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Snow depth (SD) estimations are very valuable in particular for snow-
hydrological modelling, water resource management, ecological studies,
and natural hazard assessment such as avalanche forecasting. In statistical
SD models, snow-covered area is often used as a source of information.
This study explores whether including additional snow cover geometrical
descriptors, i.e., the second and third Minkowski functionals: total perimeter
(MF2) and Euler-Poincaré characteristic (MF3), improves SD estimation. We
performed two different SD simulation setups employing a Random Forest
regression framework in the Tuolumne River Basin, California, U.S., at a 500 m
resolution. We used the high-resolution remote sensing-derived SD maps of
the multi-year Airborne Snow Observatory (ASO) dataset (2013-2016) at a 3 m
spatial resolution for model development regarding the geometrical descriptors
and evaluation regarding SD. In the baseline setup (BL-MF1), we trained the
model with fractional snow-covered area, being the first Minkowski functional
(MF1), topographic, and geographic variables. In the enhanced setup (EN-
MF123), we also applied MF2 and MF3. Model performance, assessed by using R?,
RMSE, MAE and MBE was compared between the enhanced model run including
MF2 and MF3 and the baseline simulation. Results show that adding MF2 and
MF3 (R®> = 0.87, RMSE = 0.17 cm, MAE = 0.10, MBE = 0.00) consistently improves
model accuracy across diverse snow conditions and topographies compared to
the baseline (R*> = 0.85, RMSE = 0.19 cm, MAE = 0.11, MBE = 0.00), however,
with both variants performing in general well. The inclusion of the additional
descriptors was beneficial in late-season melt conditions and fragmented snow
cover areas, as the spatial structure captured by the geometrical descriptors
improved prediction accuracy and reducing overestimation errors. However, the
largest improvements were observed in deep, homogeneous snow cover areas
where traditional predictors showed less variability. The methodology shows
potential for enhancing snow-hydrological and avalanche risk models, with
future work exploring its scalability across different mountain environments and
spatial resolutions including different remote sensing products, and applicability
to snow water equivalent estimation.

snow depth estimation, snow cover pattern, geometrical descriptor, Minkowsky
functionals, remote sensing, random forest
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1 Introduction

Seasonal snow can cover up to approximately one-third of
the Earth’s land surface, making it one of the most temporary
yet crucial natural water reservoirs (Dayal et al., 2023). It is an
established fact that the meltwater from this region plays a vital role
in sustaining forelands and large river systems (Castellazzi et al.,
2019; Nienow et al., 2017; Flett et al., 2017). This, in turn,
provides support for the livelihoods of billions of people worldwide
(Viviroli et al., 2007). Snow-covered area (SCA), snow depth (SD),
and snow water equivalent (SWE) are considered essential climate
variables and serve as key indicators for climatology, hydrology,
and ecology. The use of long-term records is essential for the
identification of trends, particularly important within mountainous
regions (Safavi et al., 2017). It is evident that alterations in snow
cover properties and shifts in precipitation seasonality significantly
affect runoff timing, ecosystem dynamics, and avalanche risk
(Lebiedzinski and Fiirst, 2018; Callaghan et al., 2011). In recent
decades, both the extent and the duration of snow cover in mountain
regions have been subject to a general decline, with significant
regional variations (Hock et al, 2019; Thackeray et al, 2019;
Notarnicola, 2020). Combined with ongoing glacier retreat, these
changes are expected to substantially impact mountain hydrology
and water security in the coming decades (Kuttippurath et al., 2024;
Deng et al,, 2019; Huss et al., 2017).

In response to these challenges, consistent and spatially
extensive snow monitoring has become necessary (Gascoin et al.,
2024; Tsai et al, 2019). The field of operational satellite remote
sensing has witnessed considerable advancements in this respect,
offering a range of products with high temporal resolution and
global coverage. These products, including binary and fractional
SCA, have been available for over 2 decades, largely facilitated by
the MODIS (Hall et al., 2002) and the subsequent VIIRS. More
recently, high-resolution datasets from the Landsat and Sentinel-
2 missions have become freely accessible (Gascoin et al., 2019),
albeit with lower temporal frequency than MODIS. The use of
satellite-based observations in the context of large-scale snow
monitoring has been demonstrated to be of considerable importance
(Helbig et al., 2021; Dong, 2018).

However, in contrast to SCA, freely available satellite-derived
SD and SWE products remain scarce, particularly in mountainous
regions and at high spatial and temporal resolutions (Gascoin et al.,
2024). Consequently, there is an increasing demand for precise
SD data (Deschamps-Berger et al., 2020; Lievens et al., 2019;
Painter et al., 2016), particularly to support hydrological modelling
and water resource management, but also for other purposes, e.g., to
support avalanche forecasting (Richter et al., 2021) and ecosystem
monitoring (Pauli et al.,, 2013; Revuelto etal., 2022). Numerous
studies have sought to estimate SD and SWE indirectly through a
combination of terrestrial and remote observations, such as those
obtained from drones, satellites, and aircraft (McGrath et al., 2022;
Jenssen and Jacobsen et al., 2021). These observations have been
integrated through photogrammetry, radar, or LIDAR methods, and
those datasets are frequently utilized in conjunction with physically
based or empirical snowpack models and data assimilation
techniques (Alonso-Gonzalez et al., 2022; Girotto et al., 2024).

In light of the persistent lack of spatially distributed SD data
with fine temporal and spatial resolution in many mountainous
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areas, especially during snowmelt, statistical and machine learning
approaches have emerged as practical alternatives to physically-
based models, which require high-quality meteorological input
that is often unavailable. Earth Observation data combined
with machine learning techniques has shown great potential in
supporting large-scale and continuous SD and SWE monitoring
(Persello et al., 2022). Deep learning models (e.g., convolutional and
recurrent neural networks) have proven to be useful in complex
image-based hydrological data, although their accuracy remains
constrained by the spatial resolution of input data in topographically
heterogeneous alpine environments (Elyoussfi et al., 2025; Anderson
and Radi¢, 2022; Lu et al, 2022). A significant advancement
was proposed by Daudt et al. (2023), who developed a recurrent
convolutional neural network that integrates multispectral optical,
SAR, and elevation data for high-resolution SD estimation across
Switzerland. Other approaches, such as those by Wang et al
(2022) using deep belief networks and Xing et al. (2022)
combining CNNs with residual blocks for the Qinghai-Tibet
Plateau, further demonstrate the potential of these methods.
Among the various input variables explored, SCA is the most
commonly used predictor for estimating SDand SWE, and
although challenges remain, current research increasingly aims
to develop robust models based on SCA and other satellite
observations.

Despite these methodological advances, one important aspect
remains largely unexplored in current SD and SWE estimation
models: the geometric structure of snow cover patterns. While
several studies have highlighted the influence of topographic
variables such as slope, elevation, and SD in hydrological processes
(Griinewald et al., 2013), few have focused specifically on the
geometric structure of snow cover distribution. Early work by
Bloschl et al. (1991) demonstrated that snow cover patterns are
shaped by both topography and meteorological conditions, and
that hydrological processes, such as snowmelt, directly reflect
these influences. Their findings indicated that, despite spatial
complexity, the fundamental structure of snow cover patterns
to topographic
controls. Snow accumulation and melt processes are highly

tend to persist throughout the melt season due

variable across both spatial and temporal scales and are influenced
by wind redistribution, gravitational effects, and inter-annual
climate variability (Winstral et al., 2013; Clark et al,, 2011). In
this context, the final spatial distribution of snow at the end
of the accumulation season plays a critical role in determining
hydrological responses in alpine basins (Freudiger et al,
2017; Liston, 2004), as heterogeneity in SD, combined with
meteorological forcings, drives asynchronous melt patterns, faster
runoff from shallow areas, and prolonged melt in deeper zones
(Brauchli et al., 2017). Ferrarin et al. (2023) introduced the use
of geometrical descriptors, i.e., Minkowski Functionals (MF) and
average chord length distributions, to characterize snow cover
patterns in the Zugspitze catchment (Germany), linking geometric
features of snow cover to topography and seasonal dynamics. Their
results suggest that incorporating such geometrical descriptors
alongside in situ observations or modelling frameworks could
improve spatial SWE estimation in high-alpine environments. These
findings suggest that adding geometrical descriptors to the existing
set of predictors (with SCA being the most widely used) could
enhance current semi-empirical and machine learning models,
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which frequently rely predominantly on fractional snow-covered
area as an input.

