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2020-2024
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We continue analyzing earthquake sequences in terms of their variability and
scaling properties, including the behavior of the control parameter n of the
unified scaling law for earthquakes (USLE), along with a detailed analysis of the
surface wave records for reconstruction of the source in approximation of the
second moments of the stress glut tensor to obtain integral estimation of its
length, orientation, and seismic process development over time. In particular,
we present the analysis of the cases of the four recent earthquakes in Southern
Alaska — 22 July 2020, Mw 7.8 at 105 km SSE of Perryville, 19 October 2020,
Mw7.6 at 97 km SSE of Sand Point, 29 July 2021, Mw 8.2 at 99 km SE of Perryville
and 16 July 2023, Mw7.2 at 106 km S of Sand Point that have occurred right at
the western edge of the rupture zone of the 1964 Great Alaska, M9.3 mega-
earthquake and contribute to apparent activation of the region started with the
three major earthquakes (24 January 2016, Mw?7.1, 23January 2018, Mw?7.9, and
30 November 2018, Mw?7.1) at its north and southern borders.

KEYWORDS

earthquake sequences, earthquake source, Pacific and north America plate boundary,
unified scaling law for earthquakes, USLE control parameter

1 Introduction

After 5decades since the 1964 Great Alaska, Mw9.3 megathrust earthquake the
seismicity of the Southern Alaska experiences disturbing rise of activity started with (1)
the 24 January 2016, Mw?7.1, 47 km ESE of Pedro Bay earthquake (Old Iliamna) and
followed by (2) the 23 January 2018, Mw?7.9, 261 km SE of Chiniak, (3) the 30 November
2018, Mw7.1, 1 km SE of Point MacKenzie, (4) the 22 July 2020, Mw7.8, 99 km SSE of
Perryville, (5) the 19 October 2020, Mw?7.6, 99 km SE of Sand Point, (6) the 29 July
2021, Mw8.2, Alaska Peninsula, and (7) the 16 July 2023, Mw7.2, 106 km S of Sand
Point earthquakes. The largest of the first three-the Mw7.9 earthquake on 23 January
2018 - ruptured the Pacific plate in front of the continental crust of Alaska while the
cluster of next four ruptured a 200-km segment of the Aleutian megathrust fault. All
seven appear to rupture the subducting Pacific plate right at the border of or within
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the extended source region of the 27 March 1964 Great Alaska
earthquake (Press and Jackson, 1965; Wyss and Brune, 1967;
Kanamori, 1970; Christensen and Beck, 1994). The complexity
of the megathrust is characterized with a multiple rupture of
several segments of subducting Pacific plate, including the lateral
transition faulting along the Yakutat block at the corner of the
Pacific-North America plate boundary. The apparent reactivation
of this region at the level of significant major earthquakes deserves
special attention. In the following sections, we provide integral
characterization of the fore- and aftershock sequences for each of the
recent major earthquakes in terms of their magnitude-space-time
distributions and the control parameter of the Unified Scaling Law
for Earthquakes (Kossobokovand Mazhkenov, 1994; Bak et al., 2002;
Kossobokov and Nekrasova, 2019; Kossobokov, 2021), as well as
the average estimates of the rupture extent, duration, and velocity,
making use of the low-degree moments of the stress glut rate
(Backus, 1977a; Backus, 1977b).

Note: After the submittal of the article on 5 July 2025, the
seismic process at the northern boundary of the Pacific plate has
further developed with the major M 7.3, 2025 Sand Point, Alaska
Earthquake on July 16th and M 7.4, 2025 Eastern Kamchatka, Russia
Earthquake on July 20 that appear to be a foreshock of the M
8.8, 2025 Kamchatka Peninsula Earthquake mega-thrust earthquake
on July 29 (similar to the M 7.3 on March 9 in advance the
11 March 2011 M 9.1, Great Tohoku Earthquake in Japan). It is
worth noting that the 2025 Kamchatka Peninsula earthquake has
ruptured the same segment of the Kuril-Kamchatka subduction as
the M 9.0, 89 km ESE of Petropavlovsk-Kamchatsky earthquake
on 4 November 1952 - the first of the four mega-thrusts of the
20th century, namely, “Kamchatka, 1952/11/04, Mw 9.0; Andreanoff
Islands, 1957/03/09, Mw 9.1; Chile, 1960/05/22, Mw 9.5; Alaska,
1964/03/28, Mw 9.2” (Kossobokov, 2011).

