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Introduction: Optimizing fracturing parameters under multi-factor, complex 
conditions remains challenging in low-permeability reservoirs.
Methods: We extract stage-aware construction-curve features, compute 
composite correlations (Pearson, Kendall’s Tau, Random Forest), train an SSA-
BP surrogate to predict open flow capacity (OFC), and apply a GA to optimize 
fluid volume, pump rate, and proppant concentration.
Results: Twenty key factors were retained. Among four regressors, SSA-BP 
performed best (highest R², lowest MSE). GA-optimized parameters improved 
OFC in multiple wells; a field application (Well A-X) showed increased daily gas 
and OFC after adjustments.
Discussion: The integrated feature-extraction + SSA-BP + GA workflow provides 
accurate OFC prediction and practical parameter optimization. Limitations 
include single-field data (∼70 wells) and SSA-BP computational cost; future work 
will expand datasets and explore lighter models.

KEYWORDS

fracturing optimization, construction curve feature extraction, deep learning, hybrid 
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 1 Introduction

As the exploration and development of unconventional oil and gas resources continue 
to deepen, hydraulic fracturing technology has become a key method for enhancing the 
productivity of low-permeability reservoirs (Soliman et al., 2012; Wenrui et al., 2018; Li 
and Xu, 2024). However, optimizing fracturing parameters to maximize production remains 
a significant challenge in the oil and gas industry. Traditional methods for optimizing 
fracturing parameters often rely on numerical simulations and empirical formulas, which 
tend to be inefficient and insufficiently accurate when dealing with complex reservoir 
conditions and multivariable optimization (Clarkson, 2013; Lin et al., 2021).

In recent years, with the rapid development of big data and artificial intelligence 
technologies, data-driven methods have been widely applied in oil and gas development 
(Sircar et al., 2021; Tariq et al., 2021). Deep learning, in particular, has shown great 
potential in optimizing fracturing parameters due to its powerful data processing
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and pattern recognition capabilities. By learning from 
a large amount of historical fracturing data, deep 
learning models can automatically extract key features 
from the fracturing process and predict production 
performance under different parameter combinations, thereby 
achieving optimized fracturing design (Wang et al., 2021;
Tabasi et al., 2022).

Fracturing parameter optimization methods can be broadly 
divided into two categories: traditional optimization methods and 
intelligent optimization methods (Yao et al., 2021; Deng et al., 
2022). Traditional optimization methods include single-parameter 
optimization and multi-parameter optimization (Li et al., 2021). 
The former often employs sensitivity analysis to determine 
the impact of a single parameter on production, while the 
latter uses methods such as orthogonal experimental design 
or grey relational analysis to optimize multiple factors in 
combination (Gul et al., 2020). However, these methods typically 
focus on optimizing a single or a few fracturing parameters, 
failing to fully consider the overall impact of multi-parameter 
combinations on fracturing outcomes, and they lack in-depth 
analysis of parameter interactions under complex geological 
conditions (Mi et al., 2016; Al-Fatlawi et al., 2019). Furthermore, 
traditional optimization methods have a narrow search range 
and involve a large workload in the optimization process
(Gao et al., 2006).

In contrast, intelligent optimization methods, which employ 
single or hybrid intelligent algorithms, can automatically design 
and optimize fracturing parameter combinations (Ahmed et al., 
2021; Zhou et al., 2022). For example, Ma et al. proposed 
a hybrid intelligent algorithm capable of optimizing multiple 
types of fracturing parameters simultaneously (Jahandideh and 
Jafarpour, 2016). However, these intelligent methods still face certain 
limitations when dealing with multi-parameter combinations, 
especially when considering the strong heterogeneity of shale 
reservoirs.

To address these issues, researchers have proposed new 
integrated optimization algorithms. For instance, Deng et al. 
(Deng et al., 2022) introduced an integrated optimization 
method based on the SPSA algorithm nested with a binary 
search algorithm, which realizes the integrated optimization of 
discrete and continuous fracturing parameters. This method can 
automatically optimize fracturing parameter combinations and 
combined with a numerical flow model of subdivided horizontal 
wells, selects the optimal fracturing parameter combination by 
taking net present value (NPV) as the objective function. Luo 
et al. (Luo et al., 2024) proposed an automatic optimization process 
based on genetic algorithms (GA) and a modified PKN model 
to quickly predict fracture geometries and optimize fracture 
locations and fluid injection volumes. Liu et al. (2023) applied 
a method combining random forest algorithms and principal 
component analysis to optimize the fracturing parameters of 
shale oil horizontal wells, significantly improving post-fracture
productivity.