To address this gap, in this study we investigate the impact
of incorporating two specific snow cover geometrical descriptors
(describing features of the topological structure of snow cover
patterns) into predictive, statistically-based models for estimating
SDin mountainous terrain. Specifically, we examine whether
including the second and third MF respectively the total
perimeter of snow cover boundaries (MF2) and the Euler-Poincaré
characteristic (MF3), improves model accuracy. The research
utilizes high-resolution remote sensing-derived SD and thereof
derived snow cover maps. A predictive model setup for SD based
solely on fractional snow-covered area (i.e., MF1), topographic
conditions, and seasonal information is compared as a baseline
with a model setup that also integrates geometrical descriptors MF2
and MF3. The study aims to determine whether these additional
descriptors enhance SD estimation accuracy and to identify
the conditions under which their inclusion is most beneficial.
Furthermore, we explore the key drivers of these conditions, such
as seasonality, snow accumulation, and topographic influences,
to better understand the role of snow cover geometric features in
SD predictive modelling and give an outlook of potential future
next steps.

2 Methods and data
2.1 Study area

The Tuolumne River Basin (Figure 1), located in California’s
Sierra Nevada within Yosemite National Park, is a crucial water
source for the San Francisco Bay Area in the U.S. (Painter et al,
2016). Covering ca. 1,180 km? with elevations ranging from 1,150
to 3,999 m (Hedrick et al., 2018), it lies upstream of the Hetch
Hetchy Reservoir, which supplies drinking water and hydropower
to nearly three million residents (Lundquist et al,, 2016). The
region experiences a Mediterranean climate, with most precipitation
falling between November and March. Snow serves as a seasonal
reservoir, releasing meltwater in summer when demand is highest.
However, large interannual variability results in runoff ranging
from below 50% to over 200% of climatological averages, requiring
adaptive water management (Lundquist et al., 2003). More than
half of the annual precipitation falls as snow, though this varies
due to droughts and atmospheric river events (Li et al., 2017;
Lahmers et al, 2022; Hedrick et al, 2020; Pflug et al, 2022).
Precipitation type varies with elevation: 60% of precipitation
falls as rain below 1,600 m; the 1,600-2,000 m range marks the
rain-snow transition zone; and above 2,000 m, covering 90%
of the basin, snowfall dominates, although summer rain can
occur even at high elevations (Lundquist et al., 2016). Vegetation
varies with elevation, from deciduous and coniferous forests in
lower areas to subalpine and alpine zones above the 2,900 m
treeline. The upper 35% of the basin (2,900-3,999 m) consists
of sparsely vegetated alpine terrain, where snow distribution is
shaped by wind and exposed granodiorite. The basin’s role as
a “water tower” has made it a key site for snow-hydrology
research (Viviroli et al., 2007; Henn et al., 2018a; Raleigh and
Small, 2017; Rice et al., 2011).
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FIGURE 1
Location and relief map of the Tuolumne River Basin within the U.S.

State of California.

2.2 Minkowsky functionals as snow pattern
predictors

We computed Minkowski Functionals (MF) for each date with
snow cover to characterize the spatial structure of snow distribution.
MF are mathematical tools used to describe the geometry and
connectivity of spatial patterns and have been applied across
various disciplines, including soil structure (Vogel et al., 2005)
and snow microstructure analysis (Schleef et al., 2014). Recently,
they have also been employed to assess snow cover dynamics
(Ferrarin et al., 2023). In two-dimensional space, three MF can be
defined (Parker et al., 2013):

i. Total Area Density (MF1), which quantifies the proportion of
the extent covered by snow in a selected area, and is equivalent
to the fractional Snow Covered Area (fSCA);

Total Perimeter Density (MF2), which measures the total
length of the boundary between snow-covered and snow-free
regions, normalized by the total area. It represents a measure

ii.

of the complexity of the boundary between snow-covered
and snow-free regions: a higher perimeter density indicates a
more intricate or irregular snow cover boundary, while a lower
value suggests a smoother, more continuous snow cover. This
metric helps capture the variability in snow distribution and
is useful for assessing the heterogeneity and connectivity of
snow-covered areas.
iii. Euler-Poincaré Characteristic Density (MF3), which captures
the connectivity of the snow cover. A positive MF3 indicates
that the snow cover is fragmented, with isolated snow patches
scattered across the area. Conversely, a negative MF3 suggests
a more connected snow network, with the absolute value
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representing the number of internal gaps or holes within the
snow cover. This metric is particularly useful for assessing
the degree of fragmentation or continuity of snow-covered
regions, helping to understand the spatial configuration of
snow distribution (Vogel and Babel, 2006). MF3 is given in
Equation 1:

MF3(X) = ij [ ] (1)
2 X R
where X is the snow cover pattern, R is the radius of curvature
of the circumference of a single snow cover object in the
pattern and dc is an infinitesimal element of the circumference
(Vogel et al., 2005).

All MF are affected by a saturation effect: they provide
meaningful information only when the analysed area includes both
snow-covered and snow-free regions. Once snow depth becomes
sufficient to completely cover the area, MF1 simply reflects the total
extent of the area, while MF2 and MF3 drop to zero.

Figure 2 illustrates examples of MF calculated over four distinct
snow cover patterns, each covering an area of 500 m: MF1 (i.e.,
fractional snow-covered area) increases as the extent of snow
cover increases. MF2 (i.e., perimeter of the snow-covered regions)
increases when the snow pattern is more fragmented and irregular
(i.e., more complex and heterogeneous, Figures 2B,C), and decreases
in cases where the snow cover consists of either small, isolated
patches (Figure 2A) or forms a large, continuous, and homogeneous
area (Figure 2D). MF3 (i.e., Euler-Poincaré characteristic) shows low
positive values when there are only a few small and isolated snow
patches (Figure 2A), higher positive values appear when there are
many disconnected patches (Figure 2B), high negative values when
the snow cover is highly heterogeneous but forms a well-connected
structure with multiple internal interruptions (Figure 2C), and low
negative values in cases of extended, mostly homogeneous snow
cover with few discontinuities (Figure 2D).

In this study, MF were calculated using the imMinkowski
MATLAB toolbox (Legland, 2025), applied to binary snow cover
maps for each available date. All metrics were computed relative
to the total extent of the study area and aggregated across the
full dataset. Further methodological details and examples of MF
application to snow cover can be found in Ferrarin et al. (2023).

2.3 The airborne snow observatory dataset

We used freely available data from the Airborne Snow
Observatory (ASO), which combines scanning LiDAR and imaging
spectrometry in the study area (Painter, 2018). ASO provided high-
resolution maps of SD, SWE, and snow albedo across mountain
watersheds from April 2013 to October 2019, supporting both
research and operational water management (Painter et al., 2016).
For this study, we used the 3 m resolution ASO-derived snow-free
digital elevation model (DEM) and SD datasets. SD was calculated
by differencing snow-on and snow-oft DEMs in non-forested areas,
with bias correction applied using snow-free zones set to zero
(Painter et al., 2016). ASO performed annual flights from peak SWE
through the melt season; we used data from five flights in 2013,
eleven in 2014, nine in 2015, and two in 2016. Comparison with 80 in
situ manual measurements showed no significant bias, and a RMSE
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FIGURE 2

Examples of different snow cover patterns (500 m extent) and
corresponding geometrical descriptors MF1, MF2, and MF3 (A-D).

of 0.08 m per 3 m pixel and <0.02 m per 50 m pixel (Painter et al.,
2016). Snow cover maps were derived from the SD maps. Further
details on ASO instrumentation and processing methodology are
provided in Painter et al. (2016).

