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Introduction: Optimizing fracturing parameters under multi-factor, complex
conditions remains challenging in low-permeability reservoirs.

Methods: We extract stage-aware construction-curve features, compute
composite correlations (Pearson, Kendall's Tau, Random Forest), train an SSA-
BP surrogate to predict open flow capacity (OFC), and apply a GA to optimize
fluid volume, pump rate, and proppant concentration.

Results: Twenty key factors were retained. Among four regressors, SSA-BP
performed best (highest R’, lowest MSE). GA-optimized parameters improved
OFC in multiple wells; a field application (Well A-X) showed increased daily gas
and OFC after adjustments.

Discussion: The integrated feature-extraction + SSA-BP + GA workflow provides
accurate OFC prediction and practical parameter optimization. Limitations
include single-field data (~70 wells) and SSA-BP computational cost; future work
will expand datasets and explore lighter models.

KEYWORDS

fracturing optimization, construction curve feature extraction, deep learning, hybrid
optimization model, open flow capacity

1 Introduction

As the exploration and development of unconventional oil and gas resources continue
to deepen, hydraulic fracturing technology has become a key method for enhancing the
productivity of low-permeability reservoirs (Soliman et al., 2012; Wenrui et al., 2018; Li
and Xu, 2024). However, optimizing fracturing parameters to maximize production remains
a significant challenge in the oil and gas industry. Traditional methods for optimizing
fracturing parameters often rely on numerical simulations and empirical formulas, which
tend to be inefficient and insufficiently accurate when dealing with complex reservoir
conditions and multivariable optimization (Clarkson, 2013; Lin et al., 2021).

In recent years, with the rapid development of big data and artificial intelligence
technologies, data-driven methods have been widely applied in oil and gas development
(Sircar et al., 20215 Tariq et al, 2021). Deep learning, in particular, has shown great
potential in optimizing fracturing parameters due to its powerful data processing
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and pattern recognition capabilities. By learning from

fracturing data, deep
extract key features

a large amount of historical
learning  models
the

performance under different parameter combinations, thereby

can automatically

from fracturing process and predict production
achieving optimized fracturing design (Wang et al., 2021;
Tabasi et al., 2022).

Fracturing parameter optimization methods can be broadly
divided into two categories: traditional optimization methods and
intelligent optimization methods (Yao et al, 2021; Deng et al,
2022). Traditional optimization methods include single-parameter
optimization and multi-parameter optimization (Li et al., 2021).
The former often employs sensitivity analysis to determine
the impact of a single parameter on production, while the
latter uses methods such as orthogonal experimental design
or grey relational analysis to optimize multiple factors in
combination (Gul et al., 2020). However, these methods typically
focus on optimizing a single or a few fracturing parameters,
failing to fully consider the overall impact of multi-parameter
combinations on fracturing outcomes, and they lack in-depth
analysis of parameter interactions under complex geological
conditions (Mi et al.,, 2016; Al-Fatlawi et al.,, 2019). Furthermore,
traditional optimization methods have a narrow search range
and involve a large workload in the optimization process
(Gao et al., 2006).

In contrast, intelligent optimization methods, which employ
single or hybrid intelligent algorithms, can automatically design
and optimize fracturing parameter combinations (Ahmed et al.,
2021; Zhou et al, 2022). For example, Ma etal. proposed
a hybrid intelligent algorithm capable of optimizing multiple
types of fracturing parameters simultaneously (Jahandideh and
Jafarpour, 2016). However, these intelligent methods still face certain
limitations when dealing with multi-parameter combinations,
especially when considering the strong heterogeneity of shale
reservoirs.

To address these issues, researchers have proposed new
integrated optimization algorithms. For instance, Deng etal.
(Deng et al, 2022) introduced an integrated optimization
method based on the SPSA algorithm nested with a binary
search algorithm, which realizes the integrated optimization of
discrete and continuous fracturing parameters. This method can
automatically optimize fracturing parameter combinations and
combined with a numerical flow model of subdivided horizontal
wells, selects the optimal fracturing parameter combination by
taking net present value (NPV) as the objective function. Luo
etal. (Luo et al., 2024) proposed an automatic optimization process
based on genetic algorithms (GA) and a modified PKN model
to quickly predict fracture geometries and optimize fracture
locations and fluid injection volumes. Liu et al. (2023) applied
a method combining random forest algorithms and principal
component analysis to optimize the fracturing parameters of
shale oil horizontal wells, significantly improving post-fracture
productivity.