In addition, with the rapid advancement of machine learning 
technology, deep learning and fracturing curve feature extraction 
techniques have gradually been applied to the optimization 
of fracturing parameters. For example, Chen et al. (2022) 
proposed a shale gas horizontal well production prediction model 

based on LSTM neural networks, successfully predicting future 
productivity of shale gas wells using time series forecasting methods. 
Similarly, Muther et al. (2022) proposed a fracturing optimization 
design method based on multi-agent algorithms, combining 
artificial neural networks and optimization algorithms to improve 
the efficiency of fracturing parameter design. However, these 
methods mostly focus on optimizing a single or a few fracturing 
parameters and fail to fully consider the overall impact of multi-
parameter combinations on fracturing effectiveness, and they 
lack in-depth analysis of parameter interactions under complex 
geological conditions.

To address these shortcomings, this study proposes a 
new method combining deep learning and fracturing curve 
feature extraction for the optimization of fracturing parameters. 
First, we use fracturing curve feature extraction algorithms 
to identify key features closely related to productivity from 
fracturing data. Then, based on the extracted features, we 
build a deep learning model to predict productivity under 
different parameter combinations. Finally, we iteratively train 
the model using optimization algorithms to identify the optimal 
fracturing parameter combination that maximizes post-fracture
productivity. 

2 Methods and models

2.1 Comprehensive correlation coefficient

In this study, to more comprehensively evaluate the correlation 
between various features and the target variable, we combined 
Pearson correlation coefficient, Kendall’s Tau coefficient, and 
Random Forest feature importance to propose a method for 
calculating a comprehensive correlation coefficient (Sen, 1968; 
Archer and Kimes, 2008; Cohen et al., 2009). This method allows 
for an integrated assessment of the importance of each feature while 
preserving information on linear correlation, nonlinear correlation, 
and feature importance. The specific steps are as follows (see 
Equations 1–3).

First, we calculate the Pearson correlation coefficient, Kendall’s 
Tau coefficient, and Random Forest feature importance between 
each feature and the target variable.

Pearson correlation coefficient ρi:

ρi =
Cov(Xi,Y)

σXi
σY

(1)

Where Cov(Xi,Y) represents the covariance between feature Xi
and target variable Y, and σXi

 and σY are the standard deviations of 
feature Xi and target variable Y , respectively.

Kendall’s Tau coefficient τi:

τi =
(P−Q)

1
2

n(n− 1)
(2)

Where P and Q represent the number of concordant and 
discordant pairs, respectively, n is the sample size.

Random Forest feature importance f′i : This is calculated using 
a Random Forest model, indicating the relative importance of each 
feature within the model.
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Due to the differing scales of these correlation coefficients, 
we perform Min-Max normalization on each coefficient to 
standardize their impact in the comprehensive evaluation. 
Through normalization, the values of each coefficient are 
mapped to the range of 0–1, facilitating subsequent weighted
summation.

To comprehensively consider Pearson correlation, Kendall’s Tau, 
and Random Forest feature importance, we assign weights wρ, wτ
and w f  to each normalized correlation coefficient, respectively, and 
perform a weighted average to obtain the comprehensive correlation 
coefficient C.

Ci = wρ · |ρ
′
i | +wτ · |τ

′
i | +w f · f

′
i (3)

Where is the comprehensive correlation coefficient of feature, 
In this study, the weights are set as follows: = 0.4, = 0.3, and = 
0.3. These weights were determined through sensitivity analysis 
on a subset of 10 wells, and the results were consistent with 
previous findings (Archer and Kimes, 2008), ensuring objectivity in 
parameter assignment. 

