to improve prediction reliability. MF2 and MF3 predictors’ 
importance scores exceed those of all other predictors (except MF1), 
indicating that they provide strong, non-redundant information on 
snowpack geometry that enhances SD predictability; overall, the 
EN-MF123 model outperforms the BL-MF1 model, as shown by the 
general increase in R2 and the decrease in RMSE and MAE. This 
study underscores the value of including snow-cover geometrical 
descriptors for improved spatially distributed SD estimation using 
remote sensing, with applications in water management, ecology, 
and avalanche forecasting.

Future work could go in the direction of extending this analysis 
by investigating how the spatial resolution of input data influences 
the performance of SD estimation. Specifically, the methodology 
could be applied using different grid sizes to test snow cover products 
of varying spatial resolutions, such as MODIS, VIIRS, Sentinel-3, 
Landsat and Sentinel-2, which are globally available and commonly 
used in large-scale snow monitoring, but also fine-scale webcam- 
and drone-derived snow cover maps. The goal would be to assess 
how the spatial structure of snow cover patterns, as captured by 
MF2 and MF3, changes across spatial resolutions, and whether these 
geometrical descriptors retain its predictive value when derived 
from coarser or finer input data. Particular attention should be given 
to analysing the relationship between the spatial resolution of the 
input data and the resolution of the grid used to compute MF, as 
this affects the resolution of the output (e.g., SD, SWE). Specifically, 
when the objective is to enhance the resolution of the output, it 
would be valuable to investigate the minimum grid resolution that 
can be used, given the spatial resolution of the input data (e.g., in 
this study, the input data had a spatial resolution of 3 m, while a 
grid resolution of 500 m was chosen). Therefore, a key aspect to 
investigate would be the minimum grid resolution at which the 
snow cover pattern within each cell remains sufficient to generate 
informative MF, which, of course, depends also on the spatial 
resolution of the input data. Understanding this sensitivity is crucial 
for extending the applicability of the method to broader spatial 
and temporal scales, especially in regions where high-resolution 
SD datasets are not available. More broadly, further validation of the 
SD estimation approach including MF2 and MF3 in other mountain 
regions with differing climate, terrain, and snow regimes will be 
important to assess its generalizability and robustness across diverse 
environmental settings. In parallel, a multidimensional exploration 
jointly considering all combinations of MF would help characterize 
interactions among these descriptors and inform future refinements 
of the SD modelling framework. A further outlook in this regard, 
would be the possibility of deriving SD directly from optical stereo-
imagery from satellites or drones for more local applications (e.g., 
Bühler et al., 2015; Deschamps-Berger et al., 2020) compared to 
the more regional airborne laserscanning flights as used here. In 
addition, for dry snow also SAR-derived SD estimates such as from 
Sentinel-1 (Lievens et al., 2019) could come into play for training 

the models developed here. With the ongoing improvement of 
satellite spatial resolution, such an approach could progressively 
achieve, or even surpass, the accuracy and resolution of airborne-
based methods.

An important future step regarding monitoring of water 
resources and snow-hydrology could be to extend this analysis 
also to SWE estimation models, integrating MF2 and MF3 as 
predictors, although spatially distributed SWE information in 
complex, high-alpine terrain is absolutely scarce and lacks therefore 
a solid validation basis. However, in contrast to SD, SWE is 
even more rarely available for validation. For this at current 
stage, SWE simulations based on rather complex physically-
based models with adequate meteorological input and applying 
precipitation undercatch correction methods (Pulka et al., 2024) 
could be used often applying assimilated SD data as input. Also, as 
demonstrated in Koch et al. (2024), signals of a superconducting 
gravimeter can provide for the first time directly measured 
information of SWE over a kilometre scale range in a complex 
mountain environment for evaluation of SWE modelling.

In addition, we believe future research could also go in the 
direction of exploring the use of MF2 and MF3 as indicators in 
climate-related studies. Since these geometrical descriptors capture 
the connectivity, fragmentation, and spatial complexity of snow 
cover, they may serve as valuable metrics to detect and quantify 
changes in snow distribution patterns over time in response to 
climate variability and long-term change.
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