In addition, with the rapid advancement of machine learning
technology, deep learning and fracturing curve feature extraction
techniques have gradually been applied to the optimization
of fracturing parameters. For example, Chen et al. (2022)
proposed a shale gas horizontal well production prediction model
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based on LSTM neural networks, successfully predicting future
productivity of shale gas wells using time series forecasting methods.
Similarly, Muther et al. (2022) proposed a fracturing optimization
design method based on multi-agent algorithms, combining
artificial neural networks and optimization algorithms to improve
the efficiency of fracturing parameter design. However, these
methods mostly focus on optimizing a single or a few fracturing
parameters and fail to fully consider the overall impact of multi-
parameter combinations on fracturing effectiveness, and they
lack in-depth analysis of parameter interactions under complex
geological conditions.

To address these shortcomings, this study proposes a
new method combining deep learning and fracturing curve
feature extraction for the optimization of fracturing parameters.
First, we use fracturing curve feature extraction algorithms
to identify key features closely related to productivity from
fracturing data. Then, based on the extracted features, we
build a deep learning model to predict productivity under
different parameter combinations. Finally, we iteratively train
the model using optimization algorithms to identify the optimal
fracturing parameter combination that maximizes post-fracture
productivity.

2 Methods and models
2.1 Comprehensive correlation coefficient

In this study, to more comprehensively evaluate the correlation
between various features and the target variable, we combined
Pearson correlation coefficient, Kendall's Tau coefficient, and
Random Forest feature importance to propose a method for
calculating a comprehensive correlation coefficient (Sen, 1968;
Archer and Kimes, 2008; Cohen et al., 2009). This method allows
for an integrated assessment of the importance of each feature while
preserving information on linear correlation, nonlinear correlation,
and feature importance. The specific steps are as follows (see
Equations 1-3).

First, we calculate the Pearson correlation coefficient, Kendall’s
Tau coefficient, and Random Forest feature importance between
each feature and the target variable.

Pearson correlation coefficient p;:

Cov(X;,Y)

i

Ox 0y 1
Where Cov(X;, Y) represents the covariance between feature X;
and target variable Y, and oy and oy are the standard deviations of
feature X; and target variable Y, respectively.
Kendall’s Tau coefficient 7;:

(P-Q

- %n(n— 1)

2

Where P and Q represent the number of concordant and
discordant pairs, respectively, # is the sample size.

Random Forest feature importance f}: This is calculated using
a Random Forest model, indicating the relative importance of each
feature within the model.
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Due to the differing scales of these correlation coefficients,
we perform Min-Max normalization on each coefficient to
standardize their impact in the comprehensive evaluation.
Through normalization, the values of each coefficient are
mapped to the range of 0-1, facilitating subsequent weighted
summation.

To comprehensively consider Pearson correlation, Kendall’s Tau,
and Random Forest feature importance, we assign weights w,, w.
and w/ to each normalized correlation coefficient, respectively, and
perform a weighted average to obtain the comprehensive correlation
coefficient C.

Ci:Wp'|Pz{|+WT'|Tz{|+Wf'ﬂ ©)

Where is the comprehensive correlation coeflicient of feature,
In this study, the weights are set as follows: = 0.4, = 0.3, and =
0.3. These weights were determined through sensitivity analysis
on a subset of 10 wells, and the results were consistent with
previous findings (Archer and Kimes, 2008), ensuring objectivity in
parameter assignment.