2.2 Algorithm for extracting construction 
curve features

To enhance the predictive effectiveness of the data and 
increase the diversity of parameters, we propose an algorithm 
for extracting construction curve features. The purpose of this 
algorithm is to calculate the time ratio and fluid volume ratio 
at different stages (such as artificial main fracture extension, 
blockage-induced pressure, multi-fracture competition, filtration 
balance, filtration increase, etc.) during the hydraulic fracturing 
process at the wellhead. These ratios help us understand the 
relative contribution of each stage to the entire construction 
process. The algorithm determines the construction stage at 
each time point based on the logarithmic slope of net pressure 
and other conditions (such as bottomhole pressure, flow 
rate, etc.), and accumulates the corresponding time and fluid 
volume. The pseudocode (see Algorithm 1) for the algorithm is
as follows:

2.3 SSA-BP

SSA-BP (Salp Swarm Algorithm-Back Propagation) is a hybrid 
optimization algorithm that combines the Salp Swarm Algorithm 
(SSA) with the Back Propagation (BP) algorithm (), aimed at 
optimizing the training process of neural networks. The traditional 
BP algorithm works by calculating the gradient of the loss 
function with respect to the network weights and updating the 
weights through gradient descent, bringing the network’s output 
closer to the target value. However, BP algorithms tend to get 
trapped in local optima and converge slowly when dealing with 
complex non-convex optimization problems. The SSA-BP algorithm 
introduces the global search capability of SSA to overcome 
these limitations. In this study, the neural network consisted of 

an input layer with 20 neurons (corresponding to the selected 
features), one hidden layer with 15 neurons, and an output 
layer with one neuron representing OFC. The SSA population 
size was set to 50 and the maximum iteration number to 200, 
based on parameter tuning experiments to balance accuracy and 
efficiency. These implementation details ensure reproducibility of
the model.

The basic idea of the SSA-BP algorithm is to use SSA for global 
search to find better initial weights, followed by local optimization 
and fine-tuning using the BP algorithm. SSA simulates the swarm 
behavior of salps, exploring better solutions within the search space. 
In SSA, the individuals (i.e., salps) are divided into leaders and 
followers. The leader is responsible for guiding the entire swarm 
towards a better solution, while the followers follow the leader, 
forming a continuously converging swarm. Figure 1 illustrates 
the Salp chain. Specifically, the SSA-BP algorithm is executed
as follows: 

1. Initialization: Randomly generate the initial weights and biases 
of the neural network, and initialize the position vectors X =
{x1,x2,…,xn} and states of the salp swarm.

2. Salp Swarm Update: Based on the SSA algorithm, the salp 
individuals adjust their positions xi(t) according to the 
evaluation function results. The leader’s position is updated 
using the following formula as given in Equation 4.

x1
j (t+ 1) =

{
{
{

Fj + c1((maxj −minj)c2 +minj), ifc3 ≥ 0.5

Fj − c1((maxj −minj)c2 +minj), ifc3 < 0.5
(4)

3. Back Propagation: Using the current positions and states of the 
salp swarm, execute the BP algorithm to calculate the gradients 
of the neural network. Specifically, the BP algorithm updates 
the weights using the following formula as given in Equation 5.

wij(t+ 1) = wij(t) − η ∂E
∂wij

(5)

 where wij represents the weights in the neural network, η is the 

learning rate, and E is the loss function. 

4. Parameter Update: Update the neural network weights and 
biases based on the gradient information calculated by the BP 
algorithm, further reducing the error between the predicted 
output and the target value.

5. Termination Condition Check: If the preset termination 
conditions (such as reaching the maximum number of 
iterations or the error being below a certain threshold) are met, 
the algorithm terminates; otherwise, return to step 2 for the 
next iteration.

By combining SSA and BP algorithms, the SSA-BP algorithm 
conducts a global search while performing local optimization with 
the BP algorithm, effectively enhancing the training performance
of  the  neural  network.  It  is  particularly  suitable  for  complex
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Data:Time series t = {t1, t2, …, tn}, Pressure data Pi = {P1, P2, …, Pm}, Flow rate data Qi = {Q1, Q2, …,

  Qn}, Sand concentration Ci = {C1, C2, …, Cn}

Result: Time ratio and fluid ratio for each stage
1. Initialize TPDT = 0, TBPT = 0, TMFT = 0, TFBT = 0, T_FIT = 0;
2. Initialize QPDT = 0, QBPT = 0, QMFT = 0, QFBT = 0, Q_FIT = 0;
3. for i = 1 to n – 1 do
4.   Compute bottomhole pressure Pwi based on Pti;

5.   Compute net pressure Pnet(ti) = Pwi – Extension Pressure;
6.   Compute log slope slope(ti) of net pressure over time;
7.  if 0.12 ≤ slope(ti) ≤ 0.35 then