2 Data and methods

The seismicity of the Southern Alaska from 1 January 2006,
through 11 November 2024, is analyzed within the geographic
bounds of 50°-65°N and 140°-170°W. An online search of the
U.S. Geological Survey Advanced National Seismic System (ANSS)
database provided 55,681 records of earthquake with magnitudes
of 2.5 or greater in the study area (Figure 1). A detailed analysis
of the events from the ANSS catalogue (U.S. Geological Survey,
2017) within circles around the three major 2016-2018 earthquakes
(Bukchin et al., 2020) confirmed that the catalogue offers a
complete record for the region. Specifically, “graphs of the
monthly number of M > 2.5 earthquakes confirm the stability
of hypocentre determinations in the ANSS catalogue prior to the
major events” Moreover, “the Gutenberg-Richter plot (Gutenberg
and Richter, 1944) of the cumulative number of earthquakes with
magnitudes ranging from 2.5 to 7.9 for the period 2006-2018
follows an exponential best-fit trend line, with a b-value of 0.868
(R* = 0.993)” (Bukchin et al., 2020), which has changed to 0.796
(R* = 0.989) in 2016-2024.

Figure 2  presents a comprehensive five-dimensional
visualization of seismic activity in southern Alaska from 2006
to 2024. The display combines magnitude, latitude, longitude,

depth, and time to illustrate the spatial and temporal variability
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of earthquake occurrence in the region. Variability in earthquake
occurrence frequency and energy distribution over time is visible,
highlighting the dynamic and complex nature of seismic processes
in southern Alaska during the occurrence of the four large
earthquakes in the current analysis, as well as the three previously
described in (Bukchin et al., 2020). One can see how seismicity
varies in space and time, providing insight into the patterns of
foreshock and aftershock activity of seven major earthquakes, as well
as potential correlations between seismic events and their location,
depth, and magnitude over nearly 2 decades.

We applied uniformly the same methodological approach
described in (Bukchin et al., 2020) and earlier in (Kossobokov and
Nekrasova, 2019; Kossobokov and Nekrasova, 2017). Specifically,
for each of the four major M > 7.0 earthquakes that occurred in
Southern Alaska during 2020-2024 (i.e., 22 July 2020, Mw 7.8,
105 km SSE of Perryville; 19 October 2020, Mw 7.6, 97 km SSE of
Sand Point; 29 July 2021, Mw 8.2, 99 km SE of Perryville; and 16 July
2023, Mw 7.2, 106 km S of Sand Point) we analyzed the foreshock
and aftershock sequences. These were characterized in terms of their
variations and scaling properties, including the behaviour of the
control parameter 77 = 7 x 105G » [C (where 7 is the time
between the two successive earthquakes, M is the magnitude of
the second one, and L is the distance between the two) of the
Unified Scaling Law for Earthquakes (USLE) that generalizes the
Gutenberg-Richter relationship as follows (Kossobokov, 2021):

log,,N(M,L) = A+ Bx (5-M) + Cxlog,,L

where N(M, L) is the number of earthquakes of a certain magnitude
M expected in a year within an earthquake-prone area of diameter
L; A and B are constants characterizing the annual rate of magnitude
5 events and the magnitude exponents analogous to a- and b-values
of the Gutenberg-Richter relationship, and C estimates the fractal
dimension of the epicenter loci at a given site.

Additionally, we conducted a detailed analysis of surface wave
records to reconstruct the earthquake source, approximating
the second moments of the stress glut tensor to derive integral
estimates of source length, orientation, and temporal development.
Same as in our previous study (Bukchin et al, 2020), we
estimated source parameters of the four recent major seismic
events from surface wave data. Records at broadband seismic
stations of the IRIS, GEOFON, and GEOSCOPE networks
(Danish Seismological Network, 2023; GEOFON seismic network,
1993; 1982;  Scripps Institution of Oceanography,
1986; Albuquerque Seismological Laboratory /USGS, 1992;
Albuquerque Seismological Laboratory/USGS. Global Seismograph

Geoscope,

Network, 2014) were analyzed using a frequency-time analysis
(FTAN) procedure (Levshin et al, 1989) to isolate fundamental
modes of Rayleigh and Love waves and to estimate their spectra.
Waveforms with a low signal-to-noise ratio (<3) were rejected
from further calculations. The data on a number of the selected
seismic stations, their minimum and maximum epicenter distances,
and periods, in which surface waves were filtered, are presented
in Table 1. It is worth noting that for each study earthquake an
azimuthal distribution of the analyzed stations is uniform (Figure 3).
Earthquake source parameters were calculated in two stages:
First, we modelled each seismic event in an instant point
source approximation assuming a source to be a pure double-
couple (Bukchin, 1990). In this case, a source can be determined
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Epicenters of the M > 2.5 earthquakes (ANSS, 1 January 2006 to 11 November 2024; small blue circles) and the five major earthquakes (black stars) in
Southern Alaska. Note: Red line marks the boundary of the North American and the Pacific Plates. The epicenters of the 1964 Great Alaska earthquake
(big red star) and its first aftershocks (red circles) are given on top the subsurface rupture zone (shaded pink). The Mw 7.3, 2025 Sand Point, Alaska
Earthquake (red star) occurred on July 16th after the manuscript submittal.
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by its depth, scalar seismic moment, and focal mechanism, which
can be presented in terms of two equivalent nodal planes (their
strike, dip and slip angles) or principal stress axis (compression (P),
tension (T) and null (B) axis characterized by their azimuths and
plunge angles). We estimated the source parameters by systematic
exploration of 5D parametric space minimizing residuals between
synthetic and determined using the FTAN procedure amplitude
surface wave spectra. A moment magnitude was calculated from
a relation by Hanks and Kanamori (1979). It is well-known that a
unique focal mechanism solution cannot be obtained from surface
wave amplitude spectra only - there are four equivalent solutions
which differ in the directions of slip and vertical axes (Mendiguren,
1977). To constrain a unique focal mechanism, P-wave first-
motion polarities are used (Lasserre et al., 2001; Bukchin et al.,
2020). Nevertheless, P-wave polarities, published in bulletins, are
controversial in many cases and surface wave phase spectra can
be applied to choose one of four equivalent solutions (Filippova
and Fomochkina, 2023; 2024). The latter approach was preferred
in this study. The period range, used for each of the considered
earthquakes for modeling in an instant point source approximation,
is presented in Table 1.