2.2 Algorithm for extracting construction
curve features

To enhance the predictive effectiveness of the data and
increase the diversity of parameters, we propose an algorithm
for extracting construction curve features. The purpose of this
algorithm is to calculate the time ratio and fluid volume ratio
at different stages (such as artificial main fracture extension,
blockage-induced pressure, multi-fracture competition, filtration
balance, filtration increase, etc.) during the hydraulic fracturing
process at the wellhead. These ratios help us understand the
relative contribution of each stage to the entire construction
process. The algorithm determines the construction stage at
each time point based on the logarithmic slope of net pressure
and other conditions (such as bottomhole pressure, flow
rate, etc.), and accumulates the corresponding time and fluid
volume. The pseudocode (see Algorithm 1) for the algorithm is
as follows:

2.3 SSA-BP

SSA-BP (Salp Swarm Algorithm-Back Propagation) is a hybrid
optimization algorithm that combines the Salp Swarm Algorithm
(SSA) with the Back Propagation (BP) algorithm (), aimed at
optimizing the training process of neural networks. The traditional
BP algorithm works by calculating the gradient of the loss
function with respect to the network weights and updating the
weights through gradient descent, bringing the networK’s output
closer to the target value. However, BP algorithms tend to get
trapped in local optima and converge slowly when dealing with
complex non-convex optimization problems. The SSA-BP algorithm
introduces the global search capability of SSA to overcome
these limitations. In this study, the neural network consisted of
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an input layer with 20 neurons (corresponding to the selected
features), one hidden layer with 15 neurons, and an output
layer with one neuron representing OFC. The SSA population
size was set to 50 and the maximum iteration number to 200,
based on parameter tuning experiments to balance accuracy and
efficiency. These implementation details ensure reproducibility of
the model.

The basic idea of the SSA-BP algorithm is to use SSA for global
search to find better initial weights, followed by local optimization
and fine-tuning using the BP algorithm. SSA simulates the swarm
behavior of salps, exploring better solutions within the search space.
In SSA, the individuals (i.e., salps) are divided into leaders and
followers. The leader is responsible for guiding the entire swarm
towards a better solution, while the followers follow the leader,
forming a continuously converging swarm. Figure 1 illustrates
the Salp chain. Specifically, the SSA-BP algorithm is executed
as follows:

1. Initialization: Randomly generate the initial weights and biases
of the neural network, and initialize the position vectors X =
{x},%,,...,x,} and states of the salp swarm.

2. Salp Swarm Update: Based on the SSA algorithm, the salp
individuals adjust their positions xi(f) according to the
evaluation function results. The leader’s position is updated
using the following formula as given in Equation 4.

Fi+¢ ((maxj - minj)c2 + minj), ifc; > 0.5

le(t+1) = (4)

Fj -0 (maxj - minj)c2 + minj), ifc; < 0.5

3. Back Propagation: Using the current positions and states of the
salp swarm, execute the BP algorithm to calculate the gradients
of the neural network. Specifically, the BP algorithm updates
the weights using the following formula as given in Equation 5.

oE

where w;; represents the weights in the neural network, # is the
learning rate, and E is the loss function.

4. Parameter Update: Update the neural network weights and
biases based on the gradient information calculated by the BP
algorithm, further reducing the error between the predicted
output and the target value.

5. Termination Condition Check: If the preset termination
conditions (such as reaching the maximum number of
iterations or the error being below a certain threshold) are met,
the algorithm terminates; otherwise, return to step 2 for the
next iteration.

By combining SSA and BP algorithms, the SSA-BP algorithm
conducts a global search while performing local optimization with
the BP algorithm, effectively enhancing the training performance
of the neural network. It is particularly suitable for complex
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Data:Time series t = {t;, t,, .., t,}, Pressure data P; = {P;, P,, .., P,}, Flow rate data Q; = {Q;, Q,, -
Q,}, Sand concentration C; = {C;, Cy, .., C,}