8.  TPDT ← TPDT + (ti+1 – ti);

9.  QPDT ← QPDT + Qi × (ti+1 – ti);

10.  else

11.  if slope(ti) > 0.35 and P_net(ti) meets condition then

12.  TBPT ← TBPT + (ti+1 – ti);

13.  QBPT ← QBPT + Qi × (ti+1 – ti);

14.  else

15.  if slope(ti) ≥ 1 then

16.  TBPT ← TBPT + (ti+1 – ti);

17.  QBPT ← QBPT + Qi × (ti+1 – ti);

18.  else

19.  if slope(ti) ≤ 0.12 then

20.  TFBT ← TFBT + (ti+1 – ti);

21.  QFBT ← QFBT + Qi × (ti+1 – ti);

22.  else

23.  if slope(ti) < 0 then

24.  TFIT ← TFIT + (ti+1 – ti);

25.  QFIT ← QFIT + Qi × (ti+1 – ti);

26.  else

27.  TMFT ← TMFT + (ti+1 – ti);

28.  QMFT ← QMFT + Qi × (ti+1 – ti);

29.  end

30.  end

31.  end

32.  end

33.  end

34. end

35. Total T = TPDT + TBPT + TMFT + TFBT + T_FIT;

36. Total Q = QPDT + QBPT + QMFT + QFBT + Q_FIT;

37. Compute Time Ratioi = Ti / T_total × 100% for each stage i;
38. Compute Fluid Ratioi = Qi / Q_total × 100% for each stage i;

Algorithm 1. Algorithm for Calculating Time and Fluid Ratios for Different Extension Stages.

non-convex optimization problems and the training of large-scale 
neural networks. 

2.4 Genetic algorithm

Genetic Algorithm (GA) is an optimization technique based 
on the principles of natural selection and genetics (Ghose, 2002). 

It simulates the process of biological evolution to search for the 
global optimal solution in a complex multi-dimensional space and 
possesses strong global search capabilities, making it widely used 
in engineering optimization fields. GA evolves a group of potential 
solutions (i.e., a population) to progressively approach the optimal 
solution. Each individual in the population is represented as a 
chromosome, usually encoded as a binary string or a real-valued 
vector. The core operations of the algorithm include the following:
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FIGURE 1
Salps chain.

1. Selection: Individuals are selected based on their fitness 
(i.e., the value of the objective function) to generate the 
next-generation. Common selection methods include roulette 
wheel selection, tournament selection, etc.

2. Crossover: The crossover operation combines the genetic 
information of two parent individuals to generate new 
offspring. This process helps explore new areas of the search 
space. Common crossover methods include single-point 
crossover, multi-point crossover, and uniform crossover.

3. Mutation: The mutation operation randomly alters the 
genes of an individual, ensuring diversity within the 
population and preventing the algorithm from becoming 
trapped in local optima. The mutation rate is generally 
set low to avoid excessive disruption of the current
best solutions.

GA starts with an initial random population and evolves 
through the operations of selection, crossover, and mutation. Each 
generation produces a new population, which replaces the old one. 
The algorithm continues iterating until a termination condition 
is met, such as reaching the maximum number of iterations or 
achieving the desired objective function value.

In this study, the objective function is defined as the Open 
Flow Capacity (OFC), and the parameters to be optimized 
include fluid volume, pump rate, and proppant concentration 
defined in Equation 6.

Fitness(x) =OFC(x) (6)

where OFC(x) represents the Open Flow Capacity as the objective 
function, and x is the parameter set that includes fluid volume, pump 
rate, proppant concentration, and other variables.

2.5 Proposed model

This paper proposes a comprehensive framework based on 
machine learning, construction curve feature extraction, and a 
hybrid optimization model, aiming to improve the accuracy 
of parameter optimization. The core structure of the model, 
as shown in Figure 2, consists of four parts: 

1 Construction Curve Feature Extraction: A construction 
curve feature extraction algorithm is used to extract key 
features from the fracturing construction curves. These 
features include the Proppant-dominated Fracture Extension 
Time Ratio (PDT), Blockage-induced Pressure Time Ratio 
(BPT), Multi-Fracture Competition Time Ratio (MFT), 
Filtration Balance Time Ratio (FBT), Filtration Increase 
Time Ratio (FIT), and corresponding fluid volume ratio 
features such as the Proppant-dominated Fracture Extension 
Fluid Ratio (PDF), Blockage-induced Pressure Fluid Ratio 
(BPF), Multi-Fracture Competition Fluid Ratio (MFF), 
Filtration Balance Fluid Ratio (FBF), and Filtration Increase 
Fluid Ratio (FIF). These features effectively reflect the 
dynamic changes during different stages of the construction 
process and provide critical input for model training and
optimization.