Second, an earthquake source was assumed to be an elliptical
dislocation with a finite duration of faulting and we estimated its
six integral characteristics: lengths of a source ellipse major and

minor axis (I,,,, and 1 duration (At), modulus of an average

in)s
min
value of an instant centroid velocity (|v]), an angle between the
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fault strike axis and major axis of source ellipse (¢;), and an
angle between the fault strike axis and instant centroid velocity
axis (@) (Backus, 1977a; Backus, 1977b; Bukchin, 1995). The
residual function, defined at the same manner as at the first
stage of the inversion, was minimized by systematic exploration
of a 6D parametric space. Both the nodal planes, obtained
previously, were tried for probable identification of the fault
plane (Bukchin, 2017). Naturally, shorter periods were used for
calculations (Table 1). To determine real source dimensions and
duration, the integral characteristics — lengths of a source ellipse
major and minor axis and duration - should be multiplied by 2.5
and 3, respectively (Bukchin et al., 2020).

We calculated synthetic surface wave spectra using a model of
weak lateral inhomogeneity of the Earth’s structure (Babich et al.,
1976; Woodhouse, 1974). Therefore, the Green’s function of
surface waves depends only on the medium structure in the
vicinity of an earthquake source and under a seismic station
(Bukchin, 1990; 1995). We modeled the crustal structure using
the 3SMAC 3D global crustal model (Nataf and Ricard, 1996).
It is worth noting, that the inversion results are robust relative
to a choice of the crustal model (Seredkina and Kozmin,
2017; Seredkina et al., 2020). The PREM model was applied
to describe the mantle structure and to calculate surface wave
attenuation (Dziewonski and Anderson, 1981) with different
methods (Sipkin, 1982; Dziewonski and Anderson, 1983; Kanamori
and Rivera, 2008; Hayes et al., 2009).
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shows the variable space-time intensity of earthquake energy release in the region; in particular, the irregular shapes of aftershock clusters including
those of the seven major earthquakes (red triangles).
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TABLE 1 Initial data for calculations of source parameters for the four major earthquakes in Southern Alaska in 2020-2023. Notes: T is a period range in
which surface waves were filtered. T, and T, are period ranges used for calculations of source parameters in an instant point source and finite source
approximations, respectively.

Earthquake Number of stations Epicentral Period range T, s
distance A, °

22 July 2020, Mw7.8 20 36.18 88.31 90-340 100-340 90-150
19 October 2020, Mw7.6 20 36.66 93.04 70-300 110-300 70-120
19 October 2020, Mw7.6 22 40.49 94.41 120-350 150-350 120-200

16 July 2023, Mw7.2 15 28.83 69.93 50-300 100-300 50-150
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FIGURE 3
Epicenters of the studied earthquakes and seismic stations, which records are used in the inversion of source parameters. LHZ is a vertical component
of the record, LHT is a transversal component obtained from the rotation of the LHN (northern) and LHE (eastern) components.
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22 July 2020, Mw7.8

FIGURE 4

19 October 2020, Mw7.6

Epicenters of the M > 2.5 earthquakes at angular distance of 2.5°and 1° from the epicenter (black square) of each of the four major earthquakes (black
crosses) in Southern Alaska. Notes: Small blue crosses are epicenters of earthquakes 10 years in advance each of the four major shocks. Yellow circles
and small red crosses are those events occurring within 128 days before and 128 days after the origin time of a major event, respectively; small dark
yellow crosses on the 22 July 2020, Mw7.8 plate are aftershocks of the 19 October 2020, Mw7.6 earthquake as well, for which the Mw7.8 event appears
as a major foreshock some 39 days in advance its origin time. Two out of the four epicenters of the major earthquakes fall out of the smaller circle
associated with the Mw7.2 earthquake on 16 July 2023. Latitude 55°N and longitude 160°N are marked grey.