Result: Time ratio and fluid ratio for each stage

1 Initialize TPDT = @, TBPT = @, TMFT = 0, TFBT = 0, T_FIT = 0;

2. Initialize QPDT = 06, QBPT = 0, QMFT = 0, QFBT = 0, Q_FIT = 0;

3. fori=1t%ton—-1do

4. Compute bottomhole pressure P,; based on Py;;

5. Compute net pressure P,..(ti) = Pwi — Extension Pressure;

6 Compute log slope slope(t;) of net pressure over time;

7 if 0.12 < slope(t;) < 0.35 then

8 TPDT « TPDT + (t;+#1 — t;);

9. QPDT « QPDT + Q; x (t;+1 — t;);

10. else

11. if slope(ti) > ©.35 and P_net(t;) meets condition then

12. TBPT «— TBPT + (t,;+1 — t;);

13. QBPT « QBPT + Q; x (t;+1 — t;);

14. else

15. if slope(t;) = 1 then

16. TBPT « TBPT + (t;+1 = t;);

17. QBPT « QBPT + Q; x (t;+1 — t;);

18. else

19. if slope(t;) = 0.12 then

20. TFBT « TFBT + (t;#1 — t;);

21. QFBT « QFBT + Q; x (t;+7 = t;);

22. else

23. if slope(t;) < © then

24 TFIT « TFIT + (t,+1 - t;);

25. QFIT « QFIT + Q; x (ty+1 — t;);

26. else

27. TMFT « TMFT + (t;+#7 — t;);

28. QMFT «— QMFT + Q; x (t;+1 = t;);

29. end

30. end

31. end

32. end

33. end

34. end

35. Total T = TPDT + TBPT + TMFT + TFBT + T_FIT;

36. Total Q = QPDT + QBPT + QMFT + QFBT + Q_FIT;

37. Compute Time Ratioi = T; / T_total x 100% for each stage 1i;

38. Compute Fluid Ratioi = Q; / Q_total x 100% for each stage ij;

Algorithm 1. Algorithm for Calculating Time and Fluid Ratios for Different Extension Stages.

non-convex optimization problems and the training of large-scale It simulates the process of biological evolution to search for the

neural networks.

2.4 Genetic algorithm

global optimal solution in a complex multi-dimensional space and
possesses strong global search capabilities, making it widely used
in engineering optimization fields. GA evolves a group of potential
solutions (i.e., a population) to progressively approach the optimal
solution. Each individual in the population is represented as a

Genetic Algorithm (GA) is an optimization technique based  chromosome, usually encoded as a binary string or a real-valued

on the principles of natural selection and genetics (Ghose, 2002).  vector. The core operations of the algorithm include the following:

Frontiers in Earth Science
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FIGURE 1
Salps chain.

1. Selection: Individuals are selected based on their fitness
(i.e., the value of the objective function) to generate the
next-generation. Common selection methods include roulette
wheel selection, tournament selection, etc.

Crossover: The crossover operation combines the genetic

information of two parent individuals to generate new

offspring. This process helps explore new areas of the search
space. Common crossover methods include single-point
crossover, multi-point crossover, and uniform crossover.

3. Mutation: The mutation operation randomly alters the
genes of an individual, ensuring diversity within the
population and preventing the algorithm from becoming
trapped in local optima. The mutation rate is generally
set low to avoid excessive disruption of the current
best solutions.

GA starts with an initial random population and evolves
through the operations of selection, crossover, and mutation. Each
generation produces a new population, which replaces the old one.
The algorithm continues iterating until a termination condition
is met, such as reaching the maximum number of iterations or
achieving the desired objective function value.

In this study, the objective function is defined as the Open
Flow Capacity (OFC), and the parameters to be optimized
include fluid volume, pump rate, and proppant concentration
defined in Equation 6.

Fitness(x) = OFC(x) 6)

where OFC(x) represents the Open Flow Capacity as the objective
function, and x is the parameter set that includes fluid volume, pump
rate, proppant concentration, and other variables.
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2.5 Proposed model

This paper proposes a comprehensive framework based on
machine learning, construction curve feature extraction, and a
hybrid optimization model, aiming to improve the accuracy
of parameter optimization. The core structure of the model,
as shown in Figure 2, consists of four parts:

1 Construction Curve Feature Extraction: A construction
curve feature extraction algorithm is used to extract key
features from the fracturing construction curves. These
features include the Proppant-dominated Fracture Extension
Time Ratio (PDT), Blockage-induced Pressure Time Ratio
(BPT), Multi-Fracture Competition Time Ratio (MFT),
Filtration Balance Time Ratio (FBT), Filtration Increase
Time Ratio (FIT), and corresponding fluid volume ratio
features such as the Proppant-dominated Fracture Extension
Fluid Ratio (PDF), Blockage-induced Pressure Fluid Ratio
(BPF), Multi-Fracture Competition Fluid Ratio (MFF),
Filtration Balance Fluid Ratio (FBF), and Filtration Increase
Fluid Ratio (FIF). These features effectively reflect the
dynamic changes during different stages of the construction
process and provide critical input for model training and
optimization.