2. Feature Selection: A comprehensive correlation coefficient 
method is employed, which combines Pearson correlation 
coefficient, Random Forest feature importance, and 
Kendall’s Tau coefficient. This method is used to obtain the 
comprehensive correlation coefficients of the features with 
the target variable (such as Open Flow Capacity, OFC). The 
goal is to select features that significantly influence OFC while 
eliminating those with low correlation, thus enabling rapid 
dimensionality reduction.

3. SSA-BP Model Training: The extracted feature data are utilized 
to construct and train an SSA-BP model, which combines 
the Salp Swarm Algorithm (SSA) and Back Propagation (BP) 
algorithm. SSA is first used to perform a global search and 
determine the initial parameters, after which BP is applied to 
locally optimize the parameters, progressively enhancing the 
model’s predictive accuracy.

4. Fracturing Parameter Optimization: Based on the trained 
SSA-BP model, the fracturing construction parameters 
(fluid volume, pump rate, and proppant concentration) are 
optimized. These three parameters were selected because 
they exhibited the highest comprehensive correlation 
scores with OFC in our dataset, and because they are 
widely recognized as critical factors controlling fracture 
geometry and conductivity. Although these parameters 
are generally important across fracturing operations, the 
proposed framework is flexible and can incorporate additional 
parameters (e.g., fluid viscosity, stage spacing) under different 
reservoir conditions. with the objective of maximizing 
OFC. During the optimization process, the best parameter 
combination is identified with the goal of maximizing 
production capacity, ultimately yielding an optimal fracturing
construction plan.
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FIGURE 2
Flowchart of the proposed framework combining machine learning and hybrid optimization, including Construction Curve Feature Extraction, Feature 
Selection, SSA-BP Model Training, and Fracturing Parameter Optimization.

3 Results and discussion

3.1 Field data

The study area is located in the A gas field of the Tarim Basin, 
which is a typical fractured gas reservoir. The reservoir is primarily 
composed of the Bashijiqike Formation and Baxigai Formation of 
the Cretaceous system. The lithology mainly consists of fine to 
medium-grained feldspathic lithic sandstones and lithic feldspathic 
sandstones. The reservoir exhibits significant characteristics of 
extremely low porosity and permeability. The porosity ranges from 
3.5% to 10%, while the matrix permeability varies between 0.035 
mD and 0.5 mD. The reservoir pore types mainly include residual 
intergranular pores, intergranular dissolution-enlarged pores, and 
intragranular dissolution pores. In certain areas, micropores and 

microfractures are also developed. The natural fracture system 
in this area is well developed, and the presence of fractures 
significantly enhances the reservoir’s flow capacity. The fracture 
permeability can reach millidarcy or even Darcy levels, significantly 
improving the effective flow capacity of the reservoir, which has 
low matrix permeability and limited utilization. The development 
of fractures in the vertical direction is controlled by lithology, 
with fractures being more densely distributed in fault zones 
or structurally complex areas, exhibiting strong heterogeneity. 
Additionally, the formation pressure coefficient in the area ranges 
from 1.58 to 2.08, indicating abnormally high pressure. The 
formation temperature ranges between 101.85 °C and 165.63 °C, 
representing a normal temperature system. The complex geological 
conditions and reservoir properties make the development of this 
area challenging, necessitating precise optimization of construction 
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TABLE 1  Possible factors influencing open flow capacity (OFC).