29 July 2021, Mw8.2

3 Results
3.1 Characterizing earthquake sequences

Figure 4 shows the spatial distribution and temporal clustering
of seismicity around the epicenters of the four analyzed major
earthquakes. The epicenters of M > 2.5 earthquakes from the
ANSS catalogue, located within angular distances of 2.5° for the
22 July 2020; 19 October 2020; and 29 July 2021, main events,
and within 1° for the 16 July 2023, main event, are displayed
as small blue crosses. These represent the background seismicity
within the 10 years preceding each major earthquake. Yellow circles
highlight the foreshock activity, showing earthquakes that occurred
within 128 days before the origin time of each major event, which
time interval allows for a sevenfold doubling of the 1-day period
appropriate in analyzing either acceleration or deceleration of a daily
time series.

We analyzed the distribution of inter-event times between
earthquakes in foreshock and aftershock series in terms of the USLE
control parameter #, which according to Bak et al. (2002) is in charge
of inter-event times between earthquakes.

The characteristics of the seven major earthquakes including
those in 2016-2018 (Bukchin et al., 2020) are given in Table 2.

Figure 5 illustrates the evolution of the USLE control parameter
n in the vicinity of four major earthquakes in Southern Alaska
during 2013-2024. The values of parameter # are shown as small
crosses plotted against the origin time of earthquakes within angular
distances of 2.5° for the Mw7.8 (22 July 2020), Mw?7.6 (19 October
2020), and Mw 8.2 (29 July 2021) main shocks, and within 1° for the
Mw?7.2 (16 July 2023) event. The average <#> values per 50 events are
depicted as lines in each panel, providing a smoothed presentation
of the USLE control parameter variation over time.

The top panel in Figure 5 shows the <#> trends in advance and
after the 22 July 2020 main shock. One can see that shortly after
a spike associated to the 2 April 2016, Mw6.2 earthquake 98 km
NNE of Chignik Lake the <#> curve remains relatively stable in

Frontiers in Earth Science

the years leading up to the main shock, showing minor fluctuations
around a baseline level except for a notable increase-then-decrease
in 2020 shortly before July 22, 2020, Mw?7.8 shock, indicating a
detectable drop in seismic activity in the region, which could be
regarded as precursory quiescence observable in the overlap of
the three 2.5° circles in Figure 4. Following the Mw?7.8 earthquake,
<#> experiences a sharp drop, reflecting a significant release of
accumulated stress. In spite of a sharp rise due to the aftershocks of
July 22 main shock, the level of <#> was still 5 times lower in the first
days of October in advance the Mw?7.6 earthquake on 19 October
2020 (Figure 5, second panel). Similarly, the rise of the <> level after
a sharp drop on October 19 did not reach the baseline level in the
vicinity of the Myy8.2 earthquake before its occurrence on 29 July
2021; the sharp drop and rise of <#> resumed at rather stable level
about 10* to be compared to 7 x 10* in May 2020 (Figure 5, third
panel). In a smaller 1° vicinity of the Mw?7.2 earthquake on 16 July
2023 (Figure 5, bottom panel) the evolution of <#> is in common
to its behaviour in larger 2.5° vicinities of the other three major
earthquakes except for missing a spike associated with the Mw8.2
earthquake, which epicenter and most of its aftershocks fall outside
the small 1° circle in Figure 4.

For each of the four major earthquakes Figure 6 provides
in detail analysis of the 50 per moving averages <#> given in
logarithmic scale of days before (t*- t) and after (t - t*) the main
shock origin time, t*. Specifically, 128 days before (left of the four
panels) and 128 days after the main shocks origin time (right of the
four panels) are presented. That choice of time interval allows for
a sevenfold doubling of the 1-day period which is appropriate in
analyzing either acceleration or deceleration of a daily time series.
The decay of the aftershock series appear following the power law
trends in all the four cases in Figure 6. Moreover, although the best
fit of individual # values show up not so high goodness of fit (R? in
range from % to %), its 50-points moving average <#> fits quite well
the Omori law (R? > 0.9) for all the seven aftershock series of the
major earthquakes in 2016-2023 (Bukchin et al., 2020; Figure 6).
The evident flattering of <7>(t - t*) observed for the 2016, 2021,
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TABLE 2 Characteristics of the seven major earthquake series in Southern Alaska, 2016—2023. Notes: Shaded grey the results from (Bukchin et al.,
2020). Coefficients of the Unified Scaling Law for Earthquakes (USLE) are from the global map determinations available from the ISC Dataset
Repository (Nekrasova and Kossobokov, 2019).