Feature Selection: A comprehensive correlation coefficient
method is employed, which combines Pearson correlation
coefficient, Random Forest feature importance, and
Kendall’s Tau coeflicient. This method is used to obtain the
comprehensive correlation coefficients of the features with
the target variable (such as Open Flow Capacity, OFC). The
goal is to select features that significantly influence OFC while
eliminating those with low correlation, thus enabling rapid
dimensionality reduction.

SSA-BP Model Training: The extracted feature data are utilized
to construct and train an SSA-BP model, which combines
the Salp Swarm Algorithm (SSA) and Back Propagation (BP)
algorithm. SSA is first used to perform a global search and
determine the initial parameters, after which BP is applied to
locally optimize the parameters, progressively enhancing the
model’s predictive accuracy.

Fracturing Parameter Optimization: Based on the trained
SSA-BP model, the fracturing construction parameters
(fluid volume, pump rate, and proppant concentration) are
optimized. These three parameters were selected because
they exhibited the highest comprehensive correlation
scores with OFC in our dataset, and because they are
widely recognized as critical factors controlling fracture
geometry and conductivity. Although these parameters
are generally important across fracturing operations, the
proposed framework is flexible and can incorporate additional
parameters (e.g., fluid viscosity, stage spacing) under different
reservoir conditions. with the objective of maximizing
OFC. During the optimization process, the best parameter
combination is identified with the goal of maximizing
production capacity, ultimately yielding an optimal fracturing
construction plan.
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FIGURE 2

Selection, SSA-BP Model Training, and Fracturing Parameter Optimization.

Flowchart of the proposed framework combining machine learning and hybrid optimization, including Construction Curve Feature Extraction, Feature

3 Results and discussion

3.1 Field data

The study area is located in the A gas field of the Tarim Basin,
which is a typical fractured gas reservoir. The reservoir is primarily
composed of the Bashijigike Formation and Baxigai Formation of
the Cretaceous system. The lithology mainly consists of fine to
medium-grained feldspathic lithic sandstones and lithic feldspathic
sandstones. The reservoir exhibits significant characteristics of
extremely low porosity and permeability. The porosity ranges from
3.5% to 10%, while the matrix permeability varies between 0.035
mD and 0.5 mD. The reservoir pore types mainly include residual
intergranular pores, intergranular dissolution-enlarged pores, and
intragranular dissolution pores. In certain areas, micropores and
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microfractures are also developed. The natural fracture system
in this area is well developed, and the presence of fractures
significantly enhances the reservoir’s flow capacity. The fracture
permeability can reach millidarcy or even Darcy levels, significantly
improving the effective flow capacity of the reservoir, which has
low matrix permeability and limited utilization. The development
of fractures in the vertical direction is controlled by lithology,
with fractures being more densely distributed in fault zones
or structurally complex areas, exhibiting strong heterogeneity.
Additionally, the formation pressure coeflicient in the area ranges
from 1.58 to 2.08, indicating abnormally high pressure. The
formation temperature ranges between 101.85 °C and 165.63 °C,
representing a normal temperature system. The complex geological
conditions and reservoir properties make the development of this
area challenging, necessitating precise optimization of construction

frontiersin.org


https://doi.org/10.3389/feart.2025.1658142
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Qiao et al.

TABLE 1 Possible factors influencing open flow capacity (OFC).

10.3389/feart.2025.1658142

Type [\[o} Parameter ‘ Symbol ‘ Unit
1 Gas saturation GS %
2 Porosity [} %
3 Maximum total hydrocarbon TG %
Geologic 4 Reservoir thickness H m
5 Fracture density p10 1/m
6 Approaching angle 0 °
7 Activation pressure gradient dpP, MPa/100 m
8 Leakage amount during drilling Ly m?
9 First treatment total fluid volume v, m?
10 First treatment main pump rate Q, m®/min
Engineering
11 Leakage amount during Workover Ly m?
12 Workover leakage pressure difference coefficient Aa NaN
13 Workover time T Day
14 Open flow capacity after the first treatment AOF 10* m*/d
Production 15 Cumulative gas production before retreatment P, 10*m?
16 Current formation pressure coefficient ap NaN
17 Proppant-dominated fracture extension time ratio PDT %
18 Blockage-induced pressure time ratio BPT %
19 Multi-fracture competition time ratio MFT %
20 Filtration balance time ratio FBT %
21 Filtration increase time ratio FIT %
construction curve
22 Proppant-dominated fracture extension fluid ratio PDF %
23 Blockage-induced pressure fluid ratio BPF %
24 Multi-fracture competition fluid ratio MFF %
25 Filtration balance fluid ratio FBF %
26 Filtration increase fluid ratio FIF %

parameters and advanced machine learning methods to enhance
production capacity and development efficiency.