Overall, the applied ASO dataset is often used to develop and
validate modelling and remote sensing products due to their high
temporal and spatial availability of SD data over a quite large area
over several years. Recently, numerous studies have used the ASO
dataset to analyse snow cover dynamics and improve water resources
management. Deschamps-Berger et al. (2020) used it for example, to
validate stereo-satellite derived and Sourp et al. (2025) to evaluate it
against high-resolution snowpack simulations from global datasets
and a comparison with Sentinel-1 SD retrievals. Pinder et al. (2024)
employed neural network-based forecasting models using ASO data
to predict snow water equivalent by considering SD and density.
Several studies reconstructed continuous space-time estimates for
SWE based on the dataset applying different techniques such as
physically-based modelling, data assimilation and machine learning
techniques (e.g., Margulis et al., 2019; Oaida et al., 2019; Painter et al.,
2016; Premier et al, 2023; Smyth et al, 2020). Henn et al
(2018b) combined ASO LiDAR-derived snow data with streamflow
observations to estimate basin-scale water balance and assess
processes such as snowmelt, infiltration, and evapotranspiration
during drought conditions.

We employ the ASO dataset to derive two distinct types of
variables for the construction of the predictive models:
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FIGURE 3
(A) 500 m resolution snow depth map examples of left: peak snow-cover conditions, acquired on 29/04/2013, and right: low snow cover conditions,

acquired on 08/06/2013. (B) 3 m resolution snow cover map examples of left: peak snow cover conditions, acquired on 29/04/2013, 50.8% of total
snow coverage, and right: low snow cover conditions, acquired on 08/06/2013, 8.0% of total snow coverage. (C) Examples of snow cover patterns of
500 m x 500 m extents used to compute the MF in different locations (P1, P2, P3). White areas represent no snow cover in all plots.

i. SD distribution resampled to a 500-m resolution and utilized
as the dependent variable for model calibration and validation.
The resampling is necessary because the MF are area-based
metrics therefore they relate to the cell-mean SD of the grid
used for their computation (further details on the selected
resolution are provided in the next section). Two examples
are shown in Figure 3A for peak snow cover conditions (left,
29/4/2013) and for minimum snow cover conditions (right,
8/6/2013).

ii. Binary snow cover maps, derived from the native 3-m
resolution snow height data, from which the MF were
computed on the 500-m grid as predictor variables. Figure 3B
shows two examples of snow cover maps for peak (left)
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and minimum (right) snow cover conditions (same dates as
Figure 3A), and Figure 3C shows examples of 500 m extents
used for the computation of MF in three separate locations (P1,
P2, P3).

2.4 Snow depth model setup using a
random forest approach

For SD modelling, we adopted the Random Forest (RF)
algorithm (Breiman, 2001), an ensemble learning method that
aggregates the predictions of multiple regression trees to reduce
variance and improve generalization (Guo et al.,, 2011). Each tree
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is trained on a bootstrap sample, i.e., a subset of the original data
generated by sampling with replacement (bagging), which contains
two-thirds of the original observations. The remaining one-third,
known as out-of-bag (OOB) samples, are not used in training
and serve as an internal validation set to estimate an unbiased
generalization error (Breiman, 2001; Peters et al., 2007). At each
node, RF does not evaluate all available predictors but instead selects
arandom subset of size my,. The best split is chosen only among this
subset, which reduces correlation among trees while maintaining
predictive strength.

Splits are chosen by maximizing the reduction in impurity, given
by the ratio between the weighted variance and the Mean Squared
Error (MSE). For a parent node ¢t split into children #; and t; on
predictor x;, the reduction in impurity can be calculated as:

A(t,x;) = p(t) = MSE() - [(p(t,) * MSE(t,) + p(t) » MSE(tg)] (2)

Where p(-) is the empirical node probability (Louppe et al., 2013).
The reduction A is the basis for the importance scores (Section 3.2).

The ensemble prediction is then obtained by averaging the
outputs of all trees in the forest. Random Forest was selected
because it has been applied effectively to related cryospheric and
snow-mapping problems (e.g., Revuelto et al.,, 2020; Yang et al.,
2020; Meloche et al., 2022) and is well suited to capture non-linear
relationships and interactions among multi-source predictors while
remaining robust to noise and collinearity. More detailed on the RF
method are given in the supplementary. For further details on the
mathematical procedure used see Breiman (2001).

Two user-defined parameters are central to the algorithm: the
number of trees (n,,.) and the number of variables considered at
each split (mtry) (Rodriguez-Galiano et al., 2012). As the number of
trees increases, the generalization error converges to a limiting value,
preventing overfitting. In practice, a sufficiently large n,,.. ensures
stability, while my,, controls the trade-off between tree correlation
and individual tree strength. Reducing m,,, tends to decrease
correlation between trees but may also weaken their predictive
power; hence, an optimal balance must be sought (Breiman, 1996).
For the RF algorithm in this study, n,.. was set to 500: this value
was selected based on preliminary tests in which increasingly higher
numbers of trees, typically used in literature for similar analysis,
were evaluated, and performance gains from increasing the number
of trees became negligible above this threshold. The parameter my,,
was set to 4, consistent with the default setting of p/3, where p is the
total number of predictors, 13 in this study.

Model robustness was evaluated using a simple cross-validation
approach. Specifically, models were trained on 100 randomly
selected subsets (according to Filzmoser et al., 2009), each
comprising 70%-80% of the dataset while ensuring high spatial
and temporal variability. The calibration-to-validation ratio was
chosen based on values commonly adopted in similar applications,
as reported in recent literature (e.g., Khosravi et al, 2023;
Blandini et al., 2023), where 70/30 or 80/20 partitions are frequently
used to balance training representativeness and validation reliability.
The subsets were drawn by randomly sampling individual grid
cells rather than entire geographic sub-regions, thereby minimising
potential biases associated with distinctive local topographic or
climatic conditions; this strategy, well established in literature
(e.g., Ma et al, 2023; Blandini et al, 2023), ensures the model
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is calibrated and validated across a wide spectrum of conditions,
avoiding cluster-specific over- or under-representation. With this
configuration, every cell of the grid was included at least once in
the validation group. To test the sensitivity of model performance
to training set variability, additional experiments were conducted
using up to 200 randomly selected subsets. The results obtained
with this expanded sampling scheme did not significantly differ
from those of the initial configuration, confirming the robustness
of the model performance observed in the previous analysis; Given
that an increase in the number of subsets results in a proportional
increase in computational time, it was decided to limit the analysis
to 100 subsets.

RF provides a measure of feature importance, which is
particularly useful in studies involving heterogeneous data sources
(Pal, 2005). This is quantified by permuting the values of each
predictor and evaluating the resulting increase in OOB error
(Breiman, 2001; Gislason et al., 2006). Features that cause a larger
drop in accuracy are considered more relevant to the model. This
property is of particular interest in environmental modelling, where
multiple interacting predictors are often available and their relative
contributions are not known a priori.

To evaluate the influence of the MF 2 and MF3, two RF models
were developed for this study:

i. A baseline model (BL-MF1) incorporating fractional snow
cover (MF1), topographic predictors, i.e., elevation (mean and
standard deviation), slope (mean and standard deviation),
curvature (profile, plan, and tangential), North/South and
East/West exposition (mean values), Topographic Position
Index (TPI, Wilson and Gallant, 2000), Terrain Roughness
Index (TRI, Amatulli et al., 2018), Wind Shelter index (WSI,
Winstral et al., 2002), latitude, longitude, distance from the
coast, and month.

An enhanced model (EN-MF123) that also includes two snow-
cover geometrical descriptors, MF2 (total perimeter) and MF3

ii.