Major 2016/01/24 2018/01/23 | 2018/11/30 | 2020/07/22 | 2020/10/19 2021/07/29 | 2023/07/16
shock

?Lj?(':’; Uik 10:30:30 09:31:41 17:29:29 06:12:45 20:54:39 06:15:49 06:48:21
Main Shock 59.636 56.004 61.346 55.072 54.602 55.364 54.393
Latitude, °N

Main Shock 153.405 149.166 149.955 158.596 159.626 157.888 160.762

Longitude, "W

Main Shock 129 14 47 28 28.37 35 25
Depth, km

Main Shock 7.1 7.9 7.1 7.8 7.6 82 7.2
Magnitude

MANSS

The USLE -0.34 -0.19 -0.52 —-0.462 —-0.396 —0.453 -0.28
coefficient A at
Epicenter

The USLE 0.89 0.9 0.87 0.764 0.837 0.773 0.906
coefficient B at
Epicenter

The USLE 1.33 1.29 1.42 1.161 1.163 1.183 1.172
coefficient C at
Epicenter

Number of M > 101 (2) 21(1) 60 (2) 131 (9) 690 (86) 213 (14) 128 (1)
2.5(M>4)
foreshocks

Number of M > 281 (16) 3,489 (262) 998 (42) 2000 (221) 2080 (165) 1,020 (88) 249 (25)
25M=4)
aftershocks

Magnitude of the 2.6 (4.0) 3.4 (4.1) 3.1(4.5) 2.5(4.1) 2.6 (5.9) 2.8 (4.0) 2.8 (4.0)
last M > 2.5 (M >
4) foreshock

Time since the 2.5(61.3) 4.98 (85.3) 0.28 (46.5) 0.14 (15.6) 0.08 (13.6) 1.75 (22.4) 0.30 (11.9)
last M >2.5 (M >
4) foreshock,
days

Distance to the 19.3 (23) 181 (7) 73 (31) 192 (219) 239 (31) 230 (150) 50 (78)
last M > 2.5 (M >
4) foreshock, km

and 2023 series after 80, 30, and 35 days after the major shock, In all the cases, they are characterized by low residuals (¢ <
respectively, suggests an early termination of direct impact onlocal ~ 0.4) evidencing for good data fitting. Moreover, the resolution
seismic activity in these three out of seven cases. Table 3 lists thebest ~ of the obtained parameters is rather high that is illustrated for
fit power laws for the USLE control parameter individual 7(t - t*)  the depth values (Figure 7) which are distributed in the range
values and its moving average <7>(t - t*) in the first 128 days after ~ of 22-38 km. In contrast to strong seismic events in 2016-2018
the major shocks of Southern Alaska. demonstrating diverse focal mechanisms (Bukchin et al., 2020),
thrust fault movements were realized in the sources of the 22 July

2020, 29 July 2021, and 16 July 2023 earthquakes, i.e., they were

3.2 Cha racterizing an ea rthq uake source formed under the influence of the dominating SE-NW compression
(Figure 8). This is in accordance with a lithospheric stress-strain

The parameters of the study earthquakes, calculated in an  pattern reported in the latest release of the World Stress Map
instant point source approximation, are shown in Figures 7, 8.  (WSM) - WSM 2016 (Heidbach et al.,, 2016) - and is controlled
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FIGURE 5

The values of the USLE control parameter n (little crosses) versus earthquake origin time within angular distance of 2.5° from the epicenters of the
My, 7.8 2020/07/22 (top panel), My, 7.6 2020/10/19 (second panel), and M,8.2 2021/07/29 (third panel) and within 1° from the epicenter of the M, 7.2
2023/07/16 (bottom panel) main shocks. Black lines display the 50 per moving averages <u> of the control parameter.

by the NW subduction of the Pacific plate which rate is about
6.5 cm/yr in the considered region (DeMets et al., 2010). The focal
mechanism of the 19 October 2020 earthquake is quite different
as it demonstrates strike-slip motions along the nearly NS-oriented
nodal plane (Figure 8). The occurrence of this event is connected,
on the one hand, with the 22 July 2020 mainshock and subsequent
afterslip (Herman and Furlong, 2021) and, on the other hand, it can
be facilitated by structural heterogeneity of the Pacific slab, namely,
by changes in the plate hydration (Gou et al., 2022).

Frontiers in Earth Science

The integral source characteristics with their residuals,
determined for the both calculated nodal planes, are presented
in Table 3 and include earlier determinations (Bukchin et al., 2020).
We find resolution of characteristics in this study being unequal: it
is good for the length of a source ellipse major axes and duration,
as their uncertainties do not exceed 5 km and 3 s, respectively. It is
also acceptable for both the estimated angles but it is poor for the
other two parameters - the length of a source ellipse minor axes [
and modulus of an average centroid velocity |v|. For [,;, the range
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TABLE 3 The best fit power law for USLE control parameter 5(t - t*) and
its moving average <u>(t - t*) in the first 128 days after the origin time of
the major shock t*.