The data sources include on-site construction records, geological
data, and production data. To improve the accuracy of prediction
results, this paper introduces construction curve features and
collects favorable parameters from a total of 70 wells subjected to
proppant fracturing. A database dedicated to analyzing the main
control factors affecting Open Flow Capacity (OFC) was established,
as shown in Table 1.

Frontiers in Earth Science 07

3.2 Identification of key influencing factors

In the process of hydraulic fracturing, identifying the key factors
that influence Open Flow Capacity (OFC) is a crucial step for
optimizing construction parameters. By conducting an in-depth
analysis of the features extracted from the construction curves,
it is possible to effectively identify parameters closely related to
OFC. These features, combined with geological, engineering, and
production data, form a new dataset for analysis.
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FIGURE 3
The ranking results based on the composite correlation coefficients for Open Flow Capacity (OFC).

TABLE 2 Evaluation results of four regression models.

Model R? MSE

Random Forest 0.75 2,299.53
Adaboost 0.68 2,868.82
GBDT 0.77 2,212.10
SSA-BP 0.84 1,440.61

Initially, several characteristic parameters from the construction
curves are preliminarily screened, including time ratio features
(such as Proppant-Dominated Fracture Extension Time Ratio and
Blockage-Induced Pressure Time Ratio) and fluid ratio features
(such as Proppant-Dominated Fracture Extension Fluid Ratio
and Blockage-Induced Pressure Fluid Ratio). Subsequently, a
comprehensive correlation coefficient method is applied, which
integrates Pearson correlation, random forest feature importance,
and Kendall's Tau coefficient to quantitatively evaluate the
correlation between each feature and OFC. By calculating the
comprehensive correlation coefficient for each feature, the degree to
which each feature impacts OFC during hydraulic fracturing can be
determined.

Finally, based on the magnitude of the comprehensive
correlation coeflicients, the most significant factors affecting OFC
are identified. These key influencing factors will be the focus
of subsequent optimization of construction parameters, aiming
to enhance the overall effectiveness of hydraulic fracturing and
maximize OFC.

Frontiers in Earth Science

Based on the Open Flow Capacity (OFC) key influencing factors
ranking calculated using the comprehensive correlation coefficient
method, factors with a comprehensive correlation score lower
than 0.1 were discarded. A total of 20 key factors affecting the
repeated stimulation outcomes were selected, as shown in Figure 3.
The factors are listed in descending order of their scores, with
the most significant ones being: Filtration Increase Time Ratio
(FIT, 0.38), Workover Time (T, 0.38), Multi-Fracture Competition
Time Ratio (MFT, 0.33), Filtration Increase Fluid Ratio (FIF, 0.28),
Multi-Fracture Competition Fluid Ratio (MFE 0.28), Post-First
Stimulation Open Flow Capacity (AOEF, 0.36), Reservoir Thickness
(H,0.23), Fluid Loss During Workover (LW, 0.18), Total Scale of First
Stimulation (V1, 0.16), Porosity (¢, 0.14), Approaching Angle (6,
0.13), Fracture Activation Pressure Gradient (dPA, 0.13), Filtration
Balance Time Ratio (FBT, 0.12), Cumulative Gas Production After
First Stimulation (Pc, 0.12), Current Formation Pressure Coefficient
(ap, 0.12), Proppant-Dominated Fracture Extension Fluid Ratio
(PDE, 0.11), Proppant-Dominated Fracture Extension Time Ratio
(PDT, 0.11), Maximum Total Hydrocarbon Content (TG, 0.11), and
Fracture Density (p10, 0.10).