(connectivity and fragmentation), to assess the impact of
snow cover geometric structure on SD estimation and evaluate
whether their inclusion improves predictive performance.
Predictors included in the two setups are shown in Table 1.

All predictors were computed on a 500 m resolution grid
covering the entire study area.

The model specification was identical for both cases. SD was
aggregated to a 500 m grid, and all topographic predictors were
resampled to the same resolution. The MF, being area-based metrics,
were computed on the 3 m snow cover maps, over the same
500 m cells. This ensures a one-to-one correspondence between the
geometric descriptors of the snow-cover pattern, the cell-average SD,
and the underlying topographic attributes, all defined on the same
spatial support.

A spatial resolution of 500 m was adopted in this study due
to its frequent application in snow cover research (Yang et al.,
2022; Zhu et al, 2021; Schneider et al, 2020), thereby
ensuring methodological consistency with previous literature and
interoperability with satellite-derived products (e.g., Ferrarin et al.,
2023). This resolution provides a balanced trade-off between
computational efficiency and the capacity to resolve physiographic
and snowpack heterogeneity. Moreover, it enables the integration
of multiple geospatial datasets while retaining sufficient granularity
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TABLE 1 Overview of predictor variables included in the baseline (BL-MF1) and enhanced (EN-MF123, including MF2 and MF3 as predictors) random
forest models. All predictors were computed on a 500 m grid resolution over the study domain.

Predictor Description EN-MF123
Fractional snow covered area (MF1) Fraction of each grid’s cell covered by snow. v v
Snow cover perimeter (MF2) Total perimeter length of snow-covered patches, describing snow X v

cover patterns complexity.

Snow cover Euler-Poincaré Characteristic (MF3) Topological descriptor capturing connectivity and fragmentation X v

of snow cover patterns.

Altitude (mean) Average and standard deviation of elevation, representing vertical v v

terrain heterogeneity.

position (i.e., related to temperature and wind exposure) and

Aspect (North/South, East/West) Average terrain aspect components controlling solar exposure and v v
melt rates.
Slope (mean, std) Average and standard deviation of local slope, influencing snow v v

accumulation and redistribution.

Curvature (profile, plan and tangential)

Terrain curvature components describing concavity/convexity, v v
relevant to snow deposition and melt dynamics.

Topographic Position Index (TPI)

Relative elevation compared to surrounding terrain in the cell, v v
indicative of ridges, valleys, or flat areas.

Terrain Roughness Index (TRI)
snow retention.

Measure of local elevation variability affecting e.g., wind effect and v v

‘Wind Shelter Index (WSI)
and deposition.

Degree of shelter from prevailing wind, influencing snow erosion v v

Latitude, Longitude
orographic gradients.

Geographical coordinates capturing large-scale climatic and v v

Distance from coast

Proxy for continentality, affecting e.g., humidity and snowfall. v v

Month (categorical)

Seasonal indicator to account for intra-annual variability in snow v v
precipitation and accumulation.

for the characterization of snow cover geometric structure and the
estimation of SD. To validate this choice, a sensitivity analysis was
conducted during the preliminary phase of the study, evaluating
three spatial resolutions: 250 m, 500 m, and 1km. Stepwise
linear regression revealed that R? and relative contribution of the
geometrical descriptors MF2 and MF3 in the predictive model,
increased with decreasing spatial resolution (e.g., coarser grids).
Consequently, the 500 m resolution was selected as an optimal
compromise, offering adequate spatial fidelity for SD representation
while maximizing the effectiveness of MF. Ferrarin et al. (2023) also
employed a 500 m spatial scale in their correlation analysis between
MF indices and SWE.

2.5 Model evaluation

To evaluate the impact of including MF2 and MF3 in
SD estimation models, we analysed the following standard
performance metrics: the coefficient of determination (R?), which
quantifies the proportion of the observed variance explained by
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the model; the Root Mean Square Error (RMSE), which measures
the typical magnitude of prediction errors and is sensitive to
large deviations; the Mean Bias Error (MBE), which indicates the
average tendency of the model to overestimate or underestimate
observations; and the Mean Absolute Error (MAE), which
represents the average absolute difference between simulated and
observed values, providing a robust measure of overall accuracy.

To obtain a robust estimate of the influence of MF2 and MF3,
we examined the distributions of R, RMSE, MBE and MAE across
the two models, trained on the 100 different random subsets of
the dataset. To assess the statistical significance of performance
differences, we applied the Wilcoxon paired test (Wilcoxon, 1945) to
compare the results from EN-MF123 and BL-MFI models. As a non-
parametric test, it does not require assumptions of normality and
evaluates differences based on ranked pairs. This approach allowed
us to determine whether the inclusion of MF2 and MF3 leads to
significant improvements in SD prediction performance.

Secondly, we restricted the analysis to R?> and RMSE, and
we investigated how these metrics change over time and across
different snow-cover pattern conditions as well as different
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topographic conditions. The focus was placed on these two metrics,
because together they capture the most relevant aspects of model
performance for snow depth estimation in a hydrological modelling
context (variance explained and magnitude of errors). MBE was
not further considered, as both models exhibit negligible systematic
bias, rendering this metric of limited interpretative value. Similarly,
MAE was not reported because it exhibited very similar patterns
to RMSE. Since no strong outlier effects were observed in the
data, the additional information provided by MAE would have
been limited, and RMSE alone was considered sufficient for
interpretation.

3 Results and discussion

In this chapter we present the evaluation of the two SD model
setups: BL-F1 and EN-MF123, focusing on the impact of including
MF2 and MF3, the predictor importance, and SD error distributions.
Additionally, we examine the temporal dynamics of R* and RMSE,
variations in model performance across different snow cover
patterns and topographic conditions and addresses the potential
limitations of the derived SD models.

3.1 Effect of including MF2 and MF3 on
modelling SD

Table 2 reports the average, maximum, and minimum values
of each performance metric, computed across all runs of the
models over the 100 subsets. Overall, the EN-MF123 model
outperforms the BL-MF1 model for all metrics, except for MBE,
where no meaningful improvement is observed (average value
remains below 1072 m for both models). On average, R? increases
by 0.02 (2%), while RMSE and MAS decrease by 0.02m (11%)
and 0.01 m (9%), respectively. To assess the statistical significance
of these differences, a non-parametric Wilcoxon signed-rank test
was applied. The results confirm that the distributions differ
significantly at the 95% confidence level, with p-values below 4-107'
for both metrics.

The reduction in average RMSE, corresponds to approximately
5% of the mean snow depth across the entire basin. Quantifying
the impact of this reduction in terms of SWE would be useful,
but it is not straightforward. However, a simple assessment
indicates that, assuming an average snow density of 400 kg m™>, this
reduction corresponds to approximately 6% of the basin-average
SWE provided by ASO for the same dates considered in this study
(Yang et al., 2025). Moreover, since the absolute reduction in RMSE
is 0.02 m, and the RMSE of the ASO snow depth data at 50 m
resolution is reported as <0.02 m (Painter et al., 2016), the decrease
observed in this study is larger than the intrinsic uncertainty of
the reference dataset, which, given the coarser 500 m resolution
applied here, is expected to be even smaller, further supporting the
significance of the result.

Figure 4 presents the histograms of the performance metrics
across the 100 subsets. The inclusion of MF2 and MF3 produces a
marked shift in the distributions, with R* moving towards higher
values (Figure 4A) and RMSE and MAE shifting towards lower
values (Figures 4B,D). MAE shows a stronger decrease compared to
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TABLE 2 Summary statistics of model performance metrics, R?, RMSE
(m), MAE (m) and MBE (m), computed over 100 random subsets of the
dataset. The table reports the mean, maximum, and minimum values for
models trained with (EN-MF123) and without MF2 and MF3 (BL-MF1).