Earthquake qlt-t) =a
XlObx(t’t*)
b R
24 January 2016, | 48181 | 1.006 = 0.602 = 79.794 | 1183 = 0.988
Mw7.1
23 January 2018, 8466 | 0.661 | 0250 = 22.611 | 1181 | 0.949
Mw7.9
30 November 5760 | 1.066 | 0529 = 19.853 | 0.883 | 0.932
2018, Mw7.1
22 July 2020, 21978 | 0817 0321 | 75391 | 0957 | 0.979
Mw7.8
19 October 2020, 4.028 | 1.009 & 0508 | 9934 | 1197  0.961
Mw7.6
29 July 2021, 24847 | 0806 = 0384 74776 | 1000 | 0.952
Mw8.2
16 July 2023, 71086 | 0.822 @ 0452 165645 & 0.884  0.904
Mw7.2

of values with very close residuals can be as wide as 20 km. For |v|
the uncertainty is about 0.7 km/s. Therefore, in our further analysis
we focus on the well-resolved integral parameters [, and At and
related real rupture lengths and durations.

According to surface wave theory (Bukchin, 2017), a fault
plane can be distinguished from calculations of the integral source
characteristics as they are characterized by lower residuals than
values determined for the second auxiliary nodal plane. It is
applicable for pure strike-slip earthquakes while the selection of
the fault plane is difficult for pure thrust and normal faults. From
the study seismic events, only the 19 October 2020 earthquake
has a significant strike-slip component in its focal mechanism
solution (Figure 8). Naturally, the residual values related to different
nodal planes vary significantly in this case evidencing for the near-
longitudinal (strike = 355°) inclined (dip = 45°) nodal plane to be
a fault plane (Table 4). It is confirmed by the orientation of the
aftershock epicenter field (Herman and Furlong, 2021). For the other
considered seismic events, in which sources thrust-fault movements
dominate, residual values are almost identical for both the nodal
planes and selection of the fault plane requires additional data. As
all of them are likely to be connected with the subduction of the
Pacific plate under the North American plate, we suggest that nodal
planes with dip angles close to the slab dip to be fault planes. As
an average dip of the Alaska-Aleutian slab is 11-14 according to
the Slab 2.0 model (Hayes et al., 2018), gently-dipping nodal planes
(dip angle values are in the range of 11°-25°) are preferred as fault
planes, and steep nodal planes are, consequently, the auxiliary ones.
For the 22 July 2020 and 16 July 2023 earthquakes, these nodal planes
are formally characterized by lower residuals confirming that even a
small difference in the residuals can provide information on a fault
plane that has been shown previously by the detailed seismotectonic
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analysis of some weak and strong seismic events (Filippova and
Fomochkina, 2023; 2024; Filippova et al., 2022; 2024). Nevertheless,
lower residuals are attributed to the auxiliary nodal plane in the
case of the largest 29 July 2021, Mw8.2 earthquake. Moreover, the
length of the minor axes, calculated for the fault plane, is obviously
overestimated. Taking this into account, we consider the nodal with
a dip angle of 11° as a fault plane for this event.

Based on the obtained integral characteristics (Table 4) and the
fault plane selection discussed above, we can estimate real fault
duration (¢) and rupture length (L) multiplying I, and At by 3 and
2.5, respectively (Bukchin et al., 2020). Therefore, the most compact
source with t = 12s and L = 50 km is observed for the 16 July
2023 earthquake. As expected, the most long (300 km) and long-
lasting (66 s) rupture is attributed to the 29 July 2021 earthquake.
The 22 July 2020, Mw?7.8, and 19 October 2020, Mw7.8 events are
characterized by t = 45s, L = 187km and ¢ = 365, L = 112 km,
respectively.

4 Discussion and conclusion

Focal mechanism solutions obtained for the considered
earthquakes from surface wave analysis and reported by various
seismological agencies (GCMT, USGS, GEOFON) agree well with
each other (Table 1S of the Supporting Information). Quantitatively,
the difference between them can be estimated by calculating the
Kagan angle ®-an angle in a 3-D space by which one double-
couple can be rotated into another one (Kagan, 1991; 2007). Its
minimum value @ = 0° corresponds to identical focal mechanisms.
Its maximum value is 120°. The focal mechanisms, determined
from surface wave analysis in this study, are used as the reference
solutions. For all the considered earthquakes, the Kagan angles
do not exceed 30° indicating good agreement between results
obtained with different methods. It is worth noting that all the
deviatoric seismic moment tensors, determined in the seismological
agencies, are characterized by a small compensated linear vector
dipole component (Supplementary Table S1 of the Supporting
Information), i.e., they are very close to a pure double-couple model
assumed in our calculations.