3.3 Prediction model construction and
validation

In constructing the prediction model, this study integrates
data-driven models with optimization algorithms to enhance
the accuracy and robustness of the predictions. Initially, feature
extraction and selection methods are applied to the construction
curves to identify the variables most strongly correlated with Open

08 frontiersin.org


https://doi.org/10.3389/feart.2025.1658142
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Qiao et al.

10.3389/feart.2025.1658142

Actual Values
Random Forest
Adaboost
GBDT

SSA-BP

200

175 A

150

100

754

Open Flow Capacity (10*m?*/d)

50 A

FIGURE 4

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12 Test 13 Test 14 Test 15
Test Sample Number

Comparison between predicted and actual values on the test set across four regression models.

TABLE 3 Genetic algorithm parameter optimization R.

Well Name Parameters type  Fluid volume (m?3) Proppant volume Pumping rate Open flow
(m3) (m*/min) capacity
(10* m3/d)
Actual Parameters 1,252 54.1 4.35 18.36
A-2
Optimized Parameters 1,545 76.7 5.5 47.79
Actual Parameters 1,267 80.9 4.4 106.84
A-13
Optimized Parameters 1,454 71 4.7 137.96
Actual Parameters 1,154 63 4.1 65.33
A-15
Optimized Parameters 1,243 72 5.13 79.95

Flow Capacity (OFC). The SSA-BP (Salp Swarm Algorithm-Back
Propagation) hybrid optimization algorithm is then employed to
train and fine-tune the model.

The SSA-BP algorithm leverages the global search capabilities of
the Salp Swarm Algorithm (SSA) alongside the local optimization
characteristics of the Back Propagation (BP) neural network. This
combination effectively prevents the model from becoming trapped
in local optima and accelerates the convergence process. During
training, the SSA algorithm is first used to globally optimize the
initial weights and thresholds of the neural network. Subsequently,
the BP algorithm is employed to further fine-tune the parameters
locally, gradually improving the model’s prediction accuracy.
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For model validation, 80% of the data was randomly selected
as the training set, with the remaining 20% used as the test set.
The experimental results from four regression models (as shown in
Table 2) and the comparison between the predicted and actual values
of the test samples (as shown in Figure 4) reveal that, except for
the Adaboost algorithm, the coefficient of determination (R?) of the
other three algorithms exceeds 0.7. The SSA-BP algorithm achieved
the highest coefficient of determination and the lowest mean squared
error, indicating that its fit was closest to the actual values. This
demonstrates that the key factors selected in this study explain up to
84% of the productivity variation, confirming the strong predictive
capability of the SSA-BP model.
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3.4 Fracturing parameter optimization

Using the SSA-BP model as a predictive surrogate model for
post-fracturing open flow capacity (OFC), systematic optimization
was conducted on the key parameters of the fracturing process to
maximize OFC. The optimization process mainly involved three
critical parameters: fluid volume, pump rate, and proppant volume.
The search ranges were set within controllable limits: fluid volume
between 200 and 2,500 m®, proppant volume between 0.69 and
220.0 m?, and pump rate between 1.5 and 6.0 m*/min.

The genetic algorithm involved several parameter settings and
methods. In this study, binary encoding was chosen following
the genetic algorithms workflow; the initial population size was
set to 200, and the fitness function was the SSA-BP production
prediction model. Roulette wheel selection, uniform crossover, and
simple inversion mutation were employed as genetic operators. The
optimization objective was set to maximize post-fracturing OFC,
and the genetic algorithm was applied to optimize the fracturing
parameters for wells A-2, A-13, and A-15. The comparison results
of parameter optimization are shown in Table 3.

By comparing the fracturing parameter optimization results
of the three wells, it was found that the optimized fluid volume
and pump rate were significantly higher than the actual total
volume, and the optimized proppant volume also increased
notably. The parameter relationship diagram for the optimized A-
13 well is shown in Figure 5, where the factor value distribution
is relatively reasonable. After optimization, the OFC of wells
A-2, A-13, and A-15 increased by 29.43 x 10*m®d, 31.12
x 10*m®/d, and 14.62 x 10*m®/d, respectively. Therefore,
the fracturing parameter optimization method, combining the
SSA-BP production prediction model and genetic algorithm,
can effectively enhance post-fracturing production, achieving
significant production improvement. This optimization method
employs a surrogate model-based approach, avoiding dependence
on fracturing numerical simulation, thus significantly reducing
optimization time.