Type No. Parameter Symbol Unit

Geologic

1 Gas saturation GS %

2 Porosity φ %

3 Maximum total hydrocarbon TG %

4 Reservoir thickness H m

5 Fracture density p10 1/m

6 Approaching angle θ °

7 Activation pressure gradient dPA MPa/100 m

Engineering

8 Leakage amount during drilling LD m3

9 First treatment total fluid volume V1 m3

10 First treatment main pump rate Q1 m3/min

11 Leakage amount during Workover LW m3

12 Workover leakage pressure difference coefficient Δα NaN

13 Workover time T Day

Production

14 Open flow capacity after the first treatment AOF 104 m3/d

15 Cumulative gas production before retreatment Pc 104m3

16 Current formation pressure coefficient αp NaN

construction curve

17 Proppant-dominated fracture extension time ratio PDT %

18 Blockage-induced pressure time ratio BPT %

19 Multi-fracture competition time ratio MFT %

20 Filtration balance time ratio FBT %

21 Filtration increase time ratio FIT %

22 Proppant-dominated fracture extension fluid ratio PDF %

23 Blockage-induced pressure fluid ratio BPF %

24 Multi-fracture competition fluid ratio MFF %

25 Filtration balance fluid ratio FBF %

26 Filtration increase fluid ratio FIF %

parameters and advanced machine learning methods to enhance 
production capacity and development efficiency.

The data sources include on-site construction records, geological 
data, and production data. To improve the accuracy of prediction 
results, this paper introduces construction curve features and 
collects favorable parameters from a total of 70 wells subjected to 
proppant fracturing. A database dedicated to analyzing the main 
control factors affecting Open Flow Capacity (OFC) was established, 
as shown in Table 1.

3.2 Identification of key influencing factors

In the process of hydraulic fracturing, identifying the key factors 
that influence Open Flow Capacity (OFC) is a crucial step for 
optimizing construction parameters. By conducting an in-depth 
analysis of the features extracted from the construction curves, 
it is possible to effectively identify parameters closely related to 
OFC. These features, combined with geological, engineering, and 
production data, form a new dataset for analysis.
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FIGURE 3
The ranking results based on the composite correlation coefficients for Open Flow Capacity (OFC).

TABLE 2  Evaluation results of four regression models.

Model R2 MSE

Random Forest 0.75 2,299.53

Adaboost 0.68 2,868.82

GBDT 0.77 2,212.10

SSA-BP 0.84 1,440.61

Initially, several characteristic parameters from the construction 
curves are preliminarily screened, including time ratio features 
(such as Proppant-Dominated Fracture Extension Time Ratio and 
Blockage-Induced Pressure Time Ratio) and fluid ratio features 
(such as Proppant-Dominated Fracture Extension Fluid Ratio 
and Blockage-Induced Pressure Fluid Ratio). Subsequently, a 
comprehensive correlation coefficient method is applied, which 
integrates Pearson correlation, random forest feature importance, 
and Kendall’s Tau coefficient to quantitatively evaluate the 
correlation between each feature and OFC. By calculating the 
comprehensive correlation coefficient for each feature, the degree to 
which each feature impacts OFC during hydraulic fracturing can be 
determined.

Finally, based on the magnitude of the comprehensive 
correlation coefficients, the most significant factors affecting OFC 
are identified. These key influencing factors will be the focus 
of subsequent optimization of construction parameters, aiming 
to enhance the overall effectiveness of hydraulic fracturing and 
maximize OFC.

Based on the Open Flow Capacity (OFC) key influencing factors 
ranking calculated using the comprehensive correlation coefficient 
method, factors with a comprehensive correlation score lower 
than 0.1 were discarded. A total of 20 key factors affecting the 
repeated stimulation outcomes were selected, as shown in Figure 3. 
The factors are listed in descending order of their scores, with 
the most significant ones being: Filtration Increase Time Ratio 
(FIT, 0.38), Workover Time (T, 0.38), Multi-Fracture Competition 
Time Ratio (MFT, 0.33), Filtration Increase Fluid Ratio (FIF, 0.28), 
Multi-Fracture Competition Fluid Ratio (MFF, 0.28), Post-First 
Stimulation Open Flow Capacity (AOF, 0.36), Reservoir Thickness 
(H, 0.23), Fluid Loss During Workover (LW, 0.18), Total Scale of First 
Stimulation (V1, 0.16), Porosity (φ, 0.14), Approaching Angle (θ, 
0.13), Fracture Activation Pressure Gradient (dPA, 0.13), Filtration 
Balance Time Ratio (FBT, 0.12), Cumulative Gas Production After 
First Stimulation (Pc, 0.12), Current Formation Pressure Coefficient 
(αp, 0.12), Proppant-Dominated Fracture Extension Fluid Ratio 
(PDF, 0.11), Proppant-Dominated Fracture Extension Time Ratio 
(PDT, 0.11), Maximum Total Hydrocarbon Content (TG, 0.11), and 
Fracture Density (p10, 0.10). 