Performance metric ‘ Model Mean Max Min
EN-MFI23 | 0.87 0.89 0.85
RZ
BL-MF1 0.85 0.87 0.82
EN-MFI123 | 0.17 0.20 0.15
RMSE (m)
BL-MF1 0.19 0.22 0.16
EN-MFI123 | 0.10 0.11 0.08
MAE (m)
BL-MF1 0.11 0.12 0.09
EN-MF123 | 0.00 0.02 -0.02
MBE (m)
BL-MF1 0.00 0.02 —0.01

RMSE, suggesting that EN-MF123 decreases the overall magnitude
of errors more effectively and provides more consistent accuracy
across the majority of predictions compared to BL-MF1, while few
relatively large errors persist. Histogram of MBE (Figure 4C) shows
no differences, indicating that both models exhibit no tendency
toward estimation/underestimation and that MF2 and MF3 do not
substantially affect this aspect.

3.2 Predictors’ importance of the SD model

To further investigate the role of MF in SD prediction,
we analysed the relative importance of each predictor used in
the models. Predictor importance was computed by evaluating
reductions in node risk at each split in the decision trees, where
node risk is defined as the node error weighted by node probability
(Equation 2). The importance of each predictor was then estimated
by summing the reductions in mean squared error due to its
splits and normalizing by the total number of branch nodes across
the ensemble (Louppe et al., 2013).

Figure 5 shows predictor importance scores for BL-MF1 and
EN-MF123. The scores were normalized by dividing each predictor’s
score by the sum of all predictor scores for the specific model,
so that their total equals 100%, thereby expressing the relative
percentage contribution of each predictor. When MF2 and MF3
are excluded, MF1 (fractional snow cover) dominates the model
(importance score above 70%), reflecting the strong relationship
between snow extent and SD variability. Other predictors contribute
only marginally (all below 10%). When MF2 (perimeter density
of the snow cover, ie., heterogeneity of the pattern) and MF3
(Euler-Poincaré characteristic of snow cover, i.e., connectivity or
fragmentation of the pattern) are included, they emerge as highly
relevant predictors (with an importance score of, in order, 11%
and 23%), second only to MFI. Importantly, the importance
of MF1 decreases in this case (reaching 50%), suggesting that
MF2 and MF3 provide new, non-redundant information that
complements the contribution of fractional snow cover. This implies
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that MF2 and MF3 capture aspects of snow cover spatial structure
not represented by MF1, improving model generalization under
varying snow conditions. Interestingly, MF3 shows an importance
factor which is double the one of MF2; this result suggest
the Euler-Poincaré characteristic is more relevant in capturing
additional information on snow cover geometric characteristics,
compared to the extent of the snow cover boundaries. This
may reflect the intrinsic ambiguity of low MF2 values: they
can correspond either to nearly homogeneous snow cover with
few or small gaps, or to patterns with only a few small snow
patches (e.g., Figures 2A,D). By contrast, MF3, because it can take
negative as well as positive values, better discriminates between these
very different snow-cover condition, providing more predictive
information for SD.

Beyond MF predictors, elevation and north-south aspect are the
most influential topographic variables and keep their rank whether
or not MF2 and MF3 are included. Elevation reflects temperature
and precipitation gradients, while aspect controls incoming solar
radiation. Next in importance are TRI and WSI, with overall stable
rankings, followed by latitude, whose influence on SD is mainly
mediated by synoptic and local weather conditions and, to a lesser
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extent, by its impact on solar radiation. Slope gains importance once
MF2 and MF3 are included, suggesting that slope effects are better
resolved when the geometric structure of the snow cover is explicitly
captured by these descriptors. On the other hand, the temporal
predictor “month” drops markedly in importance with MF2 and
MF3, implying that these metrics encode richer seasonal signals.
East-west aspect, curvature indices, TPI, longitude, and distance to
the ocean remain of very low importance in both models, indicating
a marginal role for these factors in SD prediction at the scales
considered.

3.3 Error distributions of SD estimates

A comparative analysis of the error distributions derived
from BL-MF1 model and the enhanced EN-MF123 model was
conducted to delineate the SD ranges where MF2 and MF3 most
effectively enhance estimation accuracy. Errors were quantified as
the difference between observed and predicted SD values. Figure 6
presents histograms showing the frequency distributions of these
errors for EN-MF123 model (blue) versus BL-MF1 (red). To facilitate
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FIGURE 5
Predictor importance for the SD estimation, for EN-MF123 (blue), and BL-MF1 model (red). Scores are normalized so that their total equals 100%,
representing the relative percentage contribution of each predictor to the overall prediction.

3.4 Temporal dynamics of R2 and RMSE of
SD model estimates

60  EN-MF123
BLMEL In this section we analyse the temporal evolution of the average
R* and RMSE of SD estimation models, comparing EN-MF123
model (blue line in Figure 7) with BL-MFI (red line), during the

study period (February-June). Each panel in the figure represents

2

F3

1 year from 2013 to 2016, and each point corresponds to a prediction
date. Overall, model EN-MF123 outperform BL-MFI in most cases
(26 out of 27 dates), as attested by higher R? values and lower RMSE.
The time series of both R* and RMSE exhibit a similar temporal
pattern. On average, the daily mean R* increases by 0.036, while

2

Probability density

b4

ol daily RMSE improves by 0.015 m; the maximum improvement of

0 R2, equal to +0.125, is observed on the 9/4/2015, while maximum
0.1 -0.08 -0.06 -0.04 -0.02 0 002 004 006 008 0.1 improvement of RMSE, equal to —0.038 cm, is observed on the
Log shifted error 29/4/2013. The slight decrease in model performance on 23/3/2014,

FIGURE 6 with a reduction of —0.013 in R? and an increase of +0.006 cm in

Frequency distribution of SD estimation errors (log-shifted, RMSE, can be attributed to the model calibration approach and
see Equation 3 for mathematical transformation) for EN-MF123 model

(blue) and BL-MF1 (red).

the specific snow cover conditions on that day. The models were

calibrated using subsets spanning the entire study period, ensuring

no single day was exclusively used for calibration or validation.

This method prevents biases tied to specific days, as the models are

optimized for the overall period. Consequently, the performance

interpretation and emphasize differences around zero, we applied  deterioration on 23/3/2014 is likely due to unique snow cover
a logarithmic transform of the shifted errors, with the shift being  patterns on that day, which resulted in low correlations between
equal to the absolute value of the minimum observed error to ensure MF2 and MF3 descriptors and SD. The model, calibrated for the
positivity. Letting e; denote the signed error, the corresponding  entire range of conditions happening between middle-winter to late
transformed value z; is: melting season, does not adapt well to these particular conditions.
No significant temporal dependency in R? and RMSE improvements

z; =log(e; +/min (e)|) (3)  was observed.

To better understand the snow cover pattern conditions affecting

This strictly increasing transformation compresses the tails and  model performance, Figure 8 illustrates the temporal evolution of
enhances resolution near zero while preserving the relative ordering ~ mean SD (left) and the three geometrical descriptors (MF1, MF2,
of errors and their sign. The results demonstrate that the error =~ MF3, right), for each year from 2013 to 2016 (SD spatial distribution
distribution for EN-MF123 model is more tightly centred around  at every recorded date is shown in Figure 1 of the Supplementary).
zero, indicating improved predictive accuracy. Notably, the most ~ In general, SD and MF show a strong time dependence, which
significant divergence is observed in the negative error range  can be observed in 2013, 2014 and, in the few dates where data
(i.e., overestimation) where EN-MF123 model exhibits a marked is available, 2016; for these years SD and MF show also the same
reduction in error frequency compared to models without these  range of values. On the other hand, 2015 shows lower values of
descriptors. This reduction in overestimation suggests that the  SD, alongside lower values of MF1 and MF2, and higher values
incorporation of snow cover geometric structure via MF2 and MF3  of MF3. These values suggest a particularly dry year, with smaller
substantively mitigates bias in SD estimation. amount of snow cover in terms of depth and extension, and a
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Temporal evolution of R? (left) and RMSE (right) for snow depth estimation models with (blue, EN-MF123) and without (red, BL-MF1) geometrical
descriptors MF2 and MF3 across 4 years (2013-2016). Each point represents model performance for a single date.

higher level of fragmentation (with the exception of April). In
particular, MF2 and MF3 exhibit evident seasonal cycles, albeit with
interannual phase shifts. This recurrence of melt-season snow-cover
patterns under persistent topographic controls supports their utility
as SD predictors, consistent with the high predictor-importance
scores reported earlier. In addition, we also examined the temporal
evolution of the standard deviation of SD (both absolute and
relative), but this metric did not reveal clear temporal trends and
therefore did not provide additional explanatory value. For this
reason, it is not shown among the main results.