4 Field application

During the first fracturing operation of well A-X, a total fluid
volume of 687.3 cubic meters was used. This included 251.69 cubic
meters of high-displacement pad fluid (with stage plug, 4.83 tons of
70/100 mesh proppant), 180.32 cubic meters of high-displacement
proppant-laden fluid (with 5.05 tons of 40/70 mesh proppant),
241.79 cubic meters of high-displacement pad fluid (with stage plug,
2.93 tons of 40/70 mesh proppant), and 176.89 cubic meters of high-
displacement proppant-laden fluid (with 4.91 tons of 40/70 mesh
proppant). The maximum pumping rate was 4.4 cubic meters per
minute, with a total proppant usage of 76.5 tons. The highest pump
pressure reached 105 MPa, and all operational parameters were
within the design range, with no abnormal fluctuations or incidents.
The fracturing curve is shown in Figure 6.

Based on the actual data from the initial fracturing and
feedback from the model, we made adjustments to the operational
parameters. The adjusted total fluid volume and proppant volume
were optimized, with the maximum pumping rate slightly increased
to 4.7 cubic meters per minute and the proppant volume optimized
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to 80.2 tons to further enhance fracture conductivity and improve
production capacity. The production test results showed a significant
increase in daily gas production for well A-X, reaching 558,000 cubic
meters, with the open flow capacity increasing to 1.01 million cubic
meters per day, further validating the effectiveness of the model and
its application in operational optimization.

5 Conclusion

1. By employing the construction curve feature extraction
method, key characteristics such as time and fluid ratios
at different stages of the fracturing process—including
proppant-dominated fracture extension, blockage pressure,
multi-fracture competition, filtration balance, and filtration
increase—were effectively identified. These characteristics
significantly impact production capacity and provide valuable
guidance for optimizing fracturing outcomes.

2. Considering geological, engineering, production parameters,
and construction curve characteristics of individual wells,
a combined analysis method using Pearson correlation,
Kendall’s
importance was employed. This method comprehensively

Tau correlation, and random forest feature
identified 20 key factors influencing the open flow capacity
(OFEC) of the A gas field.

3. Based on the identified key factors, the SSA-BP hybrid
optimization model was used to optimize the fracturing
parameters of wells in the A gas field. This model successfully
enhanced prediction accuracy by combining the global search
capability of the Salp Swarm Algorithm (SSA) with the
local optimization capability of the Back Propagation (BP)
algorithm.

4. The fracturing construction parameters for wells in the A
gas field were optimized using a genetic algorithm, ultimately
determining the optimal combination of key parameters such
as fluid volume, pump rate, and proppant concentration. This
optimization significantly improved the effectiveness of the
fracturing operation.

5. Following the initial fracturing operation, we made

adjustments to the construction parameters. By increasing the

total fluid volume, optimizing the proppant concentration, and
slightly increasing the maximum pump rate, we successfully
enhanced the production capacity of Well A-X. The adjusted
construction parameters resulted in a significant increase
in daily gas production, reaching 558,000 cubic meters,
with an open flow capacity of 1.01 million cubic meters
per day. This validated the effectiveness and applicability
of the model in optimizing fracturing operations. Main
findings: (1) Construction curve feature extraction effectively
captured critical dynamic characteristics; (2) A total of 20 key
influencing factors were identified through comprehensive
correlation analysis; (3) The SSA-BP model explained 84% of
the productivity variation, outperforming other algorithms;

(4) Genetic Algorithm optimization significantly improved

open flow capacity in multiple wells. Limitations: The

study used data from 70 wells in a single field, which may
restrict generalizability. SSA-BP also involves relatively high
computational cost. Future work: Expanding the dataset,
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validating in other reservoirs, and exploring lightweight
models will further enhance applicability. Contributions: This
work is among the first to integrate construction curve feature
extraction with hybrid optimization for fracturing parameter
design in Tarim Basin, providing methodological innovation
and field-proven improvements in gas production.
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Nomenclature

T Workover time (Day)

AOF Open flow capacity after the first treatment (10* m*/d)
H Reservoir thickness (m)

w Leakage amount during Workover (m?)

Vi First treatment total fluid volume (m*)

[ Porosity (%)

0 Approaching angle (°)
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