Scalar seismic moments and moment magnitudes, estimated
using various approaches, are close to each other for the
study earthquakes (Supplementary Table SI of the Supporting
Information). Difference in their magnitude values, which is likely
connected with difference in the frequency ranges of the initial
data, does not exceed 0.2 that is typical for seismic events with a
comparable energy level (Kagan, 2003; Filippova and Fomochkina,
2023). Variations in source depth values are more significant as
they can be as large as tens of kilometres (Supplementary Table S1
of the Supporting Information). The same tendency is observed
in special studies, for instance, the source depth of the 29 July
2021 earthquake is estimated in the depth range from about 24 km
(Sunil et al., 2022) to 33-35 km (Liu et al., 2022; Ye et al., 2022).
On the one hand, it could be a result of uncertainties arising in
depth determinations based on teleseismic data. On the other
hand, it could be due to a finite width of an earthquake source
(Table 4). Scattering in depth determinations are also mentioned
for three strong earthquakes in Southern Alaska in 2016-2018
(Bukchin et al., 2020).
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FIGURE 6

The USLE control parameter 7 in advance (yellow circles) and after (red points) each of the four major shocks. Time is given in days before (t*- t) and
after (t - t*) each major earthquake origin time, t*. The black line marks the 50 per moving average. Note the span of 89 days between the two major
earthquakes of July 22nd and 19 October 2020.
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FIGURE 7
Source depth residual functions, scalar seismic moments, moment magnitudes and residuals determined in this study for the four major earthquakes in
Southern Alaska, 2020-2023.
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FIGURE 8

Focal mechanisms of seven major earthquakes in Southern Alaska, 2016—-2023 determined in this study and in (Bukchin et al.,, 2020). Notes: The plate
boundary according to (Bird, 2003) is plotted by the thick magenta line. The ETOPO 2022 elevation model (NOAA National Centers for Environmental
Information, 2024) is used to image the topography and bathymetry.
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FIGURE 9
The values of the USLE control parameter 7 (little crosses, red triangles at the times of major Mw > 7.0 earthquakes) within the geographic bounds of

50°-65°N and 140°-170°W Black line displays the 50 per moving average <#> of the control parameter.

TABLE 4 Integral source characteristics for the seven major earthquakes in Southern Alaska, 2016—-2024. The earthquake source parameters are given
for each of the two nodal planes.

Earthquake Nodal planes Length Duration At, s Velocity Angle ¢,° Angle ¢,.° | Residual
(strike, dip, of major modulus |v/,
slip), °© and km/s
minor
axes .y
and (i,
km

60, 65, 40 120 37 25 35 80 80 0.32

24-Jan-16
310, 4, 149 120 37 25 35 120 300 0312
165,71, 164 180 23 37.5 3 15 195 0.248

23-Jan-18
260, 75, 20 75 23 37.5 3 165 165 0.29
189, 57, -90 105 18 15 45 160 160 0.363

30-Nov-18
9,33,-90 105 18 15 45 0 180 0.374
245,20, 90 75 40 15 425 25 10 0.255

22-Jul-20
65,70, 90 65 | 0-20 15 425 170 175 0.275
355, 45,180 45 0-15 12 35 20 20 0.276

19-Oct-20
85,90, 45 25 | 0-20 8 2 15 25 0.295
223,11, 64 120 70 2 4 15 190 0212

29-Jul-21
70, 80, 95 70 0-25 30 2.1 0 0 0211
245,25, 90 20 | 0-20 4 35 150 150 0.341

16-Jul-23
65, 65,90 30 | 0-15 4 45 30 30 0.342

A good agreement is observed for rupture length and duration,  distribution in a compact area. Close values are also obtained for
determined for the 16 July 2023 earthquake in this study, and the  both the discussed parameters of the 19 October 2020 seismic event
USGS finite-fault model (https://earthquake.usgs.gov/earthquakes/  and the fault length of the 22 July 2020 earthquake. In the latter
eventpage/us7000kg30/finite-fault) evidencing for the coseismicslip  case, our estimate of the rupture duration (45 s) is significantly lower
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than the total time of moment release provided by USGS (~110s).
Nevertheless, the maximum moment release is concentrated in a
time range of about 50 s which is consistent with our results. It is
interesting to note that the 19 October 2020 earthquake has longer
and more long-lasting rupture in comparison with the 16 July 2023
event with the same moment magnitude. This could be due to the
fact that strike-slip earthquakes can rupture the connected fault
segments more easily and, consequently, produce longer ruptures
than those developed by dip-slip events of the same magnitude
(Leonard, 2010; Thingbaijam et al., 2017).

Two USGS finite-fault models are available for the 29 July 2021
earthquake  (https://earthquake.usgs.gov/earthquakes/eventpage/
ak0219neiszm/finite-fault). One of them is based on teleseismic
data only and shows the rupture duration of 98 s and the non-zero
coseismic slip in the area of about 300 km long. The second one, also
incorporating regional strong-motion and GNSS data, evidences for
a more compact seismic source with duration of 68 s and large slips
extend along approximately 175 km rupture. This model better suits
the tsunami modelling results (Mulia et al., 2022). Close estimates
of the length of maximum slip distribution are provided in most
of special studies (Liu et al., 2022; Mulia et al., 2022; Sunil et al.,
2022; Ye et al.,, 2022). Nevertheless, the slip is non-zero in a wider
area whose lengths is up to 300 km in all the discussed models that
does not contradict our results (L = 300 km). Our rupture duration
(66 s) is also consistent with the regional USGS finite-fault model
and estimates by Ye et al. (2022). In contrast, Liu et al. (2022) give
the total rupture duration of ~110's, while the main phase of the
moment release is about 70 s.