As expected, the mean SD tends to decrease throughout the
study period, from late winter into spring. As the season progresses
and melt processes begin, particularly at mid and lower elevations,
SD progressively decreases throughout the entire study area, and
the terrain becomes increasingly exposed. This exposure gives rise
to increasingly fragmented and topographically influenced snow
cover patterns. This shift in snow cover complexity is reflected in
the model performance: R* values tend to increase, while RMSE
values tend to decrease, as the season progresses. This suggests
that more complex and heterogeneous snow patterns provide richer
spatial cues that can be effectively captured by MF2 and MF3,
leading to improved model accuracy. A notable exception to this
general trend occurs in 2015 (Figure 8), when two dates in April
(9/4 and 27/4) exhibit a sharp decline in model accuracy, reaching
the lowest R* values observed across the 4-year period and the
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highest RMSE vales of the year. These drops coincide with a spike
in average SD, indicating a late-season snow event that temporarily
reset the snowpack to a more homogeneous state. Snow cover
maps from those dates (Figures 9B,C), along with those from
days before and after (Figure 9A acquired on 03/04; Figure 9D,
acquired on 01/05), reveal the drastic change in the conditions of
the snow cover, characterized by a lower fragmentation, typically
associated with decreased model accuracy. Despite the challenging
conditions, the difference in R? and RMSE between EN-MF123
and BL-MF1 on those dates is the largest observed across the
entire study period. This underscores the significant contribution
of MF2 and MF3 even under conditions of relatively uniform
snow cover, demonstrating their ability to enhance SD estimation
performance even and especially when snow pattern complexity
is reduced.

Regarding MF1, plots in Figure 8 reveal a strong similarity with
the mean SD, confirming the role of MF1 as the dominant predictor
in all models (as previously shown in Figure 5). This is expected, as
greater SD generally corresponds to more extensive snow coverage.
ME2, shows a similar, but not identical, trend to MF1. In fact,
while higher SD often corresponds to greater boundary extent, this
relationship breaks down in cases of highly homogeneous snowpack,
with small and sparse empty spots. MF3 exhibits an inverse trend
compared to MF1 and SD. As SD and coverage decrease, MF3 tends
to increase, indicating the emergence of patchy and discontinuous
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FIGURE 8

Temporal evolution of the average SD (left) and the three geometrical descriptors (MF1, MF2, MF3, right) for each year from 2013 to 2016.

snow distributions, and the increase of small ad isolated snow-
covered areas. Conversely, when snow is more continuous and
extensive, MF3 values drop, reflecting fewer isolated snow patches
and more internal gaps within the snow cover. These trends support
the interpretation that SD estimation models perform best under
conditions of high MF2 and low MF3, i.e., when the snowpack is
spatially heterogeneous and present multiple diffused non-snow-
covered patches. In such configurations, topographic features are
more exposed, and spatial structure is more complex, providing
more informative cues for SD prediction. This again reinforces the
importance of including MF2 and MF3 in the models. Focusing
once more on the two anomalous April dates in 2015, we observe
low MF3 values combined with unusually high MF2 values. This
pattern indicates the presence of large, contiguous snow-covered
areas with multiple but small and isolated gaps, confirming an
extended and homogeneous snowpack hypothesized earlier. These
conditions explain both the drop in model performance and the
particularly large difference in R* between EN-MF123 and BL-MF1
models, as discussed with respect to Figure 8.

The similarity in the temporal evolution of MF1 and MF2, and
their clear divergence from MF3, partially explains the predictor-
importance scores in Figure 5. As discussed above, MF3 ranks as the
second most informative predictor, whereas MF2 is less influential
for SD because it contributes less novel information beyond MFI,
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however still more than any other topographical descriptor, which
show lower predictor-importance scores.

3.5 Variation of R? and RMSE of SD model
estimates across different snow pattern
conditions

To further investigate the influence of snow cover conditions
on the accuracy of SD estimation, boxplots of R* and RMSE were
generated (Figure 10), comparing EN-MF123 model with BL-MF1
model, across different snow cover patterns conditions, identified by
different MF classes. Figure 11 shows the distribution of observed
SD values in the same MF classes, providing contextual insight for
interpreting model performance.

In Figure 10A data is categorized according to four MF1(snow
covered area) classes: 0%-25%, 25%-50%, 50%-75%, and
75%-100%. EN-MF123 model consistently show higher R* and
lower RMSE across all MF1 classes. Although no consistent trend in
accuracy with MF1 is observed, the highest model performance is
found in the 0%-25% class, likely corresponding to late-season snow
conditions when snow is patchy and topographically influenced.
These settings are associated with the lowest SD values of the season,
as shown in Figure 11A. Conversely, the lowest model accuracy
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FIGURE 9
Snow cover maps acquired on (A) 03/04/2015, (B) 09/04/2015, (C)

27/04/2015 and (D) 01/05/2015, displaying a late-season snow event.

is found in the 25%-50% MF1 class, representing a transitional
snow cover phase. Meanwhile, RMSE increases with MF1, reflecting
the expected relationship between greater snow cover and larger
absolute SD values. However, RMSE remains consistently lower
in EN-MF123 model, confirming the added value of geometrical
information in improving prediction.

In Figure 10B, the analysis is repeated using MF2 classes
(perimeter density of the snow-covered area, which quantifies
the heterogeneity of the snow pattern): 0-0.0375, 0.0375-0.0750,
0.0750-0.1125, and 0.1125-0.1500. Across all classes, the EN-
MF123 model outperforms the BL-MF1 model. The best
performance is observed in the lowest MF2 class. Low MEF2
values can correspond to two contrasting situations: (i) nearly
continuous snow cover with very few and small gaps, typical of
peak accumulation periods (e.g., Figure 2D), or (ii) very sparse
snow remaining in isolated patches, typical of late melt season (e.g.,
Figure 2A. These conditions are usually associated with either very
high (case 1) or very low (case ii) snow depth values, as shown by
the SD distribution in Figure 11B. In both cases, model accuracy is
high for EN-MF123 and BL-MF1, and the benefit of including MF2
and MF3 is limited.

As MF2 increases, the snow cover pattern becomes more
complex and heterogeneous: the number and size of snow patches
or gaps within the snowpack grows (e.g., Figures 2B,C), reflecting
a more fragmented distribution. These intermediate MF2 values
are typically observed in transitional phases, just before or after
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FIGURE 10

Boxplots of R? and RMSE (m) for snow depth estimation models
EN-MF123 (blue) and BL-MF1 (red). The analysis is divided into different
snow cover classes based on (A) MF1 (fractional snow cover):
0%—-25%, 25%—-50%, 50%—-75%, and 75%—-100%. (B) MF2 (total
perimeter length of snow-covered areas): 0-0.0375, 0.0375-0.0750,
0.0750-0.1125 and 0.1125-0.1500. High positive MF2 values represent
complex and discontinuous snow cover (typical of late melt season),
while low values represent either an extended and homogenous snow
cover (typical of peak accumulation conditions) or small and few snow
cover patches (typical of very early or very late snow season). (C) MF3
(Euler-Poincaré Characteristic): —0.04 to —0.01, —0.01 to 0.00, 0.00 to
0.01, and 0.01 to 0.04. High positive MF3 values represent numerous
disconnected snow patches, while high negative values indicate many
internal gaps within a discontinuous but connected snow cover.
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peak accumulation. Under such conditions, snow depth values
cluster around a narrower low-to-medium range (~0.25 m), making
accurate prediction more difficult. Both models show reduced
accuracy in these scenarios; however, the inclusion of MF2 and
MF3 substantially improves the EN-MF123 model, as the additional
geometrical descriptors help capture the spatial variability of the
snowpack that is not represented by MF1 alone.