3.3 Prediction model construction and 
validation

In constructing the prediction model, this study integrates 
data-driven models with optimization algorithms to enhance 
the accuracy and robustness of the predictions. Initially, feature 
extraction and selection methods are applied to the construction 
curves to identify the variables most strongly correlated with Open 
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FIGURE 4
Comparison between predicted and actual values on the test set across four regression models.

TABLE 3  Genetic algorithm parameter optimization R.

Well Name Parameters type Fluid volume (m3) Proppant volume 
(m3)

Pumping rate 
(m3/min)

Open flow 
capacity 

(104 m3/d)

A-2
Actual Parameters 1,252 54.1 4.35 18.36

Optimized Parameters 1,545 76.7 5.5 47.79

A-13
Actual Parameters 1,267 80.9 4.4 106.84

Optimized Parameters 1,454 71 4.7 137.96

A-15
Actual Parameters 1,154 63 4.1 65.33

Optimized Parameters 1,243 72 5.13 79.95

Flow Capacity (OFC). The SSA-BP (Salp Swarm Algorithm-Back 
Propagation) hybrid optimization algorithm is then employed to 
train and fine-tune the model.

The SSA-BP algorithm leverages the global search capabilities of 
the Salp Swarm Algorithm (SSA) alongside the local optimization 
characteristics of the Back Propagation (BP) neural network. This 
combination effectively prevents the model from becoming trapped 
in local optima and accelerates the convergence process. During 
training, the SSA algorithm is first used to globally optimize the 
initial weights and thresholds of the neural network. Subsequently, 
the BP algorithm is employed to further fine-tune the parameters 
locally, gradually improving the model’s prediction accuracy.

For model validation, 80% of the data was randomly selected 
as the training set, with the remaining 20% used as the test set. 
The experimental results from four regression models (as shown in 
Table 2) and the comparison between the predicted and actual values 
of the test samples (as shown in Figure 4) reveal that, except for 
the Adaboost algorithm, the coefficient of determination (R2) of the 
other three algorithms exceeds 0.7. The SSA-BP algorithm achieved 
the highest coefficient of determination and the lowest mean squared 
error, indicating that its fit was closest to the actual values. This 
demonstrates that the key factors selected in this study explain up to 
84% of the productivity variation, confirming the strong predictive 
capability of the SSA-BP model.
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FIGURE 5
Distribution of optimized fracturing parameters for well A-13.

FIGURE 6
The initial fracturing operation curve of Well A-X.
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3.4 Fracturing parameter optimization

Using the SSA-BP model as a predictive surrogate model for 
post-fracturing open flow capacity (OFC), systematic optimization 
was conducted on the key parameters of the fracturing process to 
maximize OFC. The optimization process mainly involved three 
critical parameters: fluid volume, pump rate, and proppant volume. 
The search ranges were set within controllable limits: fluid volume 
between 200 and 2,500 m3, proppant volume between 0.69 and 
220.0 m3, and pump rate between 1.5 and 6.0 m3/min.

The genetic algorithm involved several parameter settings and 
methods. In this study, binary encoding was chosen following 
the genetic algorithm’s workflow; the initial population size was 
set to 200, and the fitness function was the SSA-BP production 
prediction model. Roulette wheel selection, uniform crossover, and 
simple inversion mutation were employed as genetic operators. The 
optimization objective was set to maximize post-fracturing OFC, 
and the genetic algorithm was applied to optimize the fracturing 
parameters for wells A-2, A-13, and A-15. The comparison results 
of parameter optimization are shown in Table 3.

By comparing the fracturing parameter optimization results 
of the three wells, it was found that the optimized fluid volume 
and pump rate were significantly higher than the actual total 
volume, and the optimized proppant volume also increased 
notably. The parameter relationship diagram for the optimized A-
13 well is shown in Figure 5, where the factor value distribution 
is relatively reasonable. After optimization, the OFC of wells 
A-2, A-13, and A-15 increased by 29.43 × 104 m3/d, 31.12 
× 104 m3/d, and 14.62 × 104 m3/d, respectively. Therefore, 
the fracturing parameter optimization method, combining the 
SSA-BP production prediction model and genetic algorithm, 
can effectively enhance post-fracturing production, achieving 
significant production improvement. This optimization method 
employs a surrogate model-based approach, avoiding dependence 
on fracturing numerical simulation, thus significantly reducing 
optimization time. 