Our analyzes of earthquake sequences associated to the recent
major shocks in Southern Alaska, 2016-2023, (Bukchin et al., 2020;
this study), appear to confirm once again that their occurrences are
not random, but rather lacking any obvious principle of organization
(Kossobokov and Nekrasova, 2017; Kossobokov and Nekrasova,
2019; Kossobokov et al., 2022; Kossobokov and Nekrasova, 2024).
Moreover, Nekrasova et al., 2011 have demonstrated a complex
distribution of the USLE coefficients A, B, and C, which do not
display any evident general correlation, although following well-
organized attractor in the 3D domain of possible values. Liu and
Kossobokov (2021) described the observed high variability of the
correlation between geodetic and seismic integrals in advance and
after the 2004 Sumatra—Andaman Mw9.2 earthquake in the Indian
Ocean, the 2011 Tohoku Mw?9.1 earthquake in Japan, the 2010
offshore Maule Mw8.8 and the 2015 Illapel Mw8.3 earthquakes in
Chile, the 2018 Kodiak Mw?7.9 earthquake in the Gulf of Alaska,
and the 2016 Kaikoura Mw7.8 earthquake in New Zealand, which
are indicative of a partial contribution of earthquakes to a generally
aseismic apparently sporadic motion of small lithospheric blocks.
and aftershock
sequences of the recent major earthquakes in Southern Alaska

A uniform characterization of the fore-

confirms the existence of the long-term periods of seismic stability
defined by the averages of the USLE control parameter <n> that are
interrupted by mid- or even short-term bursts of activity associated
with catastrophic events. Neither of the two Mw7.1 events on 24
January 2016 and 30 November 2018 showed a change in the level
of <i> observed in advance of their origin times, while the other
five major shocks have eventually decreased the level of stable <#>
by a factor of 4 for the 23 January 2018, Mw7.9 Kodiak earthquake,
which aftershock series appears to continue, and by a factor of 2 for
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the cluster of the four most recent major shocks SW off the 1964
Great Alaskan earthquake rupture zone.

Apparently all the seven aftershock series follow the Omori
power law trends, characterized by high goodness of fit for the
USLE control parameter 50 per moving average <#>. There is a
notable agreement in coefficients of the <#> Omori law fit for the
aftershocks of the 22 July 2020, Mw?7.8, and the 29 July 2021, Mw8.2
earthquakes, which are the nearest in location among the seven
events considered. The evident flattering of <> in aftershock series
after 80, 30, and 35 days passed the 24 January 2016, Mw7.1, the
29 July 2021, Mw8.2, and the 16 July 2023, Mw7.2 major shocks,
respectively, suggests an optional early termination of direct impact
on local seismic activity independent of the earthquake magnitude
in these three out of seven cases (Table 2). On the other hand, the
above mentioned <#> series of the 2018 Kodiak earthquake keeps
growing following the Omori power law trend for more than 7 years.
It is also notable that in this case as shown in (Liu and Kossobokov,
2021) the correlation of large variance resides around steady low
levels of 0.1-0.2 between geodetic and seismic integrals, except for
an excursion to highly coherent values about 1 lasted just for 2 weeks
after the main shock. This Mw7.9 strike-slip earthquake 280 km
SE of Kodiak Island occurred right in front of the southern border of
the rupture zone of the 1964 Great Alaska, Mw9.3 mega-earthquake.

Thus, the uniform analyzes of foreshock-main shock-aftershock
sequences in Central Italy, New Zealand, Southern Alaska, Japan,
Taiwan, and worldwide (5, 9, 7, 1, 1, and 156 cases, respectively)
do not support a unique scenario in seismic energy release,
but (i) provide fundamental constrains on modelling realistic
earthquake sequences, (ii) give a new confident insight into better
understanding of regional seismic dynamics, and (iii) can be used to
improve seismic hazard assessments, including forecast/prediction
claims at different magnitude-space-time scales.

It seems premature to discuss if the observed quantitative
characteristics of seismic variability and their scaling properties
at regional scale in Southern Alaska (the level of the n moving
average, in particular) disclose clear patterns useful in operational
forecasting of extreme seismic catastrophes, due to the yet rather
small number of the abovementioned regional and global case
studies. Nevertheless, the observed group of seven major (Mw =
7) earthquakes (see Figures 1, 2, 9) calls for a special attention
and monitoring of the ongoing seismic activation in the Pacific
Northeast, in particular, keeping in mind the above mentioned on-
going development of the seismic process at the northern boundary
of the Pacific plate.
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