Finally, Figure 10C groups the data according to MF3 values
(Euler-Poincaré characteristic of snow cover, which describes the
degree of connectivity or fragmentation of snow-covered areas),
using four classes: -0.04 to —0.01, —0.01 to 0.00, 0.00 to 0.01, and 0.01
to 0.04. Negative MF3 values indicate a more connected snowpack,
where snow cover is extensive but includes internal gaps (e.g.,
Figure 2C). While positive MF3 values reflect fragmented patterns
with numerous disconnected snow patches (e.g., Figure 2B).

Across all MF3 classes, the EN-MF123 model outperforms the
BL-MF1 model, achieving higher R? and lower RMSE across all
MF3 classes. The best performance is observed in the central classes
(=0.01 to 0.00 and 0.00-0.01), which correspond to intermediate
connectivity states: (i) conditions with only a few isolated snow
patches (e.g., Figure 2A), or (ii) a continuous snow cover layer
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with scattered gaps (e.g., Figure 2D). These scenarios are generally
associated with either low SD values with exceptions at high-altitude
sites where snow accumulation remains deep outside peak season
(case i) or high SD values with exceptions at low-altitude sites that
maintain shallow snow even during peak accumulation (case ii). The
differences in RMSE between these classes can be explained by the
distinct SD distributions shown in Figure 11C.

The lowest R? values occur in the highest MF3 class (0.01-0.04),
which reflects highly fragmented snow patterns with many small,
disconnected patches (e.g., Figure 2B). These conditions are typically
associated with low-to-medium SD values, consistent with the
findings from the MF1 and MF2 analyses. Importantly, even in this
fragmented regime, including MF2 and MF3 substantially improves
prediction accuracy, highlighting the added value of geometrical
descriptors in representing the spatial variability of the snowpack.

Some additional considerations in regards of the importance MF
as predictors can be done:

i. MF2 is the least important among the 3 MFs. It produces a
marked performance increase only in the highest MF2 class
(1.72% of the data) and a smaller increase in the second-highest
class (49.52%). Hence, MF2 improves SD prediction for just
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over half of the dataset; for the remaining half, its contribution

is negligible.
ii. For MF3, the magnitude of the performance gain decreases
across its classes, but the sample size in each class also
decreases. Overall, the benefit of including MF3 is evident
for the majority of the dataset, 53.68%, 32.49%, and 11.70%
in the first three classes, respectively, whereas only 2.13%
falls into the last class, where the improvement is negligible.
These observations are consistent with, and help explain,
the predictor-importance distribution discussed earlier
and shown in Figure 5.

3.6 Variation of R?> and RMSE of SD model
estimates across different topographic
conditions

To assess how terrain characteristics influence SD model
performance, we analysed R? and RMSE across classes of elevation,
aspect, and slope (Figure 12). The distribution of observed SD values
within the same categories (Figures 11D-F) provides the necessary
context for interpreting model behaviour. We selected these
variables because elevation and aspect emerge as particularly
relevant descriptors for both models, consistently influencing snow
distribution and model accuracy; slope although it does not exhibit
a high relative importance score in the predictor analysis, remains
a fundamental topographic variable, affecting snow redistribution
and stability, with implications for various applications, including
avalanche hazard assessment, hydrological modelling, ecosystem
processes, and the planning and maintenance of infrastructure in
mountain regions.

In terms of model performance, both EN-MF123 and BL-
MF1 achieved the highest accuracy under these conditions:
intermediate elevations (1,800-3,200 m, Figure 12A) and gentle
slopes (0°-15° Figure 12C), where SD is moderate to high, and
south-facing aspects, associated with moderate to low SD. These
results suggest that estimation is most reliable when snowpacks
are thick enough to reflect terrain controls, but not so deep as
to mask them.

The inclusion of geometrical descriptors MF2 and MF3 proved
particularly beneficial under conditions of generally high SD. At
high elevations (3200-3900 m, Figure 12A), the mean R? increased
by 0.07 and RMSE decreased by 0.04 m; on strongly north-facing
aspects (Figure 12B, R* increased by 0.03 and RMSE decreased by
0.03 m; and on steep slopes (30°-45° Figure 12C), R* improved by
0.04 and RMSE decreased by 0.03 m. In these cases, the additional
spatial information provided by MF2 and MF3 enhanced the
models’ ability to capture snowpack variability that is less apparent
when snow cover is consistently deep.

By contrast, the inclusion of MF2 and MF3 reduced model
accuracy under conditions associated with low SD, namely,
low elevations (<1800 m, Figure 12A) and very steep slopes
(>45° Figure 12C). In these settings, mean R? decreased by 0.2
and 0.1 respectively, while changes in RMSE were negligible at low
elevations and slightly adverse on steep slopes (+0.029 m). Besides
the limited representation of these settings in the training data
(1.05% and 0.28% of the study area, respectively), several factors
likely contribute. First, when snow depth is low, the geometric
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Boxplots of R? and RMSE (m) for snow depth estimation model
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to 0.3, North STR, 0.3-1) and (C) Slope (0°-15°, 15°-30°, 30°-45°,
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structure of the snowpack is weak or short-lived, so MF2 and MF3
might provide ambiguous/low-signal information relative to MFI,
increasing model variance. Second, MF areal descriptors at 500 m
may be mismatched to the fine-scale heterogeneity typical of steep
or low-elevation areas. Third, because predictor-SD relationships
vary across topographic classes (non-stationarity, e.g., differing
accumulation/ablation controls) and MF2 and MF3 can be collinear
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with existing variables, the ensemble may, especially with few
samples, choose splits that are optimal globally but mis-specified
locally, yielding sub-optimal partitions and degraded predictive
accuracy within those subsets under these conditions.

3.7 Potential limitations of the derived
SD models

First, one potential limitation of this study is that the spatial
distribution of the SD estimation was set to a resolution of 500 m,
however, results might be different for other resolutions. This goes
along with the fact that, to include MF in a predictive model, it
is necessary to average topographic indices over entire grid cells
and relate them to mean SD, which may limit the applicability of
the results in contexts where finer spatial detail is required. This
would be particularly important for applications such as avalanche
forecasting, habitat modelling, or very localized hydrological
assessments, which rely on high-resolution SD maps to capture
small-scale variability, especially in complex and heterogeneous
alpine terrain. It is acknowledged that using MF as predictors
entails an intrinsic change-of-support. Because MF are area-based
geometric indices, they refer to cell-averaged conditions; linking
them to SD therefore requires aggregating SD to the MF support.
Consequently, either SD estimates must be produced at a coarser
resolution, or, if the target resolution is preserved, the MF must
be computed from higher-resolution inputs. However, the question
remains as to whether it would be possible to obtain higher-
resolution SD maps, compared to a coarser resolution of 500 m
applied in this study, by applying a finer grid resolution during
the computation of the ME Also scaling issues for finer or coarser
resolutions, e.g., continental or global scale applications, could occur
due to non-linarites whilst averaging SD and topographic indices.

Second, the snow cover maps used to compute the geometrical
descriptors were derived from an exceptionally high-resolution
SD dataset (3 m). While this allowed for a detailed characterization
of snow cover patterns, such high-resolution input data (see e.g.,
Cimoli et al., 2017; Wulf et al., 2020; Biihler et al., 2015) are rarely
available across broader regions or other climate zones and for
different time steps within a year and over multiple years. As a result,
the testing of our method in other regions, as derived in this study,
may be limited in areas where no or only coarser resolution datasets
are available.