4 Field application

During the first fracturing operation of well A-X, a total fluid 
volume of 687.3 cubic meters was used. This included 251.69 cubic 
meters of high-displacement pad fluid (with stage plug, 4.83 tons of 
70/100 mesh proppant), 180.32 cubic meters of high-displacement 
proppant-laden fluid (with 5.05 tons of 40/70 mesh proppant), 
241.79 cubic meters of high-displacement pad fluid (with stage plug, 
2.93 tons of 40/70 mesh proppant), and 176.89 cubic meters of high-
displacement proppant-laden fluid (with 4.91 tons of 40/70 mesh 
proppant). The maximum pumping rate was 4.4 cubic meters per 
minute, with a total proppant usage of 76.5 tons. The highest pump 
pressure reached 105 MPa, and all operational parameters were 
within the design range, with no abnormal fluctuations or incidents. 
The fracturing curve is shown in Figure 6.

Based on the actual data from the initial fracturing and 
feedback from the model, we made adjustments to the operational 
parameters. The adjusted total fluid volume and proppant volume 
were optimized, with the maximum pumping rate slightly increased 
to 4.7 cubic meters per minute and the proppant volume optimized 

to 80.2 tons to further enhance fracture conductivity and improve 
production capacity. The production test results showed a significant 
increase in daily gas production for well A-X, reaching 558,000 cubic 
meters, with the open flow capacity increasing to 1.01 million cubic 
meters per day, further validating the effectiveness of the model and 
its application in operational optimization. 

5 Conclusion

1. By employing the construction curve feature extraction 
method, key characteristics such as time and fluid ratios 
at different stages of the fracturing process—including 
proppant-dominated fracture extension, blockage pressure, 
multi-fracture competition, filtration balance, and filtration 
increase—were effectively identified. These characteristics 
significantly impact production capacity and provide valuable 
guidance for optimizing fracturing outcomes.

2. Considering geological, engineering, production parameters, 
and construction curve characteristics of individual wells, 
a combined analysis method using Pearson correlation, 
Kendall’s Tau correlation, and random forest feature 
importance was employed. This method comprehensively 
identified 20 key factors influencing the open flow capacity 
(OFC) of the A gas field.

3. Based on the identified key factors, the SSA-BP hybrid 
optimization model was used to optimize the fracturing 
parameters of wells in the A gas field. This model successfully 
enhanced prediction accuracy by combining the global search 
capability of the Salp Swarm Algorithm (SSA) with the 
local optimization capability of the Back Propagation (BP) 
algorithm.

4. The fracturing construction parameters for wells in the A 
gas field were optimized using a genetic algorithm, ultimately 
determining the optimal combination of key parameters such 
as fluid volume, pump rate, and proppant concentration. This 
optimization significantly improved the effectiveness of the 
fracturing operation.

5. Following the initial fracturing operation, we made 
adjustments to the construction parameters. By increasing the 
total fluid volume, optimizing the proppant concentration, and 
slightly increasing the maximum pump rate, we successfully 
enhanced the production capacity of Well A-X. The adjusted 
construction parameters resulted in a significant increase 
in daily gas production, reaching 558,000 cubic meters, 
with an open flow capacity of 1.01 million cubic meters 
per day. This validated the effectiveness and applicability 
of the model in optimizing fracturing operations. Main 
findings: (1) Construction curve feature extraction effectively 
captured critical dynamic characteristics; (2) A total of 20 key 
influencing factors were identified through comprehensive 
correlation analysis; (3) The SSA-BP model explained 84% of 
the productivity variation, outperforming other algorithms; 
(4) Genetic Algorithm optimization significantly improved 
open flow capacity in multiple wells. Limitations: The 
study used data from 70 wells in a single field, which may 
restrict generalizability. SSA-BP also involves relatively high 
computational cost. Future work: Expanding the dataset,
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validating in other reservoirs, and exploring lightweight 
models will further enhance applicability. Contributions: This 
work is among the first to integrate construction curve feature 
extraction with hybrid optimization for fracturing parameter 
design in Tarim Basin, providing methodological innovation 
and field-proven improvements in gas production.
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Nomenclature

T Workover time (Day)

AOF Open flow capacity after the first treatment (104 m3/d)

H Reservoir thickness (m)

LW Leakage amount during Workover (m3)

V1 First treatment total fluid volume (m3)

φ Porosity (%)

θ Approaching angle (°)
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