Third, our analysis is restricted to the late accumulation and
ablation phases of the snow season (from late February to June). This
period is hydrologically relevant, as it includes peak SWE and the
melt season, but excludes early-winter and mid-winter accumulation
and redistribution processes. The lack of data for the full snow season
limits our ability to assess whether the added value of MF2 and
MF3 persists under early-winter conditions, when snow distribution
is strongly influenced by storm sequences, wind redistribution,
and shallow snowpacks. Applying the method across the entire
season, including accumulation onset, would be useful to evaluate
its robustness in different snow regimes.

Fourth, in a limited number of specific cases, such as low-
elevation zones, areas with very steep slopes, or on isolated dates
(e.g.,23/03/2014), the inclusion of MF2 and MF3 resulted in a slight
reduction in model accuracy. Under these particular conditions,
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(caused by e.g., exceptional meteorological events, such as intense
snowfall, strong wind episodes, or sudden warming or specific
topographic features), the geometric signal of the snow cover
patterns is weak or ambiguous (e.g., low MF2 can reflect either
thin continuous cover or scattered patches, and MF3 may be noisy
where patch connectivity is poorly resolved) and can introduce
additional uncertainty into the estimation of SD. Moreover, because
MF areal descriptors are computed at 500 m, areas with strong
sub-cell heterogeneity can suffer change-of-support mismatch. In
small, imbalanced subsets (e.g., low represented topographic areas,
rare snow cover conditions) these weak or collinear signals can
steer the ensemble toward globally good but locally sub-optimal
splits, increasing variance/bias. The model, trained on data from
the entire 4-year period, lacks the adaptability to account for
such specific conditions. Therefore, the slight underperformance
of the EN-MF123 model compared to the BL-MF1 model under
certain specific conditions (whether temporal or topographical)
can be attributed to the high spatial and temporal variability of
the SD distribution in the study area, which makes it challenging
for the models to adapt to all observed conditions. Accordingly,
the inclusion of MF2 and MF3 must be best evaluated case
by case, balancing the anticipated accuracy gains against the
additional computational cost, with particular attention to low-
SD or highly heterogeneous settings where the benefits are more
context-dependent.

Finally, as the analysis was conducted in one specific study area,
the influence of local topographic and/or climatic conditions at
other regions on model performance remains uncertain. We cannot
conclude if the enhanced RF SD model with MF2 and MF3 also
exceeds the baseline simulation at other resolutions and in other
locations, which will be subject of further investigations.

4 Conclusion and outlook

This study evaluates the added value of two geometric
descriptors of snow cover, MF2 (perimeter density) and MF3
(Euler-Poincaré characteristic, i.e., connectivity/fragmentation),
alongside fractional snow-covered area (MFI1) and standard
topographic/geographic predictors, for snow-depth (SD) estimation
with a Random Forest. The analysis was conducted in the Tuolumne
River Basin (California, United States) using multi-year ASO
SD maps (2013-2016). Using cross-validation, we calibrated two RF
models: an enhanced model, EN-MF123 (including MF2 and MF3),
and a baseline model, BL-MF1 (excluding them). Both models
were trained on 100 random subsets to obtain robust performance
estimates.

By analysing model performance across a range of spatial,
temporal, topographic and geographic conditions, the results
consistently show that adding these geometrical descriptors
improves both the accuracy and robustness of SD predictions.
Overall, both model realizations perform well. The EN-MF123
setup (incorporating MF2 and MF3) generally outperforms the
BL-MF1 model, as indicated by higher R? and lower RMSE in the
vast majority of test scenarios. Improvements are not uniform:
they are visible under complex snow-cover patterns, such as during
late melt seasons, in areas with fragmented snow distribution,
and at higher elevations and steeper slopes, where the two
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additional descriptors capture spatial characteristics not adequately
represented by traditional baseline predictors. However, the most
substantial contribution of MF2 and MF3 emerges under deep,
homogeneous snow cover, where terrain-induced variability is less
apparent in areal extent and conventional predictors often struggle
to provide accurate estimates. In these cases, the spatial information
conveyed by MF2 and MF3 becomes especially valuable, allowing
the model to account for subtle patterns in snow distribution
and to improve prediction reliability. MF2 and MF3 predictors’
importance scores exceed those of all other predictors (except MF1),
indicating that they provide strong, non-redundant information on
snowpack geometry that enhances SD predictability; overall, the
EN-MF123 model outperforms the BL-MF1 model, as shown by the
general increase in R* and the decrease in RMSE and MAE. This
study underscores the value of including snow-cover geometrical
descriptors for improved spatially distributed SD estimation using
remote sensing, with applications in water management, ecology,
and avalanche forecasting.

Future work could go in the direction of extending this analysis
by investigating how the spatial resolution of input data influences
the performance of SD estimation. Specifically, the methodology
could be applied using different grid sizes to test snow cover products
of varying spatial resolutions, such as MODIS, VIIRS, Sentinel-3,
Landsat and Sentinel-2, which are globally available and commonly
used in large-scale snow monitoring, but also fine-scale webcam-
and drone-derived snow cover maps. The goal would be to assess
how the spatial structure of snow cover patterns, as captured by
MF2 and MF3, changes across spatial resolutions, and whether these
geometrical descriptors retain its predictive value when derived
from coarser or finer input data. Particular attention should be given
to analysing the relationship between the spatial resolution of the
input data and the resolution of the grid used to compute MF, as
this affects the resolution of the output (e.g., SD, SWE). Specifically,
when the objective is to enhance the resolution of the output, it
would be valuable to investigate the minimum grid resolution that
can be used, given the spatial resolution of the input data (e.g., in
this study, the input data had a spatial resolution of 3 m, while a
grid resolution of 500 m was chosen). Therefore, a key aspect to
investigate would be the minimum grid resolution at which the
snow cover pattern within each cell remains sufficient to generate
informative MF, which, of course, depends also on the spatial
resolution of the input data. Understanding this sensitivity is crucial
for extending the applicability of the method to broader spatial
and temporal scales, especially in regions where high-resolution
SD datasets are not available. More broadly, further validation of the
SD estimation approach including MF2 and MF3 in other mountain
regions with differing climate, terrain, and snow regimes will be
important to assess its generalizability and robustness across diverse
environmental settings. In parallel, a multidimensional exploration
jointly considering all combinations of MF would help characterize
interactions among these descriptors and inform future refinements
of the SD modelling framework. A further outlook in this regard,
would be the possibility of deriving SD directly from optical stereo-
imagery from satellites or drones for more local applications (e.g.,
Biihler et al., 2015; Deschamps-Berger et al., 2020) compared to
the more regional airborne laserscanning flights as used here. In
addition, for dry snow also SAR-derived SD estimates such as from
Sentinel-1 (Lievens et al., 2019) could come into play for training
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the models developed here. With the ongoing improvement of
satellite spatial resolution, such an approach could progressively
achieve, or even surpass, the accuracy and resolution of airborne-
based methods.

An important future step regarding monitoring of water
resources and snow-hydrology could be to extend this analysis
also to SWE estimation models, integrating MF2 and MF3 as
predictors, although spatially distributed SWE information in
complex, high-alpine terrain is absolutely scarce and lacks therefore
a solid validation basis. However, in contrast to SD, SWE is
even more rarely available for validation. For this at current
stage, SWE simulations based on rather complex physically-
based models with adequate meteorological input and applying
precipitation undercatch correction methods (Pulka et al., 2024)
could be used often applying assimilated SD data as input. Also, as
demonstrated in Koch et al. (2024), signals of a superconducting
gravimeter can provide for the first time directly measured
information of SWE over a kilometre scale range in a complex
mountain environment for evaluation of SWE modelling.

In addition, we believe future research could also go in the
direction of exploring the use of MF2 and MF3 as indicators in
climate-related studies. Since these geometrical descriptors capture
the connectivity, fragmentation, and spatial complexity of snow
cover, they may serve as valuable metrics to detect and quantify
changes in snow distribution patterns over time in response to
climate variability and long-term change.
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